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Abstract

We prove existence of equilibrium in a continuous-time securities market in which the securi-
ties are potentially dynamically complete: the number of securities is at least one more than
the number of independent sources of uncertainty. We prove that dynamic completeness
of the candidate equilibrium price process follows from mild exogenous assumptions on the
economic primitives of the model. Our result is universal, rather than generic: dynamic
completeness of the candidate equilibrium price process and existence of equilibrium fol-
low from the way information is revealed in a Brownian filtration, and of a mild exogenous
nondegeneracy condition on the terminal security dividends. The nondegeneracy condition,
which requires that finding one point at which a determinant of a Jacobian matrix of divi-
dends is nonzero, is very easy to check. We find that the equilibrium prices, consumptions,
and trading strategies are well-behaved functions of the stochastic process describing the
evolution of information. We prove that equilibria of discrete approximations converge to
equilibria of the continuous-time economy.
KEYWORDS: Dynamic completeness, convergence of discrete-time finance models, continuous-
time finance, general equilibrium theory
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1 Introduction

In an Arrow-Debreu market, agents are allowed to shift consumption across states and
times by trading a complete set of Arrow-Debreu contingent claims. Mas-Colell and Richard
(1991), Dana (1993) and Bank and Riedel (2001) prove existence of equilibrium in a continu-
ous-time Arrow-Debreu market.

By contrast, in a securities market, agents are restricted to trading a prespecified set of
securities. The securities market is said to be dynamically complete if agents can, by rapidly
trading the given set of securities, achieve all the consumption allocations they could achieve
in an Arrow-Debreu market. When the uncertainty is driven by a Brownian Motion, markets
are said to be potentially dynamically complete if the number of securities is at least one
more than the number of independent sources of uncertainty.1 A securities market which is
potentially dynamically complete may or may not be dynamically complete.

Existence of equilibrium in continuous-time finance models with a single agent has been
established in a number of papers (Bick (1990), He and Leland (1995), Cox, Ingersoll and
Ross (1985), Duffie and Skiadis (1994), Raimondo (2002, 2005)2).

Surprisingly, the existing literature does not contain a satisfactory theory of existence of
equilibrium in continuous-time securities markets with more than one agent. With dynamic
incompleteness, essentially nothing is known. While we hope that some of the techniques
developed in this paper will help in addressing the dynamically incomplete case, we do not
here present a result in that case.

This paper, and the existing literature, all deal with the case in which markets are
potentially dynamically complete. Every previous paper assumes, in one form or another,
that the candidate equilibrium price process is dynamically complete, and shows that this
implies that the candidate equilibrium is in fact an equilibrium; see Basak and Cuoco (1998);
Cuoco (1997); Dana and Jeanblanc (2002); Detemple and Karatzas (2003); Duffie (1986,
1991, 1995, 1996); Duffie and Huang (1985); Duffie and Zame (1989); Karatzas Lehoczky
and Shreve (1990); and Riedel (2001). The form of the assumption varies. Some assume
directly that the dispersion matrix of the candidate equilibrium price process is almost surely
nonsingular, which is well known to be equivalent to dynamic completeness. Others assume
that the dispersion matrix of the candidate equilibrium price process is uniformly positive
definite; this is stronger than dynamic completeness and it fails for an open set of primitives
in our model. Still others assume that the candidate equilibrium price of consumption is
uniformly bounded above and uniformly bounded away from zero, but this is inconsistent
with unbounded consumption (found in the Black-Scholes and most other continuous-time
finance models) and standard utility functions. Finally, some construct securities which
suffice to complete the markets, rather than taking the securities’ dividends as given by the
model.

But the candidate equilibrium price process is determined from the economic primitives
of the model by a fixed point argument, which makes it impossible, except in knife-edge
special cases, to determine from the primitives whether or not the dynamic completeness

1With nonBrownian processes, such as Lévy Processes that allow jumps, the number of securities needed
for potential dynamic completeness may be larger.

2All of these papers except Raimondo (2002, 2005) require one or more endogenous assumptions that are
not expressed solely in terms of the primitives of the model.
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assumption is satisfied. Thus, if we consider one of these models and choose specific utility
functions, endowment and dividend processes, except in the rare cases where we can solve
explicitly for the candidate equilibrium, we cannot apply any of the previous theorems to
determine whether or not an equilibrium exists. Indeed, the previous results do not rule out
the possibility that equilibrium generically fails to exist; see the example in Section 3.

While dynamic completeness plays a role in proving existence of equilibrium, its main
application in Finance is to derivative pricing. Given a dynamically complete securities price
process, options and other derivatives can be uniquely priced by arbitrage arguments and can
be replicated by trading the underlying securities. With dynamic incompleteness, arbitrage
considerations do not determine a unique option price, and replication is not possible. The
previous results provide no guarantee that equilibrium prices will support the standard theory
of pricing and replicating options, which depends on dynamic completeness.

In this paper, we prove that the candidate equilibrium price process is in fact dynam-
ically complete, and that the candidate equilibrium is in fact an equilibrium.3 Dynamic
completeness of the candidate equilibrium price process and existence of equilibrium follow
from the way information is revealed by a Brownian Motion, and from a mild exogenous
nondegeneracy condition on the terminal security dividends.

To motivate our nondegeneracy condition, suppose we are given a market with K inde-
pendent sources of uncertainty and K + 1 securities labeled j = 0, . . . , K, so the market is
potentially dynamically complete. Now suppose that two of the securities are perfect clones
of each other, in that they pay exactly the same dividends at all nodes. Clearly, this is
the same as a market with K sources of uncertainty and K securities, so it cannot possibly
be dynamically complete. Similarly, if the dividend processes of the securities were linearly
dependent, we could not possibly have dynamic completeness. Thus, we need to assume that
the dividend processes are not linearly dependent. In our model, the dividend of security j
at the terminal date T is given as a function Gj(β(T, ω)) of the terminal realization β(T, ω)
of the Brownian Motion in state ω. In the important special case in which security 0 is a
zero-coupon bond, our condition requires that G1, . . . , GK be C1 functions on some open set
V ⊂ RK , and that the Jacobian determinant of (G1, . . . , GK) be nonzero at one point x ∈ V .
In particular, our assumption depends only on the securities dividends at the terminal date,
and not on the other economic primitives; changing the utility function or endowment of an
agent or the initial ownership of the securities has no effect on the existence of equilibrium.
Clearly, the nondegeneracy condition is generically satisfied. Moreover, one can easily tell
whether the condition is satisfied for any particular value of the economic primitives, simply
by checking whether a determinant is nonzero at at least one point; this contrasts with the
situation in most generic results, in which one knows that the result holds except on a small
set of primitives, but it is hard to tell whether the result holds for any specific value of the
primitives.

3More specifically, we show that any consumption which is adapted to the Brownian filtration and has
finite value at the candidate equilibrium price process can be replicated by an admissible self-financing trading
strategy. We allow the filtration in the original continuous-time economy to be larger than the Brownian
filtration, and the filtration in the Loeb-measure economy we construct is always larger than the Brownian
filtration. This does not pose a problem for existence of equilibrium because any consumption adapted to
the larger filtration is a mean-preserving spread of a consumption adapted to the Brownian filtration, so
agents’ demands are always adapted to the Brownian filtration.
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If there are just enough securities for potential dynamic completeness, then some form
of linear independence of the securities dividends is a necessary condition for dynamic com-
pleteness of the Arrow-Debreu securities prices. Thus, some form of linear independence
of the dividends is implicitly assumed in all the previous papers. We chose to place our
nondegeneracy assumption on the lump terminal dividends because it is convenient to do so.
Not all of the previous papers have lump terminal dividends; we believe it should be possible
to place the assumption instead on the intermediate flow dividends, although the statement
of the assumption would be more complex.

We obtain explicit formulas for the equilibrium price process and its dispersion matrix,
each trader’s equilibrium securities wealth, and the dispersion matrix for each traders’ equi-
librium trading strategy in terms of the equilibrium consumptions; each trader’s equilibrium
trading strategy can then be calculated using linear algebra. These formulas are expressed
in terms of the equilibrium consumptions, which are not known a priori. However, since the
equilibrium is Pareto Optimal, there is a vector of Negishi (1960) utility weights λ such that,
at each node, the equilibrium consumptions maximize the weighted sum of the utilities of the
agents. Thus, the key features of the equilibrium can be calculated explicitly from knowl-
edge of the primitives of the model (endowments and utility functions of the individuals, and
the dividends of the securities) and the equilibrium utility weights. Moreover, even if the
equilibrium utility weights are not known, the explicit nature of the formulas can potentially
be used to establish general properties of equilibria, such as comparative statics results.

We prove that all key elements of equilibria of discrete approximations converge to the
corresponding elements of equilibria of the continuous-time model.4 This is important for two
reasons: First, many people regard the discrete models as the appropriate models for “real”
economies. In particular, financial transaction data is very high frequency, but nonetheless
discrete. The theoretical literature has focused on continuous time because the formulas
are much simpler in continuous time than in discrete time. Cox, Ross and Rubinstein
(1979) showed that one can compute the prices of options when the price of a stock is
given by a geometric binomial random walk, and showed that the discrete option prices
converge to those given by the Black-Scholes formula. Our convergence theorems tell us
that the equilibrium pricing formulas from the continuous-time model apply asymptotically
to equilibria of the discrete models as the discretization gets finer. This shows that the
formulas are applicable to discrete models. It also shows that the formulas can be used in the
econometric analysis of data which is high frequency but nonetheless discrete.5 Second, since

4When the continuous-time model has multiple equilibria, it is possible that the equilibria of the discrete
approximations will be near one continuous-time equilibrium for some approximations and near a different
continuous-time equilibrium for other approximations, so the sequence of equilibria of the discrete approxi-
mations converges to the set of equilibria of the continuous-time economy, rather than to a single equilibrium
of the continuous-time economy.

5As noted above, if the continuous-time economy has multiple equilibria, equilibria of the discrete ap-
proximation economies converge to the set of continuous-time equilibria, rather than to a single equilibrium.
Nonetheless, this tells us that the formulas given in Proposition 2.2 apply approximately to the equilibria
of the discretizations. For example, Equation (6) gives a formula for the dispersion matrix of the securities
prices in terms of the Brownian Motion, the future dividends, and the endogenously determined prices of
consumption. The convergence results in Theorem 4.2 imply that Equation (6) holds asymptotically over any
sequence of equilibria of the discrete approximations, using the prices of consumption in the given discrete
approximations.
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we show that the equilibria of the discretizations are close to equilibria of the continuous-
time economy, algorithms to compute equilibria for discrete economies6 provide a means to
compute equilibria of the continuous-time economy.

Our starting point is a continuous-time model, on which we state our existence theorem,
Theorem 2.1, and our characterization of the elements of the equilibrium, Proposition 2.2.
A function is said to be real analytic if, at every point in its domain, there is a power series
which converges to the function on an open set containing the point. We assume that the
primitives of the economy are given by real analytic functions of time and the current value
of the Brownian Motion for times t ∈ (0, T ), where T is the terminal date.7 The assumption
that utility functions are analytic is not problematic; most of the utility functions commonly
studied are in fact analytic. Option payoffs are not analytic because of the kink when
the stock price equals the exercise price of the option. However, options can be handled
under certain conditions; see the two paragraphs preceding Equation (1) in Section 2. The
assumption that the dividends at time t are a function of t and the value of the Brownian
Motion at time t is discussed in Section 6.

We discretize the continuous-time model to construct a sequence of models; in each,
we replace the Brownian Motion β by a random walk β̂.8 A naive discretization would
approximate the K-dimensional Brownian Motion by a K-dimensional random walk in which
each node has 2K successors, and the random walk moves independently in each direction
at each node. However, in a discrete random walk in which each node has 2K successors,
one needs at least 2K securities to obtain dynamic completeness; for K > 1, K + 1 <
2K and the discrete model cannot possibly be dynamically complete. In order that the
discrete approximations correspond closely to the continuous-time model, it is critical that
the discrete model have the same number of securities as the continuous-time model, and that
it be dynamically complete.9 Thus, we construct a K-dimensional random walk β̂ in which
each nonterminal node has exactly K + 1 successors. Endowments, dividends and utility
functions are induced on the discrete economies from the specification of the continuous-
time economy. These discrete economies are General Equilibrium Incomplete Markets (GEI)
models; Magill and Quinzii (1996) is an excellent reference on GEI models. Endowments
and dividends are perturbed as necessary to ensure existence of a dynamically complete
equilibrium, under the Duffie-Shafer (1985, 1986) or Magill-Shafer (1990) Theorems. We then
prove our convergence theorem, Theorem 4.2, that equilibria of the discrete approximations

6See, for example, Brown, DeMarzo and Eaves (1996) and Judd, Kubler and Schmedders (2000, 2002,
2003).

7We also require that the utility functions satisfy Inada conditions (ruling out CARA utility) and be
differentiably strictly concave (ruling out risk neutrality). It is important to emphasize that the primitives
of the model, and as we will find, the equilibrium, are analytic functions of time and the Brownian Motion,
not analytic functions of time alone. Brownian Motion is almost surely nowhere differentiable, and almost
surely of unbounded variation on every interval of time. Consequently, the equilibrium prices and trading
strategies are nowhere differentiable, and of unbounded variation, as functions of time.

8Zame (2001) considered a model in which time is discretized but the probability space is not, so each step
of the random walk is normally distributed. In that setting, he finds that the discrete-time approximation
does not converge to the continuous-time limit. Raimondo (2001) studies the existence of equilibrium in
models with discrete time and a continuum of states.

9If one were to extend these methods to the analysis of dynamically incomplete continuous-time models,
it would be critical to ensure that the discrete approximation has the same degree of incompleteness as the
continuous-time model, so the random walk would have to be chosen carefully in that context also.
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converge to equilibria of the continuous-time economy.
Since equilibrium prices are arbitrage-free, the equilibrium securities prices at the ter-

minal date in the discrete model must be given by the exogenously specified dividends at
the terminal date. It is well known that the equilibrium securities price process at time t
is the conditional expectation of future dividends, valued at the Arrow-Debreu equilibrium
prices of consumption; this comes from the first-order conditions for utility maximization
(see, for example, Magill and Quinzii (1996) in the discrete case). We show that because
of the smoothness properties of the Gaussian distribution, such conditional expectations are
given by real analytic functions of (t, β̂(t, ω)) ∈ (0, T ) × RK , so the equilibrium securities
price process is a real analytic function of (t, β̂(t, ω)). Moreover, the dispersion matrix of
the securities prices and its associated determinant is a real analytic function of (t, β̂(t, ω));
this is a property of the way information is revealed by a Brownian Motion, and does not
depend on any specific assumptions on the functional form of the primitives.

We use nonstandard analysis to project the discrete model back into the continuous-time
model, and find that the dispersion matrix of the continuous-time securities prices is the
projection of the dispersion matrix in the discrete model, and hence is real analytic. A real
analytic function cannot be zero on a set of positive measure unless it is identically zero.
Since the determinant associated with the dispersion matrix is nonzero on a set of positive
measure, it must be nonzero except on a set of measure zero. This implies that the dispersion
matrix has rank K except on a set of measure zero, but it is well known that this condition
is equivalent to dynamic completeness; thus, we have shown that the candidate equilibrium
prices in the continuous-time model are dynamically complete. We verify that the projected
prices are equilibrium prices in the continuous-time model.

Our proof depends heavily on nonstandard analysis, and in particular the nonstandard
theory of stochastic processes. Nonetheless, the statements of our main Theorems 2.1 and
4.2 and Proposition 2.2 can be understood without any knowledge of nonstandard analysis.

Nonstandard analysis provides powerful tools to move from discrete to continuous time,
and from discrete distributions like the binomial to continuous distributions like the normal;
in particular, it provides the ability to transfer computations back and forth between the
discrete and continuous settings. Our sequence of discrete approximations extends to a
hyperfinite approximation, one which is infinite but has all the formal properties of finite
approximations. In particular, the hyperfinite approximation has a GEI equilibrium which
is dynamically complete in the hyperfinite model. We then use nonstandard analysis to
produce a candidate equilibrium in the continuous-time model, show that the equilibrium in
the hyperfinite model is infinitely close to the candidate equilibrium in the continuous-time
model, verify that the candidate prices are dynamically complete, and are in fact equilibrium
prices.

Anderson (1976) provided a construction for Brownian Motion and Brownian stochastic
integration using Loeb measure (Loeb (1975))—a measure in the usual standard sense pro-
duced by a nonstandard construction. Anderson’s Brownian Motion is a hyperfinite random
walk which can simultaneously be viewed as being a standard Brownian Motion in the usual
sense of probability theory. While the standard stochastic integral is motivated by the idea
of a Stieltjes integral, the actual standard definition of the stochastic integral is of necessity
rather indirect because almost every path of Brownian Motion is of unbounded variation,
and Stieltjes integrals are only defined with respect to paths of bounded variation. However,
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a hyperfinite random walk is of hyperfinite variation, and hence a Stieltjes integral with
respect to it makes perfect sense. Anderson showed that the standard stochastic integral
can be obtained readily from this hyperfinite Stieltjes integral.

We modify Anderson’s construction of the hyperfinite random walk to a random walk
with branching number equal to K + 1 and extend the results on stochastic integration to
that random walk. We show that equilibrium consumptions are nonzero at all times and
states. Consequently, we can use the first-order conditions to characterize the equilibrium
prices. Then, we use the Loeb measure construction to produce a candidate equilibrium of
the original continuous-time model. The Central Limit Theorem then allows us to explicitly
describe the candidate equilibrium prices as integrals with respect to a normal distribution;
however, with more than one agent, the prices depend on the terminal distributions of
wealth, which are not described in closed form. We show that the hyperfinite equilibrium is
infinitely close to the candidate equilibrium, which implies that the equilibria of the discrete
approximations converge to candidate equilibria of the continuous-time model. Finally, in
a process analogous to that first used in Brown and Robinson (1975), we show that the
candidate equilibrium is an equilibrium of the continuous-time economy.10

2 The Model

In this Section we define the continuous-time model.
There is a single consumption good. Trade and consumption occur over a compact time

interval [0, T ], endowed with a measure ν which agrees with Lebesgue measure on [0, T )
and such that ν({T}) = 1. Consumption and dividends on [0, T ) are flows; consumption at
the terminal date T is a lump. We choose this formulation to give a finite-horizon model
in which the securities will have positive value at the terminal date T ; if securities paid
only a flow dividend on [0, T ], they would expire worthless at time T and it would not be
possible to formulate our nondegeneracy condition on their dividends. An alternative would
be to take an infinite horizon model, but this would require addressing certain additional
technical problems. We think of our finite time horizon T as a truncation of an infinite-
horizon model. The lump of consumption at time T aggregates the flow consumption on
the interval (T,∞) in the infinite-horizon model, conditional on the information available
at time T . Our nondegeneracy assumption will be imposed on the lump dividend at the
terminal date T .

The uncertainty in the model is described by a standard K-dimensional Brownian Motion
β on a probability space Ω; the components of β are independent of each other, and the
variance of βk(t, ·) equals t. We define I(t, ω) = (t, β(t, ω)). The primitives of the economy—
dividends, endowments and utility functions—will be described as functions of I(t, ω).

We are given a right-continuous filtration {Ft : t ∈ [0, T ]} on (Ω,F , μ) such that F0

contains all null sets and β is adapted to {Ft}, i.e. for all t, β(t, ·) is measurable with respect
to Ft.

Let J = K. There are J + 1 securities, indexed by j = 0, . . . , J ; security j is in net
supply ηj ∈ {0, 1}. Security j pays dividends (measured in consumption units) at a flow

10The argument is more complicated here because our continuous-time economy is more complicated than
the economy in (1975).
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rate Aj(t, ω) = gj(I(t, ω)) at times t ∈ [0, T ), and a lump dividend Aj(T, ω) = Gj(I(T, ω))
at time T . We assume that g : [0, T ] × RK → RK

+ is real analytic on (0, T ) × RK and that
Gj is continuous almost everywhere on {T}×RK . For example, A0 could be a zero-coupon
bond (g0(t, ω) = 0 for t ∈ [0, T ), g0(T, ω) is constant), or Aj(t, ω) = eσj ·β(t,ω), where σj is the
jth row of a J × J matrix σ, for j = 1, . . . , J .

There are I agents i = 1, . . . , I . Agent i has a flow rate of endowment ei(t, ω) = fi(I(t, ω))
at times t ∈ [0, T ), and a lump endowment ei(T, ω) = Fi(I(T, ω)), where fi is analytic on
(0, T )×RK and Fi is continuous almost everywhere on {T}×RK. Let e(t, ω) =

∑I
i=1 ei(t, ω)

denote the aggregate endowment.
The utility functions are von Neumann-Morgenstern utility functions, expectations of

functions of the consumption and the process I which are analytic on (0, T ) × RK . More
formally, given a measurable consumption function ci : [0, T ]×Ω → R++, the utility function
of the agent is

Ui(c) = Eμ

[∫ T

0
hi(ci(t, ·), I(t, ·))dt + Hi(ci(T, ·), I(T, ·))

]

where the functions hi : R+ ×
(
[0, T )× RK

)
→ R ∪ {−∞} and Hi : R+ ×

(
{T} × RK

)
→

R∪{−∞} are analytic on R++×
(
(0, T )× RK

)
and C2 on R++×

(
{T} × RK

)
respectively

and satisfy

limc→0+
∂hi

∂c
= ∞ uniformly over

(
[0, T ] ×RK

)
limc→0+

∂Hi

∂c
= ∞ uniformly over {T} × RK

limc→∞
∂hi

∂c
= 0 uniformly over

(
[0, T ] ×RK

)
limc→∞

∂Hi

∂c
= 0 uniformly over {T} × RK

limc→0+ hi(c, (t, x)) = hi(0, (t, x)) uniformly over
(
[0, T ] ×RK

)
limc→0+ Hi(c, (T, x)) = Hi(0, (T, x)) uniformly over {T} × RK

∂hi

∂c
> 0 on R++ ×

(
[0, T ] × RK

)
∂Hi

∂c
> 0 on R++ ×

(
{T} ×RK

)
∂2hi

∂c2
< 0 on R++ ×

(
[0, T ] × RK

)
∂2Hi

∂c2
< 0 on R++ ×

(
{T} ×RK

)

Note that these conditions are satisfied by all state-independent CRRA utility functions.
Note also that we allow quite general state-dependence of the utility function, as long as the
state-dependence enters through the process I. If the state-dependence were not measurable
in the Brownian Motions, there would be no hope of obtaining effective dynamic completeness
with securities whose dividends are measurable with respect to the Brownian filtration.

The assumption that the endowments and utility functions are analytic does not impose
serious economic restrictions; for example, all conventional utility functions are in fact an-
alytic. However, the dividend paid by an option is not analytic because of the kink that
occurs when the stock price just equals the exercise price of the option on the exercise date.
Moreover, shares of a limited liability corporation should not generally be thought of as ana-
lytic because they are, in effect, options to claim the corporation’s stream of earnings, at an
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exercise price equal to the corporation’s debt.11 We require analyticity at the intermediate
times t ∈ (0, T ), and not at t = T . Thus, our model allows us to include options and shares
of limited liability corporations among our basic securities, provided that the exercise date
is the terminal date T . In addition, as long as the basic securities pay dividends which are
analytic functions of I over (0, T ), there is no problem in using the equilibrium prices derived
from the basic securities to price options or other derivatives on those basic securities with
exercise date t ∈ (0, T ).12 The equilibrium price of any security, analytic or not, is equal to
the expected value of its future dividends, evaluated at the equilibrium consumption prices.
Since we prove that the basic securities are essentially dynamically complete, any option
or other derivative on the basic securities can be replicated by an admissible self-financing
trading strategy on the basic securities. Thus, the equilibrium price of any security is also
given by the equilibrium value of the portfolio specified by the replicating strategy at that
node. For more detail on equilibrium pricing of options, see Anderson and Raimondo (2005,
2006).

Note that we do not require Gj to be analytic, or even differentiable. Standard option
payoffs are not differentiable at the strike price, and other derivatives need not be continuous.
However, because derivatives represent contracts that need to be understood and enforced,
they tend to have relatively simple structures, such as piecewise linearity in the underly-
ing securities; they may or may not be continuous at the boundaries between the regions
of linearity. Since our security dividends are analytic functions of the Brownian Motion,
derivatives should be piecewise analytic functions of the Brownian Motion. The assumption
that the dividend at time T is continuous almost everywhere allows for the possibility that
security Aj is a derivative, with exercise date T , on another security or securities, which may
or may not be traded. Our formulation also allows Aj to be a stock in a limited liability
corporation, since shares in limited liability corporations are in effect options to buy the
earnings flow of the firm at an exercise price equal to the firm’s debt.

We assume the endowments and dividends satisfy the following growth conditions (note
that |x| denotes the Euclidean length of the vector x):

∃r∈R∀t∈[0,T ],x∈RK

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|fi(t, x)| ≤ r + er|x|

|Fi(T, x)| ≤ r + er|x|

|gj(t, x)| ≤ r + er|x|

|Gj(T, x)| ≤ r + er|x|∣∣∣∂fi(t,x)
∂x

∣∣∣ ≤ r + er|x|∣∣∣∂gj(t,x)

∂x

∣∣∣ ≤ r + er|x|

(1)

These conditions are needed to show that if β̂n is a sequence of random walks converging to
Brownian Motion β, the distribution of fi(t, β̂n(t, ω)) converges to that of fi(t, β(t, ω) and
satisfies a uniform L2 integrability condition. In fact, the distribution of fi(t, β̂n(t, ω)) will
satisfy a uniform Lp integrability condition for all p ∈ [1,∞).

11In particular, geometric Brownian Motion is problematic as a model of the price of shares in a limited
liability corporation.

12We do not consider the payout of an option at times t < T as a dividend. The payout of an option is
a lump, which does not lie in the consumption set at time t. Rather, if the option is in the money at its
expiration date t < T , one exercises it by selling securities to raise the money for the exercise price, takes
delivery of the underlying security, then rebalances one’s portfolio.
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We are grateful to the referees for pointing out Dana’s (1993) treatment of consumptions
that are not uniformly bounded away from zero. Let

c(t, x) =

{ ∑I
i=1 fi(t, x) +

∑J
j=0 ηjgj(t, x) if t < T∑I

i=1 Fi(t, x) +
∑J

j=0 ηjGj(t, x) if t = T

denote the social consumption at the node (t, x). We make the following joint assumption
on the utility functions and the social consumption: there exists r ∈ R such that

∂hi

∂c

∣∣∣
c(t,x)/I

≤ r + er|x|

∂Hi

∂c

∣∣∣
c(T,x)/I

≤ r + er|x| (2)

Inequality (2) says if we give each of the I agents an equal share of the social consumption,
then every agent’s marginal utility of consumption is bounded above by a linear exponential
of the magnitude of the Brownian Motion. Note that it implies that the social endowment
is strictly positive at almost all nodes. The assumption would follow without any additional
assumptions on the utility functions if the social consumption were uniformly bounded away
from zero. However, the assumption also allows for the social consumption to approach zero,
as long as the marginal utility does not grow too quickly. For example, if each agent has
state-independent CRRA utility and the social endowment is a geometric Brownian Motion,
the condition is satisfied.

In continuous-time models, it is commonly assumed that the zeroth security is a money-
market account, in other words, it is instantaneously risk-free. Since we are determining
securities prices endogenously, the assumption that a security is instantaneously risk-free
is an endogenous assumption. For example, if we assume that A0 is a zero-coupon bond
(i.e. G0(t, ω) = 0 for t < T and G0(T, ω) = 1, so the dividends of A0 are risk-free),
the Arrow-Debreu equilibrium price of A0 will not be instantaneously risk-free except in
degenerate situations. However, as long as the equilibrium securities prices are positive Itô
Processes (and we shall show that they are), one is free to divide the securities price process
and the consumption price process by the equilibrium price of the zeroth security. Under
this renormalization, relative prices are preserved and the price of the zeroth security is
identically one, which is obviously instantaneously risk-free. When one does this, the set of
admissible self-financing trading strategies is left unchanged; see section 4.8 of Nielsen (1999)
or Duffie (1996), as well as Nielsen (2007). Consequently, the consumption processes that lie
in the budget set remain invariant, and the renormalized prices are equilibrium prices. This
motivates the form of our exogenous nondegeneracy condition on the terminal dividends of
the securities. We assume that there is an open set V ⊂ RK such that G0(T, x) > 0 for all
x ∈ V and for j = 1, . . . , J and i = 1, . . . I ,

Gj , Fi ∈ C1(V ) and ∃x∈V rank

⎛
⎜⎜⎜⎜⎜⎝

∂(G1/G0)
∂β

∣∣∣
(T,x)

...

∂(GJ/G0)
∂β

∣∣∣
(T,x)

⎞
⎟⎟⎟⎟⎟⎠ = K (3)

Note that if A0 is a bond, the rank condition is equivalent to assuming that the K × K
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matrix ⎛
⎜⎜⎜⎜⎜⎝

∂G1

∂β

∣∣∣
(T,x)
...

∂GJ

∂β

∣∣∣
(T,x)

⎞
⎟⎟⎟⎟⎟⎠

is nonsingular. This simply says that there is some possible terminal value of the Brownian
Motion so that the dividends of securities A1, . . . , AJ are locally linearly independent.

Agent i is initially endowed with deterministic security holdings eiA = (eiA0, . . . , eiAJ
) ∈

RJ+1 satisfying
I∑

i=1

eiAj = ηj

Note that the initial holdings are independent of the state ω. We require the following
condition for each i = 1, . . . , I :

∀(t,x)∈[0,T )×RK fi(t, x) + eiAg(t, x) ≥ 0

∀x∈RK Fi(T, x) + eiAG(T, x) ≥ 0 (4)

with strictly inequality on a set of positive measure (recall that the single time T carries
measure one). It says that, if an agent never traded the securities and simply consumed
his/her endowment and dividends, consumption would be nonnegative at each node and
strictly positive on a set of positive measure; it guarantees that each agent has strictly
positive income at every candidate equilibrium price process. We allow an agent to be
endowed with a short position in securities, as long as the condition is satisfied.

In order to define the budget set of an agent, we need to have a way of calculating
the capital gain the agent receives from a given trading strategy. In other words, we need
to impose conditions on prices and strategies that ensure that the stochastic integral of a
trading strategy with respect to a price process is defined. The essential requirements are
that the trading strategy at time t not depend on information which has not been revealed
by time t, and the trading strategy times the variation in the price yields a finite integral.
Specifically, a consumption price process is an Itô process pC(t, ω). A securities price process
is an Itô process pA = (pA0 , . . . , pAJ

) : Ω× [0, T ] → RJ+1 such that the associated cumulative
gains process

γj(t, ω) = pAj (t, ω) +
∫ t

0
pC (s, ω)Aj(s, ω) ds

is a martingale. Securities are priced cum dividend at time T . Given a securities price
process pA, an admissible trading strategy for agent i is a row vector process zi which is Itô
integrable with respect to γ (written zi ∈ L2(γ))13 and such that

∫
zi dγ is a martingale.14

13Formally, zi ∈ L2(γ) if zi : [0, T ) × Ω → RJ+1; zi(t, ·) is Ft-measurable for all t ∈ [0, T ); and zi is
measurable on the product [0, T ) × Ω. If the Itô Process γ is given by dγ = a dt+ σ dβ, then since γ is a
martingale, a must be zero almost surely. Itô integrability with respect to γ requires two conditions: that
zi(·, ω) · a(·, ω) ∈ L1([0, T ]) almost surely, which is trivially satisfied; and that zi(·, ω)σ(·, ω) ∈ L2([0, T ])
almost surely. A stronger condition is that zi ∈ H2(γ); the definition of H2(γ) is the same as that of L2(γ),
except that we strengthen the condition that zi(·, ω)σ(·, ω) ∈ L2([0, T ]) almost surely to ziσ ∈ L2([0, T ]×Ω).
We also define L2 = L2(β) and H2 = H2(β). For more details, see Nielsen (1999).

14The requirement that
∫
zi dγ be a martingale is the standard “admissibility” condition ruling out arbi-

trage strategies such as the doubling strategy of Harrison and Kreps (1979).
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Given a securities price process pA and a consumption price process pC , the budget set
for agent i is the set of all consumption plans ci such that there exists an admissible trading
strategy so that ci and ti satisfy the budget constraint

pA(t, ω) · zi(t, ω)

= pA(0, ω) · eiA(ω) +
∫ t

0
zi dγ +

∫ t

0
pC(s, ω)(ei(s, ω) − ci(s, ω))ds

for almost all ω and all t ∈ [0, T )

0 = pA(0, ω) · eiA(0, ω) +
∫ T

0
zi dγ +

∫ T

0
pC(s, ω)(ei(s, ω) − ci(s, ω))ds

+pC(T, ω)(ei(T, ω) − ci(T, ω)))

for almost all ω

Given a price process p, the demand of the agent is a consumption plan and an admissible
trading strategy which satisfy the budget constraint and such that the consumption plan
maximizes utility over the budget set.

An equilibrium for the economy is a securities price process pA, a consumption price pro-
cess pC , a profile of admissible trading strategies z1, . . . , zI and consumption plans c1, . . . , cI

which lies in the demand set so that the securities and goods markets clear, i.e. for almost
all ω

I∑
i=1

ziAj(t, ω) = ηj for j = 0, . . . , J and almost all (t, ω)

I∑
i=1

ci(t, ω) =
I∑

i=1

ei(t, ω) +
J∑

j=0

ηjAj(t, ω) for almost all (t, ω)

We say that an equilibrium is effectively dynamically complete if every consumption
process c which is adapted to the Brownian filtration and which satisfies

E

(
pC(T, ω)c(T, ω) +

∫ T

0
pC(t, ω)c(t, ω) dt

)
< ∞

can be financed by an admissible trading strategy.
The following theorem and proposition are proved in Appendix D.

Theorem 2.1 The continuous-time finance model just described has an equilibrium, which
is Pareto optimal. The equilibrium pricing process is effectively dynamically complete, and
the admissible replicating strategies are unique.

Proposition 2.2 Let pA, pc, ci, and zi denote the equilibrium securities prices, consumption
prices, consumptions, and trading strategies. Let Σ = ∂pA

∂β
denote the dispersion matrix of

the securities prices, Σi = ziΣ the dispersion (row) vector of agent i’s trading strategy, and
Wi = zi · pA agent i’s securities wealth. Then

pA(t, β) = E

(
pC(T, β(T ))A(T, β(T ))+

∫ T

t
pC(s, β(s))A(s, β(s)) ds

∣∣∣∣∣β(t) = β

)
(5)
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Σ(t, β) = E

(
pC(T, β(T ))A(T, β(T ))(β(T )− β)�

T − t

+
∫ T

t

pC(s, β))A(s, β(s))(β(s)− β)�

s − t

∣∣∣∣∣β(t) = β

)
(6)

There exists a unique vector λ ∈ RI
+ of Negishi utility weights with

∑I
i=1 λi = 1 such that

for all (t, β), c1(t, β), . . . , cI(t, β) solve the problem

max

⎧⎨
⎩

I∑
i=1

λihi(ci) :
I∑

i=1

ci =
I∑

i=1

ei(t, β) +
J∑

j=1

ηjAj(t, β)

⎫⎬
⎭ (7)

for t ∈ [0, T ) and the analogous problem with Hi substituted for hi for t = T ;
Each Σi and Wi has a continuous version (still denoted Σi and Wi)

Σi(t, β) = E

(
pC (T, β(T )) (ci(T, β(T ))− ei(T, β(T ))) (β(T )− β)

�

T − t
(8)

+
∫ T

t

pC(s, β(s)) (ci(s, β(s))− ei(s, β(s))) (β(s)− β)�

s − t
ds

∣∣∣∣∣ (β(t) = β)

)

Wi(t, β) = E (pC(T, β(T )) (ci(T, β(T ))− ei(T, β(T ))) (9)

+
∫ T

s=t
pC (s, β(s)) (ci(s, β(s))− ei(s, β(s))) ds

∣∣∣∣∣β(t) = β

)

There is a open set B of full measure in (0, T )×RK and analytic functions Z1, . . . , ZI with
domain B such that zi(t, ω) = Zi(I(t, ω)) whenever I(t, ω) ∈ B; Zi is uniquely determined
on B by the linear equations

Σi = ZiΣ, Wi = Zi · pA

pA, pC , c1, . . . , cI , W1, . . . , WI ∈ L2; Σ, Σ1, . . . , ΣI ,∈ H2; z1, . . . , zI ∈ H2(γ); pA, pC,
W1, . . . , WI are functions of I(t, ω) which are continuous on [0, T ] × RK and analytic on
(0, T ) × RK; Σ, Σ1, . . . , ΣI are functions of I(t, ω) which are continuous on [0, T ] × V and
analytic on (0, T ) × RK; pc and ci are given separately over [0, T ) × Rk and {T} × RK as
functions of I(t, ω); the functions over [0, T )× RK are analytic on (0, T ) × RK.

Remark 2.3 Equation (6) says that the (j, k) entry of the dispersion matrix of the securities
prices is the integral, over future times s (including s = T ), of the regression coefficient of
dividends of the jth security at time s, valued at the equilibrium consumption prices, on the
change in the kth component of the Brownian Motion up to time s. Equation (8) says that
the kth element of Σi is the integral, over future times s (including s = T ), of the regression
coefficient of i’s consumption minus i’s endowment at time s, valued at the equilibrium
consumption prices, on the change in the kth component of the Brownian Motion up to time
s.

3 Example

To appreciate how our existence result compares to the previous literature, it is useful to
consider the following parametric family of continuous-time securities markets. It is derived
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from the Merton model (1973, 1990), except that our securities are described by their divi-
dend processes, rather than by their price processes. Agent i is endowed with a flow rate of
consumption αi for t ∈ [0, T ) and a lump of consumption αi at time T (in Merton, this is
described as a bequest), where αi ∈ R++. Agent i’s utility for a stream of consumption ci is

E

(
hi(ci(T )) +

∫ T

0
hi(ci(s)) ds

)

where hi is a state-independent CRRA utility function with coefficient of relative risk aversion
γi. There are K + 1 securities, which pay no dividends at times t ∈ [0, T ) and which pay
lump dividends at time T . The zeroth security is a zero coupon bond which pays a lump
dividend of one unit of consumption at time T ; the dividends of the other securities are given
by eσβ(T ), where σ is a constant K × K matrix, so the dividends are terminal values of a
K-dimensional geometric Brownian Motion. The zeroth security is in zero net supply, while
the remaining securities are in net supply one. At time zero, agent 1 has an initial holding of
δ1 ∈ RK+1 units of the securities; agent’s 2’s initial holding is (0, 1, . . . , 1) − δ1. The utility
functions and dividend processes are standard benchmarks in continuous-time finance.

For what set of parameters does this securities market have an equilibrium? If an equi-
librium exists, is it dynamically complete? If α1 = α2, γ1 = γ2, and δ1 = δ2, this is effectively
a single agent economy, and it is known that the economy has an equilibrium, but it is not
known whether it is dynamically complete for K > 1. If γ1 �= γ2, the candidate equilibrium
is Pareto Optimal, so there are Negishi weights λ1 and λ2 such that the candidate equi-
librium consumptions maximize h(c) = λ1h1(c1) + λ2h2(c2) subject to c1 + c2 = c at each
node. But the weights λ cannot be computed in closed form, and h is not CRRA. Diasakos
(2007) recently showed in the case K = 1 that the candidate equilibrium price is dynamically
complete.15 His proof does not require computing the candidate equilibrium price in closed
form, but it is a difficult calculation. For the case K > 1, the only known way to show the
existence of equilibrium has been to compute the candidate equilibrium price process explic-
itly and check that it is dynamically complete. However, the candidate equilibrium prices
can be computed explicitly only for a very small set of parameter values. Thus, none of the
previous results rules out the possibility that the set of parameters (α1, α2, γ1, γ2, δ1, σ, T )
for which an equilibrium exists has Lebesgue measure zero. Theorem 2.1 implies that if σ is
nonsingular, then an equilibrium exists and is dynamically complete for every value of the
other parameters, i.e. every

(α1, α2, γ1, γ2, δ1, T ) ∈ R++ ×R++ × R+ × R+ × ({0} × [0, 1] × [0, 1]) × R++

4 Discrete Approximations

In this section, we describe our process for discretizing a continuous-time model. We then
state a theorem indicating that the equilibria of the discretized economy are close to those of
the continuous-time economy. This result has two important consequences. First, it provides
an effective computational method for computing equilibria of the continuous-time economy.

15Diasakos considered a single agent economy, but the Negishi utility h satisfies his assumptions on the
utility function.
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All one has to do is compute, using standard algorithms, an equilibrium of a sufficiently fine
discretization. Second, actual securities markets are discrete in a number of important ways.
Prices are restricted to lie in a grid, trades are carried out in integral numbers of shares,
and trades take a certain amount of time to execute. Continuous-time models are useful
because pricing formulas can be expressed more cleanly in continuous time than in discrete
time. However, in order to know that the formulas obtained from continuous-time models
are applicable to real markets, we need to know that the behavior of large discrete models
is close to the behavior of large continuous-time models.

Here is the formal description of our discretization procedure:
Choose n ∈ N. For t ∈ [0, T ], define t̂ = �nt�

n
, where �x denotes the greatest integer less

than or equal to x; in particular, T̂ = �nT �
n

. Define ΔT = 1
n

and T = {0, ΔT, 2ΔT, . . . , T̂}.
Define a measure ν̂ on T by ν̂({t}) = ΔT if t < T̂ and ν̂({T̂}) = 1.

Lemma 4.1 We can choose K + 1 vectors v0, . . . , vK ∈ RK such that

vj · vk =

{
K if j = k
−1 if j �= k

K∑
k=0

(vk)i (vk)j = δij(K + 1)

K∑
k=0

vk = 0

where δij = 1 if i = j and 0 otherwise.

Proof: See Appendix A.
In order to ensure that the discrete model is potentially dynamically complete, it is critical

that every nonterminal node in the random walk have exactly K +1 successor nodes; see the
comments on this in the Introduction. Now, we describe how we construct our probability
space Ω̂, filtration {Ft}, and random walk β̂. Let Ω̂ = {ω : T \ {0} → {0, 1, 2, . . . , K}}. The

measure μ̂ on Ω̂ is given by μ̂(A) = |A|
|Ω̂| for every A ∈ F̂ , the algebra of all subsets of Ω̂; here,

|A| denotes the cardinality of A. For t ∈ T , F̂t is the algebra of all subsets of Ω̂ that respect
the equivalence relation ω ∼t ω′ ⇔ ω(s) = ω′(s) for all s ≤ t.

For s ∈ T , define the random variable vs(ω) = vω(s), where v0, . . . , vk are the vectors
chosen in Lemma 4.1. If s �= t, the random variables vs and vt are independent. Moreover,
for each � ∈ {1, . . . , K}, the random variable (vs)� has mean zero and standard deviation

one. Define β̂ : T × Ω̂ → RK by

β̂(t, ω) =
∑

0<s≤t, s∈T
vs(ω)

√
ΔT

β̂ is a K-dimensional random walk. Note that β̂(t, ·) has variance-covariance matrix tI ,
where I is the K × K identity matrix. Define

Î(t, ω) = (t, β̂(t, ω))
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Given a consumption plan ĉ : T × Ω̂ → R+, the agent’s utility is

Ûi(ĉ) = Eμ̂

⎛
⎝
⎛
⎝ΔT

∑
s∈T ,s<T̂

hi(ĉ(t, ω), Î(t, ω))

⎞
⎠ + Hi(ĉ(T̂ , ω), β̂(T̂ , ω))

⎞
⎠

Our discrete economy is a GEI economy, the social endowment (including dividends)
is strictly positive at every node, and our utility functions are completely well-behaved, so
the discrete economy satisfies the assumptions of the Duffie-Shafer (1985, 1986) and Magill-
Shafer Theorems (1990). These theorems state that there is an arbitrarily small perturbation
of the endowments and security dividends such that the perturbed economy has an equi-
librium. Let êi(t, ω) ≥ fi(Î(t, ω)),

∣∣∣êi(t, ω) − fi(Î(t, ω))
∣∣∣ ≤ (ΔT )2 (t < T̂ ) and êi(T̂ , ω) ≥

Fi(T̂ , ω),
∣∣∣êi(T̂ , ω) − Fi(Î(T̂ , ω))

∣∣∣ ≤ (ΔT )2 denote the perturbed endowments. For all ω ∈ Ω̂,

let Â(t, ω) denote the perturbed dividends Â(t, ω) ≥ g(Î(t, ω)),
∣∣∣Â(t, ω)− g(Î(t, ω))

∣∣∣ ≤
(ΔT )2 for all t < T̂ , and Â(T̂ , ω) ≥ G(Î(T̂ , ω)),

∣∣∣Â(T̂ , ω) − G(Î(T̂ , ω))
∣∣∣ ≤ (ΔT )2. Notice

that the social consumption ê(t, ω) +
∑J

j=0 ηjÂj(t, ω) > 0.
Recall there are J + 1 securities indexed by j = 0, . . . , J . A securities price process is

a function p̂A : T × Ω̂ → RJ+1 which is adapted with respect to {F̂t}t∈T̂ . We will price

securities ex dividend for t < T̂ ; it will be convenient to price securities cum dividend at
t = T̂ .

A consumption price process is a function p̂C : T × Ω̂ → R+ which is adapted with
respect to {F̂t}t∈T̂ .

Given a securities price process p̂A and a consumption price process p̂C , the associated
total gains process γ̂ for the securities is defined to be

γ̂(t, ω) =

{
p̂A(t, ω) + (ΔT )

∑
s∈T ,s≤t p̂C(s, ω)Â(s, ω) if t < T̂

p̂A(t, ω) + (ΔT )
∑

s∈T ,s<t p̂C(s, ω)Â(s, ω) if t = T̂

Note that since securities are priced ex dividend at times t < T̂ , the dividend at time t
is included in the sum and not in the securities price p̂A; since securities are priced cum
dividend at time T̂ , the dividend at time T̂ is included in the securities price p̂A and not in
the sum.

A trading strategy16 for agent i is a row vector function ẑi : (T ∪ {−ΔT})× Ω̂ → RJ+1

which is adapted with respect to {F̂t}t∈T such that ẑi(−ΔT, ω) = eiA (this ensures that each
agent arrives at time 0 holding the correct initial securities endowment; there is no trade in
goods or securities at time −ΔT ) and ẑi(T̂ , ω) = ẑi(T̂ − ΔT, ω).

A consumption plan for agent i is a function ĉi : T × Ω̂ → R+. The budget set for agent
i is the set of all consumption plans ĉi such that there exists a trading strategy ẑi for which
ĉi satisfies the budget constraint

(
ĉi(s, ω) − êi(s, ω) − ẑi(s − ΔT, ω) · Â(s, ω)

)
· p̂C(s, ω)

= (ẑi(s, ω) − ẑi(s − ΔT, ω)) · p̂A(s, ω)

16In the discrete model, stochastic integrals with zero drift are automatically martingales, so we do not
need to require admissibility as a separate assumption.
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for all s ∈ T and all ω ∈ Ω̂. The budget equation says that the value of the agent’s
consumption at every node equals the value of the agent’s endowment at that node plus the
value of the dividends generated by the agent’s portfolio at that node plus the value of the
securities sold by the agent at that node.17 Note that since ẑ is required to be adapted to
{F̂t}t∈T̂ , it follows that ĉi is adapted to {F̂t}t∈T̂ .

Given a security price p̂ and a consumption price p̂C , the demand of the agent is a
consumption plan and a trading strategy which satisfy the budget constraint and such that
the consumption plan maximizes utility over the budget set.

An equilibrium for the economy is a security price process p̂, a consumption price process
p̂C , trading strategies ẑi and consumption plans ĉi which lies in the demand sets of the agents
so that the securities and goods markets clear, i.e. for all t ∈ T and all ω ∈ Ω̂

I∑
i=1

ẑi(t, ω) = (η0, . . . , ηJ )

I∑
i=1

ĉi(t, ω) =
I∑

i=1

êi(t, ω) +
J∑

j=0

ηjÂj(ω, t)

Since short selling is not restricted, the first-order conditions imply that the total gains
process γ̂ is a vector martingale (pages 230-231 of Magill and Quinzii (1996)).

Now, we identify the equilibrium trading strategies and the discrete analogue σ̂ of the
dispersion matrix of the equilibrium securities price process and the dispersion matrix σ̂i

of agent i’s securities wealth. We have the equilibrium securities prices p̂A(t, ω) and at the
K + 1 successor nodes to (t, ω). Because the K + 1 possible values of β̂(t + ΔT, ω)− β̂(t, ω)
span RK, and p̂A and γ̂ are both martingales, there is18 a unique (K +1)×K matrix process
σ̂(t, ω) adapted to F̂t, satisfying

p̂A(t + ΔT, ω) + p̂C(t + ΔT, ω)A(t + ΔT, ω)− p̂A(t, ω) = σ̂(t, ω)
(
β̂(t + ΔT ), ω)− β̂(t, ω)

)

Because the equilibrium is dynamically complete, σ̂(t, ω) has rank K for all nodes (t, ω).
For each consumer i = 1, . . . , I , define

D̂i(t, ω)

= E

⎛
⎝
⎛
⎝p̂C(T̂ , ·)

(
ĉi(T̂ , ·) − êi(T̂ , ·)

)
+ΔT

T̂−ΔT∑
s=0

p̂C (s, ·) (ĉi(s, ·) − êi(s, ·))
⎞
⎠
∣∣∣∣∣∣ (t, ω)

⎞
⎠

From the definition, D̂i is a martingale. D̂i is the conditional expectation of the difference in
value, at the prices of consumption, between i’s consumption and i’s endowment. For each
i, there is19 a unique (K + 1) × K matrix process σ̂i(t, ω) adapted to F̂t such that

D̂i(t + ΔT, ω)− D̂i(t, ω) = σ̂i(t, ω)
(
β̂(t + ΔT, ω)− β̂(t, ω)

)
17We take ẑi(−ΔT, ω) = eiA(0), so that agent enters period 0 holding the securities with which s/he is

endowed. Since securities are priced cum dividend at t = T̂ , we require that ẑi(T̂ , ω) = ẑi(T̂ − ΔT, ω).
18For details, see Appendix A.
19For details, see Appendix A.
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Since the securities wealth of agent i must exactly equal the conditional expectation of the
difference in value between i’s future consumption and i’s endowment, ẑi(t, ω) must be the
unique K ×1 row vector process adapted to F̂t which satisfies the budget constraint and the
equation

σ̂i(t, ω) = ẑi(t, ω)σ̂(t, ω)

Thus, ẑi is determined uniquely from p̂A and ĉi by linear algebra.
In the following theorem, whose proof is given in Appendix D, we show that equilibria

of the discretized economies are close to equilibria of the continuous-time economy. If the
continuous-time economy has a unique equilibrium, then pnA, pnC , cni and λn are given by
the unique equilibrium, and thus are independent of n. If the continuous-time economy has
multiple equilibria, the equilibrium corresponding to the nth discretization may well cycle
among the multiple equilibria. We could, for example, have the discrete-time equilibria
close to one continuous-time equilibrium for n odd and close to a different continuous-time
equilibrium for n even, so our continuous-time equilibrium will in general have to be chosen
differently for different discretizations.

Theorem 4.2 Given a continuous-time economy satisfying the assumptions of Theorem 2.1,
let p̂nA, p̂nC , ĉni and ẑni denote any equilibrium securities prices, consumption prices, con-
sumptions and trading strategies of the discretized sequence of economies just described. Let
λ̂n denote the vector of Negishi utility weights maximized at that equilibrium. Then there
are equilibria of the continuous-time economy with securities prices pnA, consumption prices
pnC , consumptions cni, trading strategies zni and utility weights λn satisfying the conclusions
of Theorem 2.1 and Proposition 2.2 such that∣∣∣λ̂n − λn

∣∣∣ → 0 (10)

∥∥∥p̂nA − pnA ◦ Î
∥∥∥
2
→ 0 and max

t∈Tn

∣∣∣p̂nA(t, ·)− pnA(Î(t, ·))
∣∣∣ → 0 in probability (11)

∥∥∥p̂nc − pnc ◦ Î
∥∥∥
2
→ 0 and max

t∈Tn

∣∣∣p̂nc(t, ·)− pnc(Î(t, ·))
∣∣∣ → 0 in probability (12)

∥∥∥σ̂n − Σn ◦ Î
∥∥∥
2
→ 0 and max

t∈Tn

∣∣∣σ̂n(t, ·)− Σn(Î(t, ·))
∣∣∣→ 0 in probability (13)

∥∥∥ĉni − cni ◦ Î
∥∥∥
2
→ 0 and max

t∈Tn

∣∣∣ĉni(t, ·) − cni(Î(t, ·))
∣∣∣→ 0 in probability (14)

∣∣∣Ûni (ĉni) − Uni (cni)
∣∣∣ → 0 (15)∣∣∣ẑni − zni ◦ Î

∣∣∣ → 0 in probability (16)∥∥∥σ̂ni − Σni ◦ Î
∥∥∥
2
→ 0 and max

t∈Tn

∣∣∣σ̂ni(t, ·)− Σni(Î(t, ·))
∣∣∣→ 0 in probability (17)

∥∥∥ẑni · p̂An − Wni ◦ Î
∥∥∥
2
→ 0 and max

t∈Tn

∣∣∣ẑni(t, ·) · p̂An − Wni(Î(t, ·))
∣∣∣ → 0 in probability (18)
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5 Discussion

Nonstandard analysis is a conservative extension of conventional analysis. In other words,
the existence of nonstandard models follows from the conventional axioms of set theory and
analysis, so the theorems presented here do not depend on any additional set theoretic or
analytic axioms. In particular, the proofs presented here can be mechanically translated
into standard proofs using only the usual axioms, but the resulting standard proofs would
be exceedingly long and unintelligible. We believe it would be extremely difficult to provide
tractable standard proofs of the convergence theorems.

We think it is likely possible to use the analytic function techniques developed here
to prove that, in the settings of the previous literature,20 the candidate equilibrium prices
are dynamically complete. This would allow one to remove the assumption of dynamic
completeness of the candidate equilibrium price process from the papers cited, and would
rely on the techniques used in those papers and our analytic function techniques, but would
not require nonstandard analysis. We have chosen not to proceed in this direction, for
the following three reasons: First, our ultimate goal is to extend these methods to obtain
existence of equilibria in continuous-time financial markets which are dynamically incomplete.
The approach in the previous literature begins with an Arrow-Debreu complete markets
equilibrium. Since there is no known theorem asserting existence of equilibrium with more
than one agent, an infinite-dimensional commodity space, and incomplete markets, there
seems no hope of extending the approach in the previous literature to incomplete markets.
By contrast, our approach begins with a GEI equilibrium in a discrete setting. Many steps
in our argument work just as well for the dynamically incomplete case as for the dynamically
complete case. While critical problems remain to be solved, our methods at least provide a
way of attacking the dynamically incomplete case. Second, we feel the convergence theorem
is at least as important as the existence theorem. As is often the case in nonstandard analysis,
our convergence theorem is essentially an immediate corollary of the nonstandard existence
proof; however, we doubt that a tractable standard proof of the convergence theorem can
be given. Third, while our proof makes extensive use of nonstandard analysis and stochastic
processes, it is completely independent of knowledge of functional analysis. Since most
who work in continuous-time finance have a background in stochastic processes but not in
functional analysis, it is desirable to have a proof that does not depend on functional analysis.

Anderson’s construction of Brownian Motion has been used to answer a number of ques-
tions in stochastic processes, and we are able to make do in this paper with slight extensions
of it. However, we anticipate that extending this work to the dynamically incomplete case,
or the case of dividends with jumps, will require using subsequent work in nonstandard
stochastic analysis.21

20See the references listed in the fifth paragraph of Section 1.
21The work of Keisler (1984) on stochastic differential equations with respect to Brownian Motion; and

the work by Albeverio and Herzberg (2006), Hoover and Perkins (1983a, 1983b), Lindstrøm (1980a, 1980b,
1980c, 1980d, 2004, 2005), and Ng (forthcoming) on stochastic integration with respect to more general
martingales, including Lévy processes, is likely to be of particular relevance.

The nonstandard theory of stochastic integration has previously been applied to option pricing in Cutland,
Kopp and Willinger (1991a, 1991b, 1991c, 1993, 1995a, 1995b, 1997). Those papers, which are not in
an equilibrium context, primarily concern convergence of discrete versions of options to continuous-time
versions, and their methods can likely be used to establish convergence results for the equilibrium option
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6 Mean Reversion

We assumed throughout that the primitives of the model are given as functions of time and
the current value of the Brownian Motion. It would be desirable to allow the primitives to
be given by more general Itô Processes. Significant technical problems would have to be
overcome, so we are leaving this problem for future work.

Most models of interest rate determination involve mean reversion, so in this section
we briefly sketch how to incorporate mean reversion into our model. The canonical mean-
reverting process is the Ornstein-Uhlenbeck Process, which is by definition a solution φ of
the stochastic differential equation

dφ = a(b− φ) dt + σ dβ (19)

where a, b and σ are real constants with a > 0. The Vasicek Model (1977) assumes that the
short-run risk-free rate of return r is an Ornstein-Uhlenbeck Process; one can then derive
the dynamics of bonds of various maturities.

From an equilibrium perspective, the short-run risk-free interest rate should be deter-
mined in equilibrium, not given as a primitive of the model. When markets are dynamically
complete, the securities market equilibrium is the Arrow-Debreu equilibrium, in which the
price of consumption is the marginal utility of consumption. In the proof of Theorem 2.1, we
show that one can construct a riskless security denominated in utils, and that the risk-free
interest rate in this normalization is zero. Observable interest rates are typically expressed in
terms of monetary units, but ours, like most general equilibrium models, is not a monetary
model. However, there are securities, such as Treasury Inflation-Protected Securities (TIPS),
which are automatically adjusted for inflation, and it is reasonable to think of TIPS as being
denominated in units of consumption. If we denominate prices in units of consumption,
the equilibrium real risk-free interest rate is the negative of the drift term of the price of
consumption:

r = −
∂pC

∂t
+ 1

2
∂2pC

∂β2

pC

r will be an Ornstein-Uhlenbeck Process only for a knife-edge set of primitives of our equi-
librium model.

pricing formulas developed in Anderson and Raimondo (2005, 2006). Anderson and Rashid (1978) provided a
nonstandard characterization of weak convergence. Cutland, Kopp and Willinger (1993, 1995b) and Cutland
(2000) propose a convergence notion for stochastic processes, D2-convergence, which is stronger than the
topology of weak convergence. The statement of the convergence notion is nonstandard, and to the best
of our knowledge no one has identified a standard topology on stochastic processes that corresponds to
D2-convergence. The equilibria of our discrete approximations D2-converge to the set of equilibria of the
continuous-time economy. Ng (2003) provides a treatment of mathematical finance based on hyperfinite
random walks, and in particular presents the Cox-Ross-Rubinstein (1979) binomial model in a nonstandard
context. Khan and Sun (1997, 2001) relate the Capital Asset Pricing Model and Arbitrage Pricing Theory in
a single-period setting. Malliavin calculus provides an approach to continuous-time finance with asymmetric
information; nonstandard treatments of Malliavin calculus are given by Cutland and Ng (1995) and Osswald
(2006).

Keisler (1996) presents a nonstandard stochastic process model of nontatonnement price adjustment;
agents are randomly chosen to come to the market, and their trades move the market price rapidly towards
equilibrium.

19



Our model can easily generate mean reversion of the risk-free rate. For example, suppose
that the social consumption is a periodic function of β such as

2 + sinβ(t, ω)

and that the utility functions are state- and time-independent (in particular, there is no time
discounting). When sinβ(t, ω) > 0, social consumption has a downward drift, so pC(t, ω)
has an upward drift, so r(t, ω) < 0; one can show that r(t, ω) has an upward drift. Similarly,
when sinβ(t, ω) < 0, social consumption has an upward drift, so pC(t, ω) has a downward
drift, so r(t, ω) > 0 and has a downward drift. Adding impatience, and expressing the
interest rate in nominal rather than real terms, will produce a risk-free rate which is positive
and mean-reverting.

Suppose φ is an Ornstein-Uhlenbeck Process satisfying Equation (19). It is not possible
to write φ(t, ω) as a function of t and β(t, ω) alone, so our theorem as stated does not cover
the case in which the social consumption equals φ(t, ω). However, our proof can be extended
to the case in which the primitives are analytic functions of t and φ(t, ω). They key is that φ
is a Markov Process, and the conditional distribution of φ(T ), conditional on (t, φ(t)), is well
behaved in the same ways that the conditional distribution of β(T ), conditional on (t, β(t)),
is well behaved.

A Details on the Discrete Model

In this appendix, we provide more detail on the analysis of the Discrete Model.
Proof of Lemma 4.1: Suppose first K = 1; let v0 = (1), v1 = (−1). Then v0 · v0 = v1 · v1 = 1
and v0 · v1 = −1; (v0)1(v0)1 + (v1)1(v1)1 = 1 + 1 = 2; and (v0)1 + (v1)1 = 1 − 1 = 0.

Now suppose we have chosen v0, . . . , vK ∈ RK such that vj · vk = −1 if j �= k and vk · vk = K;∑K
k=0 (vk)i (vk)j = δij(K + 1); and

∑K
k=0 vk = 0. Let

ṽk =

⎧⎨
⎩

(√
K+2
K+1 (vk)1, . . . ,

√
K+2
K+1 (vk)K ,− 1√

K+1

)
for k = 0, . . . , K(

0, . . . , 0,
√
K + 1

)
for k = K + 1

For j, k ∈ {0, . . . , K},

ṽj · ṽk =
K + 2
K + 1

vj · vk +
1

K + 1

=

{
K+2
K+1 (−1) + 1

K+1 = −1 if j �= k
K+2
K+1K + 1

K+1 = K2+2K+1
K+1 = K + 1 if j = k

ṽj · ṽK+1 = −1
ṽK+1 · ṽK+1 = K + 1

For i, j ∈ {1, . . . , K},
K+1∑
k=0

(ṽk)i(ṽk)j =
K∑

k=0

(ṽk)i(ṽk)j + 0

=
K + 2
K + 1

K∑
k=2

(vk)i(vk)j
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=
K + 2
K + 1

(K + 1)δij

= δij(K + 2)

For i ∈ {1, . . . , K} and j = K + 1,

K+1∑
k=0

(ṽk)i(ṽk)j =
K∑

k=0

√
K + 2
K + 1

(vk)i

(
− 1√

K + 1

)
+ 0 ·

√
K + 1

= −
√
K + 2
K + 1

K∑
k=0

(vk)i + 0

= 0
= δij(K + 2)

For i = K + 1 and j ∈ {1, . . . , K}, note that the formula is invariant under switching i and j.
Finally, for i = j = K + 1

K+1∑
k=0

(ṽk)i(ṽk)j = (K + 1)
1

K + 1
+ (K + 1)

= 1 + (K + 1)
= K + 2
= δij(K + 2)

For j = 1, . . . , K,

K+1∑
k=0

(ṽk)j =

√
K + 2
K + 1

K∑
k=0

(vk)j =

√
K + 2
K + 1

· 0 = 0

Moreover,
K+1∑
k=0

(ṽk)K+1 = − K + 1√
K + 1

+
√
K + 1 = 0

This shows that
∑K+1

k=0 ṽk = 0.
Thus, by induction, we can choose vectors v0, . . . , vK ∈ RK with the specified properties.

Determination of σ̂ and σ̂i: Here, as promised in footnotes 18 and 19, we provide more detail
on the determination of σ̂ and σ̂i. Recall that vk is a K × 1 column vector, so v�k is a 1 ×K row
vector; γ̂ is a (K + 1) × 1 column vector, and D̂i is a scalar. Let M be the K × K matrix, Γ the
(K + 1) ×K matrix, and Γi(i = 1, . . . , I) the 1 ×K row vectors

M =
√

ΔT

⎛
⎜⎝

v�0
...

v�K−1

⎞
⎟⎠

Γ =

(
(γ̂(t+ ΔT, ω)− γ̂(t, ω)) · · · (γ̂(t+ ΔT, ω)− γ̂(t, ω))
when ω(t+ ΔT ) = 0 · · · when ω(t+ ΔT ) = K − 1

)

Γi =

( (
D̂i(t+ ΔT, ω)− D̂i(t, ω)

)
· · ·

(
D̂i(t+ ΔT, ω)− D̂i(t, ω)

)
when ω(t+ ΔT ) = 0 · · · when ω(t+ ΔT ) = K − 1

)
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Thus, the kth row (k = 0, . . . , K−1) of M is the value of β̂(t+ΔT, ω)−β̂(t, ω) when ω(t+ΔT ) = k,
the kth column (k = 0, . . . , K−1) of Γ is the value of γ̂(t+ΔT, ω)−γ̂(t, ω) when ω(t+ΔT ) = k, and
the kth entry (k = 0, . . . , K− 1) of Γi is the value of D̂i(t+ ΔT, ω)− D̂i(t, ω) when ω(t+ ΔT ) = k;
note that Γi is neither a row nor a column of Γ. Since v0, . . . , vK−1 are linearly independent, M is
nonsingular. Let

σ̂(t, ω) = ΓM−1

σ̂i(t, ω) = ΓiM
−1

σ̂(t, ω) is the unique (K + 1) × K matrix and σ̂1(t, ω), . . . , σ̂I(t, ω) the unique 1 × K row vectors
such that

γ̂(t+ ΔT, ω)− γ̂(t, ω) = σ̂(t, ω)
(
β̂(t+ ΔT, ω)− β̂(t, ω)

)
D̂1(t+ ΔT, ω)− D̂1(t, ω) = σ̂1(t, ω)

(
β̂(t+ ΔT, ω)− β̂(t, ω)

)
...

D̂I(t+ ΔT, ω)− D̂I(t, ω) = σ̂I(t, ω)
(
β̂(t+ ΔT, ω)− β̂(t, ω)

)
(20)

whenever ω(t + ΔT ) ∈ {0, 1, . . . , K − 1}. Since β̂, γ̂, and D̂i, . . . , D̂I are martingales, the sum
(over the K + 1 successor nodes) of the change in β̂, the change in γ̂, and the change in D̂i is zero,
so the fact that Equation (20) holds for ω(t + ΔT ) ∈ {0, 1, . . . , K − 1} implies it holds also for
ω(t+ ΔT ) = K. Thus, the processes σ̂ and σ̂1, . . . σ̂I are adapted.

B Real Analytic Functions of Several Variables

In this Appendix, we summarize the results on real analytic functions of several variables used in
our proof.

Definition B.1 Let U ⊂ Rn be open. A function F : U → Rm is real analytic if, for every x0 ∈ U ,
there is a power series Gx0(x) centered at x0 with a positive radius of convergence δx0 such that
F (x) = Gx0(x) whenever x ∈ U and |x− x0| < δx0.

Theorem B.2 (The Analytic Implicit Function Theorem) Suppose X ⊂ Rn, Y ⊂ Rm are
open, F : X × Y → Rn is real analytic, x0 ∈ X , y0 ∈ Y , F (x0, y0) = 0, and

det
∂F

∂x
�= 0

at (x0, y0). Then there are neighborhoods U of x0 and V of y0 and a real analytic function φ : V → U

such that for all y ∈ V ,
F (φ(y), y) = 0

Moreover, if x ∈ U , y ∈ V , and F (x, y) = 0, then x = φ(y).

Proof: The conventional statement of the Implicit Function Theorem establishes all the claims
except the claim that the implicit function φ is real analytic. For this, see Theorem 2.3.5 of Krantz
and Parks (2002).

Theorem B.3 Let U ⊂ Rn be open and convex,22 F : U → R real analytic. If {x ∈ U : F (x) = 0}
has positive Lebesgue measure, then F is identically zero on U .

22It is sufficient to assume that U is connected and open. We prove the easier case when U is convex,
since that is the case we use.
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Proof: Lojasiewicz’s Structure Theorem for Varieties (Theorem 6.3.3 of Krantz and Parks (2002))
states that if U is an open set in Rn and F : U → R is analytic, then for every x0 ∈ U , there exists
a neighborhood Vx0 of x0 such that either F (x) = 0 for all x ∈ Vx0 or {x ∈ Vx0 : F (x) = 0} is a
finite union of real algebraic varieties of dimension < n. If F (x) = 0 for all x ∈ Vx0 and y ∈ U ,
there is a ray that passes through Vx0 and through y; the restriction of F to the ray is an analytic
function of a single variable, and it vanishes on an interval (the intersection of the ray with the set
V0); since it is well known that an analytic function of one variable that vanishes on an interval
is identically zero, we must have F (y) = 0 for all y ∈ U and we are done. On the other hand, if
{x ∈ V : F (x) = 0} is a finite union of algebraic varieties of dimension < n, {x ∈ Vx0 : F (x) = 0}
has Lebesgue measure zero. There is a countable collection {xn : n ∈ N} such that ∪n∈NVxn ⊃ U ,
so {x ∈ U : F (x) = 0} has Lebesgue measure zero.

Finally, we show that the conditional expectation of a function of G(β(T )), conditional on
(t, β(t)) is, under mild hypotheses on G, an analytic function of (t, β(t)). This fact is widely known
among probabilists, but we were unable to find a specific reference that shows that the analyticity
is joint in (t, β(t)), and we need the joint analyticity. Therefore, we provide a proof.

Theorem B.4 Suppose F is measurable on RK and there exists r ∈ R such that

|F (x)| ≤ r + er|x|

Let β be a standard K-dimensional Brownian Motion, and let

G(t, β) = E (F (β(T ))|β(t) = β)

Then G(t, β) is an analytic function of (t, β) ∈ (0, T )×RK .

Proof: Fix t < T . Then

G(t, β) =
1

(2π(T − t))K/2

∫
RK

F (β + x)e−|x|2/2(T−t) dx

=
1

(2π(T − t))K/2

∫
RK

F (y)e−|y−β|2/2(T−t) dy

=
e−|β|2/2(T−t)

(2π(T − t))K/2

∫
RK

eβ·y/(T−t)F (y)e−|y|2/2(T−t) dy

=
e−|β|2/2(T−t)

(2π(T − t))K/2

∫
RK

∞∑
k=0

(
β·y
T−t

)k

k!
F (y)e−|y|2/2(T−t) dy

=
e−|β|2/2(T−t)

(2π(T − t))K/2

∫
RK

∞∑
k=0

1
(T − t)kk!

∑
k1+...+kK=k(

k
k1 · · · kK

)
(β1y1)k1 · · · (βKyK)kKF (y)e−|y|2/2(T−t) dy

=
e−|β|2/2(T−t)

(2π(T − t))K/2

∫
RK

∞∑
k=0

1
(T − t)k

∑
k1+...+kK=k

(β1y1)k1 · · · (βKyK)kK

k1! · · ·kK !
F (y)e−|y|2/2(T−t) dy (21)

We view the two sums as an integral over

{(k, k1, . . . , kK) : k, k1, . . . , kK ∈ N ∪ {0}, k = k1 + · · ·+ kK}
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where each element has mass 1, so the expression becomes the integral of a product measure space.
We want to use Fubini’s Theorem to interchange the order of the integral and the sums. In order
to do this, we need to show that the integrand is L1 on the product. In the following calculation,
Equation (22) follows because the integral of |yk1

1 · · ·ykK
K | over any orthant equals the integral of

yk1
1 · · ·ykK

k over the positive orthant, and there are 2K orthants. Equation (24) follows because
the component normal random variables y1, . . . , yK are independent, and from the formula for the
kth

i moment of the absolute value of a normal random variable. In Equation (25), the integrand is
greater than or equal to the integrand in Equation (23) on the set {y ∈ RK

+ : |y| ≤ 4r(T − t)}. In
Equation (26), the integrand is greater than or equal to the integrand in Equation (23) on the set
{y ∈ RK

+ : |y| > 4r(T − t)}; integrating over all of RK
+ makes the integral still larger. In Equation

(27), the second term comes from the fact that Equation (25) is the integral of a constant over
{y ∈ RK

+ : |y| ≤ 4r(T − t)} times the density of a probability distribution over RK ; the third term
comes from the formula for the kth

i moment of the absolute value of a normal random variable.

∣∣∣∣∣ 1
(2π(T − t))K/2

∫
RK

yk1
1 · · ·ykK

K

k1! · · ·kK !
F (y)e−|y|2/2(T−t) dy

∣∣∣∣∣
≤ 1

(2π(T − t))K/2

∫
RK

(r + er|y|)|yk1
1 · · ·ykK

K |
k1! · · ·kK !

e−|y|2/2(T−t) dy

=
2K

(2π(T − t))K/2

∫
RK

+

(r + er|y|)yk1
1 · · ·ykK

K

k1! · · ·kK !
e−|y|2/2(T−t) dy (22)

=
2Kr

(2π(T − t))K/2

∫
RK

+

yk1
1 · · ·ykK

K

k1! · · ·kK !
e−|y|2/2(T−t) dy

+
2K

(2π(T − t))K/2

∫
RK

+

yk1
1 · · ·ykK

K er|y|

k1! · · ·kK !
e−|y|2/2(T−t) dy (23)

≤ r

√
k1!(T − t)k1/2 · · ·

√
kK !(T − t)kK/2

k1! · · ·kK !
(24)

+
2K

(2π(T − t))K/2

∫
{y∈RK

+ :|y|≤4r(T−t)}

(4(T − t))ke4r(T−t)

k1! · · ·kK !
e−|y|2/2(T−t) dy (25)

+
2K

(2π(T − t))K/2

∫
RK

+

yk1
1 · · ·ykK

K

k1! · · ·kK !
e−|y|2/4(T−t) dy (26)

≤ r(T − t)k/2

√
k1! · · ·kK !

+
(4(T − t))ke4r(T−t)

k1! · · ·kK !
+
r(2(T − t))k/2

√
k1! · · ·kK !

(27)

Consider the power series
∞∑

k=0

1
(T − t)k

∑
k1+···+kK=k

βk1
1 · · ·βkK

K

1
(2π(T − t))K/2

∫
RK

yk1
1 · · ·ykK

K

k1! · · ·kK !
F (y)e−|y|2/2(T−t) dy (28)

By Equation (27), the absolute value of the coefficient of βk1
1 · · ·βyK

K is bounded by

1
(T − t)k

(
r(T − t)k/2

√
k1! · · ·kK !

+
(4(T − t))ke4r(T−t)

k1! · · ·kK !
+
r(2(T − t))k/2

√
k1! · · ·kK !

)
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≤ 3r(T − t)−k/2

√
k1! · · ·kK !

+
4ke4r(T−t)

k1! · · ·kK !

≤ 3r(T − t)−k/2 + 4ke4r(T−t)

√
k1! · · ·kK !

≤

(
3r+ e4r(T−t)

)√
max{ 1

T−t , 16}
k

√
k1! · · ·kK !

which shows that the power series in Equation (28) converges absolutely within a positive radius
of convergence, by Proposition 2.2.10 of Krantz and Parks (2002). Thus, we can apply Fubini’s
Theorem to obtain

e−|β|2/2(T−t)
∞∑

k=0

1
(T − t)k

∑
k1+···+kK=k

βk1
1 · · ·βkK

K

1
(2π(T − t))K/2

∫
RK

yk1
1 · · ·ykK

K

k1! · · ·kK !
F (y)e−|y|2/2(T−t) dy

=
e−|β|2/2(T−t)

(2π(T − t))K/2

∫
RK

∞∑
k=0

1
(T − t)k

∑
k1+···+kK=k

(β1y1)k1 · · · (βKyK)kK

k1! · · ·kK !
F (y)e−|y|2/2(T−t) dy

= G(t, β)

by Equation(21). Therefore, for fixed t < T , G(t, β) is a product of two analytic functions, hence
is an analytic function of β ∈ RK . For any s ∈ (0, t), we have

G(s, β) =
1

(2π(t− s))K/2

∫
RK

G(t, β + x)e−|x|2/2(t−s) dx

The right side is an integral with respect to x of an analytic function of (s, β, x), and hence G is
analytic on (0, t)×RK by Proposition 2.2.3 of Krantz and Parks (2002). Since this is true for every
t < T , G is analytic on (0, T )×RK .

C Nonstandard Stochastic Integration

Up to now, all of our definitions and results have been stated without any reference to nonstandard
analysis. Our proof makes extensive use of nonstandard analysis, in particular Anderson’s (1976)
construction of Brownian Motion and the Itô Integral. It is beyond the scope of this paper to develop
these methods; see Anderson (2000) and Hurd and Loeb (1985) for references to nonstandard
analysis.

In order to show that the equilibrium of the hyperfinite economy generates an equilibrium of
the standard continuous-time economy, one needs to show that capital gains are the same in the
two settings. Capital gains are given by Stieltjes Integrals with respect to securities prices in the
hyperfinite setting and by Itô Integrals with respect to securities prices in the continuous-time
setting.

Anderson (1976) showed that the Itô Integral with respect to Brownian Motion is the standard
part of a Stieltjes Integral with respect to a hyperfinite random walk. Anderson’s theorem covers
hyperfinite random walks which move independently in each component by an amount ±1/

√
n. In
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that random walk, each node in the tree has 2K successor nodes. As discussed above, in order to
obtain dynamic completeness in the hyperfinite model, we need to use a random walk in which
each node has K+1 successor nodes. Thus, Anderson’s theorem does not cover the case considered
here.

Lindstrøm (1980a, 1980b, 1980c, 1980d) showed that the stochastic integral with respect to a
square integrable martingale is the standard part of a Stieltjes Integral with respect to a hyperfinite
SL2 martingale. Lindstrom’s theorem is limited to one-dimensional martingales. Because the com-
ponents of a vector Brownian Motion are uncorrelated, a process is Itô Integrable with respect to
a vector Brownian Motion if and only if it is integrable with respect to each component. However,
the components of a vector martingale can be correlated and consequently, a process can be inte-
grable with respect to a vector martingale even if it is not integrable with respect to the individual
components. This fact has economic significance. If two components of the vector martingale are
instantaneously nearly perfectly correlated at some point, then the equilibrium trading strategy
may well require taking a nonstandard infinite long position in one security and a nonstandard
infinite short position in the other. In both the hyperfinite and continuous-time model, the capital
gain is well-defined and finite when computed with respect to the vector martingale. However, the
hyperfinite capital gain may be a positive nonstandard infinite number in one component and a
negative nonstandard infinite number in the other components; they add up to a well-defined finite
integral when both components are considered. The continuous-time capital gain may be undefined
with respect to the two components when considered separately, but well-defined and finite when
the integral is computed with respect to the vector martingale.

Thus, we need to extend either Anderson’s theorem or Lindstrøm’s theorem. The more general
approach would be to extend Lindstrøm’s theorem to vector martingales; such an extension is
probably needed to tackle the dynamically incomplete markets case. However, it is considerably
easier, and sufficient for our purposes in this paper, to extend Anderson’s theorem to the particular
kind of random walk considered here. This is the approach we follow.

Anderson (1976) proved that β is a standard Brownian Motion provided that β̂ moves up or
down 1√

n
independently in each coordinate at every node; this would require each node in the

tree for β̂ to have 2K successor nodes, precluding dynamic completeness in the hyperfinite model
for K > 1. Neither Anderson nor Keisler (1984) quite covers the random walk β̂ considered here
because the coordinates of β̂ are uncorrelated but not independent.

For definitions of standard terms in stochastic integration (such as H2 and L2), see Nielsen
(1999). For definitions of nonstandard terms such as SL2 lifting, see Anderson (1976).

Theorem C.1 β is a standard Brownian motion.

Proof: We claim that the coordinates of β are independent. To see this, fix x ∈ RK . Then
{x ·vs : s ∈ T } is a family of IID random variables with standard distribution, mean zero and finite
variance σx so Anderson’s Theorem 21 implies that x·β(t, ·) is Normal mean zero variance tσx. Since
x ·β(t, ·) is Normal for all x ∈ RK , it is well known that β(t, ·) is system Normal (see, for example,
Bryc (1995), Theorem 2.2.4). Since β(t, ·) is system Normal with variance-covariance matrix tI ,
where I is the K × K identity matrix, the components of β are independent. Each component
of the random walk β̂ is a hypermartingale (martingale with respect to the hyperfinite filtration),
so satisfies the S-continuity property by Keisler’s continuity theorem for hypermartingales, and it
follows from Anderson’s proof that β is almost surely continuous. Anderson’s proof that β has
independent increments goes through without change in the present setting. Anderson used a
slightly smaller filtration than the one considered here, while Keisler used the filtration considered
here.
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Theorem C.2 Let β̂ be the hyperfinite random walk defined above, and β = ◦β̂ the standard
Brownian Motion it generates. Suppose Z ∈ H2. Then there is an SL2 lifting Ẑ of Z. Given any
SL2 lifting Ẑ of Z, for every t ∈ T we have

◦
∫ t

0
Ẑdβ̂ =

∫ ◦t

0
Zdβ

Proof: Lemma 31 in Anderson (1976) proves the existence of an SL2 lifting; the hyperfinite
probability space is slightly different from the one considered here, but the proof goes through
without change.

Theorem 33 in Anderson (1976) shows that, with respect to the hyperfinite random walk and
Brownian Motion considered there, the Itô Integral is the standard part of the hyperfinite Stieltjes
Integral. The proof of Theorem 33 depends on the specific form of the hyperfinite random walk
only in establishing the Itô Isometry, so we show that the Itô Isometry holds for the random walk
β̂. Ẑ may be a 1 × 1 scalar process, 1 × K vector process, or a (J + 1) ×K matrix process. The
proofs in the vector and matrix cases are virtually identical apart from notation, while the proof
in the scalar case is easier, so we assume that Ẑ is a 1×K vector process with kth component Ẑk.∥∥∥∥

∫ t

0
Ẑdβ̂

∥∥∥∥
2

=
∥∥∥∥
∫ t

0
Ẑkdβ̂k

∥∥∥∥
2

=

∥∥∥∥∥∥
K∑

k=1

∑
s∈T ,s<t

Ẑk(s, ·) (vs+ΔT )k

√
ΔT

∥∥∥∥∥∥
2

=
K∑

k=1

∑
s∈T ,s<t

∥∥∥Ẑk(s, ·) (vs+ΔT )k

√
ΔT

∥∥∥
2

(because the terms Ẑk(s, ω)vs+ΔT are uncorrelated across s, k)

=
K∑

k=1

∑
s∈T ,s<t

ΔT
∥∥∥Ẑk(s, ·)

∥∥∥
2

=
K∑

k=1

∥∥∥Ẑk|{s∈T :s<t}
∥∥∥
2

=
∥∥∥Ẑ|{s∈T :s<t}

∥∥∥
2

which establishes the Itô Isometry.
Since β is a standard Brownian Motion by Theorem C.1, the rest of the proof goes through

unchanged.

Definition C.3 Suppose Z ∈ L2. An SL2 lifting of Z is an internal nonanticipating process Ẑ
such that Ẑ(·, ω) ∈ SL2(T \ {T̂}) for almost all ω and such that ◦Ẑ(t, ω) = Z(◦t, ω) for almost all
(t, ω) ∈

(
T \ {T̂}

)
× Ω.

Theorem C.4 Let β̂ be the hyperfinite random walk defined above, and β = ◦β̂ the standard
Brownian Motion it generates. Suppose Z ∈ L2. Then there exists an SL2 lifting of Z. If Ẑ is any
SL2 lifting of Z, then for every t ∈ T we have

◦
∫ t

0
Ẑdβ̂ =

∫ ◦t

0
Zdβ
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Proof: Let f(ω) = ‖Z(·, ω)‖2 and find f̄ internal such that ◦f̄(ω) = f(ω) L(μ̂)-almost surely.
Let Z̄ be an internal nonanticipating process such that ◦Z̄(t, ω) = Z(◦t, ω) L(ν̂) × L(μ̂)-almost
everywhere, so for L(μ̂)-almost all ω, ◦Z̄(·, ω) = Z(◦t, ω) for ν-almost all t ∈ T \ {T̂}. For m ∈ *N,
and let

(Z̄m)ij(t, ω) = max
{
−m,min

{
m, Z̄ij(t, ω)

}}
f̄m(ω) = ‖Z̄m(·, ω)‖2

For all ω, we have f̄m+1(ω) ≥ f̄m(ω). For L(μ̂) almost all ω, we have limm∈N,n→∞
◦f̄m(ω) = f(ω) <

∞. Therefore, there exists m0 ∈ N such that for all m ∈ N, m ≥ m0

μ̂

({
ω :

∣∣f̄m(ω)− f̄(ω)
∣∣ < 1

m

})
> 1 − 1

m

so we may find m ∈ *N \ N such that

μ̂

({
ω :

∣∣f̄m(ω)− f̄(ω)
∣∣ < 1

m

})
> 1 − 1

m

so ◦f̄m(ω) = f̄ (ω) L(μ̂)-almost surely; for any such ω, Z̄m(·, ω) ∈ SL2 (Anderson (1976), Theorem
11), so if we define Ẑ = Z̄m, Ẑ is an SL2 lifting of Z.

Now, suppose Ẑ is any SL2 lifting of Z. For m ∈ N, define the internal stopping time

τ̂m(ω) = max
{
t ∈ T :

∫ t

0
‖Ẑ(s, ω)‖2

2 dν̂ ≤ m

}

and define

Ẑm(t, ω) =

{
Ẑ(t, ω) if t ≤ τm(ω)

0 if t > τm(ω)

Let Zm(t, ω) = ◦Ẑm(t̂, ω). For L(μ̂)-almost all ω, there exists m(ω) such that τm(ω) = T̂ , in which
case Ẑm(·, ω) = Ẑ(·, ω) and therefore

∫ t

0
Ẑm dβ̂ =

∫ t

0
Ẑ(·, ω) dβ̂

By the definition of the standard stochastic integral (see, for example, page 96 of Steele (2001))
and Theorem C.2,

∫ ◦t

0
Z dβ = lim

m→∞

∫ ◦t

0
Zm dβ

= lim
m→∞

◦
∫ t

0
Ẑm dβ̂

= ◦
∫ t

0
Ẑ dβ̂
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D Proofs of Theorems 2.1 and 4.2 and Proposition 2.2

We construct our probability space, filtration and Brownian Motion following Anderson’s (1976)
construction. Choose n ∈ *N \ N. Using this hyperfinite n, define T , t̂, T̂ , ν̂, μ̂, Ω̂, β̂, F̂ , F̂t, Ûi

and so on exactly as they were defined in Section 4; note that this involves perturbing endowments
and dividends to ensure existence of a Pareto Optimal Equilibrium, and that the measures ν̂ and
μ̂ are defined by internal cardinalities. By the Transfer Principle, the economy has an equilibrium,
and the equilibrium is Pareto optimal.

Let (T , L(ν̂)) denote the complete Loeb measure generated by ν̂ on T ; note that the Loeb
measure is a standard countably additive measure, on the same underlying point set T as ν. For
B ⊂ [0, T ], let st−1(B) = {t ∈ T : ◦t ∈ B}. For any Lebesgue measurable set B ⊂ [0, T ], st−1(B)
is Loeb measurable and L(ν̂)

(
st−1(B)

)
= ν(B) (Anderson (1976)).

Let (Ω,F , L(μ̂)) be the (complete) Loeb measure generated by (Ω̂, F̂ , μ̂) (Loeb (1975)). Al-
though (Ω,F , L(μ̂)) is generated by a nonstandard construction, Loeb showed that it is a probability
space in the usual standard sense. Let

Ft = {B ∈ F : L(μ̂)(BΔC) = 0 for some C which respects the
equivalence relation ω ∼ ω′ ⇔ ω ∼s ω

′ for all s � t
}

Let β : [0, T ]× Ω → RK be defined by β(t, ω) = ◦
(
β̂(t̂, ω)

)
. β is a K-dimensional Brownian

Motion in the usual standard sense, and β(t, ·) = E(β(T, ·)|Ft). Let I : [0, T ] × Ω → RK+1 be
defined by

I(t, ω) = (t, β(t, ω))

Since the equilibrium is Pareto Optimal, the marginal utility of consumption is infinite at
zero, the aggregate consumption is strictly positive at each node, and all agents have strictly
positive income by Equation (4), the equilibrium consumptions of all agents are strictly positive
at each node; they may be infinitesimal. Let Δ be the open I − 1-dimensional simplex in RI

++.
Pareto optimality and strict positivity of the equilibrium consumptions implies that there exists
λ̂ = (λ̂1, . . . , λ̂I) ∈ *Δ such that at each node (t, ω), the consumptions maximize

I∑
i=1

λ̂i*hi(ĉi(t, ω), Î(t, ω)) and
I∑

i=1

λ̂i*Hi(ĉi(T̂ , ω), Î(T̂ , ω))

Since each ĉi(t, ω) > 0, each λ̂i > 0, so there is a positive constant ι̂(t, ω) such that

λ̂1* ∂h1
∂c1

∣∣∣
(ĉ1(t,ω),Î(t,ω))

= · · · = λ̂I* ∂hI
∂cI

∣∣∣
(ĉI (t,ω),Î(t,ω))

= ι̂(t, ω) for t < T̂

λ̂1* ∂H1
∂c1

∣∣∣
(ĉ1(T̂ ,ω),Î(T̂ ,ω))

= · · · = λ̂I* ∂HI
∂cI

∣∣∣
(ĉI(T̂ ,ω),Î(T̂ ,ω))

= ι̂(T̂ , ω)

Let ĉ(t, ω) =
∑I

i=1 ĉi(t, ω).
We claim that ι̂(·, ·) ∈ SLp for each p ∈ [1,∞), and that ι̂(t, ω) �� 0 for Loeb-almost all (t, ω).

For every node (t, ω) there is an agent i(t, ω) such that ĉi(t,ω)(t, ω) ≥ ĉ(t,ω)
I . The following calculation

assumes t < T̂ ; if t = T̂ , substitute Hi for hi. Since λ̂i ≤ 1 for each i:

ι̂(t, ω) = λ̂i(t,ω)*
∂hi(t,ω)

∂ci(t,ω)

∣∣∣∣∣
(ĉi(t,ω)(t,ω),Î(t,ω))
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≤ *
∂hi(t,ω)

∂ci(t,ω)

∣∣∣∣∣( ĉ(t,ω)
I

,Î(t,ω)
)

≤ *
∂hi(t,ω)

∂ci(t,ω)

∣∣∣∣∣(∑I

i=1
*fi(Î(t,ω))+

∑J

j=0
ηj*gj(Î(t,ω))

I
,Î(t,ω)

)

≤ r + er|β̂(t,ω)|

by Inequality (2). Therefore (ι̂(t, ω))p ≤ r̄ + er̄|β̂(t,ω)| for some r̄ ∈ R, so (ι̂)p ∈ SL1 by Raimondo
(2002, 2005 Proposition 3.1), so ι̂ ∈ SLp. Since

∑I
i=1 λ̂i = 1, we can assume without loss of

generality that λ1 �� 0. Then

ι̂(t, ω) = λ̂1*
∂hi

∂ci

∣∣∣∣
(ĉi(t,ω),Î(t,ω))

≥ λ̂1*
∂hi

∂ci

∣∣∣∣
(ĉ(t,ω),Î(t,ω))

≥ λ̂1*
∂hi

∂ci

∣∣∣∣(∑I

i=1
*fi(Î(t,ω))+

∑J

j=0
ηj*gj(I(t,ω)+O((ΔT )2)

)
�� 0

whenever the social consumption is finite, i.e. for Loeb-almost every (t, ω). If we set p̂C(t, ω) =
ι̂(t, ω) for t ∈ T , p̂C gives the Arrow-Debreu prices of consumption.

We claim that λ̂i �� 0 for each i = 1, . . . , I . If not, we may assume without loss of generality
that λ̂I � 0. For every node for which ι̂(t, ω) �� 0, we have

*
∂hI

∂cI

∣∣∣∣
(ĉI (t,ω),Î(t,ω))

=
ι̂(t, ω)
λ̂I

� ∞ or *
∂HI

∂cI

∣∣∣∣
(ĉI (T̂ ,ω),Î(T̂ ,ω))

=
ι̂(T̂ , ω)
λ̂I

� ∞

as appropriate, so ĉI(t, ω) � 0 which shows that ĉI(t, ω) � 0 Loeb-almost everywhere. Since
ĉI(t, ω) ≤ ĉ(t, ω) ≤ r+er|β̂(t,ω)|+O((ΔT )2), then as above, ĉI ∈ SLp for all p ∈ [1,∞) by Raimondo
(2002, 2005 Proposition 3.1), and hence p̂C × ĉI ∈ SLp for all p ∈ [1,∞) by the Cauchy-Schwarz
Inequality and Anderson (1976);

◦E

⎛
⎝p̂C(T̂ , ω)ĉI(T̂ , ω) + ΔT

T̂−ΔT∑
t=0

p̂c(t, ω)ĉI(t, ω)

⎞
⎠

= E

(
◦p̂C(T̂ , ω)◦ĉI(T̂ , ω) +

∫ T

0

◦p̂c(t, ω)◦ĉI(t, ω) dt

)

= 0

However, since the hyperfinite market is dynamically complete, agent I can afford any bundle
satisfying the Arrow-Debreu budget constraint. In the following calculation, Equation (29) follows
because êI(t, ω) ≤ r+er|β̂(t,ω)|+O

(
(ΔT )2

)
and Âj(t, ω) ≤ r+er|β̂(t,ω)|+O

(
(ΔT )2

)
, so êI , Â ∈ SLp

for all p ∈ [1,∞), so p̂cêI , p̂cÂ ∈ SLp for all p ∈ [1,∞). Agent I’s income is

êIA · p̂A(0, 0) +E

⎛
⎝p̂C(T̂ , ·)êI(T̂ , ·) + ΔT

T̂−ΔT∑
t=0

p̂C(t, ·)êI(t, ·)

⎞
⎠

30



= E

⎛
⎝p̂C(T̂ , ·)

(
êIAA(T̂ , ·) + êI(T̂ , ·)

)
+ ΔT

T̂−ΔT∑
t=0

p̂C(t, ·) (êIAA(t, ·) + êI(t, ·))

⎞
⎠

� E

(
◦p̂C(T̂ , ·)

(
eIAA(T̂ , ·) + eI(T̂ , ·)

)
+
∫ T

0

◦pC(t, ·) (eIAA(t, ·) + eI(t, ·))
)

(29)

�= 0

since the expectation is of a function which is nonnegative and strictly positive on a set of positive
measure by Inequality (4). Thus, ĉI lies strictly inside the Arrow-Debreu budget set; since prefer-
ences are strictly monotonic, it cannot be the demand of agent I , a contradiction which shows that
λ̂i �� 0 for each i = 1, . . . , I .

We now show that the equilibrium consumptions and consumption prices are given by standard
analytic functions. Consider the standard analytic function

ρ : (0,∞)I × R++ × Δ × R++ ×
(
(0, T )× RK

)
→ RI+1

defined by

ρ ((c1, . . . , cI), ι, λ, c, (t, β))

=

(
λ1

∂h1

∂c1

∣∣∣∣
(c1,t,β)

− ι, . . . , λI
∂hI

∂cI

∣∣∣∣
(cI ,t,β)

− ι, c1 + · · ·+ cI − c

)

ρ encodes the first-order conditions for the equilibrium consumptions. The determinant of the
Jacobian matrix of partial derivatives of ρ with respect to ((c1, . . . , cI), ι) is given by

det
(

∂ρ

∂((c1, . . . , cI, ), ι)

)

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1
∂2h1

∂c21
0 0 · · · 0 −1

0 λ2
∂2h2

∂c22
0 · · · 0 −1

...
...

...
...

...
...

0 0 · · · 0 λI
∂2hI

∂c2I
−1

1 1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1
∂2h1

∂c21
0 0 · · · 0 −1

0 λ2
∂2h2

∂c22
0 · · · 0 −1

...
...

...
...

...
...

0 0 · · · 0 λI
∂2hI

∂c2I
−1

0 0 0 · · · 0
∑I

i=1
1

λi
∂2hi
∂c2

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ1 · · ·λI
∂2h1

∂c21
· · · ∂

2hI

∂c2I

I∑
i=1

1
λi

∂2hi

∂c2i

�= 0

since λ ∈ Δ and ∂2hi

∂c2i
< 0. By the Analytic Implicit Function Theorem (Theorem B.2 in Appendix

B) and the Transfer Principle, there exist standard analytic functions π̂, ψ̂i : Δ ×R++ × ((0, T )×
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RK) → R for i = 1, . . . , I such that

ι̂(t, ω) = *π̂(λ̂, ĉ(t, ω), Î(t, ω)) for t < T̂

ĉi(t, ω) = *ψ̂i(λ̂, ĉ(t, ω), Î(t, ω)) for t < T̂

Using a similar calculation at t = T̂ and the ordinary Implicit Function Theorem, by Equation (3),
there are standard C1 functions Π̂, Ψ̂i : Δ ×R++ × ({T} ×RK) → R such that

ι̂(T̂ , ω) = *Π̂(λ̂, ĉ(T̂ , ω), Î(T̂ , ω))
ĉi(T̂ , ω) = *Ψ̂i(λ̂, ĉ(T̂ , ω), Î(T̂ , ω))

Let λ ∈ Δ, π : R++ × RK × [0, T ) → R, Π : R++ × RK → R, ψi : R++ × RK × [0, T ) → R
and Ψi : R++ ×RK → R be defined by

λ = ◦λ̂

π(c, I) = π̂(λ, c, I)
Π(c, β) = Π̂(λ, c, β)
ψi(c, I) = ψ̂i(λ, c, I)
Ψi(c, β) = Ψ̂i(λ, c, β)

Because π̂ and ψ̂ are standard analytic functions, π and Ψ are standard analytic functions;
because Π̂ and Ψ̂ are standard C1 functions, Π and Ψ are standard C1 functions. Let c(t, ω) =
◦ĉ(t, ω), ci(t, ω) = ◦ĉi(t, ω). Since c(t, ω) and ψi(c, β, t) are analytic functions for t ∈ (0, T ), each
ci(t, ω) is an analytic function of I(t, ω). Each ci(T, ω) is a C1 function of c(T, ω); however, since
c(T, ω) is a continuous function of I(T, ω) almost everywhere, ci(T, ω) is a continuous function of
I(T, ω) almost everywhere.

Let
pC(t, ω) = ◦p̂C(t, ω)

pC(t, ω) = ◦p̂C(t, ω)

= ◦
(
*π̂

(
λ̂, ĉ(t, ω), Î(t, ω)

))
= π̂

(
◦λ̂, ◦ĉ(t, ω), ◦Î(t, ω)

)
= π̂ (λ, c(t, ω),I(t, ω))
= π (c(t, ω), I(t, ω))

is an analytic function of I(t, ω) on (0, T ) × RK , since π is analytic and c(t, ω) is an analytic
function of I(t, ω). Since c(T, ω) = Π(c(T, ω), β(T, ω)) is a C1 function of β(T, ω) ∈ V , pC(T, ·) is
a C1 function of β(T, ω) ∈ V .

In the following calculation, Equation (30) holds because the first-order conditions for demand
imply the price of a security is the expected value of future dividends times the weighted marginal
utility of consumption, which equals the expected value of the dividend times the price of consump-
tion. Equation (31) follows because p̂A(T̂ , ·) = p̂C(T̂ , ω)A(T̂ , ω), p̂C ∈ SLp for all p ∈ [1,∞), and
Aj(t, ω) ≤ r + er|β̂(t,ω)| + O

(
(ΔT )2

)
, so as above p̂A(T̂ , ·) ∈ SLp for all p ∈ [1,∞), by Raimondo

(2002, 2005 Proposition 3.1), so p̂C(·, ·)Â(·, ·) ∈ SLp for all p ∈ [1,∞) (Anderson (1976)); and the
internal integrands are S-continuous functions of Î(t, ω) whenever ◦Î(t, ω) is at a point at which
c and G are continuous. Equation (32) follows because Î(·, ω) is almost surely S-continuous, and
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for any such ω and any s ∈ [◦t, T ], the conditional distribution of I(s, ω) is the same given (◦t, ω)
as it is given (t, ω).

◦p̂A(t, ω)

= ◦E

⎛
⎝
⎛
⎝p̂C(T̂ , ·)Â(T̂ , ·) + ΔT

T̂−ΔT∑
s=t+ΔT

p̂C(s, ·)Â(s, ·)

⎞
⎠
∣∣∣∣∣∣ (t, ω)

⎞
⎠

= ◦E
(
*Π̂(λ̂, ĉ(T̂ , ·), Î(T̂ , ·))Â(T̂ , ·)

∣∣∣ (t, ω)
)

(30)

+◦E

⎛
⎝ΔT

T̂−ΔT∑
s=t+ΔT

(
*π̂(λ̂, ĉ(s, ·), Î(s, ·))Â(s, ·)

)∣∣∣ (t, ω)

⎞
⎠

= ◦E
(
*Π̂(λ̂, ĉ(T̂ , ·), Î(T̂ , ·))*G(Î(T̂ , ·)) +O

(
(ΔT )2

)∣∣∣ (t, ω)
)

+◦E

⎛
⎝ΔT

T̂−ΔT∑
s=t+ΔT

*π̂(λ̂, ĉ(s, ·), Î(s, ·))
(
*g

(
Î(s, ·)

)
+O

(
(ΔT )2

))∣∣∣∣∣∣ (t, ω)

⎞
⎠

= E (Π(c(T, ·),I(T, ·))G(I(T, ·))|(t, ω)) +E

(∫ T

◦t
π(c(s, ·), I(s, ·))g (I(s, ·)) ds

∣∣∣∣∣ (t, ω)

)
(31)

= E

(
Π(c(T, ·),I(T, ·))G (I(T, ·)) +

∫ T

◦t
π(c(s, ·),I(s, ·)) (g (I(s, ·)) ds)

∣∣∣∣∣ (◦t, ω)

)
(32)

Let

pA(t, ω) = E

(
Π(c(T, ·),I(T, ·))G (I(T, ·))+

∫ T

◦t
π(c(s, ·), I(s, ·)) (g (I(s, ·)) ds)

∣∣∣∣∣ (t, ω)

)

We have shown that ◦p̂A(t, ω) is an S-continuous function of (t, β̂(t, ω)) ∈ st−1
(
[0, T )×RK

)
, and

that ◦p̂A(t, ω) = pA(t, ω) whenever the path β̂(·, ω) is S-continuous, i.e. Loeb-almost everywhere.
For almost all ω, p̂A(·, ω) is an S-continuous function of t ∈ T . Moreover, pA is an analytic function
of (t, β(t, ω)) ∈ (0, T )×RK by Theorem B.4 and Proposition 2.2.3 of Krantz and Parks (2002).

In the following calculation of γ̂(t + ΔT, ω) − γ̂(t, ω), note that we do not calculate how the
future dividend values are affected by the information revealed by β̂(t+ΔT, ω)−β̂(t, ω). Instead, we
calculate how the probability of each possible future dividend is affected by the information revealed
by β̂(t+ ΔT, ω)− β̂(t, ω) =

√
ΔTvω(t+ΔT ). The calculation uses the fact that the distribution of

the random walk is multinomial. In order to know the value of β̂(s, ω) − β̂(t, ω), it is enough to
count how many of the s−t

ΔT steps of the random walk in this time interval lie in each of the possible
directions v0, . . . , vK ; it does not depend on the order in which the steps occur. In Equation (33),
we write p̂CÂ

(
s, β̂(t, ω) +

∑K
i=0 kivi

√
ΔT

)
as an abbreviation for

p̂C

(
s, β̂(t, ω) +

K∑
i=0

kivi

√
ΔT

)
Â

(
s, β̂(t, ω) +

K∑
i=0

kivi

√
ΔT

)

Equation (34) holds because for each s > t, s ∈ T , including s = T̂ , and for k0, . . . , kK ∈ * (N ∪ {0})
satisfying k0 + · · ·+ kK = (s − t)/ΔT ,

√
ΔT

(∑K
i=0 kiv

�
i

√
ΔT

)
vω(t+ΔT )

s − t
=

ΔT
s− t

K∑
i=0

kivi · vω(t+ΔT )
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=
ΔT
s− t

⎛
⎝Kkω(t+ΔT ) + (−1)

∑
i�=ω(t+ΔT )

ki

⎞
⎠

=
ΔT
s− t

(
Kkω(t+ΔT ) −

(
s− t

ΔT
− kω(t+ΔT )

))

=
ΔT
s− t

(
(K + 1)kω(t+ΔT ) −

s− t

ΔT

)

=
(K + 1)kω(t+ΔT )

(s− t)/ΔT
− 1

Equation (36) follows from the inequalities Â(t, ω) ≤ r+er|β̂(t,ω)|+O
(
(ΔT )2

)
, |Âβ̂| ≤ |β̂|

(
r + er|β̂|

)
≤

(
r|β̂| + e(r+1)|β̂|

)
≤ 2e(r+1)|β̂|, so as above Â, Âβ̂ ∈ SLp for all p ∈ [1,∞) by Raimondo (2002,

2005 Proposition 3.1), and we previously showed p̂C ∈ SLp for all p ∈ [0,∞); it follows that
p̂A(T̂ , ·) = p̂C(T̂ , ·)Â(T̂ , ·) ∈ SLp and p̂CÂβ̂ ∈ SLp for all p ∈ [1,∞) (Anderson (1976)); and the
internal integrands are S-continuous functions of Î(t, ω) whenever ◦Î(t, ω) is at a point at which
c and G are continuous. Equation (37) follows because Î(·, ω) is almost surely S-continuous, and
for any such ω and any s ∈ [◦t, T ], the conditional distribution of I(s, ω) is the same given (◦t, ω)
as it is given (t, ω).

γ̂(t + ΔT, ω) − γ̂(t, ω)

= p̂A(t + ΔT, ω) + (ΔT )

∑
s∈T ,s≤t+ΔT

p̂C(s, ω)Â(s, ω) −

(
p̂A(t, ω) + (ΔT )

∑
s∈T ,s≤t

p̂C(s, ω)Â(s, ω)

)

= p̂A(t + ΔT, ω) + p̂c(t + ΔT, ω)Â(t + ΔT, ω) − p̂A(t, ω)

= E
((

p̂A(T̂ , ·)
)∣∣ (t + ΔT, ω)

)
− E

((
p̂A(T̂ , ·)

)∣∣ (t, ω)
)

+ΔT

T̂−ΔT∑
s=t+ΔT

(
E
((

p̂C(s, ·)Â(s, ·)
)∣∣ (t + ΔT, ω)

)
− E

((
p̂C(s, ·)Â(s, ·)

)∣∣ (t, ω)
))

=
1

(K + 1)(T̂ −t)/ΔT

∑
k0+...+kK =(T̂−t)/ΔT

p̂A

(
T̂ , β̂(t, ω) +

K∑
i=0

kivi

√
ΔT

)
·
(

(K + 1)(((T̂ − t)/ΔT ) − 1)!

k0 !k1!(kω(t+ΔT ) − 1)! . . . kK !
− ((T̂ − t)/ΔT )!

k0!k1 ! . . . kK !

)

+ΔT

T̂−ΔT∑
s=t+ΔT

1

(K + 1)(s−t)/ΔT

∑
k0+...+kK =(s−t)/ΔT

p̂CÂ

(
s, β̂(t, ω) +

K∑
i=0

kivi

√
ΔT

)
·

(
(K + 1)(((s − t)/ΔT ) − 1)!

k0!k1 !(kω(t+ΔT ) − 1)! . . . kK !
− ((s − t)/ΔT )!

k0 !k1! . . . kK !

)
(33)

=
1

(K + 1)(T̂ −t)/ΔT

∑
k0+...+kK =(T̂−t)/ΔT

p̂A

(
T̂ , β̂(t, ω) +

K∑
i=0

kivi

√
ΔT

)(
((T̂ − t)/ΔT )!

k0!k1 ! · · · kK !

)(
(K + 1)kω(t+ΔT )

((T̂ − t)/ΔT )
− 1

)

+ΔT

T̂−ΔT∑
s=t+ΔT

1

(K + 1)(s−t)/ΔT

∑
k0+...+kK =(s−t)/ΔT

p̂CÂ

(
s, β̂(t, ω) +

K∑
i=0

kivi

√
ΔT

)
·

(
((s − t)/ΔT )!

k0!k1 ! · · · kK !

)(
(K + 1)kω(t+ΔT )

((s − t)/ΔT )
− 1

)

=
1

(K + 1)(T̂ −t)/ΔT

∑
k0+...+kK =(T̂−t)/ΔT

p̂A

(
T̂ , β̂(t, ω) +

K∑
i=0

kivi

√
ΔT

)(
((T̂ − t)/ΔT )!

k0!k1 ! · · · kK !

)
·

(√
ΔT

(∑K

i=0
kivi

√
ΔT
)

· vω(t+ΔT)

T̂ − t

)
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+ΔT

T̂−ΔT∑
s=t+ΔT

1

(K + 1)(s−t)/ΔT

∑
k0+...+kK =(s−t)/ΔT

(
p̂CÂ

(
s, β̂(t, ω) +

K∑
i=0

kivi

√
ΔT

)
·
(

((s − t)/ΔT )!

k0 !k1! · · · kK !

)
·

(√
ΔT

(∑K

i=0
kivi

√
ΔT
)

· vω(t+ΔT)

s − t

))
(34)

= E

(
p̂A(T̂ , β̂(T̂ , ·))(β̂(T̂ , ·) − β̂(t, ·))�

T̂ − t
+

ΔT
∑

T̂−ΔT

s=t+ΔT
p̂CÂ(s, β̂(s, ·))(β̂(s, ·) − β̂(t, ·))�

s − t

∣∣∣∣∣ (t, ω)

)
vω(t+ΔT)

√
ΔT (35)

= E

(
pA(T, β(T, ·))(β(T, ·) − β(t, ·))�

T − t
+

∫ T

◦t

pC(s, β(s, ·))A(s, β(s, ·))(β(s, ·) − β(t, ·))�
s − ◦t

ds

∣∣∣∣ (t, ω)

)(
β̂(t + ΔT, ω) − β̂(t, ω)

)
(36)

+o
(√

ΔT
)

σ̂(t, ω)

� E

(
pA(T, β(T, ·))(β(T, ·) − β(t, ·))�

T − t
+

∫
T

◦t

pC(s, β(s, ·))A(s, β(s, ·))(β(s, ·) − β(t, ·))�
s − ◦t

ds

∣∣∣∣ (t, ω)

)

= E

(
pC(T, β(T, ·))A(T, β(T, ·))(β(T, ·) − β(t, ·))�

T − t
+

∫ T

◦t

pC(s, β(s, ·))A(s, β(s, ·))(β(s, ·) − β(t, ·))�
s − ◦t

ds

∣∣∣∣ (◦t, ω)

)
(37)

This shows that σ̂ is an S-continuous function of (t, β̂) ∈ st−1
(
[0, T )× RK

)
. Note that the

integrand is the product of the (K + 1)× 1 column vector A and the 1×K row vector β�, so it is
a (K + 1)×K matrix. Letting Σ : [0, T )× RK → R(K+1)×K be given by

Σ(t, β) = E

(
pC(T, β(T ))A(T, β(T ))(β(T )− β(t))�

T − t

+
∫ T

t

pC(s, β(s))A(s, β(s))(β(s)− β(t))�

s− t
ds

∣∣∣∣∣β(t) = β

)

we have
◦σ̂(t, ω) = Σ (I(t, ω))

for every (t, ω) such that Î(t, ω) is finite. Since σ̂ is SL2 and adapted to
{
F̂t

}
, and is an SL2 lifting

of Σ ◦ I, σ ◦ I is L2 and adapted to {Ft} (Anderson (1976)). Therefore, by Theorem C.2, we have

pA(t, ω) = ◦p̂A(t̂, ω)

= ◦p̂A(0, ω) + ◦
t̂−ΔT∑
s=0

(
σ̂(s, ω)

(
β̂(s+ ΔT, ω)− β̂(s, ω)

)
− (ΔT ) p̂C(s, ω)Â(s, ω)

)

= pA(0, ω) +
∫ t

0
Σ (I(s, ω))dβ(s, ω)−

∫ t

0
pC(s, ω)A(s, ω) ds

γ(t, ω) = ◦γ̂(t̂, ω)

= ◦p̂A(0, ω) + ◦
t̂−ΔT∑
s=0

σ̂(s, ω)
(
β̂(s + ΔT, ω)− β̂(s, ω)

)

= pA(0, ω) +
∫ t

0
Σ (I(s, ω))dβ(s, ω)

Thus, γ is the total gains process of pA, and is a vector martingale. Since pA is an analytic (hence
C2) function of (t, β), by Itô’s Lemma and the uniqueness of Itô Coefficients,

Σ(t, β) =
∂pA(t, β)

∂β
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is a partial derivative of an analytic function, so Σ is analytic on (0, T )×RK .
Extend Σ to {T} × V by

Σ(T, β) =
∂pA(T, β)

∂β

for β ∈ V ; note that here, we are using β ∈ RK to denote a particular value that the Brownian
Motion might take. We claim that Σ is a continuous function of (t, β) ∈ [0, T ]×V . Notice that the
second term in the definition of Σ tends to zero as t → T , uniformly over β ranging over compact
subsets of RK , so we can restrict attention to the first term. Suppose β0 ∈ V . Fix ε > 0. Since
A(T, ·) is C1 on V and pC(T, ·) is C1 on V , pA(T, ·) = A(T, ·)pC(T, ·) is C1 on {T} × V . Since V
is open, we may find δ > 0 such that B(β0, 2δ) ⊂ V and

β, y ∈ B(β0, 2δ) ⇒
∥∥∥∥∥ ∂pA

∂β

∣∣∣∣
(T,y)

− ∂pA

∂β

∣∣∣∣
(T,β)

∥∥∥∥∥ < ε

3

For any β ∈ B(β0, δ) and y ∈ B(β, δ), we have y ∈ B(β0, 2δ). Using the Mean Value Theorem one
component at a time, we find that∣∣∣∣∣pA(T, y)− pA(T, β)− ∂pA

∂β

∣∣∣∣
(T,β)

(y − β)

∣∣∣∣∣ < ε|y − β|
3

so ∥∥∥∥∥
(
pA(T, y)− pA(T, β)− ∂pA

∂β

∣∣∣∣
(T,β)

(y − β)

)
(y − β)�

∥∥∥∥∥ < ε|y − β|2
3

Since pC ≤ r + er|β| and |Aj(T, y)| ≤ r + er|y|, and
∥∥∥∥ ∂pA

∂β

∣∣∣
(T,β)

∥∥∥∥ is uniformly bounded over β ∈

B(β0, δ), there is a constant r̄ ∈ R such that for every β ∈ B(β0, δ), for all y ∈ RK ,∥∥∥∥∥
(
pA(T, y)− pA(T, β)− ∂pA

∂β

∣∣∣∣
(T,β)

(y − β)

)
(y − β)�

∥∥∥∥∥ ≤ r̄ + er̄|y|

Find t0 < T such that for all t ∈ [t0, T ),

1
(2π(T − t))K/2

∫
RK\B(β,δ)

r̄+ er̄|y|

T − t
e−|y−β|2/2(T−t) dy <

ε

3

If t ∈ [t0, T ) and β ∈ B(β0, δ),∥∥∥∥∥∥
E
(
pA(T, β(T, ·))(β(T, ·)− β(t, ·))�

∣∣∣β(t, ω) = β
)

T − t
− ∂pA

∂β

∣∣∣∣
(T,β0)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
1

(2π)K/2

∫
RK

pA

(
T, β+

√
T − tx

)√
T − tx�

T − t
e−|x|2/2 dx− ∂pA

∂β

∣∣∣∣
(T,β0)

∥∥∥∥∥∥
=

∥∥∥∥∥ 1
(2π(T − t))K/2

∫
RK

pA(T, y)(y− β)�

T − t
e−|y−β|2/(2(T−t)) dy − ∂pA

∂β

∣∣∣∣
(T,β0)

∥∥∥∥∥
≤

∥∥∥∥∥∥∥
1

(2π(T − t))K/2

∫
RK

∂pA
∂β

∣∣∣
(T,β)

(y − β)(y − β)�

T − t
e−|y−β|2/(2(T−t)) dy − ∂pA

∂β

∣∣∣∣
(T,β0)

∥∥∥∥∥∥∥
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+

∥∥∥∥∥ 1
2π(T − t))K/2

∫
RK

pA(t, β)(y − β)�

T − t
e−|y−β|2/(2(T−t)) dy

∥∥∥∥∥
+

∥∥∥∥∥ 1
(2π(T − t))K/2

∫
B(β,δ)

ε(y − β)(y − β)�

3(T − t)
e−|y−β|2/(2(T−t)) dy

∥∥∥∥∥
+

∣∣∣∣∣ 1
(2π(T − t))K/2

∫
RK\B(β,δ)

r̄ + er̄|y|

T − t
e−|y−β|2/(2(T−t)) dy

∣∣∣∣∣
=

∥∥∥∥∥ ∂pA

∂β

∣∣∣∣
(T,β)

− ∂pA

∂β

∣∣∣∣
(T,β0)

∥∥∥∥∥ + 0 +
ε

3
+
ε

3

<
ε

3
+ 0 +

ε

3
+
ε

3
= ε

which shows that Σ is continuous on [0, T ]× V .
Now, we show that the pricing process is dynamically complete. Let Σj (j = 0, . . . , J) denote

the jth row of Σ, and let Σ̄(t, β) be the K ×K matrix whose jth row (j = 1, . . . , J) is

Σ̄j(t, β) =
pA0(t, β)Σj(t, β)− pAj (t, β)Σ0(t, β)

(pA0(t, β))2

=
∂

pAj

pA0

∂β

Notice that
rank Σ̄(t, β) ≤ rank Σ(t, β) (38)

Let
B = {I ∈ (0, T )×RK : det Σ̄ (I) = 0}

Suppose that B has positive Lebesgue measure. Then det Σ̄(I) = 0, for every I ∈ B. The
determinant is a polynomial function of the entries of the matrix, hence is an analytic function of
I ∈ RK×(0, T ), so det Σ̄(I) must be identically zero on (0, T );23 since it is continuous on [0, T ]×V ,
it is identically zero on {T} × V . Using the nondegeneracy assumption (Equation (3)), choose ω0

such that β̂(·, ω0) is finite, ◦β̂(T̂ , ω0) ∈ V , and

det

⎛
⎜⎜⎜⎜⎜⎝

∂(G1/G0)
∂β

∣∣∣
I(T,ω0)

...

∂(GJ/G0)
∂β

∣∣∣
I(T,ω0)

⎞
⎟⎟⎟⎟⎟⎠ �= 0

Since the securities prices are equilibrium prices, they must be arbitrage-free, so we have for j =
1, . . . , J and any ω such that ◦β̂(T̂ , ω) ∈ V ,

pAj (T, ω)
pA0(T, ω)

�
p̂Aj

(
T̂ , ω

)
p̂A0

(
T̂ , ω

)

=
Âj

(
T̂ , ω

)
Â0

(
T̂ , ω

)
23See Theorem B.3 in Appendix B.
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=
*Gj

(
T̂ , β̂(T̂ , ω)

)
+O((ΔT )2)

*G0

(
T̂ , β̂(T̂ , ω)

)
+O((ΔT )2)

�
*Gj

(
T̂ , β̂(T̂ , ω)

)
*G0

(
T̂ , β̂(T̂ , ω)

)
� Gj (T, β(T, ω))

G0 (T, β(T, ω))

so

det Σ̄(T, β(T, ω0)) = det

⎛
⎜⎜⎜⎜⎜⎜⎝

∂(pA1
/pA0)

∂β

∣∣∣∣
I(T,ω0)

...
∂(pAJ

/pA0)
∂β

∣∣∣∣
I(T,ω0)

⎞
⎟⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎜⎝

∂(G1/G0)
∂β

∣∣∣
I(T,ω0)

...

∂(GJ/G0)
∂β

∣∣∣
I(T,ω0)

⎞
⎟⎟⎟⎟⎟⎠ �= 0

a contradiction which proves that B is a set of measure zero.
If we let Bt = {β ∈ RK : (t, β) ∈ B} denote the t-section of B, then by Fubini’s Theorem,

λ({t : Bt has positive Lebesgue measure}) = 0. Since the distribution of β(t, ·) is absolutely con-
tinuous with respect to Lebesgue measure,

(λ× L(μ̂)) ({(t, ω) : (I(t, ω)) ∈ B})

=
∫
[0,T ]

L(μ̂) ({ω : (I(t, ω)) ∈ B}) dλ

=
∫
[0,T ]

L(μ̂) ({ω : β(t, ω) ∈ Bt}) dλ

= 0

Thus, we have shown that rank Σ̄(t, β(t, ω)) = K, and hence rankΣ(t, β(t, ω)) = K, except on a
set of measure zero.

Now, we construct a money-market account: an admissible self-financing trading strategy which
is instantaneously riskless. We first construct a money-market account in the hyperfinite model.
Because the hyperfinite economy is internally dynamically complete, for every node (t, ω), σ̂(t, ω))
has rank K. We claim that p̂A(t, ω) does not lie in the span of the columns of σ̂(t, ω). If it did,
note that dynamic completeness and the absence of arbitrage imply that there is a security holding
whose value (ex dividend) at (t, ω) is nonzero and whose value (cum dividend) is nonzero and
the same at each of the successor nodes, so z · σ̂(t, ω) = 0. Since p̂A(t, ω) lies in the span of the
columns of σ̂(t, ω), then z · p̂A(t, ω) = 0, a contradiction which establishes the claim. Let σ̂′(t, ω)
be the (K + 1)× (K + 1) matrix whose first column is p̂A(t, ω) and whose remaining columns are
the columns of σ̂(t, ω); we’ve just shown that σ̂′(t, ω) is nonsingular for every (t, ω). so there is a
unique 1 × (K + 1) row vector ẑ(t, ω) satisfying the equation

ẑ(t, ω)Σ̂′(t, ω) =

⎛
⎜⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎟⎠

so ẑ(t, ω)p̂A(t, β(t, ω)) = 1 and ẑ(t, ω)σ̂(t, β(t, ω)) = 0. Since γ̂ is an internal martingale,
∫
ẑ dγ̂ is

an internal martingale; since ẑσ̂ = 0,
∫
ẑ dγ̂ is identically zero, so ẑ is self-financing.
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Fix (t, ω) such that rank Σ̄(t, β(t, ω)) = K. If pA(t, ω) lies in the span of the columns of
Σ(t, β(t, ω), then there is a K × 1 column vector x such that pA(t, ω) = Σ(t, β(t, ω)x, so the
directional derivative of pA in the direction x/|x| is parallel to pA, so the directional derivative
of the normalized prices pA/pA0 in the direction x/|x| is zero, so x ∈ ker Σ̄, so rank Σ̄ ≤ K − 1,
contradiction. Thus, ◦σ̂′ is nonsingular, so ẑ(t, ω) is finite. Thus, ẑ(t, ω) is finite almost everywhere,
so we define a trading strategy almost everywhere by z(t, ω) = ◦ẑ(t, ω). z(t, ω)Σ(t, β(t, ω)) =
◦ (ẑ(t, ω)σ̂(t, ω)) = 0 and z(t, ω)pA(t, ω) = ◦ (ẑ(t, ω)p̂A(t, ω)) = 1. Trivially, ẑσ̂ is an SL2 lifting
of zΣ, so

∫
z dγ = ◦ ∫ ẑ dγ̂ by Theorem C.4, so

∫
z dγ is identically zero. Thus, z is self-financing,

admissible and instantaneously risk-free, so it is a money-market account. Note that the risk-free
rate of interest, expressed in the equilibrium prices, is zero.24

Now let c be any consumption bundle adapted to the Brownian filtration with finite value at
the consumption price pC . Recall that γ is the total gains process associated with the equilibrium
securities prices pA. Let

V (ω) =

(
pC(T, ω)c(T, ω)+

∫ T

0
pC(t, ω)c(t, ω) dt

)

Since γ is a martingale, the process which is identically one is a state price process25 for γ.
The dispersion matrix of γ is Σ, the dispersion matrix of pA; we have seen it has rank K al-
most surely. Thus, the assumptions of Theorem 5.6 of Nielsen (1999) are satisfied. (Alterna-
tively, since γ is a martingale, the true probability is a martingale measure for γ, so the as-
sumptions of Duffie (1996), Proposition 6.I, are satisfied.) Since E(V ) < ∞, there is an ad-
missible self-financing trading strategy zV which replicates V (ω) at time T .26 Let zc(t, ω) =
zV (t, ω) −

((∫ t
0 pC(s, ω)c(s, ω) ds

)
/z̄(t, ω)pA(t, ω)

)
z̄(t, ω) for t ∈ [0, T ). Then z′ is an admissi-

ble trading strategy which finances the consumption c with respect to the total gains process γ; it
is, of course, not self-financing unless c is identically zero for t < T . z′ is unique by Nielsen (1999),
Proposition 5.5. Therefore, pA is effectively dynamically complete.

We now derive the formulas for the hyperfinite equilibrium trading strategies, and show that
they are sufficiently regular to extract a candidate trading strategy in continuous time. Let

Ŵi(t, ω)

= E
(
p̂C(T̂ , β̂(T̂ ))(ĉi(T̂ , β̂(T̂ )) − êi(T̂ , β̂(T̂ )))

+ ΔT
T̂−ΔT∑

s=t

p̂C(s, β̂(s))(ĉi(s, β̂(s))− êi(s, β̂(s)))

∣∣∣∣∣∣ (t, ω)

⎞
⎠

Since ẑi finances ĉi, we must have

ẑi(t, ω) · p̂A(t, ω) = Ŵi(t, ω)

By the same arguments we used to derive the formulas for p̂A and σ̂, we have for every ω such that
β̂(·, ω) is S-continuous, for all t ∈ T ,

Ŵi(t, ω)

24Recall that the prices of consumption are marginal utility, so the units are utils. Equilibrium requires
that a riskless security that costs one util today be worth one util tomorrow.

25See Nielsen (1999), section 4.3, page 130 for the definition of a state price process.
26Nielsen establishes admissibility, while Duffie does not require it in the definition of dynamic completeness

and does not prove it here.
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� E (pC(T, β(T )) (ci(T, β(T ))− ei(T, β(T )))

+
∫ T

◦t
pC(s, β(s)) (ci(s, β(s))− ei(s, β(s))) ds

∣∣∣∣∣ (◦t, ω)

)
(39)

D̂i(t+ ΔT, ω)− D̂i(t, ω)

= E

(
pC(T, β(T )) (ci(T, β(T ))− ei(T, β(T ))) (β(T ) − β(t))�

T − t

+
∫ T

◦t

pC(s, β(s)) (ci(s, β(s))− ei(s, β(s))) (β(s)− β(t))�

s − ◦t
ds

∣∣∣∣∣ (◦t, ω)

)

×
(
β̂(t+ ΔT, ω)− β̂(t, ω)

)
+ o

(√
ΔT

)
σ̂i(t, ω)

� E

(
pC(T, β(T )) (ci(T, β(T ))− ei(T, β(T ))) (β(T ) − β(t))�

T − ◦t

+
∫ T

◦t

pC(s, β(s)) (ci(s, β(s))− ei(s, β(s))) (β(s)− β(t))�

s − ◦t
ds

∣∣∣∣∣ (◦t, ω)

)
(40)

Define standard functions Σ1, . . . ,ΣI : [0, T )×RK → RK , and W1, . . . , WI : [0, T ]×RK → RK by

Σi(t, β)

= E

(
pC(T, β(T )) (ci(T, β(T ))− ei(T, β(T )))(β(T )− β(t))�

T − t

+
∫ T

t

pC(s, β(s)) (ci(s, β(s))− ei(s, β(s))) (β(s) − β(t))�

s− t
ds

∣∣∣∣∣β(t) = β

)

Wi(t, β)
= E (pC(T, β(T )) (ci(T, β(T ))− ei(T, β(T )))

+
∫ T

t
pC(s, β(s)) (ci(s, β(s))− ei(s, β(s))) ds

∣∣∣∣∣β(t) = β

)

Σ1, . . . ,ΣI are continuous on [0, T ) and analytic on (0, T ), W1, . . . , WI are continuous on [0, T ] and
analytic on (0, T ). Equations (39) and (40) show that

σ̂i(t, ω) � Σi(I(◦t, ω))
ẑi(t, ω) · p̂A(t, ω) � Wi (I(◦t, ω))

for every ω such that β̂(·, ω) is S-continuous. Summing up, we have

p̂A(t, ω) � pA(◦t, ω)
p̂c(t, ω) � pc(◦t, ω)
σ̂(t, ω) � Σ (I(◦t, ω))
ĉi(t, ω) � ci(◦t, ω)

ẑi(t, ω) · σ̂(t, ω) = σ̂i(t, ω) � Σi (I(◦t, ω))
ẑi(t, ω) · p̂A(t, ω) � Wi (I(◦t, ω))

(41)

for all t ∈ T , for every ω such that β̂(·, ω) is S-continuous. Thus, for every ω such that β̂(·, ω) is
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S-continuous, we have for every t ∈ T 27

p̂A(t, ω) � pA(◦t, ω) � *pA(Î(t, ω))
p̂c(t, ω) � pc(◦t, ω) � *pc(Î(t, ω))
σ̂(t, ω) � Σ (I(◦t, ω)) � *Σ

(
Î(t, ω)

)
ĉi(t, ω) � ci (I(◦t, ω)) � *ci

(
Î(t, ω)

)
ẑi(t, ω) · σ̂(t, ω) = σ̂i(t, ω) � Σi (I(◦t, ω)) � *Σi

(
Î(t, ω)

)
ẑi(t, ω) · p̂A(t, ω) � Wi (I(◦t, ω)) � *Wi

(
Î(t, ω)

)
(42)

Given ω such that β̂(·, ω) is S-continuous,

max
t∈T

∣∣∣p̂A(t, ω)− *pA(Î(t, ω)
∣∣∣ � 0

since T is hyperfinite, and every hyperfinite set contains its maximum by the Transfer Principle.
But for L(μ̂)-almost all ω, β̂(t, ω) is S-continuous (see the proof of Theorem C.1), so for L(μ̂)-almost
all ω,

max
t∈T

∣∣∣p̂A(t, ω)− *pA(Î(t, ω)
∣∣∣ � 0

Fix ε ∈ R++. {
ω : max

t∈T

∣∣∣p̂A(t, ω)− *pA(Î(t, ω)
∣∣∣ < ε

}

is an internal set which contains a set of Loeb measure 1, so

μ̂

({
ω : max

t∈T

∣∣∣p̂A(t, ω)− *pA(Î(t, ω)
∣∣∣ < ε

})
> 1 − ε (43)

We have already noted that p̂C , p̂A ∈ SLp for all p ∈ [1,∞). Equation(35) and the growth
conditions (Equation (1)) imply that, regardless of whether Î(t, ω) is finite, |σ̂(t, ω)| ≤ r+ er|β̂(t,ω)|

and |σ̂i(t, ω)| ≤ r+er|β̂(t,ω)|, which implies as above by Raimondo (2002, 2005 Proposition 3.1) that
σ̂, σ̂1, . . . , σ̂I ∈ SLp for all p ∈ [1,∞), in particular for p = 2. ẑi · p̂A is bounded below by minus the
value (at p̂c) of i’s future endowment, and above by the value of total market future consumption,
hence there exists ¯̄r ∈ R such that ẑi · p̂A(t, ω) ≤ ¯̄r+e

¯̄r(|β̂(t,ω)|+T ), so ẑi · p̂A is SLp for all p ∈ [1,∞).
ĉi(t, ω) ≤ r + er|β̂(t,ω)|, so ĉi is SLp for all p ∈ [1,∞).

p̂Aj(t, ω) ≤ r + er(|β̂(t,ω)|+T ) ⇒ pAj(I(t, ω)) ≤ r + er(|β(t,ω)|+T )

⇒ *pAj(Î(t, ω)) ≤ r + er(|β̂(t,ω)|+T )

⇒ *pAj ◦ Î ∈ SLp (1 ≤ p <∞)

Similarly, *pc ◦ Î, *Σ ◦ Î, *ci ◦ Î, *Σi ◦ Î, *Wi ◦ Î ∈ SLp for all p ∈ [1,∞). Since p̂A and *pA ◦ I are
SLp for all p ∈ [1,∞) and ◦

(
p̂A(·, ·)− *pA(Î(·, ·)

)
is zero on a set of full Loeb measure,

∥∥∥p̂A − *pA ◦ Î
∥∥∥
2
�
∥∥∥◦ (p̂A − *pA(◦Î

)∥∥∥
2

= 0 (44)

27In Equation (42), when we write *pA(Î(t, ω)), we mean pA is a standard function of I(t, ω) ∈ [0, T ]×RK;
take the nonstandard extension of this standard function defined on [0, T ]× RK, and evaluate it at Î(t, ω).
The analogous definition is used for *pc, *Σ, *Σ1, . . . , *ΣI , *W1, . . . , *WI .
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Now, we consider the form of the equilibrium trading strategies ẑi. β̂(t, ω) is finite and
det Σ̄(t, β(t, ω)) �= 0 at (Loeb) almost every node; fix such a node (t0, ω0). Then β̂(t0 + ΔT, ω0) is
also finite. From the growth condition on dividends, it follows that Â(t0 + ΔT, ω0) is finite. Let
ω1, . . . , ωK be elements of Ω such that ωk(s) = ω0(s) for s ≤ t0 and ωk(t0 + ΔT ) = k; we can
assume without loss of generality that ω0(t0 + ΔT ) = 0 (recall that ω(t0 + ΔT ) = k means that
β̂(t0 + ΔT, ω)− β̂(t0, ω) = vk

√
ΔT ). Since ẑi finances ĉi, we have for k = 0, . . . , K

σ̂i(t0, ω0)
(
β̂(t0 + ΔT, ωk) − β̂(t0, ω0)

)
= D̂i(t0 + ΔT, ωk) − D̂i(t0, ω0)
= ẑi(t0, ω0) · (γ̂(t0 + ΔT, ωk) − γ̂(t0, ω0))

= ẑi(t0, ω0) ·
(
σ̂(t0, ω0)

(
β̂(t0 + ΔT, ωk) − β̂(t0, ω0)

))
= (ẑi(t0, ω0) (σ̂(t0, ω0)))

(
β̂(t0 + ΔT, ωk)− β̂(t0, ω0)

)

Since {v0, . . . , vK} spans RK , we have

ẑi(t0, ω0)σ̂(t0, ω0) = σ̂i(t0, ω0)

In addition, we have
ẑi(t0, ω0) · p̂A(t0, ω0) = Ŵi(t0, ω0)

Let
σ̃(t0, ω0) = (σ̂(t0, ω0)|p̂A(t0, ω0)), σ̃i(t0, ω0) = (σ̂i(t0, ω0)|Ŵi(t0, ω0))

denote the matrix whose first K columns are the columns of σ̂(t0, ω0) and whose (K+1)st column is
p̂A(t0, ω0); and the row vector whose first K entries are the entries of σ̂i(t0, ω0) and whose (K+1)st

entry is Ŵi(t0, ω0). Then
ẑi(t0, ω0)σ̃(t0, ω0) = σ̃i(t0, ω0)

σ̃(t0, ω0) is (K + 1) × (K + 1).
We claim that ◦σ̃(t0, ω0) is nonsingular. ◦σ̂(t0, ω0) = Σ (I(◦t, ω)) is (K + 1) ×K and has rank

K by Equation (38). If pA(◦t0, ω0) = ◦p̂A(t0, ω0) lies in the span of the columns of Σ(I(◦t0, ω0)),
there is a vector x ∈ RK such that Σ (I (◦t0, ω0))x = pA(◦t0, ω0). Since Σ (I (◦t0, ω0)) = ∂pA

∂β , we
have for α ∈ R,

pA (◦t0, β(◦t0, ω0) + αx) = pA(I(◦t0, ω0)) + αΣ (I (◦t0, ω0))x+ o(α)
= pA(I(◦t0, ω0)) + αpA(I(◦t0, ω0)) + o(α)
= (1 + α)pA(I(◦t0, ω0)) + o(α)

and

1
α

(
pAj (

◦t0, β(◦t0, ω0) + αx)
pA0(◦t0, β(◦t0, ω0) + αx)

−
pAj (I(◦t0, ω0))
pA0(I(◦t0, ω0))

)

=
1
α

(
(1 + α)pAj (I(◦t0, ω0)) + o(α)
(1 + α)pA0(I(◦t0, ω0)) + o(α)

−
pAj(I(◦t0, ω0))
pA0(I(◦t0, ω0))

)

=
1
α

(
pAj (I(◦t0, ω0))
pA0(I(◦t0, ω0))

+ o(α) −
pAj(I(◦t0, ω0))
pA0(I(◦t0, ω0))

)

= o(1) as α→ 0
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so the directional derivative of
pAj

pA0
in the direction x is zero. Since Σ̄(I(◦t0, ω0)) is the Jacobian of

(pA1
,...,pAJ

)

pA0

Σ̄ (I (◦t0, ω0)) x = 0

contradicting the fact that det Σ̄ (I (◦t0, ω0)) �= 0. Accordingly, ◦σ̃(t0, ω0) has rank K + 1, and
thus is invertible. Since the formula for the inverse of a matrix is a polynomial function of the
matrix components, the coefficients of the inverse matrix are given by a standard analytic function
of I (◦t0, ω0). σ̃(t0, ω0) is also invertible and

◦
(
σ̃(t0, ω0)−1

)
= (◦σ̃(t0, ω0))

−1

Then
ẑi(t0, ω0) = σ̃i(t0, ω0) (σ̃(t0, ω0))

−1

so there are standard analytic functions28 Z1, . . . , ZI :
((

(0, T )×RK
)
\B

)
→ RK+1 such that

ẑi(t0, ω) � Zi (I(◦t0, ω)) � *Zi

(
Î(t0, ω)

)
whenever

I(◦t0, ω0) ∈
(
(0, T )×RK

)
\B

Define zi(t, ω) = ◦ẑi(t̂, ω); ẑiσ̂ = σ̂i is an SL2 lifting of ziσ, which belongs to H2.
We now show that (pA, pC, (c1, . . . , cI), (Z1, . . . , ZI)) is an equilibrium of the Loeb continuous-

time economy with utility weights λ and induces an equilibrium with utility weights λ for the
original continuous-time economy. For Loeb-almost all (t, ω),

I∑
i=1

ci(t, ω) =
I∑

i=1

◦ĉi(t̂, ω)

= ◦
(

I∑
i=1

ĉi(t̂, ω)

)

= ◦

⎛
⎝ I∑

i=1

êi(t̂, ω) +
J∑

j=0

ηjÂj(t̂, ω)

⎞
⎠

=
I∑

i=1

◦êi(t̂, ω) +
J∑

j=0

ηj
◦Âj(t̂, ω)

=
I∑

i=1

ei(t, ω) +
J∑

j=0

ηjAj(t, ω)

I∑
i=1

zi(t, ω) =
I∑

i=1

◦ẑi(t̂, ω)

= ◦
(

I∑
i=1

ẑi(t̂, ω)

)

= ◦ (η0, . . . , ηJ)

28Recall that B = {I ∈ (0, T ) ×RK : det Σ̄(I) = 0} is a set of measure zero.
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Thus, the consumptions c1, . . . , cI clear the goods market and the trading strategies z1, . . . , zI clear
the securities market.

By Theorem C.4, for all t ∈ [0, T ]

pA(t, ω) = ◦p̂A(t̂, ω)

= ◦

⎛
⎝γ̂(t̂, ω)− ΔT

∑
s≤t̂,s<T̂

p̂C(s, ω)Â(s, ω)

⎞
⎠

= ◦

⎛
⎝γ̂(0, ω) +

∫ t̂

0
σ̂ dβ̂ − ΔT

∑
s≤t̂,s<T̂

p̂C(s, ω)Â(s, ω)

⎞
⎠

= γ(0, ω) +
∫ t

0
σ dβ −

∫ t

0
pC(s, ω)A(s, ω) ds

Given any hyperfinite trading strategy ẑi and t ∈ T , we have∫ t

0
ẑidγ̂

=
∑

s∈T ,s<t

ẑi(s, ω) · (γ̂(s+ ΔT, ω)− γ̂(s, ω))

=
∑

s∈T ,s<t

(ẑi(s, ω)σ̂(s, ω)) ·
(
β̂(s+ ΔT, ω)− β̂(s, ω)

)

=
∫ t

0
(ẑiσ̂) dβ̂

Since ĉ1, . . . , ĉI, z1, . . . , zI are adapted to the hyperfinite filtration, ĉ1, . . . , ĉI, z1, . . . , zI are
adapted to the Loeb filtration; since ĉ1, . . . , cI ∈ SLp for all p ∈ [1,∞), c1, . . . , cI ∈ Lp for all
p ∈ [1,∞) (Anderson (1976)). For all t ∈ [0, T ),

pA(t, ω) · zi(t, ω)− pA(0, ω) · eiA(ω)

−
∫ t

0
zi dγ −

∫ t

0
pC(s, ω) (ei(s, ω)− ci(s, ω)) ds

= pA(t, ω) · zi(t, ω)− pA(0, ω) · eiA(ω)

−
∫ t

0
ziσ dβ −

∫ t

0
pC(s, ω) (ei(s, ω)− ci(s, ω)) ds

� p̂A(t̂, ω) · ẑi(t, ω)− p̂A(0, ω) · êiA(ω)

−
∫ t̂

0
ẑiσ̂ dβ̂ −

∫ t̂

0
p̂C(s, ω) (êi(s, ω)− ĉi(s, ω)) ds

= p̂A(t̂, ω) · ẑi(t̂, ω)− p̂A(0, ω) · êiA(ω)

−
∫ t̂

0
ẑi dγ̂ −

∫ t̂

0
p̂C(s, ω) (êi(s, ω)− ĉi(s, ω)) ds

= 0

since the trading strategy ẑi finances the consumption ĉi. Thus, the trading strategy zi finances
the consumption ci.

For all nodes (t, ω) in the hyperfinite economy,

λ̂i*h′i(ci(t, ω), I(t, ω)) = p̂C(t, ω)
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for each i. Recalling that λ̂i �� 0, so λi �= 0, and ◦p̂C ∈ (0,∞) Loeb almost-everywhere,

λi
∂hi

∂ci

∣∣∣∣
(ci(t,ω),I(t,ω))

= ◦
(
λ̂i

)
◦
(

*
∂hi

∂ci

∣∣∣∣
(ĉi(t,ω),Î(t,ω))

)

= ◦
(
λ̂i*

∂hi

∂ci

∣∣∣∣
(ĉi(t,ω),Î(t,ω))

)

= ◦p̂C(Î(t, ω))
= pC(I(t, ω))

holds for almost all nodes in the Loeb continuous-time economy. This shows that for almost
all nodes, the consumptions c1(t, ω), . . . , cI(t, ω) satisfy the necessary conditions for the Negishi
weight problem (maximize

∑I
i=1 λihi (ci(t, ω), I(t, ω)) subject to

∑I
i=1 ci(t, ω) = c(t, ω)), as well as

the necessary conditions for demand.
Since preferences are strictly concave, the necessary conditions are in fact sufficient. Here, we

present the details for the demand; the argument for the Negishi weight problem is similar. Suppose
that c′i lies in the budget set. Then

E

(
pC(T )c′i(T ) +

∫ T

0
pC(t)c′i(t) dt

)
≤ eiA · pA(0) + E

(∫ T

0
pC(t)ei(t) dt

)

= E

(
pC(T )ci(T ) +

∫ T

0
pC(t)ci(t) dt

)

Since hi and Hi are concave

hi(c′i(t, β), (t, β)) ≤ hi(ci(t, β), (t, β))+
∂hi

∂ci

∣∣∣∣
(ci(t,β),(t,β))

(c′i(t, β) − ci(t, β))

Hi(c′i(T, β), (T, β)) ≤ Hi(ci(T, β), (T, β))+
∂Hi

∂ci

∣∣∣∣
(ci(T,β),(T,β))

(c′i(T, β)− ci(T, β))

so

U(c′i) − U(ci)

= E

(
Hi(c′i(T ))−Hi(ci(T )) +

∫ t

0
hi(c′i(t)) − hi(ci(t)) dt

)

≤ E

(
∂Hi

∂ci

∣∣∣∣
(ci(T ),T,(β))

(c′i(T )− ci(T )) +
∫ t

0

∂hi

∂ci

∣∣∣∣
(ci(t),(t,β))

(c′i(t) − ci(t)) dt

)

=
1
λi
E

(
pC(T )(c′i(T )− ci(T )) +

∫ t

0
pC(t)(c′i(t)− ci(t)) dt

)

=
1
λi

(
E

(
pC(T )c′i(T ) +

∫ T

0
pC(t)c′i(t) dt

)
−E

(
pC(T )ci(T ) +

∫ T

0
pC(t)ci(t) dt

))

≤ 0

so ci lies in agent i’s demand set. This shows that we have an equilibrium for the Loeb continuous-
time economy, and that λ is a vector of Negishi utility weights for the Loeb continuous-time
economy.

Now, consider the original continuous-time economy specified in the statement of Theorem 2.1.
To distinguish the original economy from the Loeb economy, we will denote the Brownian Motion
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in the original economy by β̄ and let Ī(t, ω) = (t, β̄(t, ω)). The equilibrium prices, consumptions
and (except for a set of measure zero) trading strategies of the Loeb economy are given by functions
of I(t, ω):

pA(t, ω) = PA(I(t, ω))
pC(t, ω) = PC(I(t, ω))
ci(t, ω) = Ci(I(t, ω))
zi(t, ω) = Zi(I(t, ω))

Using these functions, define a candidate equilibrium for the original continuous-time economy:

p̄A(t, ω) = PA(Ī(t, ω))
p̄C(t, ω) = PC(Ī(t, ω))
c̄i(t, ω) = Ci(Ī(t, ω))
z̄i(t, ω) = Zi(Ī(t, ω))

Fix ω̄0 ∈ Ω̄ and suppose that ω0 ∈ Ω satisfies β(t, ω0) = β̄(t, ω̄0).

z̄i(t, ω̄0)p̄A(t, ω̄0) = Zi(t, β̄(t, ω̄0))PA(t, β̄(t, ω̄0))
= Zi(t, β(t, ω0))PA(t, β(t, ω0))
= Wi(t, β(t, ω0))
= Wi(t, β̄(t, ω0))

where Wi is an analytic function of (t, β) ∈ (0, T )×RK . By Itô’s Lemma, Wi(t, β̄(t)) must satisfy
the same stochastic differential equation with respect to β̄ as Wi(t, β(t)) satisfies with respect
to β, and the coefficients of the stochastic differential equation are functions of (t, β̄) and (t, β)
respectively:

d(Wi(t, β(t))) = a(t, β(t)) dt+ b(t, β(t)) dβ
d(Wi(t, β̄(t))) = a(t, β̄(t)) dt+ b(t, β̄(t)) dβ̄

Since zi finances ci, we have

a(t, β) = (Ci(t, β)− fi(t, β))

b(t, β) =
∂Di(t, β)

∂β

for all (t, β) ∈ (0, T )×RK so

a(t, β̄) = (Ci(t, β̄) − fi(t, β̄))

b(t, β̄) =
∂Di(t, β̄)

∂β̄

so z̄i finances c̄i. Since zi is admissible, z̄i is admissible and

E

(
p̄C(T )c̄i(T ) +

∫ T

0
p̄C(t)c̄i(t) dt

)
= ēiA · p̄A(t) +E

(∫ T

0
p̄C(t)ēi(t) dt

)
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I∑
i=1

c̄i(t, β) =
I∑

i=1

ci(t, β)

=
I∑

i=1

ei(t, β) +
J∑

j=0

ηjAj(t, β)

=
I∑

i=1

ēi(t, β) +
J∑

j=0

ηjĀj(t, β)

I∑
i=1

z̄i(t, β) =
I∑

i=1

zi(t, β)

=
J∑

j=0

ηj

Thus, the markets for consumption and securities clear at almost all nodes in the original continuous-
time economy.

For almost all nodes in the original continuous time economy,

λi
∂hi

∂ci

∣∣∣∣
(c̄i(t,β̄),(t,β̄))

= λi
∂hi

∂ci

∣∣∣∣
(ci(t,β),(t,β))

= pC(I(t, ω))
= p̄C(Ī(t, ω))

This shows that for almost all nodes, the consumptions c1(t, ω), . . . , cI(t, ω) satisfy the neces-
sary conditions for the Negishi weight problem maximize

∑I
i=1 λihi (ci(t, ω), I(t, ω)) subject to∑I

i=1 ci(t, ω) = c(t, ω), as well as the necessary conditions to be the demand.
Since preferences are strictly concave, the necessary conditions are in fact sufficient; the argu-

ment is exactly the same as the argument above for the Loeb continuous-time economy. This shows
that we have an equilibrium for the original continuous-time economy, and that λ is a vector of
Negishi utility weights for the original continuous-time economy.

This completes the proof of Theorem 2.1 and Proposition 2.2.
Let E denote the set of all equilibria of the original continuous-time economy. Recall that we

have been working in a discretization indexed by a particular n ∈ *N \ N, but suppressing the
index n. Putting the index back into the notation, we have shown that for n ∈ *N \ N,

(λn, pnA, pnC , (cn1, . . . , cnI), (Zn1, . . . , ZnI)) ∈ E
so29

(λn, *pnA, *pnC , (*cn1, . . . , *cnI), (*Zn1, . . . , *ZnI )) ∈ *E
Fix ε ∈ R++. Equation (43) tells us that

∃
m∈*N

∀n≥m ∃
(λn,pnA,pnC ,(Zn1,...,ZnI),(cn1,...,cnI ))∈*E

μ̂
({
ω : maxt∈Tn

∣∣∣p̂nA(t, ω)− *pnA(Î(t, ω))
∣∣∣ < ε

})
> 1 − ε

(any m ∈ *N \N will do). Since the construction of the hyperfinite economy and the price process
p̂nA is just the transfer of the construction for finite n, the Transfer Principle tells us that

∃m∈N ∀n≥m ∃(λn,pnA,pnC ,(Zn1,...,ZnI ),(cn1,...,cnI ))∈E
μ̂
({
ω : maxt∈Tn

∣∣∣p̂nA(t, ω)− pnA(Î(t, ω))
∣∣∣ < ε

})
> 1 − ε

29Since λn ∈ R, *λn = λn.
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which is the convergence in probability part of Equation (11); Equation (16) and the convergence
in probability parts of Equations (12, 13, 14, 17, 18) in the statement of Theorem 4.2 follow in
exactly the same way. Equation (44) tells us that

∃
m∈*N

∀n≥m ∃
(λn,pnA,pnC ,(Zn1,...,ZnI ),(cn1,...,cnI ))∈*E

∥∥∥p̂nA − *pnA ◦ Î
∥∥∥
2
< ε

As before, the Transfer Principle tells us that

∃m∈N ∀n≥m ∃(λn,pnA,pnC ,(Zn1,...,ZnI),(cn1,...,cnI ))∈E
∥∥∥p̂nA − pnA ◦ Î

∥∥∥
2
< ε

This is the convergence in norm part of Equations (11); Equations (10, 15) and the convergence in
norm parts of Equations (12, 13, 14, 17, 18) in the statement of Theorem 4.2 follow in exactly the
same way. This completes the proof of Theorem 4.2.
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preprint, Department of Mathematics, University of Munich.

[70] Raimondo, Roberto C. (2001): Incomplete Markets with a Continuum of States, preprint,
http://www.economics.unimelb.edu.au/rraimondo/raimondo.htm.

[71] Raimondo, Roberto C. (2002): Essays in Incomplete Markets Theory. Ph.D. Dissertation,
Department of Economics, University of California, Berkeley.

[72] Raimondo, Roberto C. (2005): Market Clearing, Utility Functions, and Securities Prices,
Economic Theory, 25, 265-285.

[73] Riedel, Frank (2001): Existence of Arrow-Radner Equilibrium with Endogenously Complete
Markets with Incomplete Information, Journal of Economic Theory, 97, 109-122.

[74] Steele, J. Michael (2001): Stochastic Calculus and Financial Applications. Vol. 45 of Appli-
cations of Mathematics: Stochastic Modelling and Applied Probability, edited by I. Karatzas
and M. Yor. New York, NY: Springer-Verlag.

[75] Vasicek, Oldrich (1977), An Equilibrium Characterization of the Term Structure, Journal of
Financial Economics, 5, 177-188.

[76] Zame, William R. (2001): Continuous Trading: A Cautionary Tale, preprint.

52


