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Using the power flow equation, we have examined mode coupling in a step-index multimode glass optical fiber.
As a result, the coupling length at which the equilibrium mode distribution is achieved and the length of fiber re-
quired for achieving the steady-state mode distribution are obtained. These lengths are much longer for glass fiber
than they are for plastic optical fibers. Our results are in good agreement with experimental results reported earlier.
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1. Introduction

For decades, glass optical fibers (GOFs) have been
the preferred transmission medium in high-capacity com-
munications networks and long-distance communications
systems. In contrast, plastic optical fibers (POFs) are
usually considered for short data links. Local networking
with POFs benefits from the rapid (less laborious) inter-
connectivity with low precision and cost components as
POFs couple light efficiently due to their large diameter
(≈ 1 mm) and high numerical aperture. However, POF
performance is clearly attenuation limited. A typical at-
tenuation level for step-index (SI) POFs is ≈ 100 dB/km
— compared with ≈ 0.5 dB/km for SI GOFs [1]. This
limits POF data links to lengths shorter than 100 m.
Typically, optical implementations of long-distance com-
munications systems (greater than 1 km) employ GOF.

Transmission characteristics of step-index optical
fibers depend strongly upon the differential mode at-
tenuation and the rate of mode coupling. The latter
represents power transfer from lower to higher order
modes caused by fiber impurities and inhomogeneities
introduced during the fiber manufacturing process (such
as microscopic bends, irregularity of the core-cladding
boundary and refractive index distribution fluctuations).
In the absence of these intrinsic perturbation effects, light
launched at a specific angle with respect to the fiber axis
forms a sharply defined ring radiation-pattern at the out-
put fiber end. Due to mode coupling, the boundaries of
the ring become blurred at the end of longer fibers. This
fussiness increases with fiber length. As the ring-pattern
evolves gradually, it eventually takes the form of a disk
covering the entire fiber cross-section in fibers longer than
the “coupling length” Lc. The “equilibrium mode distri-
bution” (EMD) exists beyond the coupling length Lc of
the fiber. It is characterized by the absence of rings re-
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gardless of the launch conditions, even though the disk
pattern may have different light distributions across it
depending on the launch conditions. EMD indicates a
substantially complete mode coupling and is of critical
importance when measuring characteristics of multimode
optical fibers (linear attenuation, bandwidth, etc.). In-
deed, measurement of these characteristics would only be
considered as meaningful if performed at the EMD con-
dition when it is possible to assign to a fiber a unique
value of loss per unit length [2]. At distance zs (zs > Lc)
from the input fiber end, all individual disk patterns
corresponding to different launch angles take the same
light-distribution across the fiber-section and the “steady
state distribution” (SSD) is achieved. SSD indicates the
completion of the mode coupling process and the inde-
pendence of the output light distribution from launch
conditions.

Output angular power distribution in the near and far
fields of an optical fiber end has been studied extensively.
Work has been reported using geometric optics (ray ap-
proximation) to investigate mode coupling and predict
output-field patterns [3, 4]. By employing the power flow
equation [5–9] as well as the Fokker–Planck and Langevin
equations [10], these patterns have been predicted as a
function of the launch conditions and fiber length. In
this paper, our solution of the power flow equation de-
termines the coupling length Lc for achieving the EMD,
the transition states along Lc, as well as the length zs

for achieving the SSD. To allow comparisons, results are
illustrated on the case of the SI GOF investigated earlier
by Jeunhomme et al. [11].

2. Power flow equation

Gloge’s power flow equation is [6]:
∂P (θ, z)

∂z
= −α(θ)P (θ, z) +
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where P (θ, z) is the angular power distribution, z is dis-
tance from the input end of the fiber, θ is the prop-
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agation angle with respect to the core axis, D is the
coupling coefficient assumed constant [5, 7] and α(θ) is
the modal attenuation. The boundary conditions are
P (θc, z) = 0, where θc is the critical angle of the fiber,
and D(∂P/∂θ) = 0 at θ = 0. Condition P (θc, z) = 0
implies that modes with infinitely high loss do not carry
power. Condition D(∂P/∂θ) = 0 at θ = 0 indicates that
the coupling is limited to the modes propagating with
θ > 0. Except near cutoff, the attenuation remains uni-
form α(θ) = α0 throughout the region of guided modes
0 ≤ θ ≤ θc [7] (it appears in the solution as the multipli-
cation factor exp(−α0z) that also does not depend on θ).
Therefore, α(θ) need not be accounted for when solving
(1) for mode coupling, and this equation reduces to [8]:

∂P (θ, z)
∂z

=
D

θ

∂P (θ, z)
∂θ

+ D
∂2P (θ, z)

∂θ2
. (2)

The solution of Eq. (2) for the steady-state power distri-
bution is given by [7]:

P (θ, z) = J0

(
2.405

θ

θc

)
exp(−γ0z), (3)

where J0 is the Bessel function of the first kind and zero
order and γ0 [m−1] = 2.4052D/θ2

c is the attenuation coef-
ficient. We used this solution to test our numerical results
for the case of the fiber length at which the power distri-
bution becomes independent of the launch conditions.

In order to obtain numerical solution of the power
flow Eq. (2) we have used the explicit finite-difference
method (EFDM) to investigate mode coupling in short
step-index plastic optical fibers (length up to hundred
meters) [8, 12, 13]. We now employe EFDM, in our
knowledge for the first time, for solving the power flow
equation in much longer (kilometers in length) step-index
glass optical fiber. This should also be a test of accuracy
and efficiency of the EFDM for such a long fiber.

To start the calculations, we used Gaussian launch-
-beam distribution of the form

P (θ, z) = exp
(
− (θ − θ0)

2σ2

)
, (4)

with 0 ≤ θ ≤ θc, where θ0 is the mean value of the inci-
dence angle distribution, with the full width at half max-
imum FWHM = 2.355σ (σ is standard deviation). This
distribution is suitable both for LED and laser beams.

3. Numerical results

In this paper, we analyze mode coupling in the CGW-
-CGE-68 step-index multimode glass optical fiber used in
the experiment reported earlier [11]. This fiber’s critical
angle is θc = 7.26◦ (measured inside the fiber), i.e. θc =
10.6◦ (measured in air). Value of coupling coefficient
of D = 7.9 × 10−7 rad2/m has been reported for this
fiber [11] (it is required in Eq. (1)) — which we have
adopted in this work.

Our numerical solution of the power flow equation gives
the evolution of the normalized output power distribution
with fiber length z as z is incremented from zero until
achieving the SSD. The situation is shown in Fig. 1 for

selected four such z values, each for three different input
angles θ0 = 0, 3 and 6◦ (measured inside the fiber). We
selected Gaussian launch beam distribution with FWHM
= 1.2◦ by setting σ = 0.5095◦ in Eq. (4). We used the
step lengths of ∆θ = 0.05◦ and ∆z = 0.0005 m in order
to achieve stability of our finite difference scheme [8, 14].

Fig. 1. Normalized output angular power distribution
at different locations along the SI GOF calculated for
three Gaussian input angles θ0 = 0◦ solid line), 3◦

(dashed line) and 6◦ (dash-dotted line) with FWHM =
1.2◦ for: (a) z = 700 m, (b) z = 1500 m, (c) z = 1800 m,
and (d) z = 3100 m (filled squares represent the analyt-
ical steady-state solution).

One can observe from radiation patterns in the fiber
of shorter length z = 700 m in Fig. 1a that the coupling
is stronger for the low-order modes: the Gaussian beam
launched at 3◦ has already shifted to θ = 0◦. Coupling
of higher order modes can be observed better only af-
ter more substantial fiber lengths (Fig. 1b). It is not
until the fiber’s coupling length Lc = 1800 m that all
the mode-distributions shift their mid-points to zero de-
grees (from their respective initial values at the input
fiber end), producing the EMD in Fig. 1c. The coupling
continues further along the fiber beyond the Lc mark un-
til all distributions’ widths equalize and SSD is reached
at the length of zs = 3100 m, Fig. 1d. Figure 1d shows
normalized curves of the output angular power distribu-
tion obtained by the power flow equation by the EFDM
(solid curve) as well as the steady state analytical solu-
tion of Eq. (2) (squares), where γ0 = 2.86 × 10−4 m−1.
The two solutions are in good agreement with the rela-
tive error below the 0.95%. It is important to note here
that although the total integration fiber length (length
for achieving SSD) in this case is of the order of kilome-
ters, which is much longer than the length for achieving
SSD in plastic optical fibers (typically up to hundred me-
ters), the accumulated truncation errors of the applied
numerical procedure is not too much larger if compared
to the case of short plastic optical fibers where relative
error is usually up to 0.2% [8, 12, 13]. Thus, we con-
clude that EFDM is efficient and accurate for solving the
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power flow equation, both in the case of short (plastic)
and very long (glass) optical fibers. Our numerical result
for zs is in good agreement with the experimental re-
sult by Jeunhomme et al. [11]. who obtained, by varying
the launch beam angle, that SSD is achieved in 3000 m
long SI GOF (Jeunhomme’s experimental steady state
output-field pattern is shown in Fig. 2).

Fig. 2. Experimentally determined [11] normalized
steady state output angular power distribution for
He–Ne laser launch beam at fiber length of 3000 m
(reconstructed).

In summary, our numerical results show a much longer
coupling length (Lc = 1800 m) in SI GOF than in SI
POFs (typically Lc

∼= 15 to 35 m [13, 14]). Similarly, the
length for achieving the SSD is also much longer in the
SI GOF (zs = 3100 m) than in SI POFs (usually up to
one hundred meters). This is attributed to the weaker
intrinsic perturbation effects in SI GOFs.

4. Conclusions

Using the power flow equation, we have examined the
state of mode coupling in a long step-index glass optical
fiber by observing, for different launch angles, the out-
put angular power distribution as it varied with the fiber
length. For the CGW-CGE-68 fiber, we have obtained
that the coupling length for achieving the equilibrium
mode distribution is 1800 m and the length for achiev-
ing the steady state power distribution is 3100 m. This
is much longer than for plastic optical fibers with typi-

cal coupling lengths from 15 to 35 m [13]. On a sepa-
rate note, the explicit finite difference method applied in
our knowledge for the first time to solve the power flow
equation in a kilometers long fiber has turned out to be
efficient and accurate.
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