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Abstract— We consider a class of local volt/var control
schemes where the control decision on the reactive power
at a bus depends only on the local bus voltage. These local
algorithms form a feedback dynamical system and collectively
determine the bus voltages of a power network. We show that
the dynamical system has a unique equilibrium by interpreting
the dynamics as a distributed algorithm for solving a certain
convex optimization problem whose unique optimal point is the
system equilibrium. Moreover, the objective function serves as
a Lyapunov function implying global asymptotic stability of
the equilibrium. The optimization based model does not only
provide a way to characterize the equilibrium, but also suggests
a principled way to engineer the control. We apply the results
to study the parameter setting for the inverter-based volt/var
control in the proposed IEEE 1547.8 standard.

I. Introduction
Traditionally voltages in a primary distribution system

fluctuate slowly due to changes in demand which are rela-
tively mild and predictable. Capacitor banks and under load
tap changers (ULTC) are reconfigured a few times a day to
stabilize voltages around their nominal values; see, e.g., [2],
[3], [5]. The continued proliferation of distributed generation
such as photovoltaic will introduce frequent, rapid, and
random fluctuations in supply and voltages in a primary
distribution system. Capacitor banks and ULTC alone may
not be adequate to stabilize voltages in such an environment.
Distributed energy resources such as photovoltaic systems
are connected to the grid through inverters. Even though the
current IEEE Standard 1547 requires unity power factor at
the output of an inverter, the inverter hardware can easily
optimize its reactive power output to help stabilize voltages.
Indeed the IEEE Standards group is actively exploring a new
inverter-based volt/var control. Unlike the capacity banks
or ULTC, inverters can push and pull reactive power much
faster, in a much finer granularity, and with low operation
costs; see, e.g., [6], [8], [9]. They will enable realtime
distributed volt/var control that is needed for the future power
grid.

In this paper we study a class of inverter-based local
volt/var control schemes that are motivated by the proposed
1547.8 standard [1]. These schemes set the reactive power
at the output of an inverter based only on the local voltage
deviation from its nominal value at a bus. Var control based
on realtime voltage measurements has also been proposed in
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a transmission system; see, e.g., [7]. We use a linear branch
flow model similar to the Simplified DistFlow equations
introduced in [4]. The linear branch flow model and the
local volt/var control form a closed loop dynamical system
(Section II). We show that the dynamical system has a unique
equilibrium point and characterize it as the unique optimal
solution of a certain convex optimization problem (Section
III). The optimization problem has a simple interpretation:
the local volt/var control tries to achieve an optimal tradeoff

between minimizing the cost of voltage deviations and mini-
mizing the cost of reactive power provisioning. Moreover, the
objective of the optimization problem serves as a Lyapunov
function of the dynamical system under local volt/var con-
trol, implying global asymptotic stability of the equilibrium.
We further provide a sufficient condition under which the
dynamical system yields a contraction mapping, implying
that it converges exponentially fast to the equilibrium. We
apply these results to study the inverter-based volt/var control
in IEEE 1547.8 standard [1], and discuss how to set the
parameters for the proposed control functions (Section IV).
The optimization based model does not only provide a way
to characterize the equilibrium and establish the convergence
of the local volt/var control, but also suggest a principled way
to engineer the control. New design goals such as fairness
and economic efficiency can be taken incorporated by en-
gineering the global objective function in the optimization
problem; and new control schemes with better dynamical
properties can be designed based on various optimization
algorithms, e.g., the gradient algorithms.

II. Network model and local voltage control

Consider a tree graph G = {N ∪ {0},L} that represents a
radial distribution network consisting of n+1 buses and a set
L of lines between these buses. Bus 0 is the substation bus
and is assumed to have a fixed voltage. Let N := {1, . . . , n}.
For each bus i ∈ N , denote by Li ⊆ L the set of lines
on the unique path from bus 0 to bus i, pc

i and pg
i the

real power consumption and generation, and qc
i and qg

i the
reactive power consumption and generation, respectively. Let
vi be the magnitude of the complex voltage (phasor) at
bus i. For each line (i, j) ∈ L, denote by ri j and xi j its
resistance and reactance, and Pi j and Qi j the real and reactive
power from bus i to bus j respectively. Let `i j denote the
squared magnitude of the complex branch current (phasor)
from bus i to bus j. These notations are summarized in
Table I. A quantity without subscript is usually a vector
with appropriate components defined earlier, e.g., v := (vi, i ∈
N), qg := (qg

i , i ∈ N).



TABLE I
Notations

N Set of buses, excluding bus 0, labeled as {1, 2, ..., n}
L Set of all links representing the power lines
Li Set of the links on the path form bus 0 to bus i
pc

i , pg
i Real power consumption and generation at bus i

qc
i , q

g
i Reactive power consumption and generation at bus i

ri j, xi j Resistance and reactance of line (i, j)
Pi j,Qi j Real and reactive power flows from i to j
vi Magnitude of complex voltage at bus i
`i j Squared magnitude of complex current on (i, j)
β(i) ⊂ N Set of all descendants of node i

A. Linearized branch flow model

We adopt the following branch flow model introduced in
[2], [3] (called DistFlow equations there) to model a radial
distribution system:

Pi j = pc
j − pg

j +
∑

k:( j,k)∈L

P jk + ri j`i j, (1a)

Qi j = qc
j − qg

j +
∑

k:( j,k)∈L

Q jk + xi j`i j, (1b)

v2
j = v2

i − 2
(
ri jPi j + xi jQi j

)
+

(
r2

i j + x2
i j

)
`i j, (1c)

`i jvi = P2
i j + Q2

i j. (1d)

Following [4] we assume `i j = 0 for all (i, j) ∈ L in
(1). This approximation neglects the higher order real and
reactive power loss terms. Since losses are typically much
smaller than power flows Pi j and Qi j, it only introduces a
small relative error, typically on the order of 1%. We further
assume that vi ≈ 1 so that we can set v2

j − v2
i = 2(v j − vi) in

equation (1c). This approximation introduces a small relative
error of at most 0.25% (1%) if there is a 5% (10%) deviation
in voltage magnitude.

With the above approximations the model (1) simplifies
to the following linear model [4]:

Pi j =
∑

k∈β( j)

(
pc

k − pg
k

)
,

Qi j =
∑

k∈β( j)

(
qc

j − qg
j

)
,

vi − v j = ri jPi j + xi jQi j,

where β( j) is the set of all descendants of node j including
node j itself, i.e., β( j) =

{
i|L j ⊆ Li

}
. This yields an explicit

solution for vi in terms of v0 (which is given and fixed):

v0 − vi =
∑

( j,k)∈Li

r jkP jk +
∑

( j,k)∈Li

x jkQ jk

=
∑

( j,k)∈Li

r jk

 ∑
h∈β(k)

(
pc

h − pg
h

) +
∑

( j,k)∈Li

x jk

 ∑
h∈β(k)

(
qc

h − qg
h

)
=

∑
j∈N

(
pc

j − pg
j

)  ∑
(h,k)∈Li∩L j

rhk

 +
∑
j∈N

(
qc

j − qg
j

)  ∑
(h,k)∈Li∩L j

xhk


=

∑
j∈N

Ri j

(
pc

j − pg
j

)
+

∑
j∈N

Xi j

(
qc

j − qg
j

)
,

where

Ri j :=
∑

(h,k)∈Li∩L j

rhk,

Xi j :=
∑

(h,k)∈Li∩L j

xhk. (2)

Fig. 1. Li ∩ L j for two arbitrary buses i, j in the network and the
corresponding mutual voltage-to-power-injection sensitivity factors Ri j, Xi j.

Figure 1 gives an illustration of Li ∩L j for two arbitrary
buses i and j in a radial network and the corresponding Ri j
and Xi j.1 Define a resistance matrix R = [Ri j]n×n and a
reactance matrix X = [Xi j]n×n. Both matrices are symmetric.
Using the matrices R and X the linearized branch flow model
can be summarized compactly as

v = v0 + R(pg − pc) + X(qg − qc),

where v0 = (v0, . . . , v0) is an n-dimensional vector. In this
paper we assume that v0, pc, pg, qc are given constants. The
only variables are (column) vectors v := (v1, . . . , vn) of
squared voltage magnitudes and qg := (qg

1, . . . , q
g
n) of reactive

powers. Let ṽ = v0 + R(pg − pc) − Xqc, which is a constant
vector. For notational simplicity in the rest of the paper we
will ignore the superscript in qg and write q instead. Then
the linearized branch flow model reduces to the following
simple form:

v = Xq + ṽ. (3)

The following result is important for the rest of this paper.
Lemma 1: The matrices R and X are positive definite.

Proof: The proof will use the fact that the values of
resistances and reactances of power lines in the network are
all positive. Here we give a proof for the reactance matrix
X, and exactly the same argument applies to the resistance
matrix R.

We prove by induction on the number k of buses in the
network, excluding bus 0 (the root bus). The base case of
k = 1 corresponds to a two-bus network with one line. Here
X is obviously a positive scalar that is equal to the reactance
of the line connecting the two buses.

Suppose that the theorem holds for all k ≤ n. For the case
of k = n + 1 we consider two possible network topologies as
shown in Figure 2:

1Since

Ri j =
dvi

dpg
j

= −
dvi

dpc
j
,

Xi j =
dvi

dqg
j

= −
dvi

dqc
j
,

we refer to Ri j, Xi j as the mutual voltage-to-power-injection sensitivity
factors.



(a) Case1: degree of bus 0 is
greater than 1

(b) Case 2: degree of bus 0 is
1

Fig. 2. Two possible network structures

Case 1: bus 0 is of degree greater than 1. Split the network
into two different trees rooted at bus 0, denoted by T1 and
T2, each of which has no more than n buses excluding bus
0. Denote by Y and Z respectively the reactance matrices
of T1 and T2. By induction assumption Y and Z are positive
definite. Note that the set Li of lines on the unique path from
bus 0 to bus i must completely lie inside either T1 or T2, for
all i. Therefore, by definition (2), the reactance matrix X of
the network has the following block-diagonal form:

Xi j =


Yi j, i, j ∈ T1
Zi j, i, j ∈ T2
0, otherwise

⇒ X =

[
Y 0
0 Z

]
.

Since Y and Z are positive definite, so is X.
Case2: bus 0 is of degree 1. Suppose without loss of

generality that bus 0 is connected to bus 1. Denote by x
the reactance of the line connecting buses 0 and 1, and T
the tree rooted at bus 1. Tree T has n−1 buses excluding bus
1 (i.e., its root bus). Denote by Y the reactance matrix of T ,
and by induction assumption, Y is positive definite. Note that,
for all nodes i in the network, the set Li includes the single
line that connects buses 0 and 1. Therefore, by definition (2),
the reactance matrix X has the following form:

Xi j =

{
Yi j + x, i, j ∈ T−

x, otherwise ⇒ X =


x . . . x
...

...
x . . . x

+
[

0 0
0 Y

]
,

where T− denotes the set of nodes in tree T excluding the
root bus 1. It is straightforward to verify that, when Y is
positive definite and x is positive, X is positive definite. This
concludes the proof.

B. Local volt/var control
The goal of volt/var control on a distribution network is

to provision reactive power injections q := (q1, . . . , qn) in
order to maintain the bus voltages v := (v1, . . . , vn) to within
a tight range around their nominal values vnom

i , i ∈ N .
This can be modeled by a feedback dynamical system with
state (v(t), q(t)) at discrete time t. A general volt/var control
algorithm maps the current state (v(t), q(t)) to a new reactive
power injections q(t + 1). The new q(t + 1) produces a new
voltage magnitudes v(t + 1) according to (3). In this paper
we focus on local volt/var control where each bus i makes
an individual decision qi(t+1) based only on its own voltage
vi(t).

Definition 1: A volt/var control function f : Rn → Ω is a
collection of fi : R → Ωi functions that map the deviations
vi(t) − vnom

i of the current voltage from its nominal value to
a new local control qi(t + 1):

qi(t + 1) = fi(vi(t) − vnom
i ), ∀i ∈ N , (4)

where Ω =
n∏

i=1
Ωi, with Ωi =

{
qi | qi

min ≤ qi ≤ qi
max

}
the set

of feasible reactive power injections at each bus i ∈ N .
In summary, the dynamical system that models our volt/var

control of a distribution network is given by:

v(t) = Xq(t) + ṽ, (5)
q(t + 1) = f (v(t) − vnom). (6)

A fixed point of the above dynamical system represents an
equilibrium operating point of the network.

Definition 2: (v∗, q∗) is called an equilibrium point, or a
network equilibrium, if it is a fixed point of (5)–(6), i.e.,

v∗ = Xq∗ + ṽ,
q∗ = f (v∗ − vnom).

III. Network equilibrium and dynamics
In this section we characterize the equilibrium point of

local volt/var control (5)–(6) and study its dynamical prop-
erties.

A. Network equilibrium
The local volt/var control functions fi(vi) are usually

decreasing,2 but are not always strictly monotone because
of the deadband in control as well as the bounds on the
available reactive power. We assume for each bus i ∈ N
a symmetric deadband [−δi/2, δi/2] around the origin with
δi ≥ 0. Let vi := min

{
vi| fi(vi) = qmin

i

}
, i.e., the lowest voltage

deviation from the nominal value that draws reactive power
qmin

i , and let vi := max
{
vi| fi(vi) = qmax

i

}
, i.e., the highest

voltage deviation that draws reactive power qmax
i . We make

the following assumption:
A1: The local volt/var control functions fi are nonincreas-

ing over R and strictly decreasing and differentiable in
(vi,−δi/2) and in (δi/2, vi).

Since fi is nonincreasing a (generalized) inverse f −1
i exists

over (qmin
i , qmax

i ). In particular, at the end points, we have

f −1
(
qmin

i

)
:= vi and f −1 (

qmax
i

)
:= vi

and, at the origin, we assign f −1(0) = 0 in the deadband
[−δi/2,+δi/2]. This may introduce a discontinuity at qi = 0.
See Figure 3 for an example fi and Figure 4 for its inverse
f −1
i .

Define a cost function for each bus i ∈ N :

Ci(qi) := −

∫ qi

0
f −1
i (q) dq.

This function is convex since f −1
i is decreasing. Then, given

any vi(t), qi(t + 1) in (6) is the unique solution of a simple
distributed optimization:

qi(t + 1) = arg min
qmin

i ≤qi≤qmax
i

Ci(qi) + qi
(
vi(t) − vnom

i
)
, (7)

i.e., (6) and (7) are equivalent specification of qi(t + 1).3

2Note that here we reload the notation, and use vi to also denote the
voltage magnitude deviation from the nominal value.

3They are equivalent specifications even if vi(t) − vnorm
i falls inside the

deadband, i.e., if |vi(t) − vnorm
i | < δi/2. Under this situation, the set of

subgradients of Ci(qi) + qi(vi(t) − vnom
i ) at qi = 0[

−
δi

2
+

(
vi(t) − vnorm

i

)
,
δi

2
+

(
vi(t) − vnorm

i

)]



Consider now the function F : Ω→ R:

F(q) := C(q) +
1
2

qT Xq + qT ∆ṽ

where C(q) =
∑

i∈N Ci(qi) and ∆ṽ := ṽ−vnorm, and the global
optimization problem:

min
q∈Ω

F(q). (8)

Theorem 1: Suppose A1 holds. Then there exists a unique
equilibrium point. Moreover a point (v∗, q∗) is an equilibrium
if and only if q∗ is the unique optimal solution of (8) and
v∗ = Xq∗ + ṽ.

Proof: From Lemma 1 the matrix X is positive definite.
This implies that the objective function F(q) is strictly
convex. Hence the first order optimality condition for (8)
is both necessary and sufficient; moreover (8) has a unique
optimal solution. We now relate it to the equilibrium point.

The gradient of F is the (column) vector

∇F(q) = ∇C(q) + Xq + ∆ṽ
= ∇C(q) + (Xq + ṽ) − vnorm

where, from the definition of Ci(qi),

∇C(q) =
[
− f −1

1 (q1) . . . − f −1
n (qn)

]T
.

Hence the first order optimality condition for (8) is:

q∗i = fi
(
(Xq∗ + ṽ) − vnorm)

.

Hence a point (v∗, q∗) is an equilibrium if and only if q∗

solves (8) and v∗ = Xq∗ + ṽ. The existence and uniqueness
of the optimal solution of (8) then implies that of the
equilibrium (v∗, q∗).

With v = Xq + ṽ, the objective can be written as F(q, v) =

C(q) + 1
2 (v − vnom)T X−1(v − vnom) + 1

2 ∆ṽT X−1∆ṽ. Note that
the last term is a constant. Therefore the local volt/var
control (5)-(6) tries to achieve an optimal tradeoff between
minimizing the cost 1

2 (v − vnom)T X−1(v − vnom) of voltage
deviation and minimizing the cost C(q) of reactive power
provisioning.

B. Dynamics

We now study the dynamic properties of local volt/var
control (5)–(6). We make the following assumption:
A2: The derivative of the control function fi is bounded,

i.e., there exists a finite αi such that | f ′i (vi)|≤ αi for all
vi in the appropriate domain, for all i ∈ N .

This assumption means that an infinitesimal change in volt-
age should not lead to a jump in reactive power.

Theorem 2: Suppose A1–A2 hold. if

diag
(

1
αi

)
� X, (9)

contains 0, which is exactly the optimality condition at qi = 0, and hence
qi(t + 1) = 0. In the following we ignore such subdifferentiability issue with
the understanding that subgradients should be used in place of gradients
where functions are not differentiable.

i.e., if the matrix diag
(
α−1

i

)
−X is positive definite, then local

volt/var control (5)–(6) converges to the unique equilibrium
point (v∗, q∗).

Proof: Recall that C(q) =
∑

i∈N Ci(qi). Its Hessian

∇2C(q) = diag
−∂ f −1

i (qi)
∂qi

 .
By assumptions A1–A2 we have

∇2C(q) � diag
(

1
αi

)
. (10)

By the second order Taylor expansion,

F (q(t + 1))

= C(q(t + 1)) +
1
2

qT (t + 1)Xq(t + 1) + qT (t + 1)∆ṽ

= C(q(t)) + (∇C(q(t + 1)))T (q(t + 1) − q(t))

−
1
2

(q(t + 1) − q(t))T∇2C(q̃)(q(t + 1) − q(t))

+
1
2

qT (t)Xq(t) + (q(t + 1) − q(t))T Xq(t)

+
1
2

(q(t + 1) − q(t))T X(q(t + 1) − q(t))

+qT (t)∆ṽ − (q(t + 1) − q(t))T ∆ṽ
≤ F(q(t))

+(∇C(q(t + 1)) + Xq(t) + ∆ṽ)T (q(t + 1) − q(t))

−
1
2

(q(t + 1) − q(t))T
(
diag

(
α−1

i

)
− X

)
(q(t + 1) − q(t))

≤ F(q(t))

−
1
2

(q(t + 1) − q(t))T
(
diag

(
α−1

i

)
− X

)
(q(t + 1) − q(t)),

(11)

where q̃ ∈ {q ∈ Ω | q = θq(t) + (1 − θ)q(t + 1), 0 ≤ θ ≤ 1},
the first inequality follows from (10), and the last inequality
follows from (7).

Since diag
(
α−1

i

)
� X, the second term in (11) is strictly

negative as long as q(t + 1) 6= q(t) and zero only if q(t + 1) =

q(t). Since the fixed point to (5)–(6) is unique by Theorem
1, q(t + 1) = q(t) can only occur at the unique fixed point q∗

(with v∗ = Xq∗ + ṽ).
Thus we have shown the following:
• F(q) ≥ F(q∗) with equality if and only if q = q∗ by

Theorem 1,
• F(q(t+1)) ≤ F(q(t)) with equality if and only if q(t+1) =

q(t) = q∗,
i.e., F is a discrete-time Lyapunov function for (5)–(6).
Moreover one can extend the domain of each f −1

i from
[qmin

i , qmax
i ] to R in such a way that the above properties

hold in the entire space and F is radially unbounded. The
Lyapunov stability theorem then implies that q∗ is globally
asymptotically stable.

Since X is not only a positive definite matrix but also a
positive matrix, diag(

∑
j∈N Xi j) � X. This leads to a sufficient

condition for the convergence of the local volt/var control.
Corollary 1: Suppose A1–A2 hold. If for all i ∈ N

αi

∑
j

Xi j < 1, (12)



then local volt/var control (5)–(6) converges to the unique
equilibrium point (v∗, q∗). Moreover, it converges exponen-
tially fast to the equilibrium.

Proof: By condition (12), diag
(
α−1

i

)
� diag

(∑
j∈N Xi j

)
.

Since X is a positive definite as well as positive matrix,
diag

(∑
j∈N Xi j

)
−X is diagonally dominant with non-negative

diagonal entries, and is thus positive semidefinite. Thus
diag

(
α−1

i

)
� X. By Theorem 2, local volt/var control (5)–

(6) converges to the equilibrium point (v∗, q∗).
Now consider the equivalent system to (5)–(6):

q(t + 1) = f (Xq(t) + ∆ṽ) =: g(q(t)).

We have
∂g
∂q

= diag( f ′i (vi)) X

with vi :=
∑

j Xi jq j + ∆ṽi. Condition (12) implies∥∥∥∥∥∂g
∂q

∥∥∥∥∥
∞

< 1

where the induced matrix norm ‖·‖∞ is the maximum row
sum. Hence

‖g(q) − g(q̂)‖∞ ≤

∥∥∥∥∥∂g
∂q

∥∥∥∥∥
∞

· ‖q − q̂‖∞ < ‖q − q̂‖∞,

i.e., g is a contraction. This implies that (v(t), q(t)) converges
exponentially fast to the unique equilibrium point under (5)–
(6).

Remark 1: We have reverse-engineered the local volt/var
control (5)–(6), by showing that it is a distributed algorithm
for solving a convex global optimization problem. The op-
timization based model (8) does not only provide a way to
characterize the equilibrium and establish the convergence
of the local volt/var control, but also suggests a principled
way to engineer the control. New design goals such as
fairness and economic efficiency can be taken incorporated
by engineering the global objective function in (8); and new
control schemes with better dynamical properties can be
designed based on various optimization algorithms, e.g., the
gradient algorithms.

IV. Case study: Inverter Control in IEEE 1547.8

We now apply the results of Section III to study the
inverter-based volt/var control in IEEE 1547.8 standard [1]
and discuss the parameter setting for the proposed control
functions.

A. Reverse engineering 1547.8

The IEEE 1547 is currently being extended by the stan-
dards working group (IEEE 1547.8) to specify how to use
inverters to assist in power quality control by adapting their
reactive power generation. The methods being discussed in
the latest draft [1] are:

1) Fixed power factor: the reactive power generation is
directly proportional to the real power generation.
This includes the traditional mode of operation with
unity power factor where inverters are not allowed to
inject or absorb reactive power under normal operating
conditions.

2) Variable power factor: the reactive power generation
depends not only on their active power output but also
to Xii/Rii ratio at the point of connection.

3) Voltage-based reactive power control: an inverter mon-
itors its terminal voltage and sets its reactive power
generation based on a predefined volt-var curve.

In this paper we focus on the third approach. In particular,
we study the piecewise linear volt/var curve shown in Figure
3 currently under discussion in the draft of the new IEEE
1547.8 [1]. This class of control functions are given by:

δi
2

−
δi
2

vi

vi

qi
min

qi
max

fi vi( )

−αi

−αi

Fig. 3. Piecewise linear volt/var control curve discussed in IEEE 1547.8
[1].

fi(vi) :=
[
−αi

(
vi −

δi

2

)+

+ αi

(
−vi −

δi

2

)+
]qi

max

qi
min

, (13)

where (x)+ = max{x, 0}, and

[x]b
a =


a for x ≤ a,
x for a ≤ x ≤ b,
b for b ≤ x.

They are specified by a deadband of width δi and two linear
segment with a slope of −αi for inverter i.

Following the procedure described in Section III-A, the
inverse f −1

i of the volt/var control curve over [Qmin
i ,Qmax

i ] is
illustrated in Figure 4 and given by:

f −1
i (qi) :=


−

qi
αi

+ δi
2 for qi ∈ [qmin

i , 0),
0 for qi = 0,
−

qi
αi
−

δi
2 for qi ∈ (0, qmax

i ],

and the corresponding cost function Ci(qi) :=
∫ qi

0 f −1
i (q)dq is

shown in Figure 5 and is given by:

Ci(qi) =

 1
2αi

q2
i −

δi
2 qi if qi ∈ [qmin

i , 0],
1

2αi
q2

i + δi
2 qi if qi ∈ [0, qmax

i ].
(14)

B. Parameter setting
It has been suggested to set the slope of the piecewise

linear control function to αi = 1/Xii. This is a good choice if
bus i is the only bus where the inverter-based volt/var control
is employed. To see this, suppose that in the beginning vi =

ṽi > vnom
i + δi/2. Then under the control (13), qi = −(vi −



δi
2

−
δi
2

vi

vi

qi
min

qi
max

fi
−1 qi( )

−
1
αi

−
1
αi

Fig. 4. The inverse f −1
i of the volt/var control curve in Figure 3.

qi
min qi

max

Ci qi( )

Fig. 5. The cost function Ci(qi) corresponding to f −1
i of Figure 4.

vnom
i − δi/2)/Xii and vi = Xiiqi + ṽi = vnom

i + δi/2. Therefore if
the deadband δi is set to the range of the desired voltage, the
volt/var control can bring the voltage of bus i to the desired
range in just one step.

However the above choice does not take into consideration
the impact of volt/var control at other buses. In particular,
when αi = 1/Xii, condition (9) in Theorem 2 does not
hold, and the local control (13) may not converge to the
equilibrium point. Instead, by Corollary 1, a convenient
choice for αi is to set αi = (

∑
j∈N Xi j + ε)−1, where ε > 0 can

be used to control the convergence speed and a larger ε leads
to faster response. Intuitively Xi j characterizes the sensitivity
of bus j’s voltage to reactive power injected at bus i, so if
a bus has a larger impact to other buses (including itself), it
should control its reactive power more cautiously, i.e., use a
smaller αi.

On the other hand, as mentioned in Section III-A, the local
volt/var control tries to achieve an optimal tradeoff between
minimizing the cost 1

2 (v − vnom)T X−1(v − vnom) of voltage
deviation and minimizing the cost C(q) of reactive power
provisioning. Seen from (14), a smaller αi implies a steeper
cost function of reactive power provisioning, which means
that a larger voltage deviation may incur at the equilibrium.
So a larger αi and smaller ε is preferred for minimizing the

voltage derivation. Therefore the ε value specifies the tradeoff

between convergence speed and the voltage deviation. We
will further study the optimal choice of ε and αi in future
work.

Seen from (14), a smaller deadband δi means a smaller
marginal cost in reactive power provisioning and thus a
smaller cost in reactive power provisioning. Intuitively, this
implies that the smaller the deadband δi, the more bus i is
willing/active to provision reactive power in order to achieve
a narrower range of desired voltage.

The above discussion on parameter choice is based on the
dynamical properties of the local volt/var control, as well as
the impact of bus i’s choice on itself; e.g., if the control at
a bus has a smaller impact on itself or if a bus wants to
achieve a narrower voltage range, it should be more active
in reactive power provisioning. We can also set parameters
to balance the contribution of a bus to the network versus its
gain. For example, a larger Xii means bus i can help more
with regulating the voltages at other buses, so it may have a
tighter range of desired voltage and set a smaller deadband.
A fair choice for the deadband would be δi ∝ 1/Xii.

V. Conclusion
We have studied a general class of local volt/var control

schemes where the control decision on reactive power at a
bus depends only on the voltage of that bus. By interpreting
the resulting feedback dynamical system as a distributed
algorithm for solving a convex global optimization problem,
we have shown that the network has a unique equilibrium
point. Moreover, the objective function serves as a Lyapunov
function, leading to a simple condition that guarantees ex-
ponential convergence. The optimization based model also
suggests a principled way to engineer the control. We have
applied these results to the inverter-based volt/var control
in the IEEE 1547.8 standard, and discuss how to set the
parameters for the proposed control functions.
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