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d Laboratório Nacional de Luz Śıncrotron, P.O. Box 6192, Campinas, SP 13084-971 Brazil

e Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304 USA

July 2, 2006

Abstract

We present in detail a thermodynamic equilibrium model for the growth of nanos-

tructures on semiconductor substrates in heteroepitaxy and its application to ger-
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manium deposition on silicon. Some results of this model have been published previ-

ously, but the details of the formulation of the model are given here for the first time.

The model allows the computation of the shape and size distributions of the surface

nanostructures, as well as other properties of the system. We discuss the results of

the model, and their incorporation into a nanostructure diagram that summarizes

the relative stability of domes and pyramids in the bimodal size distributions.

Keywords: Ge/Si Islands, Stranski-Krastanov, Quantum Dot, Nanostructure

Diagram

1 Introduction

Surface nanostructures that form through self-assembly during semiconductor heteroepi-

taxy hold the promise of a variety of important applications.1 Their nanoscale size leads to

quantum confinement and hence they function as quantum dots (QDs) with size-dependent

energy levels. They provide preferential recombination sites for electrons and holes en-

hancing optical properties. Furthermore, because they self-assemble on semiconductor

substrates, there is a natural match with the existing technology of semiconductor fabri-

cation facilities. As a result, epitaxial quantum dots have been proposed for applications

ranging from solid-state lasers to integrated circuit transistors to quantum computation

q-bits.

Despite the intense effort to study the self-assembly of quantum dots, many of the

factors controlling the formation of these islands in semiconductor heteroepitaxial growth
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remain poorly understood. These issues are at the heart of the nascent field of nanoprocess-

ing of materials, and they must be resolved before this important field can advance. How,

for example, can the distribution of sizes and shapes of the nanostructures be controlled?

Uniformity in size and shape is crucial to the majority of the envisaged QD applications,

and yet there remains no complete, predictive model to guide control of their growth, let

alone facilitate and optimize the design of nanostructure systems. One step toward pre-

dictive nanostructure design was the introduction of the nanostructure diagram,2 a map

of QD growth properties as a function of the amount of material deposited and the growth

temperature, which is similar in spirit to a phase diagram. The goal of this article is to

elaborate its theoretical and computational underpinnings.

The literature on island size distributions is extensive.1 During the deposition of ger-

manium on silicon the surface is observed to undergo a roughening transition.3 A series of

surface reconstructions is observed, and then after a wetting layer has formed, a variety of

different nanostructures are observed to form: pyramids, huts, domes, and superdomes.4

The bimodal size distribution of coherently strained islands comprised of smaller islands

(pyramids) and larger islands (domes) (see Fig. 1) have received considerable attention. Bi-

modal distributions are seen in nanostructure systems other than Ge/Si. InAs/GaAs(001)

exhibits well-defined distributions;5–7 InP/GaInP shows characteristic bimodal size distri-

butions, with at least two types of islands,8 as does GaN/AlN.9

The basic picture of the self-assembly of Ge islands on a Si(001) surface is clear and

uncontroversial: it is a Stranski-Krastanov process.4,10 During deposition the Ge atoms

initially form a flat wetting layer, but the wetting layer is strained due to the 4% mismatch
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of the lattice constants and is thus in a state of plane stress with substantial elastic energy.

Above a critical thickness of about 3 monolayers the strain is relieved by island formation.

The increased total surface energy of the system with islands is more than compensated

by the reduction in bulk elastic energy as the three-dimensional islands are unconstrained

laterally and able to relax.

The elastic energies of heteroepitaxial islands have been calculated using analytic and

numerical models based on a variety of assumptions. Shchukin et al.11 using analytic

elastic Green functions derived an expression for the energy of a single island and a pair

of islands in the small slope regime. Atomistic calculations of the island energies provide

further insight into the physics.12 Recently, the small slope assumption has been relaxed

in the analytic calculations of Gill and Cocks.13 Daruka and Barabási14 used the Shchukin

expression to determine a map of the surface growth mode as a function of lattice mismatch

and the amount of material deposited at zero temperature, and we note that the results of

several experimental studies of the surface growth mode have been summarized in maps

as a function of temperature and the amount of material deposited.15,16 The analysis of

the island energetics was extended to a thermodynamic equilibrium model by Medeiros-

Ribeiro et al.17. In their model the system is essentially at equilibrium during the growth,

and the distribution in sizes results from thermal fluctuations about a minimum in the

island elastic energy per atom as a function of size. There is experimental evidence that

supports the idea of an equilibrium state, or at least a metastable state. After long anneals

of Ge/Si(001) at 550 ◦C the island distribution reached a stationary state, and islands of

significantly disparate sizes were observed next to each other.18
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Nevertheless, island growth often displays kinetic effects, and there has been contro-

versy over the relative importance of thermodynamic and kinetic constraints.19 A different

model of island growth due to Ross et al.20–22 is that the system is far from equilibrium,

even in a meta-stable sense, and it undergoes Ostwald ripening in which the large islands

grow at the expense of the small islands. In this picture, the distribution of island sizes is

an artifact of the nucleation process: it is not predicted within the model. The formation

of distinct population of islands (pyramids, domes, etc) is attributed to differing internal

chemical potentials. Other kinetic studies have taken these ideas further.23 One inves-

tigation recently has studied metastability due to the kinetics governed by the chemical

potential as the system evolves toward a state determined by the energy per atom in the

islands.24

We have developed the equilibrium model of island growth to include a more robust

description of the statistical mechanics of the system, including the dependence on the

chemical potential.2 While it is clear that the island systems never strictly attain equilib-

rium, it was shown that not only does the distribution of island sizes agree with the Gibbs

distribution (confirming similar findings by the Williams group and others), but that the

distributions directly determine the diagram of phases of surface populations. This added

further evidence that, at least for Ge islands on Si over a range of material deposition

and a narrow range of temperatures, the system is to a large extent in equilibrium. In the

process of analyzing this model we also begin to address deviations from the model that are

due to kinetic effects. The model was solved to determine the distributions of domes and

pyramids in the Ge/Si system. The results were compiled in the nanostructure diagram.
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2 The model has also been applied to GaN/AlN growth, where bimodal distributions are

also observed.9 The results were encouraging for this nitride system, too.

In this article we present the statistical mechanics model in much greater detail. We

show explicitly how the model was constructed, parameterized and solved. The previous

letter only presented the model in the broadest terms. Much of the mathematics and

numerics had to be omitted due to space restrictions. Here we present those details. We

also describe the results of the model in greater detail. For example, we present a formula

for the chemical potential from which the island distributions and related properties of the

system can be derived.

2 Construction of the thermodynamic model

We begin with the construction of the model describing the thermodynamic equilibrium

of a system of islands governed by elastic energies. The system will be taken to be at

a given temperature and equivalent coverage. Here and throughout this article we use

the term coverage to denote the amount of material deposited, as measured in equivalent

monolayers (MLs). A sketch of the formulation of the model was presented previously;2 the

first detailed account is given here. The elastic internal energy of the system is dominated

by contributions from the elastic strain of each individual island a and that of pairs of

islands, a and b,

Eelastic ≈ ε0 +
∑

a

ε(1)
a +

∑

a<b

ε
(2)
a,b (1)
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where these are the first terms in a cluster expansion of the energy valid for sufficiently

well separated islands. Many-island interactions would enter only at very high coverages.

The term ε0 is the energy of the reference state: the substrate without islands. The single

island energy ε
(1)
a represents the reduction in the strain energy of the compressed wetting

layer as atoms are rearranged from the two dimensional surface into three dimensional

islands. The absence of surrounding material allows the islands to relax laterally, lowering

the strain energy. The pair interaction, εa,b, results from the strain field emanating from

each island.25

Shchukin and coworkers11 have used fairly general arguments in continuum mechanics

to show that the internal energy of an individual island, ε(1), takes on a form with bulk,

surface and edge terms,

ε(1) = AXν + BXν2/3 + C ′
Xν1/3 log ν + D′

Xν1/3 (2)

≈ AXν + BXν2/3 + CXν1/3 + DX (3)

where X labels the type of the island, ν is the number of atoms in the island and AX ,

BX , C ′
X and D′

X are coefficients that determine the bulk, surface, surface stress and edge

energies, respectively, relative to the system with no island present. Following Williams et

al.,26 in going from Eq. (2) to Eq. (3) we have suppressed the weak logarithmic dependence

of the ν1/3 log ν term expressing the elastic relaxation energy due to the lines of force at

the edges. More specifically the logarithm is eliminated by expanding it in a Taylor series

about a value νX0 near the peak of the corresponding island type. The original coefficients

are re-expressed in terms of AX , BX , CX and DX , where CX = D′
X +C ′

X (3 + log νX0) and
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DX = −3C ′
Xν

1/3
X0 .

The pair interaction energy is more complicated, and we need to make an approximation

in order to develop a workable model. It is clearly a function of several properties of the two

interacting islands, ε
(2)
a,b(rab, νa, νb, . . .). At the very least it depends on the number of atoms

in each island and the separation between them, rab, as well as materials properties such as

the elastic constants and the intrinsic mismatch strain. To a lesser extent it depends on the

types of islands, their orientation and any internal degrees of freedom such as the degree

of Ge-Si alloying,27,28 the length of a hut or the relaxation of a superdome, if present.

The island-island interactions will be treated in mean field, reducing the two-body term

to a coverage-dependent single-body potential energy. The coverage dependence will be

treated self-consistently. Specifically, we define

ε̄(2)
a =

1

2

∑

b6=a

ε
(2)
a,b (4)

≈ λ ǫ2
0 νβ

a ν̄γθδ (5)

where the second line is the mean-field approximation: λ is a combination of elastic con-

stants and geometrical factors, ǫ0 is the intrinsic mismatch strain, ν̄ is the mean island size

and θ is the coverage in equivalent monolayers. The parameters β, γ and δ are exponents.

We have assumed that the elementary two-body potential is isotropic and blind to the

types of surrounding islands, which is justified at the low-to-moderate coverages we will

consider where the ordering does not change with θ. We will take β = γ = 2
3

following

Shchukin et al.11 who argued that the interaction should scale as the footprint of the island,

which grows with ν2/3. Further, Shchukin et al.11 have argued that the leading term in
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the elastic interaction between islands is of a dipole-dipole form, and that the coverage

dependence of the energy should go like θ3/2, where θ is the coverage. Medeiros-Ribeiro et

al.17 have found to the contrary that the energy is linear in the coverage (E ∼ E0 + E1θ).

The coefficient λ in principle depends on the elastic constants, the radial distribution

function of the islands, and if the system is ordered, the angular distribution function. It

could be computed self-consistently based on a statistical model, but for the purposes of

this article it is a fit parameter. In practical terms, it is useful to rewrite the mean-field

island-island interactions in terms of a single fit parameter, α:

ε̄
(2)
i ≈ α ν

2/3
i θ (6)

where α = λ ǫ2
0 ν̄γ, and the total elastic energy for an island is given by

EI(n; θ) = AIν + (BI + αI θ)ν2/3 + CIν
1/3 + DI . (7)

Thus in the mean-field approximation the energy of an island is determined by its type I,

the number of atoms in the island, ν, and the coverage, θ, and the island system reduces to

a single particle model. At fixed coverage the islands obey the usual statistical mechanics

of a system of molecules that can exchange atoms; for instance, hydrocarbon molecules

exchanging dimers. Of course, the specific island energetics are quite different, but the

thermodynamic considerations are similar.

Now consider a system of islands in equilibrium on a surface. The system consists of

N atoms distributed among M islands containing ν1, · · · , νM atoms such that there are nν

islands of size ν. Our goal is to compute the number of islands nν of a given size ν. The
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configurational partition function for the system is given by

Z(n1, n2, · · · ) =

∫

d2Nx ∆(~xa; ν) SN e−β E (8)

= C
∏

ν

(

Anν

nν !

)

e−β E(1)(ν) (9)

where E is the total internal energy of system and ~xa, a = 1, . . . ,M are the locations of

the islands. As usual β = 1/(kT ) and A is the area of the system. The function ∆(~xa; ν)

is a product of delta functions specifying that the atoms are in specific islands and SN

is a symmetry factor to eliminate double-counting of identical particles. The second line

is obtained from the first by integrating over the spatial coordinates. Since the mean-

field energy is independent of the positions of the islands, the result is one factor of area

for each island, divided by nν ! to account for the symmetry of identical islands. The

prefactor C is a function of temperature that contains factors that are independent of

the island distribution, and hence irrelevant to the analysis that follows. By focusing on

the configurational partition function we have suppressed the kinetic part of the partition

function, which gives a negligible contribution to the free energy. The energy E(1)(ν) is

the mean-field energy for a single island of size ν given in Eq. (7). We have written the

partition function for a single type of island for notational simplicity. This expression is

generalized to the case of multiple island types below.

The configurational partition function given above (8) assumes that the sizes of the

islands are known. In reality during growth the island sizes fluctuate, as indeed does the

total number of atoms in the islands, N , as atoms move to and from the wetting layer. A

better thermodynamic variable is the chemical potential. We introduce it as a conjugate
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variable to N =
∑

ν νnν in the grand partition function,

Z =
∑

n1,n2,···

Z(n1, n2, · · · )eβµN (10)

= C
∑

nν

∏

ν

(

Anν

nν !

)

e−β
∑

ν[nνE(1)(ν)−µνnν] (11)

= C exp
{

A e−β
∑

ν[E(1)(ν)−µν]
}

(12)

The chemical potential is chosen to give the appropriate amount of material in the islands,

i.e. the correct equivalent coverage. The coverage is related to the expectation value of the

island size distribution by

θ = 〈N/A〉 (13)

=
∑

ν

ν 〈nν〉/A. (14)

We now derive an expression for the expectation value of the island distribution. It is

given by the weighted sum

〈nν〉 = Z−1
∑

n1,n2,···

nν Z(n1, n2, · · · )eβµN (15)

= −β−1∂E(1)(ν) log Z (16)

= A e−β[E(1)(ν)−µν] (17)

This expression is a very important part of the model. We have used a mathematical

trick to derive it. The formal derivative with respect to E(1)(ν) brings down a factor of nν

from the argument of the exponential, which gives exactly the weighted average we need

for the coverage. Since the partition function Z is an exponential (12) , we can evaluate

its logarithm and we arrive at an exact expression for the island distribution at a given
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chemical potential µ. The generalization of Eq. (17) to the case of more than one type of

islands is

〈nI
ν〉 = A e

−β
[

E
(1)
I (ν)−µν

]

(18)

where I labels the type of island.

The island distribution gives us the expression we need to compute the coverage from

Eq. (14),

θ =
∑

ν,I

ν e
−β

[

E
(1)
I (ν;θ)−µν

]

(19)

where again we have restored the dependence on island type, summing over the contribution

of the different types to the coverage. Since the mean-field island energy E
(1)
I (ν; θ) depends

on the coverage, this equation must be solved self-consistently in order to determine the

chemical potential. The equation is non-linear, so in practice it must be solved numerically

through iteration until a converged result is obtained.

It is also possible to derive expressions for fluctuations in the island distributions. For

example, the variance of the distribution is given by

〈δ(nI
ν)

2〉 = 〈(nI
ν)

2〉 − 〈nI
ν〉2 (20)

= β−2∂2

E
(1)
I (ν)

log Z (21)

= A e
−β

[

E
(1)
I (ν)−µν

]

(22)

= 〈nI
ν〉 (23)

This expression relates the variance at fixed chemical potential to the island distribution

itself.
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We end this section calculating the free energy of the ν-atom islands, Fν :

Fν = nνE
(1)(ν) − T Sν (24)

= nνE
(1)(ν) + kT log nν ! (25)

≈ nν

[

E(1)(ν) + kT log nν

]

(26)

= nν ν µ (27)

where Sν is the contribution to the entropy coming from the ν-atom islands (and we have

suppressed a term in the entropy of the form log
∑

ν nν ! that is very weakly dependent on

nν). We have used the leading term in Stirling’s approximation to derive the third line,

and inserted the island distribution function (18) to obtain the fourth. The free energy

per atom of the ν-atom islands is then

Fν/(νnν) = µ. (28)

Thus the entropic contribution has balanced the inherent differences in the energy per

atom of the islands so that they are at the same chemical potential in equilibrium.

3 Solving the model analytically

The statistical mechanics framework for the model was detailed in the previous section, but

there are still a few steps to reach the solution. The parameters must be determined from

experiment, and the chemical potential needs to be computed from equation (19). Ideally,

it is desirable to have the parameters of the model determined from first principles, or at

least from experiments that are quite different in nature from those to be analyzed. At this
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point we do not have a means to derive the parameters from independent experiments and

calculations, so we must resort to fitting the model parameters to a subset of the island

distributions measured by AFM. We discuss the procedure in section 4. First, however, we

need to be able to compare the model with experiment, and for that we need an expression

for the chemical potential. It turns out that the chemical potential (and hence the solution

of the model) can be expressed analytically to a great extent.

The chemical potential is determined by the condition for self-consistency (19)

θ̃ = 〈
∑

ν,I

νnI
ν〉 =

∑

ν,I

νe−β [EI(ν;θ)−µν] (29)

where we have introduced the notation θ̃ in recognition of the fact that these terms do not

sum to θ unless the correct value for µ is chosen. The correct µ leads to self-consistency:

θ̃ = θ. This sum could be computed numerically–indeed, we have written a computer code

to do just that–but it is possible to produce high quality analytic approximations to the sum

as well. The analytic results have the advantage that they are much faster to compute.

In principle, the dependence on parameters is more evident in the analytic expression,

although the robust expressions are sufficiently complicated to offer little advantage in this

regard.

The basic approach is to observe that the sum in the self-consistency equation (19) may

be approximated by an integral, and the integral may be computed in the saddle point

approximation. In the first step the sums for N and M I are approximated by the integrals

N ≈
∑

I

∫ ∞

0

dν ν e−β[EI(ν)−µ ν] (30)

M I ≈
∫ ∞

0

dν e−β[EI(ν)−µ ν] (31)
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In practice, the island number distribution is more peaked than the island volume distri-

bution, so equation (31) is better behaved than equation (30).

Accurate analytic formulas can be derived using saddle point approximations, as is

shown in detail in the next section in the discussion leading to Eq. (73). The results are

to leading order (typically 0.1 - 1% accuracy):

θ̃(θ, µ, T ) ≈
√

π

B′
e−D′′

(

15

4

x∗

B′ 2
+ 5

x3
∗

B′
+ x5

∗

)

(32)

M(θ, µ, T ) ≈
√

π

B′
e−D′′

(

1

2 B′
+ x2

∗

)

(33)

∂µθ̃(θ, µ, T ) ≈
√

π

B′
e−D′′

(

105

16 B′ 4
+

105 x2
∗

2 B′ 3
+

105 x4
∗

2 B′ 2
+ 14

x6
∗

B′
+ x8

∗

)

(34)

where B′, D′′ and x∗ are defined in Eqs. (52), (59) and (57), respectively in the following

section. Their values differ in the 3 equations. We include the expression for ∂µθ̃ for ref-

erence, but we do not actually make use of it. At high temperatures the peaks broaden

and the accuracy of the analytic expressions degrades, and we must resort to numeri-

cal integration. The chemical potential is determined by solving the non-linear equation

θ̃(θ, µ, T ) = θ using Eq. (32) for θ̃. In practice the Brent method29 was used to find the

root on a regular grid of points covering the region of interest in θ-T space, and starting

the iteration with the closest previous solution in all but the first case.

3.1 Derivation of the analytic sums

In this section we present the derivation of the analytic expressions approximating the

sums in the formulas for the coverage and the number of islands. Readers should feel free

to skip to the next section if they are not interested in the mathematical derivation. The
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strategy is to use a saddle-point approximation to integrate the peaked distributions. The

difficulty is that the peaks are rather broad and asymmetric, so a conventional saddle-

point approximation is not very accurate. A careful series of approximations is needed to

produce an accurate formula. In particular, we need to evaluate integrals of the form:

I(A, B, C,D; p) =

∫ ∞

0

dx xp e−(Ax3+Bx2+Cx+D) (35)

where A > 0 and f(x) = Ax3 +Bx2 +Cx+D has two real local extrema, so that the island

size distribution will have an equilibrium peak. This kind of integral appears in Eqs. (30),

(31) and (34) with x = ν1/3, where p = 5, 2 and 8, respectively. The latter condition is

equivalent to positivity of the discriminant of f ′(x): (2B)2 − 4(3C)A > 0; i.e. B2 > 3AC.

We use a saddle point approximation for Eq. (35) as follows:

I(A, B, C,D; p) =

∫ ∞

0

dx e−(Ax3+Bx2+Cx+D)+p log x (36)

so the saddle point is given by

f ′(x) =
p

x

∣

∣

∣

x=xsp

(37)

which comes from the derivative of the argument of the exponential. Upon expansion, we

have

3Ax3
sp + 2Bx2

sp + Cxsp − p = 0 (38)

which is a cubic equation and therefore has a solution in closed form for its three roots.
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The most positive, real root is given by

xsp =
−2 B

9 A
+

(

1 − i
√

3
)

(−4 B2 + 9 A C)

9 2
2
3 A (−16 B3 + 54 A B C + 243 A2 p + χ)

1
3

− (39)

(

1 + i
√

3
)

(−16 B3 + 54 A B C + 243 A2 p + χ)
1
3

18 2
1
3 A

(40)

χ =

√

4 (−4 B2 + 9 A C)3 + (−16 B3 + 54 A B C + 243 A2 p)2 (41)

which may be written more compactly and avoiding complex numbers in the form:

xsp =
−2 B

9 A
+

2
√

∆

9 A
cos

[

1
3
cos−1 (1 − ξ) + φ

]

(42)

∆ = 4 B2 − 9 A C (43)

ξ = 1 −
(

1
2
|−16 B3 + 54 A B C + 243 A2 p| /∆3/2

)

(44)

φ = 0 (45)

where φ = ±2π/3 gives the other two roots, but φ = 0 is the most positive root, and hence

the saddle point of interest. Because A is small, ξ is small, and the following expansion

converges very rapidly:

cos
[

1
3
cos−1 (1 − ξ)

]

= 1 − 1

32
ξ − 4

35
ξ2 − 28

38
ξ3 − 80

310
ξ4 − · · · . (46)

The converged result is found even more quickly through iteration of the following formula:

yi+1 = yi +
εi

3 − 12y2
i

(47)

εi = ξ − 1 − 3yi + 4y2
i (48)

where εi is the error: εi = cos
[

1
3
cos−1 (1 − ξ)

]

− yi. Use of this formula avoids the

numerically phlegmatic trig functions, achieving an increase in speed by a factor of 10

17



million. The formula

√
∆ = 2|B|

[

1 − 1

2

9 A C

4 B2
− 1

8

(

9 A C

4 B2

)2

− 1

16

(

9 A C

4 B2

)3

− 5

128

(

9 A C

4 B2

)4

+ · · ·
]

(49)

offers similar advantages.

We now expand f(x) about xsp:

f(x) = A[(x − xsp) + xsp]
3 + B[(x − xsp) + xsp]

2 + C[(x − xsp) + xsp] + D (50)

= A(x − xsp)
3 + B′ (x − xsp)

2 + C ′ (x − xsp) + D′ (51)

where the coefficients are given by

B′ = 3Axsp + B (52)

C ′ = 3Ax2
sp + 2Bxsp + C (53)

D′ = Ax3
sp + Bx2

sp + Cxsp + D. (54)

We will treat the term proportional to (x − xsp)
3 as small.

We take as the first approximation

f(x) ≈ f̃(x) ≡ B′ (x − xsp)
2 + C ′ (x − xsp) + D′ (55)

and rewrite f̃(x) in the form

f̃(x) = B′(x − x∗)
2 + D′′ (56)
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where x∗ and D′′ are given by

x∗ = xsp + δ (57)

D′′ = f̃(x∗) = B′ δ2 + C ′ δ + D′ (58)

= −C ′ 2

4B′
+ D′ (59)

δ = x∗ − xsp = − C ′

2B′
. (60)

So we have the saddle point approximation

I(A, B, C,D; p) ≈
∫ ∞

0

dx xp e−(B′(x−x∗)2+D′′) (61)

≈
∫ ∞

−∞

dx xp e−(B′(x−x∗)2+D′′) (62)

=

∫ ∞

−∞

dy (y + x∗)
p e−(B′y2+D′′) (63)

where we have made the substitution y = x − x∗.

The final expression is a Gaussian integral which may be evaluated immediately using

∫ ∞

−∞

dy ym e−αy2

= α−(m+1)/2Γ

(

m + 1

2

)

= (2α)−(m+1)/2
√

2π (m − 1)!! (64)

so that

I(A, B, C,D; p) ≈ 2
√

π e−D′′

p
∑

evenm=0

p!

(m/2)! (p − m)!
(4B′)

−(m+1)/2
xp−m
∗ (65)

=

√

π

B′
e−D′′

∂p
k exp

(

k2

4B′
+ k x∗

)∣

∣

∣

∣

k=0

(66)

where we have used m!/(m−1)!! = 2m/2(m/2)!. This is the leading order in an asymptotic

expansion of I(A, B, C,D; p). It is typically accurate to a few percent or better.
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The polynomials that appear are the elementary Schur polynomials, related to certain

homogeneous polynomials that arise in the theory of symmetric functions (where for exam-

ple they express homogeneous product sums in terms of power sums)30 defined according

to

exp(
∞

∑

i=1

xi z
i) =

∞
∑

n=0

Pn(x1, · · · , xn)zn (67)

where Pn is the nth polynomial. The first few elementary Schur polynomials are:

P0 = 1 (68)

P1 = x1 (69)

P2 = x2 +
1

2
x2

1 (70)

P3 = x3 + x1x2 +
1

6
x3

1 (71)

P4 = x4 + x1x3 +
1

2
x2

2 +
1

2
x2

1x2 +
1

24
x4

1 (72)

In terms of the Schur polynomials we have

I(A, B, C,D; p) ≈
√

π

B′
e−D′′

p! Pp(x∗, [4B
′]−1, 0, . . . , 0) (73)

This is the leading saddle point approximation. The explicit formulas are given above in

Eqs. (32) – (34).

There are additional refinements of this approximation that can be made. In practice,

the first order approximation works well for most of the temperature/coverage range of

interest. The errors are greatest at high temperatures beyond the yellow curve in Fig. 2

where the local minimum in the island distribution function is not sufficiently close to zero.

It these cases we must impose that the integrals are cut off at the island size corresponding
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to the local minimum, and then we compute those integrals numerically. Since this is

only a small fraction of the total evaluations, the analytic formulas still lead to a large

improvement in speed.

4 Parameterization

Next we obtain parameters for the model and compare the predictions of the model to

experimental data. The test is the island distributions themselves. We do not yet have a

theoretical calculation of the Shchukin energy parameters, so we determine them through

a best fit of the model to the island distributions.

The basic experimental data are in the form of the number of islands observed on a fixed

region of the substrate surface that have sizes falling within a certain bin; i.e. there may

be 200 islands on a 9 µm3 region of the surface with sizes between 7500 and 8500 nm3. For

the fit we need to know both the data values and their uncertainty. There are two sources

of error in these data. First, the island size may not be measured accurately, due both to

noise in the measurements resulting from the resolution of the AFM, and to systematic

errors such as the effect of the finite radius of the AFM tip. These errors tend to broaden

(through Gaussian convolution) and shift the distribution, respectively, at the level of a

few percent. The resolution of the AFM is to a large extent determined by the size of

the pixel: 5 nm × 5 nm. The vertical accuracy is better than 1% and may be neglected

apart from discretization error. Thus, a typical pyramid with a 25 nm × 25 nm base may

have a 40% error in its measured volume; a typical dome with a 60 nm × 60 nm base may
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have a 15% error. Second, there is statistical noise due to the finite number of counts per

bin. This noise results in a binomial distribution of the data, which is characterized by the

variance:

σ2
Binomial = m̄i

(

1 − m̄i

Ncount

)

, (74)

where m̄i is the expected number of counts in bin i, and Ncount is the total number of

counts. When m̄i ≪ Ncount, the distribution becomes a Poisson distribution.

The goal is to fit the data with our model distribution, and to do this in a way that will

give us a measure of the reliability of the model. Since we have a model of the expected

error–basically characterized by the variance (74)–this can be done as follows.

The figure of merit is given by the weighted square error:

χ2 =
∑

i

(f(ni) − mi)
2

σ2
i

(75)

where f(n) is the model island distribution, ni is the size at the center of bin i, and mi is

the measured number of islands in bin i. This function is minimized with respect to the

parameters of the model in order to produce what is known as the best chi-squared fit.

The effect of the weighting is to place more emphasis on the peaks and less on the tails.

The model distribution is given by (18)

〈nI
ν/A〉 = e−(aν+bν2/3+cν1/3+d) (76)

where the parameters are related to the Shchukin energy parameters expressed in units of

kT : a = AI − µ, b = BI + ǫI θ, c = CI and d = DI .

As written, the chi-squared fit implied by Eqs. (75) and (76) is a non-linear minimization

problem. We have used a linearized least square technique32 to obtain the best fit, and
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Table 1: Parameters for the single-island (3) and mean-field, island-pair (6) contributions

to the energy (1) as a function of island type and size. For comparison, the elastic strain

energy in unrelaxed epitaxial Ge/Si would be 0.038 eV/atom. The value of the parameters

A may be changed by an arbitrary constant provided the chemical potential is changed

by the same constant. Regardless of the number of digits given none of the parameters is

reliable to more than two significant figures.

Parameter Pyramids Domes Units

A −9.60 × 10−6 −5.137 × 10−6 eV/atom

B 9.0286 × 10−4 1.0834 × 10−3 eV/atom2/3

C −0.04517 −0.1396 eV/atom1/3

D 0.1422 4.1625 eV

α 2.305 × 10−5 1.974 × 10−5 eV/atom2/3/ML

then checked it in a few cases with a full non-linear chi-squared minimization starting from

the linearized fit values. The parameters were deduced from χ2 fitting to data from tens

of thousands of islands grown at 600 ◦C with coverages θ = 2.2, 4.8 and 9.1 ML. Although

we have up to four parameters for each type of island and one more for the mean-field

interaction, the parameters do provide a good fit to this much larger data set, consisting

of over 100 data points and many thousand islands. The results are shown in Table 1.

The linearized chi-squared fitting is very fast, and it has been our experience in the

island systems that the solution gives a value of χ2 that is reasonable; i.e. the fit is good

and the Binomial distribution of errors is accurate. To further quantify the accuracy of the
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fit, we calculate the probability Q that this or a worse value of χ2 should occur by chance

Q = Γ([Nbin − Nparams]/2, χ
2/2)/Γ([Nbin − Nparams]/2] (77)

where Γ(n, x) is the incomplete Gamma function. We have typically found Q ranges from

0.1 to 0.8 in the linearized fitting procedure. These are good fits. The high coverage

distributions typically were not fit as well as the low coverage.

4.1 The physical basis for the parameter values

We now consider whether the fit values of the parameters are physically sensible. It is

the energy with respect to a surface without islands that enters the formula for the island

distributions. Thus, for example, it is not the bulk elastic energy, which would be positive,

but the amount the bulk energy is relaxed by the formation of the islands that enters the

formula. To the best of our knowledge, there has been no independent measurement of the

individual terms that enter the energy, so we can only use general considerations to guide

the decision about whether the size of a particular parameter is physically reasonable or

not.

Consider first the size of the surface energy parameters. The B parameters are relative

surface energies, and for pyramids are dominated by the difference between the (001) and

(105) surface energies. We are not aware of a calculation or measurement of the Ge(105)

surface energy, but some information is available. Ab initio calculations estimate that the

RS reconstruction of the Ge(105) surface is lower in energy than the PD-reconstructed

surface by 4.3 meV/Å2 33 or 6.2 meV/Å2,34 and empirical potential calculations estimate
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that the formation energy for an island is about 0.01 eV/atom. The energy difference

between the (111) and (001) reconstructed Ge surfaces is calculated to be 0.01 J/m2.35

The quantity relevant to our model, the B parameter, is the difference between the (001)

and (105) surface energies suitably weighted by geometrical factors. In particular, the

formula for a pyramid is

Bp =

(

γfacet

n̂facet · n̂wetting

− γwetting

)

v
2/3
0

181/3

∣

∣

∣

n̂facet

n̂facet·n̂wetting
− n̂wetting

∣

∣

∣

2/3
(78)

= 3.83
(

1.0198γ(105) − γ(001)

)

eV/atom2/3 (79)

where γfacet and γwetting are the surface energies of the facet and wetting layer, respectively,

n̂facet and n̂wetting are the corresponding unit normal vectors and v0 is the atomic volume.

On the second line (79) we have shown the values of the parameters for a (105)-faceted

Ge pyramid, where the surface energies γ(105) and γ(001) are expressed in J/m2. In the case

of domes, the relevant facet energies are γ(113) and γ(15 3 23), and the coefficient multiplying

the facet energy is larger, roughly 1.2 instead of 1.0198. The surface energies should

be appropriately renormalized for strain36 and alloying.37 Neglecting these effects for the

moment, Stekolnikov et al.35 give the Ge γ(001) as 1.00 J/m2. Our model value of Bp =

9.03 × 10−4 eV/atom2/3 then corresponds to a γ(105) of 0.98 J/m2. We have not found a

value for γ(105) in the literature, even for pure, unstrained Ge, but to get an estimate of

the range of reasonable values, its difference from γ(001) is expected to be significantly less

than the energy difference between the (110) and (001) surfaces (cf. for silicon Eaglesham

et al.38 and for germanium Stekolnikov et al.35), i.e. about 0.17 J/m2. The magnitude of

the difference in our case is 0.02 J/m2 which appears to be reasonable.
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There are two points about Bp that deserve more comment, however. First, the fact

that γ(105) must be less than γ(001) is somewhat surprising. For pure Ge, it would be

unexpected, but taking the strain renormalization of the surface energy36 and the alloying

37 into account, it it possible. For example, an alloy concentration gradient at the surface

of an island contributes to the the B parameter.37 Second, the magnitude of the splitting

of the γ(105) and γ(001) must be very precise. For example, taking γ(105) = γ(001) in Eq.

(79) gives a value of Bp 84 times larger than our value. Such fine tuning of a parameter

is not common, and it suggests that the alloying may be evolving in a way to promote

island formation. The ability of alloying to destabilize island growth has been emphasized

previously.39 A careful calculation of the energetics of alloying is needed, but it is beyond

the scope of this article. As an estimate of whether it can be important, we can consider

the free energy of mixing

∆γ = −nlayer kT [cGe log cGe + (1 − cGe) log(1 − cGe)] /a0 (80)

where cGe is the number fraction of Ge in the alloy.40 The factor nlayer is the thickness

in atomic monolayers of the alloyed region at the surface and a0 is the atomic area. This

function is maximized at cGe = 1/2, although we note that a more precise calculation

including the Ge-Si interaction energies would have the maximum shifted from this value.

Using cGe = 1/2, T = 600 ◦C, nlayer = 5 and a0 = 0.16 nm2, we find ∆γ = −0.26 J/m2.

This rough estimate indicates that the free energy of mixing can affect the B parameter,

and its effect is to lower the facet energies (as needed to account for the value of B). The

sensitivity of the shape and size of strained Ge islands on Si(001) to the surface energy
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is seen experimentally when P is co-deposited with Ge to form a surfactant layer.41–43

There are still two different metastable island shapes, but they are qualitatively different

from pyramids and domes (in that they display completely different facets) and they are

significantly smaller in size as well.

There is substantially more information available about the bulk term in the island

energy (the term proportional to ν). It corresponds to the drop in the bulk elastic energy

of the island compared to that of the wetting layer. The strain energy per atom in the

wetting layer is given by U0 = [(C11 + C12) − 2(C2
12/C11)] ǫ2

0 v0 = 0.038 eV/atom where

v0 is the atomic volume and Cij are the cubic elastic constants. The values of the AI

represent this relaxation energy with respect to an arbitrary zero of the chemical potential.

The values of the AI are much smaller than 38 meV/atom, but because of the arbitrary

zero, it is only their difference that matters. The difference of roughly 1/8000 of the wetting

layer energy is less than we expected, but again alloying of Si in the Ge islands may account

for the small difference. There are some relevant data from synchrotron experiments that

measure differences in the strain,44,45 and they imply a larger difference in the bulk strain

energies.

Next consider now the term that scales like ν1/3. It contains a contribution that scales

with the square of the surface stress.11 There are also several other contributions. The

one that has been discussed most is the elastic relaxation edges that scales like ν1/3 log(ν).

11 The elastic relaxation lowers the energy. Another effect is the formation of a trench or

moat seen around islands.4,45. This effect has not been modeled, but if it is energetically

driven, then it too would give a contribution that scales like ν1/3 and reduces the energy.
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The rounding of edges on the pyramid also gives a contribution that scales like ν1/3 and

reduces the energy. The size of these effects has not been calculated in the literature, to

the best of our knowledge, and it is beyond the scope of this article to do so.

The Ge/Si system is sufficiently complex that the parameters are not tightly con-

strained. In the fitting process, it was possible to obtain a comparably good fit with a

set of parameters in which the signs of the parameters A, B and C were reversed. As our

ability to model the complex growth processes advances, we should be able to pin down

the values better.

5 The nanostructure diagram

The principal result of the model is the calculation of the relative populations of domes and

pyramids, their sizes and the widths of their distributions. It is convenient to summarize

those results in a map in temperature-coverage space that we have called the nanostructure

diagram. It is shown in Fig. 2.

The nanostructure diagram contains a wealth of information. The coloring indicates the

number fraction of nanostructures that are pyramids. The distribution could equally well

be shown as the volume fraction. At relatively low temperatures and coverages pyramids

dominate, as is well known from experiment; at high temperatures and coverages the

domes are dominant. During growth at constant temperature there is a transition from

pyramids to domes. The contour lines indicate the widths of the distributions relative to

the mean value. Narrow widths are preferable for applications, and the dome distributions
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are narrower than the pyramid distributions throughout the diagram. The narrow peak is

a characteristic of the larger islands in bimodal distributions. There are few domes that

are as small as pyramids, so their size distribution is well separated from zero leading to a

narrower peak.

For sufficiently large islands, the term proportional to the island volume dominates

and causes an indefinite growth in the island size. The temperatures and coverages above

which this leads to a breakdown of the model are indicated by the yellow curve. In our

model the competition between the different contributions to the energy leads to a local

minimum in the energy separated by a local maximum from the monotonically decreasing

range at large ν. The magnitude of the dome distribution is not zero at the local maximum,

which corresponds to a critical size for unstable ripening. In classical nucleation theory,

46 the rate of nucleation depends on the population of embryos, clusters of barely sub-

critical size, together with the rate at which an embryo fluctuates to attain the critical

nucleus size. Assuming that the fluctuation rate is not a strong function of temperature

and coverage, within our model the population of embryos can be calculated as an estimate

of the importance of kinetic effects. We note that a moment analysis may also be used

for this purpose.18 We have plotted a yellow contour line where the ratio of the dome

distribution at the critical size relative to the peak of the distribution is equal to 10−5 to

indicate that the description of the system in the high temperature region is incomplete

and should be supplemented with a robust kinetic model.
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6 Chemical potential

The vast majority of the effort in solving the model involves the computation of the chemi-

cal potential µ(T, θ) for the range of temperature and coverage of interest. Once a table of

values for µ(T, θ) is constructed, it is straightforward to compute all of the quantities com-

prising the nanostructure diagram as well as even more detailed information such as the

size distributions. For example, the equation for the full island distribution (18) involves

only elementary functions once the chemical potential has been calculated:

〈nI
ν/A〉 = e

−β
[

E
(1)
I (ν)−µ(T,θ)ν

]

. (81)

Thus, the full physical content of the model is encoded in a single function µ(T, θ). The

values of the chemical potential over a range of temperatures and coverages are plotted in

Fig. 3. The chemical potential varies to a greater extent over the range of coverages than

the range of temperatures. In general, the chemical potential of an island is also a function

of its composition (e.g. the mole fraction of Ge in the island), since some alloying takes

place even at low growth temperatures. This composition dependence has been suppressed

in Fig. 3, which represents the chemical potential of islands that follow a particular kinetic

trajectory of island composition determined by the growth conditions, such as Ge arrival

flux, etc.

We have found an approximate function for the chemical potential over the range
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450 ◦C < T < 950 ◦C and θ < 14 ML. The approximate expression is

µ(T, θ) = 0.587 − 6.15 e−T/100 − 1.36 × 10−4 T − 0.0305 θ (82)

+
(

6.07 e−T/75 + 5.87 × 10−6 T
)

θ + e−θ/2.9
(

0.108 + 739 e−T/75
)

The formula is given in units Ap, and T is the absolute temperature in Kelvin and θ is the

equivalent coverage in monolayers. The complicated functional dependence on temperature

was introduced in order to capture the behavior of the chemical potential in the non-linear

regime at higher temperatures (up to 950 ◦C) than those shown in Fig. 3. This expression is

accurate to better than 5% throughout the range 450 ◦C ≤ T ≤ 950 ◦C and 2 ≤ θ ≤ 16 ML,

and is typically accurate to better than 1%. We emphasize, however, that that the form of

this approximation is ad hoc, not based on physics. The factors in the exponentials have

not been optimized. The parameters in this approximation would change if the energy

parameters were changed; this approximation to the resulting µ(T, θ) does not introduce

any additional parameters. It just summarizes the result.

7 Island size distributions

Once the chemical potential is determined, the island size distributions immediately follow

from Eq. (18). The results are shown in Fig. 4. The figure shows the island distribution

functions for the pyramids, the domes and both combined. The experimental data are

plotted, with error bars, and it may be observed that the agreement is quite good. A

vertical dashed line indicates where the pyramid distribution achieved its local minimum.

We have truncated the distribution at that point, as described above.
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With the approximate expression for the chemical potential, it is straightforward to

calculate the island distributions and related properties such as the peak values and the

widths. For example, according to the numerical solution of the model, µ(T = 600 ◦C, θ =

9.0 ML) = −2.34 × 10−6 eV/atom; using the approximate formula we find a value that is

0.6% less. The formula for the distribution of domes at this coverage and temperature is

then

ndome
ν (T = 600 ◦C, θ = 9.0 ML) = exp

(

−55.3 + 6.56 ν1/3 − 0.209 ν2/3 + 0.00164 ν
)

(83)

with ν in nm3. The positive coefficient of ν in the argument of the exponential causes

the distribution to diverge for large ν; we truncate the distribution at the local minimum

(here at ν = 616000 nm3) based on kinetic constraints as explained above. The pyra-

mid distributions use different values for the energy parameters, but the same chemical

potential.

In principle, there are a large number of different island shapes that could occur for the

Ge on Si(001) and other systems (and others do occur when surfactants are present). Why

then does it seem that researchers observe two (and only two) metastable island shapes

for these semiconductor on semiconductor systems? The answer may come from the lever

rule commonly used to determine the two stable phases in a binary solid state system. By

drawing a line tangent to the lowest available free energy curves (or shapes) available in a

phase (shape) diagram, one sees that a mixture of the two phases (or shapes) that share

the tangent will always have a lower free energy than any combination of other possibilities.

A system purely determined by kinetics would demonstrate a wide range of shapes with
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increasing size as the chemical potential of one shape intercepted another.

8 Beyond Thermodynamic Equilibrium

While we have presented evidence that the Ge/Si island system attains a quasi-equilibrium

distribution and we have constructed a model to describe this equilibrium, it may be

advantageous in practice that kinetic effects are apparent in these systems under many

growth conditions.20 Materials processing in general thrives on the interplay of equilibrium

and non-equilibrium processes.

Also it may be helpful to keep in mind that the island systems are very far from the true

equilibrium state of the system, i.e. the state in which the deposited Ge is homogeneously

alloyed with the Si substrate18 and the surface is flat. The equilibrium description of island

formation is only justified to the extent that the relaxation time for alloying is much longer

than the deposition time. This is the case for chemical vapor deposition (CVD) of Ge at

600◦C, but by 700◦C the alloying time is comparable to the deposition time. The other

kinetic constraint comes from the mobility of the Ge on the surface, which must be large

enough that the island formation rate is fast compared to the deposition rate. Again this

is true for CVD of Ge at 600◦C, but by 500◦C the rates are comparable.
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9 Conclusions

We have developed a thermodynamic equilibrium model of the self-assembly of epitaxial

nanostructures. In the model the surface islands form in order to reduce their bulk elastic

strain energy at the cost of additional surface energy. This much is standard, but then

the model departs from earlier work in two important ways. First, the edge energies act

to create a metastable equilibrium at the observed nanostructure sizes, and secondly the

chemical potential has been introduced to allow for fluctuations in the number of atoms in

the islands as they diffuse back and forth between the islands and the wetting layer. In this

article we have described in detail how the model has been constructed and solved. The

solution for the Ge/Si system was summarized in the nanostructure diagram.2 Each point

of the nanostructure diagram corresponds to a full solution of the nano-thermo-mechanical

model. Here we have gone further and presented an approximate analytic formula for the

chemical potential throughout the range of interest in temperature and coverage. Once

the chemical potential is known, the formula for the island distributions involves only

elementary functions, and hence all of the predictions of the model are easily accessed.

The model has been applied with encouraging results to a nitride (GaN/AlN) nanos-

tructure system.9 Certainly one direction in which this work could be extended is the

application to other systems exhibiting Stranski-Krastanov growth. The principal chal-

lenge is the collection of AFM data for the island distribution functions with sufficient

statistics to construct and validate the model. Another extension would be a more precise

test of the temperature dependence of the island distributions. Again, obtaining the ex-
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perimental data is a challenge because very precise temperature control during growth is

needed. The range of temperatures over which experiments may be conducted is limited.

At 550 ◦C the approach to equilibrium is quite slow,47 and at 650 ◦C alloying takes place

rapidly. Temperature control would need to be maintained finely enough to distinguish

systems within this narrow temperature range. Finally, the most interesting theoretical

development would be an extension of the model that transitions smoothly into a kinetic

model at high temperature and coverage where ripening and alloying become very impor-

tant. The recent work of Vine et al.24 is a step in this direction, but clearly there is much

to be done.
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Figure 1: (a) The scanning tunneling micrograph shows Ge/Si pyramids and domes of dif-

ferent sizes coexisting in equilibrium next to each other. The nanostructures self-assembled

during Ge molecular beam epitaxy on Si(001) at 3 ML/min at 600 ◦C to give an equivalent

coverage θ = 8 ML. The coloring provides an indication of the surface orientation, differ-

entiating the (105) facets of the pyramids from the higher index facets of the domes (see

inset for facet color coding). (b) An idealized representation of the dome and pyramid at

their true aspect ratio with representative facets labeled.
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Figure 2: The nanostructure diagram for Ge/Si(001), after Rudd et al.2 The color scale

indicates the fraction of nanostructures that are pyramids (4%–96%). The solid yellow

curve gives an indication of the onset of unstable ripening. It is a contour of the ratio

of the dome population to the total island population restricted to islands whose size

corresponds to the local minimum of the dome distribution function above the peak (see

text). The other contours indicate peak widths (relative to the mean island size), with the

solid black curves indicating the peak widths for pyramids and the dashed curves, those

for domes.
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Figure 3: Chemical potential as a function of coverage and temperature, as calculated in

our equilibrium statistical mechanics model. The values of the color map are given by the

legend, ranging from 0.062 Ap (red) to 0.511 Ap (blue).
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Figure 4: Island size distributions showing results from both the model (solid curves) and

the experiments (dots with error bars). The curves give the numbers of islands of each

type from Eq. (18), and the total number at T = 600 ◦C and (a) θ = 2.2 ML Ge/Si(001);

(b) θ = 4.7 ML Ge/Si(001); (c) θ = 7.2 ML Ge/Si(001); (d) θ = 9.0 ML Ge/Si(001); (e)

θ = 11.8 ML Ge/Si(001). The vertical scales are different. The plots for θ = 4.8 ML

Ge/Si(001) and θ = 11.9 ML were given in Rudd et al.2 The bimodal size distribution is

characteristic of two island types. The broken vertical line indicates the turning point in

the pyramid energy at which the distribution was truncated; in both cases the equivalent

point for domes is beyond 100,000 nm3.
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