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1 Introduction

This paper describes the relationship between two different binary social in-
teraction models found in the literature. The mean field model of Brock and
Durlauf (1995) is in its essence a static Nash equilibrium model in which
expected utility preferences have been replaced by a random utility model.
The strategy adjustment model of Blume (1994) is a description of a stochas-
tic population process similar to Blume (1993), Kandori, Mailath, and Rob
(1993) and Young (1993).

The mean field model suggests a differential equation whose steady
states are precisely the mean field equilibria. We show that for large player
populations, the solution path of the differential equation from given initial
conditions closely approximates the sample path of the population process
from the same starting point. This result is well-known in the population
biology literature and has also been demonstrated in some population game
models.

More interesting is that the differential equation also carries infor-
mation about the asymptotic behavior of the population process. As the
population size becomes large, any (weak convergence) accumulation point
of the sequence of invariant distributions has support contained in the set
of stable steady states of the differential equation. We characterize (weak)
accumulation points of the sequence of suitably scaled invariant distributions
for the population process. In general, the limit distributions distribute their
mass among the mean field equilibria. For two particular cases, the constant
tremble probability model of Kandori, Mailath and Rob and Young and the
logit choice model of Blume and Brock and Durlauf, we demonstrate that
the sequence of invariant distributions converges and we compute the limit.

The typical population game analysis fixes a population size and in-
vestigates the limit behavior of the sequence of invariant distributions as the
stochastic component of choice disappears. These so-called “stochastic sta-
bility results” have been used to justify a particular selection from the set of
Nash equilibria of the static game which drives the population process. The
noisy choice is just a means to an equilibrium selection technique. We take
seriously both the dynamic models and noisy choice. Consequently for us
the invariant distributions are interesting in their own right rather than as a
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means to an end, and we want to understand the behavior of these models
when there is a significant random component to choice.

Density-dependent population processes arise frequently in economic
analysis, and most often they are studied by examining a differential equa-
tion which describes the evolution of mean behavior. The rationale for this
approach is an appeal to a law of large numbers. For a particular class of
game-theoretic models we make the large numbers argument precise, and
clarify what can be learned from it. We expect that our results can be ex-
tended to some of the literature on search and sorting which proceeds in this
manner, and we believe this to be an important area for future research.

2 The Structure of Interactions-Based Mod-

els

The object of interactions-based models is is to understand the behavior of a
population of economic actors rather than that of a single actor. The focus of
the analysis is the externalities across actors. These externalities, the source
of the social interactions, are taken to be direct. The decision problem of
any one actor takes the decisions of other actors to be parametric. Hence
the interactions approach treats aggregate social behavior as a statistical
regularity of the individual interactions. A second feature of these models
is that individual behavior is not as tightly modeled as it is in traditional
economic equilibrium models. Individual choice is guided by payoffs, but has
a random component. This randomness can be attributed to to some form of
bounded rationality. In static equilibrium models it may also be interpreted
as an unobserved agent characteristic.

In this paper we focus on a simple class of interaction models with
strategic complementarities. Formally, consider a population of I individuals.
Suppose that each individual chooses one of two actions, labeled −1 and +1.
Suppose that each individual’s utility is the sum of utilities from pairwise
interactions with every other player. Actor i’s expected utility is

Vi(ωi) = hiωi − E
{∑

j

Ji,j(ωi − ωj)2
}

+ ε(ωi)
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This specification can be decomposed into a private component, hiωi+ ε(ωi),
and the interaction effect, E

{∑
j Ji,j(ωi − ωj)

2
}

. The private component
can be further decomposed (without loss of generality) into its mean, hiωi,
and the stochastic deviation ε(ωi). The terms Ji,j is a a measure of the
disutility of non-conformance. When the Ji,j are all positive there is an
incentive to conform. The presence of positive conformity effects gives rise to
multiple equilibria and interesting dynamics. Our methods also encompass
the case of negative conformity effects, but the results are less interesting
both economically and technically.

For binary choice, this specification of preferences is quite general.
Any model in which the utility of action ωi to individual i is the sum of
the utilities from pairwise interactions with other players can be modeled
this way. This specification does not include some interesting models of
strategic complementarities, such as the stag hunt game. Multiplying out
the quadratic and renormalizing,

Vi(ωi) = hiωi + 2E
{∑

j

Ji,jωiωj
}

+ ε(ωi) (1)

The random terms are independent, and we assume that the random variable
εi(−1)− εi(1) has mean 0 and cdf F (z). Then

Prob(ωi = 1) = Prob
(
Vi(1) > Vi(−1)

)
= F (2hi + 4E

∑
j

Ji,jωj)

Different specifications of the hi and Jij coefficients give rise to models with
very different kinds of behavior. In this paper we will study uniform global
interaction. That is, Jij ≡ J/2(I−1) and hi ≡ h. Interactions with all other
players are weighted equally, and so mean utility is the sum of a private
effect, the hiωi term, and a social effect which places a weight of J on the
covariance of i’s play with mean play of all other players. Also, the private
terms are identical across players.1 Under these assumptions, the individual

1The other leading example of social interaction is uniform local interaction, studied
by (Blume 1993) and (Ellison 1993). Here hi ≡ h and Ji,j = J or 0 depending upon
whether or not i and j are neighbors. (Ellison uses a different model of the stochastic
component.)
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choice probabilities are

Prob(ωi = 1) = F

(
2h+ 2

J

I − 1

∑
j 6=i

Eωj

)
(2)

An important special case arises when the random terms are assumed to be
distributed according to the extreme value distribution with parameter βi.
That is,

Prob
(
ε(−1)− ε(1) < z

)
=

1

1 + exp(−βiz)
, βi > 0

This model reduces to an instance of the standard logit binary choice frame-
work when there are no interaction effects; that is, when Ji,j ≡ 0.

From this distribution the individual choice probabilities can be com-
puted.

Prob(ωi = 1) =
1

1 + exp−2β

(
h+

J

I − 1
E
∑
j

ωj)

) (3)

When β is very large, individual i will choose an action to maximize mean
utility

EVi(ωi) =

(
h+

J

I − 1

∑
j 6=i

Eωj

)
ωi

with probability near 1. When β is 0 the player will choose by flipping a
coin.

Another important special case is that where the random terms are
assumed to be distributed such that with probability ε they take on the value
A > |EV (1)−EV (−1)| and with probability 1− ε they take on the value 0.
Then2

Prob(ωi = 1) =


ε(1− ε) if EVi(1) < EVi(−1),

1− ε(1− ε) if EVi(1) > EVi(−1),

1/2 if EVi(1) = EVi(−1).

(4)

2When EVi(1) = EVi(−1), individual i draws until she gets a non-zero realization of
ε(−1)− ε(1).
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This model implements the “tremble” or “mistakes” model of Kandori, Mailath,
and Rob (1993) and Young (1993). As ε becomes small, the probability of
best responding approaches 1.

Equation (2) describes the probabilities with which the actions avail-
able to player i will be taken. This choice model is not closed, however,
because we have not specified how the expectation in (2) is to be taken. In
fact it is a conditional probability, and different choices for on what it is
conditioned give rise to the different models which we consider in this paper.

3 Static Equilibrium: The Brock-Durlauf Model

One approach to closing the model is that suggested by Nash equilibrium.
That is, each individual i has beliefs about all the ωj, and these beliefs
are correct. This specification gives the Brock and Durlauf (1995) model.
Formally, suppose that each player believes that the expectation of the action
of each of his opponents is m. Equation (2) becomes

Prob(ωi = 1) = F (2h+ 2Jm) (5)

If this guess is to be correct, it must be that

m = 1 · Prob(ωi = 1) + (−1) · Prob(ωi = −1) (6)

which is the equilibrium condition that closes the model. It will be convenient
to rewrite this condition in terms of the log-odds function g(z) = logF (z)−
log
(
1− F (z)

)
. In all that follows we need to make sure that the support of

F ( · ) is large enough that g(z) is everywhere defined and that the population
externality is present.

Axiom 1. F (z) > 0 for all z in the interval [2h− 2J, 2h+ 2J ] and F (2h−
2J) < F (2h+ 2J).
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Substituting into equation (6),

m =
exp g(2h+ 2Jm)

1 + exp g(2h+ 2Jm)
− 1

1 + exp g(2h+ 2Jm)

=
exp 1

2
g(2h+ 2Jm)

exp 1
2
g(2h+ 2Jm) + exp−1

2
g(2h+ 2Jm)

= tanh

(
1

2
g(2h+ 2Jm)

)
(7)

For the logit model, equation (5) becomes

Prob(ωi = 1) =
1

1 + exp−2β(h+ Jm)

The log-odds function is g(z) = βz, and so the equilibrium condition (7) is

m = tanh β(h+ Jm) (8)

Equation (7) is well-known in the world of statistical physics, where it has an
important physical interpretation, and is known as the Curie-Weiss model of
magnetization. The following characterization of the solutions to (8) is well
known:

Theorem 1 (Static Equilibrium).

1. If βJ ≤ 1 and h = 0, then m = 0 is the unique solution to (8).

2. If βJ > 1 and h = 0, then there are three solutions: m = 0 and
m = ±m∗(βJ). Furthermore, limβJ→∞m

∗(βJ) = 1.

3. If h 6= 0 and J > 0, then there is a threshold C(h) > 0 (which equals
+∞ if h ≥ J) such that (a) for βh < C(h), there is a unique solution,
which agrees with h in sign; and (b) for βh > C(h) there are three
solutions, only one of which agrees with h in sign. Furthermore, as β
becomes large the extreme solutions converge to ±1.

4. If J < 0, then there is a unique solution which agrees with h in sign.

This theorem illustrates both the nonlinearities and the multiple steady states
which are the hallmarks of interacting systems. The model is nonlinear with
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respect to a change in h, the private component of preference, on the mean
behavior m of the population. Indeed, the effect of a change in h may be to
increase the number of equilibria, which will exceed one when the strength
of interactions is great enough.

The underlying strategic situation for J > |h| corresponds to a co-
ordination game played by a population of opponents, wherein player i’s
preferences are the mean preferences h + J

∑
j 6=i ωj/(I − 1). The strategy

choice +1 (−1) is risk-dominant if h ≥ 0 (h ≤ 0). As β becomes large, the
two extreme solutions converge to the pure strategy Nash equilibria. When
h 6= 0 the middle equilibrium will not converge to the mixed Nash equilibrium
because the choice probabilities (3) impose a particular randomization when
Vi(1) = Vi(−1) which will be incompatible with that required to implement
the mixed equilibrium.

For the mistakes model, equation (5) becomes

Prob(ωi = 1) =


ε(1− ε) if 2h+ 2Jm < 0,

1− ε(1− ε) if 2h+ 2Jm > 0,

1/2 if 2h+ 2Jm = 0.

(9)

The equilibrium condition is that m is any solution to the following equations:

m =


1− 2ε(1− ε) if h+ J − 2J(ε(1− ε) > 0,

2ε(1− ε)− 1 if h− J + 2J(ε(1− ε) < 0,

0 if h = 0.

(10)

Again multiple solutions are possible for small enough ε. Due to the discon-
tinuities in the choice probabilities (9), there will typically either be one or
two solutions, but never three solutions unless h = 0.

The parameter m is of interest to the modeler as well as to the actors.
Because this model preserves the factorization of the joint distribution of
choices into the product of the distribution of individual choices, a strong
law guarantees that m is approximately the (sample) average choice when I
is large.
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4 Dynamics

Following Blume (1993), Kandori, Mailath, and Rob (1993) and Young (1993),
interest has developed in stochastic processes wherein individuals in a pop-
ulation of players adapt their strategic choice to the play of the population.
At randomly chosen moments players observe the play of their opponents
and respond by by choosing a new strategy according to a random utility
model. The stochastic processes of individual response have implications for
the emergent dynamics of population behavior.

4.1 The Population Process

We formalize this model by giving each individual a Poisson alarm clock.
When it rings, she revises her choice. Formally, each actor i is endowed with
a collection of random variables {τ in}∞n=1 such that each τ in− τ in−1 is exponen-
tially distributed with mean 1, and all such differences are independent of
all others, hers and the other actors’. At each time τ in individual i chooses a
new action by applying the random utility model of equation (2). Here she
takes the expectation given certain knowledge of the ωj at time t. That is,
she chooses according to the transition probability

Prob(ωi t+ = 1|ωt) = F

(
2h+ 2

J

I − 1

∑
j 6=i

ωjt

)
(11)

Implicit in this equation is the fact that players are myopic in (stochas-
tically) best-responding to the current play of the population rather than
some forecast of future paths of play. This assumption is much discussed in
the literature and will not be defended here.

The process of individual strategy revision is a continuous time Markov
process that changes state in discrete jumps. We are interested in tracking
only the aggregate St =

∑I
i=1 ωit rather than the behavior of each individ-

ual. The process {St}∞t=0 is also a Markov jump process, whose states are
SI = {−I,−I + 2, . . . , I − 2, I}. This process changes state whenever an ac-
tor changes her choice. If an actor changes from −1 to +1 St increases by 2,
and it decreases by 2 whenever an actor changes in the opposite direction.
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These are the only possible transitions, and so the process {St}t≥0 is a birth-
death process. The transition rates can be computed from the conditional
probability distribution (11). Suppose the system is in state S. It transits to
state S + 2 only when a revision opportunity comes to one of the (S − I)/2
actors currently choosing −1, and that actor chooses +1.3 The probability
of a −1 actor making this choice is

F

(
2h+ 2

J

I − 1
St

)
It will be convenient to make use of the log-odds function g(z) = logF (z)−
log
(
1− F (z)

)
. In terms of g(z), F (z) = exp g(z)/1 + exp g(z).

Putting this together, the transition rate from S to S + 2 in a popu-
lation of size I is

λIS =
I − S

2

exp g

(
2h+

2J

I − 1
(S + 1)

)
1 + exp g

(
2h+

2J

I − 1
(S + 1)

) .

A similar computation gives the transition rate in the other direction. To
transit from S + 2 back to S requires that one of the (S + 2 + I)/2 actors
choosing +1 switches to −1. The transition rate is

µIS+2 =
I + S + 2

2

1

1 + exp g

(
2h+

2J

I − 1
(S + 1)

) .

Since we will study the behavior of processes with different population sizes,
we scale them so they all sit in the same state space, [−1, 1], by defining
mt = St/I. The process with population size takes values in {−1,−1 +
2/I, . . . , 1− 2/I, 1} = MI ⊂ [−1, 1]. The process has birth rates and death

3There are other imaginable transitions, such as where two −1 actors switch to +1 and
one +1 actor switches to −1, but these transitions all involve the simultaneous arrival of
revision opportunities to more than one actor, and is thus a 0-probability transition.
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rates

λIm =
I

2
(1−m)

exp g
(
∆(m)

)
1 + exp g

(
∆(m)

)
(12)

µIm+2/I =
I

2
(1 +m+

2

I
)

1

1 + exp g
(
∆(m)

)
respectively, where

∆(m) = 2

(
h+

J

I − 1
(S + 1)

)
= 2

(
h+ J

I

I − 1
m+

J

I − 1

)
≈ 2(h+ Jm)

for large I.

4.2 Short Run Dynamics

The birth and death rates are the time derivatives of the transition probabil-
ities. Thus they can be used to characterize the rates of change of expected
values of functions of the state. Thus

d

dτ
E{f(mt+τ )|mt = m}

∣∣
τ=0

= λIm

(
f
(
m+

2

I

)
− f(m)

)
+ µIm

(
f
(
m− 2

I

)
− f(m)

)

=
I

2

(1−m) exp g
(
∆(m)

)(
f(m+

2

I
)− f(m)

)
1 + exp g

(
∆(m)

)
+
I

2

(1 +m)
(
f(m− 2

I
)− f(m)

)
1 + exp g

(
∆(m)

)
=

(1−m) exp g
(
∆(m)

)
f ′(m) + (1 +m)f ′(m)

1 + exp g
(
∆(m)

)
=

(
tanh

(1

2
g
(
∆(m)

)
−m

)
f ′(m) +O(I−2)
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When f(m) = m, this differential equation gives

d

dτ
E{mt+τ |mt = m}

∣∣
τ=0

= tanh
(1

2
g

(
∆(m)

))
−m+O(I−2)

Taking the I → ∞ limit suggests the following differential equation, called
the mean field equation:

ṁ = tanh
(1

2
g(2h+ 2Jm)

)
−m (13)

For large I solutions to the diffenrential equation (13) approximate the sam-
ple path behavior of the process {mI

τ} on finite time intervals. The following
theorem is an application of a standard strong law of large numbers for den-
sity dependent population processes. (An elementary proof is too long to be
given here. A quick high-tech proof can be found in Chapter 11.2 of Ethier
and Kurtz, 1986.)

Theorem 2 (Sample-Path Behavior). Let {mI
t}t≥0 refer to the average

process with population size I. Suppose mI
0 = m0 and let m(τ) be the solution

to the mean field equation (13) with initial condition m(0) = m0. Then for
every t ≥ 0,

lim
I→∞

sup
τ≤t
|mI

τ −mτ | = 0 a.s.

The content of the Theorem is that when I is large, the stochastic
perturbations from individuals’ random choices more or less averages out,
and so the mean field path is nearly followed for some time. But in the long
run some large deviation will occur, and ultimately the sample path will
diverge from its mean field approximation.

4.3 Asymptotic Behavior

It is apparent that the steady states of the mean field equations (13) are
precisely those states which satisfy the equilibrium condition (7) of the Brock-
Durlauf model. Furthermore the sample path theorem suggests that there is
motion towards at least the stable steady states of (13). This suggests that
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the long run behavior of the process should tend to be concentrated around
the stable steady states of (13), a subset of the mean field equilibria.

The birth-death process with transition rates given by (12) is irre-
ducible, and so for each population size I the population process has a unique
invariant distribution ρI , which describes the long-run behavior of the pro-
cess. The next Theorem shows that the intuition of the previous paragraph
is correct. For large I the invariant distribution tends to pile up mass near
one or more of the stable steady states of (13).

Since the state space [−1, 1] is compact, the sequence of invariant mea-
sures {ρI} is relatively compact, and so has weakly convergent subsequences.
The next Theorem demonstrates properties about the subsequential limits.
In all the applications we have examined the sequence {ρI} converges, and
the proof of the Theorem suggests a sufficient condition for convergence.
Define the function

r(m) =

((1 +m

2

)1+m
2
(1−m

2

)1−m
2

)−1

exp
1

2

∫ m

−1

g
(
∆(x)

)
dx (14)

Theorem 3 (Asymptotic Behavior). Let ρ be a weak subsequential limit
of the sequence {ρI}∞I=2 of invariant distributions for population processes
with population size I. Then supp ρ is the set of global maxima of r(m),
and is contained in the open interval (−1, 1). If the set of stationary states
of the mean field equations (13) is the finite union of points and intervals,
then supp ρ is the finite union of points and intervals, all of which are locally
stable.

This Theorem implies that if the population I is large, mean behavior is most
often near the stable states of the mean-field equation.

Proof. For a population of size I the invariant measure ρI on MI satisfies the
relationship

ρI(m)λIm = ρI
(
m+

2

I

)
µI
m+ 2

I
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Consequently

ρI(m) = zI

(
I

I 1+m
2

)
exp
{
g
(
∆(−1)

)
+ · · ·+ g

(
∆(m)

)}
≈ z̃II

− 1
2

√
2

π(1−m2)
r(m)I

≡ ρ̃I(m)

where zI and z̃I are normalizing factors.

The approximation comes from Stirling’s formula and the Riemann
sum approximation to the integral. The approximation is such that ρI − ρ̃I
converges uniformly to 0 on compact subsets of the interior of M . Let m∗

denote a global maximum of r(m). The function r(m) is strictly increasing in
a neighborhood of m = −1, strictly decreasing in a neighborhood of m = 1,
and r(−1) = 1. Consequently all its critical points are interior, and the
global maximum of r(m) exceeds 1. Let O be an open neighborhood of
argmax r(m) and let C be a compact set disjoint from the closure of O. Then
ρ̃I(O)/ρ̃I(C)→ +∞, so limI→∞ ρ̃

I(O) = 1. Consequently limI→∞ ρ
I(O) = 1

and so supp ρ ⊂ argmax r(m). This proves the first part of the Theorem.

It remains only to show that argmax r(x) is contained in the set of
stable equilibria of (13). The derivative of log r(m) is

d

dm
log r(m) = −1

2
log

1 +m

1−m
+

1

2
g
(
∆(m)

)
= − arctanh(m) +

1

2
g
(
∆(m)

)
,

and so the critical points are those m which satisfy the equation

m = tanh
(
g
(
∆(m)

)
/2
)
.

By hypothesis, the solution set is the union of a finite collection of points
p1, . . . , pK and intervals, [a1, b1], . . . , [aL, bL]. This union is the set of all
critical points of log r(m), and so the set of global maxima of r(m) is the
union of a sub-collection of these elements. Consider a point pk or a left
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endpoint al in supp ρ. For the point p in question there is an ε > 0 such
that on the interval (p − ε, p), d/dm log r(m) < 0. Suppose at some point

m in this interval, ṁ ≤ 0. Then m ≥ tanh
(
g
(
∆(m)

))
/2. Since arctanh

is an increasing function, applying it to both sides of the inequality gives
d/dm log r(m) ≥ 0, which is a contradiction. A similar argument works for
the right side of all singletons and right endpoints to show that on some
neighborhood to their right, ṁ < 0. Consequently they are all locally stable.

The next result follows from the proof of the Asymptotic Behavior
Theorem.

Corollary 1 (Convergence). If the function r(m) defined in equation (14)
has a unique global maximum m∗, then the sequence {ρI} converges weakly
to δm∗, point mass at m∗.

4.4 Examples

In the following examples we assume J > 0. There is no loss of general-
ity in assuming h > 0 because our examples treat the different strategies
symmetrically. For more on this, see Blume (1994).

For logit choice, g(x) = βx. The mean field equation (13) is

ṁ = tanh β(h+ Jm)−m

For generic values of the parameters there are either one or three equilibria,
and if there are three, the center equilibrium is unstable. When β is small
there is a uniqu stable equilibrium. When β is large and h = 0 the dis-
tributions ρI are symmetric, and so ρI converges to the distribution which
places mass 1/2 on each stable steady state. If h > 0 then for all m > 0,
r(m) > r(−m). r(m) has three critical points, two of which are negative and
one which is positive. The positive critical point is the unique global maxi-
mizer of r(m), and so ρI converges to point mass on the positive equilibrium.
In the following picture, the bottom plot shows the mean field equilibrium
and the top plot shows invariant distribution probability functions for I = 50
(flatter) and I = 400, for the logit choice model with β = 1.5, h = 0.05 and
J = 1.
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The Logit Model

For the tremble model, the mean field equation is

ṁ =


−1 + 2δ −m if h+ Jm < 0,

0 if h+ Jm = 0,

1− 2δ −m if h+ Jm > 0.
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