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ABSTRACT

We have computed models of rotating relativistic stars with a toroidal magnetic field and

investigated the combined effects of magnetic field and rotation on the apparent shape (i.e.

the surface deformation), which could be relevant for the electromagnetic emission, and on

the internal matter distribution (i.e. the quadrupole distortion), which could be relevant for

the emission of gravitational waves. Using a sample of eight different cold nuclear physics

equations of state, we have computed models of maximum field strength, as well as the

distortion coefficients for the surface and the quadrupolar deformations. Surprisingly, we find

that non-rotating models admit arbitrary levels of magnetization, accompanied by a growth

of size and quadrupole distortion to which we could not find a limit. Rotating models, on the

other hand, are subject to a mass-shedding limit at frequencies well below the corresponding

ones for unmagnetized stars. Overall, the space of solutions can be split into three distinct

classes for which the surface deformation and the quadrupole distortion are either prolate

and prolate, oblate and prolate, or oblate and oblate, respectively. We also derive a simple

formula expressing the relativistic distortion coefficients, which allows one to compute the

surface deformation and the quadrupole distortion up to significant levels of rotation and

magnetization, essentially covering all known magnetars. Such a formula replaces Newtonian

equivalent expressions that overestimate the magnetic quadrupole distortion by about a factor

of 6 and are inadequate for strongly relativistic objects like neutron stars.
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1 IN T RO D U C T I O N

In addition to rapid rotation, also strong magnetic fields can in-

troduce significant deformations in neutron stars, as shown, for

instance, by Bocquet, Gourgoulhon & Novak (1995) and Cardall,

Prakash & Lattimer (2001), who have computed fully non-linear

models of relativistic stars with a poloidal magnetic field. At the

end of the collapse of the core of a massive star, differential ro-

tation could create strong toroidal magnetic fields of the order of

1016–1017 G inside the hot protoneutron star (Bonanno, Rezzolla

& Urpin 2003; Naso et al. 2008; Bonazzola & Haensel, unpub-

lished). As a result, realistic models of magnetized relativistic stars

require the simultaneous presence of both poloidal and toroidal field

components. As pointed out in Gourgoulhon & Bonazzola (1993),

however, this requires a formalism capable of dealing with non-

circular space–times (i.e. with convective currents in the merid-

ional planes) like the one presented here, but which has so far

been implemented only in a perturbative scheme (Ioka & Sasaki

2003, 2004). Triggered also by the increasing interest in strongly

magnetized neutron stars due to their relation with soft-gamma re-

peaters and anomalous X-ray pulsars (Duncan & Thompson 1992;

Thompson & Duncan 1996), a growing number of studies adopt-

ing perturbative techniques have appeared investigating either the

field geometry and neglecting the influence of the magnetic field on

the matter distribution (Ciolfi et al. 2009), or solving the coupled

Einstein–Maxwell–Euler system, from which the magnetic defor-

mation can be calculated (Ioka & Sasaki 2004; Colaiuda et al. 2008;

Ciolfi, Ferrari & Gualtieri 2010; Gualtieri, Ciolfi & Ferrari 2011;

Yoshida, Kiuchi & Shibata 2012). Until recently, however, fully

non-linear models of relativistic magnetized stars were restricted

to purely poloidal magnetic fields (Bocquet et al. 1995; Cardall

et al. 2001), for which the generated space–time is circular like in

the unmagnetized case (Carter 1973). Following the recent insight

that also a magnetic field with only a toroidal component is com-

patible with the circularity of space–time (Oron 2002), studies of

relativistic models of rotating stars with a toroidal magnetic field

have emerged (Frieben & Rezzolla 2007; Kiuchi & Yoshida 2008;

Kiuchi, Kotake & Yoshida 2009; Yasutake, Kiuchi & Kotake 2010;

Yasutake, Maruyama & Tatsumi 2011). These new studies have

complemented earlier Newtonian investigations (Sinha 1968; Sood

& Trehan 1972; Miketinac 1973), which being simpler, allowed

for the investigation of more complex field geometries, in partic-

ular of mixed poloidal and toroidal magnetic fields (Tomimura

& Eriguchi 2005; Yoshida, Yoshida & Eriguchi 2006; Haskell
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Neutron stars with a toroidal magnetic field 3407

et al. 2008; Lander & Jones 2009; Fujisawa, Yoshida & Eriguchi

2012).

In this work, we are mainly concerned with the deformation of

neutron stars endowed with a toroidal magnetic field because they

might be an important source of gravitational radiation due to the

prolate deformation induced by the magnetic field and provided

that the axes of symmetry and of rotation are different (Bonazzola

& Gourgoulhon 1996). Furthermore, Jones (1975) has pointed out

that viscous processes can trigger a secular instability, which drives

the axis of symmetry of the prolate star into the plane perpendicular

to the angular momentum vector transforming it into a bar-shaped

rotating source of gravitational radiation (Cutler 2002; Stella et al.

2005). From the astrophysical point of view, both the deformation of

the stellar surface as well as the distortion of the matter distribution

are relevant and can be measured by appropriate quantities, namely

the surface deformation (or apparent oblateness) and the quadrupole

distortion. Previous studies of relativistic models of stars with a

toroidal magnetic field have provided a broad survey of non-rotating

and rotating models for varying masses, radii and magnetic fluxes.

The focus of this work is a complementary one to earlier studies: in

order to obtain a comprehensive picture of the impact of a toroidal

magnetic field on relativistic stars, we exclusively study models of

fixed baryon mass corresponding to a gravitational mass of M =
1.400 M⊙ in the unmagnetized and non-rotating case. Although

we expect neutron stars to come in a narrow but non-zero range of

masses, restricting to a single value of the gravitational mass has

the important advantage that we can explore with unprecedented

precision both the deformations introduced by magnetic fields and

those introduced by rapid rotation. As we will comment later on,

our increased accuracy has allowed us also to discover novel results

and equilibrium configurations.

Our neutron stars are modelled assuming the matter to be a per-

fect fluid at zero temperature well described by a single-parameter

equation of state (EOS), and as having infinite conductivity, as re-

quired by the ideal magnetohydrodynamics (MHD) limit. We do

not consider multifluid models, which would allow for the strati-

fication of neutron star matter, nor do we treat the protons in the

interior as a superconducting fluid, which would greatly alter the

magnetic properties of associated equilibrium models. Neverthe-

less, important results obtained for extremely magnetized models

with field strengths of the order of 1017 G can be readily extended

to configurations of much lower and more realistic field strengths

of the order of 1013 G. More specifically, in addition to a standard γ

= 2 polytropic EOS, we have considered a sample of seven realistic

EOSs resulting from calculations of cold catalysed dense matter,

namely the APR EOS (Akmal, Pandharipande & Ravenhall 1998),

the BBB2 EOS (Baldo, Bombaci & Burgio 1997), the BN1H1

EOS (Balberg & Gal 1997), the BPAL12 EOS (Bombaci 1996),

the FPS EOS (Pandharipande & Ravenhall 1989), the GNH3 EOS

(Glendenning 1985) and the SLy4 EOS (Douchin & Haensel 2001).

Altogether, this set of EOSs spans a wide range of physical prop-

erties and should cover any realistic description of neutron stars.

For the Pol2 EOS, we have explored systematically the space of

solutions and computed the corresponding surface deformation and

quadrupole distortion. In addition, we have also computed the dis-

tortion coefficients, which allow one to compute the deformation of

neutron stars up to large magnetizations and rotation rates through

a simple algebraic expression, following the procedure devised in

Cutler (2002).

The plan of the paper is the following. In Section 2, we give an

overview of the novel results obtained in this study; in Section 3, we

discuss the theoretical framework on which our approach, whose

numerical implementation and testing is discussed in Section 4, is

based. Results for static magnetized models are presented in Sec-

tion 5 and that for rotating magnetized models in Section 6. In

Section 7, we deal with the case of moderate magnetic field and ro-

tation and derive empirical distortion coefficients before presenting

our conclusions in Section 8.

2 G E N E R A L OV E RV I E W

Given the complexity of the numerous results found and the risk

that the most important ones may be lost in the details, in the

following we briefly summarize what we believe are the most salient

properties of (relativistic) stars with purely toroidal magnetic fields.

We recall that we measure with ǫs the deformation of the surface

shape, while we measure with ǫ the (quadrupolar) deviation of

the matter distribution from a spherically symmetric one. Overall,

equilibrium models of relativistic stars with a toroidal magnetic

field exhibit the following properties.

(i) Non-rotating and magnetized models exhibit a prolate surface

deformation and a prolate quadrupolar deformation, i.e. ǫs < 0,

ǫ < 0, both of which decrease as the magnetization parameter λ0 is

increased.

(ii) Rotating and unmagnetized models exhibit an oblate surface

deformation and an oblate quadrupolar deformation, i.e. ǫs > 0,

ǫ > 0, both of which increase as the rotation frequency is increased.

(iii) Between these limiting cases, neutral lines ǫs = 0 and ǫ = 0

divide models into having prolate/oblate surface deformations and

prolate/oblate internal deformations, respectively.

(iv) For non-rotating models no upper limit was found to the

magnetization parameter λ0, with stellar models that become in-

creasingly prolate, but also increasingly extended as the magneti-

zation is increased (see Figs 6 and 7).

(v) The magnetic pressure associated with the toroidal magnetic

field also causes an expansion in the outer layers of the star, in

particular a growth of its equatorial radius. This effect is present also

for non-rotating models, for which, however, the polar radius grows

more rapidly than the equatorial one, yielding a prolate surface

deformation, i.e. ǫs < 0. However, as the rotation is increased

and the magnetization decreased, models can be found which have

a prolate interior deformation, i.e. ǫ < 0, and an oblate surface

deformation, i.e. ǫs > 0.

(vi) For any given angular velocity, the model of maximum mag-

netization coincides with the mass-shedding model, i.e. the model

for which centrifugal and gravitational forces are equal at the equa-

torial radius. This point is characterized by the appearance of a cusp

at the equator.

(vii) For rotating models the magnetic pressure at the equator

adds to the centrifugal force, favouring the loss of mass. As a result

of the increase in the equatorial size, the mass-shedding frequency is

systematically smaller than the corresponding one for unmagnetized

models.

(viii) In the space of parameters considered, the average toroidal

magnetic field strength 〈B2〉1/2 is not a monotonic function of the

intrinsic magnetization parameter λ0, and after reaching a maximum

value, it gradually decreases. This implies the existence of double

solutions in certain parts of the space of parameters (Ω2, 〈B2〉).
(ix) Although the space of parameters (Ω2, 〈B2〉) is potentially

degenerate, the corresponding space of parameters (Ω2, λ2
0) is not.

As a result, any stellar model considered is characterized uniquely

by the values of the angular velocity Ω and of the magnetization

parameter λ0.
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3408 J. Frieben and L. Rezzolla

Figure 1. Schematic diagram showing the lower part of the solution space

of equilibrium models in the (Ω2, 〈B2〉) plane from the unmagnetized limit

up to the maximum field-strength limit. According to the relative strength

of the magnetic field and of the rotation rate, different combinations of the

surface deformation, ǫs, and of the quadrupole deformation, ǫ, are possible.

Given these results, it is natural to divide our models into three

classes: (1) models labelled PP for prolate–prolate, for which both

apparent shape and matter distribution are prolate, i.e. ǫs < 0, ǫ <

0; (2) models labelled PO for prolate–oblate, whose shape is oblate

whereas their matter distribution is prolate, i.e. ǫs > 0, ǫ < 0;

(3) models labelled OO for oblate–oblate, which appear oblate and

also exhibit an oblate matter distribution, i.e. ǫs > 0, ǫ > 0. The

latter class of models had not been found by Kiuchi & Yoshida

(2008). A schematic picture illustrating the three different classes

for models below the maximum field-strength limit is shown in

Fig. 1. Finally, while different EOSs with their different stiffness

introduce quantitative differences in the behaviour described above,

they all follow the same qualitative behaviour.

3 M AT H E M AT I C A L S E T U P

3.1 Basic assumptions

We assume that the space–time generated by the rotating star is

stationary and axisymmetric, with Killing vector fields e0 and e3

associated with these symmetries. If, in addition, the space–time

is asymptotically flat and there exists an axis where e3 vanishes,

then e0 and e3 commute (Carter 1970). This enables us to choose

coordinates (xα) = (t, r, θ , φ) with vector fields e0 = ∂/∂t and

e3 = ∂/∂φ. If furthermore the total stress–energy tensor T satisfies

the circularity conditions

T · e0 = αe0 + βe3 , (1)

T · e3 = λe0 + μe3 , (2)

convective currents in the meridional planes of constant (t, φ) are

absent by construction. In this case, quasi-isotropic (QI) coordinates

can be adopted and the line element reads

ds2 = gαβ dxαdxβ = −N2dt2 + Φ2r2 sin2 θ2(dφ − Nφdt)2

+Ψ2(dr2 + r2dθ2) ,
(3)

where N, Nφ , Ψ and Φ are functions of (r, θ ). We further introduce

the Eulerian observer O0 whose 4-velocity n is the future-directed

unit vector normal to hypersurfaces of constant t. From equation (3),

we infer nα = (−N, 0, 0, 0).

The compatibility of the electromagnetic fields with the circular-

ity condition was established long ago (Carter 1973) for the case in

which the electromagnetic field tensor F is derived from a potential

1-form A with components (At, 0, 0, Aφ), whereas the contravari-

ant components of the electric current vector j read jα = (jt, 0,

0, jφ). This fact has been exploited for computing fully relativistic

models of stars with a poloidal electromagnetic field (Bocquet et al.

1995; Cardall et al. 2001). However, it has been shown that the case

of a toroidal magnetic field satisfies the circularity assumption too

(Oron 2002; Kiuchi & Yoshida 2008). In the following, we adopt

a vector potential which is orthogonal to the Killing vectors e0 and

e3, namely A · e0 = 0 and A · e3 = 0. The covariant components of

A then become

Aα = (0, Ar , Aθ , 0) . (4)

This particular form of A ensures, by construction, the absence of

any poloidal electric or magnetic field component. The only non-

vanishing component of the antisymmetric Faraday tensor Fαβ =
Aβ,α − Aα,β is then given by

Frθ =
∂Aθ

∂r
−

∂Ar

∂θ
. (5)

For the electric field E and the magnetic field B as measured by

observer O0, we then obtain

Eα = Fαβnβ = (0, 0, 0, 0) , (6)

Bα = − 1
2
ηαβγ δF

γ δnβ

=
Φ sin θ

Ψ2

(

Nφ

[

∂Ar

∂θ
−

∂Aθ

∂r

]

, 0, 0,−
[

∂Ar

∂θ
−

∂Aθ

∂r

])

,
(7)

where ηαβγ δ is the totally antisymmetric tensor associated with the

metric g. According to equations (6) and (7), the combination of

a vanishing electric field and a toroidal magnetic field holds for

any observer whose 4-velocity u is a linear combination of the two

Killing vectors e0 and e3. The electromagnetic contribution to the

stress–energy tensor is given by

T αβ =
1

4π

(

FακF
κ
β −

1

4
FκλF

κλ gαβ

)

. (8)

Following the procedure adopted by Bonazzola et al. (1993), T is

split up into the total electromagnetic energy density E , the Poynting

3-vector J and the electromagnetic stress 3-tensor S as measured

by the Eulerian observer O0. With the projection tensor h = g +
n ⊗ n, these quantities are obtained as projections of T on to and

orthogonal to n, namely E ≡ n · T · n, J ≡ −h · T · n and

S ≡ h · T · h. Specialized to the present case of no electric field

and no poloidal magnetic field components, the electromagnetic

contribution to the (3 + 1) matter variables [for an introduction to

the (3 + 1) formalism of general relativity, cf. Smarr & York 1978;

Gourgoulhon 2012], namely the total energy density E ≡ n · T · n,

the momentum density 3-vector J ≡ −h · T · n and the stress

3-tensor S ≡ h · T · h read

E =
1

8π

(

Bφ

Φr sin θ

)2

, (9)

Ji = 0 , (10)
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Neutron stars with a toroidal magnetic field 3409

Sr
r = E , Sθ

θ = E , Sφ
φ = −E . (11)

In particular, all non-diagonal components of S i
j are zero, and

S = E . The circularity assumption requires that for the Poynting

vector J

Jr = 0 , Jθ = 0 , (12)

and that the electromagnetic stress tensor S satisfies

Srφ = 0 , Sθφ = 0 . (13)

3.2 Einstein equations

The Einstein equations for the metric tensor g defined by equa-

tion (3) and a general stress–energy tensor T decomposed into the

(3 + 1) quantities E, J and S become

�ν = 4πΨ2(E+S) +
Φ2r2 sin2 θ

2N2
(∂Nφ)2 − ∂ν∂(ν+β) , (14)

�̃3(Nφr sin θ ) = −16π
NΨ2

Φ2

Jφ

r sin θ
− r sin θ ∂Nφ

∂(3β−ν) , (15)

�2[(NΦ − 1) r sin θ ] = 8πNΨ2Φ (Sr
r +Sθ

θ ) r sin θ , (16)

�2ζ = 8πΨ2Sφ
φ +

3Φ2r2 sin2 θ

4N2
(∂Nφ)2 − (∂ν)2 , (17)

where the following abbreviations have been used:

ν ≡ ln N , ζ ≡ ln(NΨ) , β ≡ ln Φ , (18)

�2 ≡
∂

2

∂r2
+

1

r

∂

∂r
+

1

r2

∂
2

∂θ2
, (19)

�3 ≡
∂

2

∂r2
+

2

r

∂

∂r
+

1

r2

∂
2

∂θ2
+

1

r2 tan θ

∂

∂θ
, (20)

�̃3 ≡ �3 −
1

r2 sin2 θ
, (21)

∂a ∂b ≡
∂a

∂r

∂b

∂r
+

1

r2

∂a

∂θ

∂b

∂θ
. (22)

The resulting system of four non-linear elliptic equations for the

metric variables N, Nφ , Ψ and Φ can be solved iteratively once suit-

able boundary conditions of asymptotic flatness have been adopted.

Additional details can be found in Bonazzola et al. (1993).

3.3 Maxwell equations

Since the electromagnetic field tensor F is derived from a potential

1-form A, the homogeneous Maxwell equations

Fαβ;γ + Fβγ ;α + Fγα;β = 0 (23)

are satisfied by construction. The inhomogeneous Maxwell equa-

tions F αβ
;β = 4πjα allow us to express the electric current 4-vector

j in terms of the Faraday tensor F, where the alternative expression

4πjα =
1

√
−g

(√
−gF αβ

)

,β
(24)

with
√

−g = Ψ2ΦNr2 sin θ is used. The electromagnetic field ten-

sor F has only one non-vanishing contravariant and covariant com-

ponent, which can now be expressed in terms of the azimuthal

component Bφ of the magnetic field B,

Frθ =
Ψ2

Φ sin θ
Bφ , (25)

F rθ =
Bφ

Ψ2Φr2 sin θ
. (26)

Combining equations (24) and (25), the poloidal components of the

electric current 4-vector j can be written as

4πj r =
1

Ψ2ΦNr2 sin θ

∂(NBφ)

∂θ
, (27)

4πj θ = −
1

Ψ2ΦNr2 sin θ

∂(NBφ)

∂r
. (28)

The remaining components jt and jφ are zero, as expected. Note

that the circularity condition, equations (1) and (2), forbids any

meridional convective current contributing to J , which is ensured

by assuming the charge carriers to be massless. By taking the di-

vergence of equation (24), it follows that jα ;α = 0 thanks to the

antisymmetry of F, and this continuity equation for the electric

current leads to a dependence between jr and jθ , namely

∇ · j =
1

√
−g

[

∂

∂r
(
√

−gj r ) +
∂

∂θ
(
√

−gj θ )

]

= 0 , (29)

which however is trivially fulfilled by virtue of equations (27) and

(28) which express jr and jθ as functions of a single quantity, namely

NBφ , without any restriction from equation (29). A useful conse-

quence of equations (27) and (28) is that the flow lines of the electric

current coincide with the isocontours of NBφ , which allows one to

visualize the current distribution without actually computing j .

3.4 Equation of motion and condition on the Lorentz force

In the case of a perfect fluid the stress–energy tensor T takes the

form

T = (e + p) u ⊗ u + p g , (30)

where e is the energy density and p the pressure as measured by

the fluid comoving observer O1 with 4-velocity u. Since we assume

the absence of meridional currents, u can be written as a linear

combination of the Killing vectors e0 and e3, namely

u = ut e0 + uφe3 . (31)

Introducing the Lorentz factor Ŵ ≡ −n ·u = Nut linking observers

O0 and O1 and the fluid coordinate angular velocity Ω ≡ uφ /ut, the

physical fluid velocity U and the Lorentz factor Ŵ can be expressed,

respectively, as

U =
Φr sin θ

N
(Ω − Nφ) , (32)

Γ = (1 − U 2)1/2 . (33)

Taking into account the contribution of the magnetic field to the

(3 + 1) matter variables according to equations (9)–(11), the fol-

lowing expressions are obtained for a perfect fluid endowed with a

toroidal magnetic field:

E = Γ 2(e + p) − p +
1

8π

(

Bφ

Φr sin θ

)2

, (34)

Jφ = Γ 2(e + p)Φr sin θ U , (35)

Sr
r = Sθ

θ = p +
1

8π

(

Bφ

Φr sin θ

)2

, (36)
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3410 J. Frieben and L. Rezzolla

Sφ
φ = p + Γ 2(e + p)U 2 −

1

8π

(

Bφ

Φr sin θ

)2

. (37)

All other components are zero, and S = 3p + Γ 2(e + p)U 2 +
1/(8π)[Bφ/(Φr sin θ )]2. The projection of ∇ · T = 0 on to spatial

hypersurfaces of constant t provides the equation of motion

1

e + p

∂p

∂xi
+

∂ν

∂xi
−

∂

∂xi
(ln Γ ) −

1

e + p
Fiβjβ = −F

∂Ω

∂xi
, (38)

where F is defined as

F ≡ uφut = Γ 2 Φ

N
Ur sin θ . (39)

Assuming a single-parameter EOS, e = e(n) and p = p(n), with n

the baryon number density, and zero temperature, we can introduce

the fluid log-enthalpy

H ≡ ln

(

e + p

n mb

)

, (40)

with a mean baryon rest mass of mb = 1.66 × 10−27 kg. Using

equations (25)–(28), (40), and discarding the case of differential

rotation, equation (38) becomes

∂

∂xi
(H + ν − ln Γ ) +

(

1

e + p

) (

1

8πΦ2N2r2 sin2 θ

)

×
∂(NBφ)2

∂xi
= 0 .

(41)

Equation (41) can only be satisfied if the Lorentz force term is

derived from a scalar function M̃(r, θ ) as well, thus we require
(

1

e + p

) (

1

8πΦ2N2r2 sin2 θ

)

∂(NBφ)2

∂xi
=

∂M̃

∂xi
. (42)

Using the Schwartz theorem, the integrability condition of equa-

tion (42) can be written as

∂G

∂θ

∂(NBφ)

∂r
−

∂G

∂r

∂(NBφ)

∂θ
= 0 , (43)

where G ≡ (e + p)Φ2N2r2sin 2θ . In other words, equation (43) states

that the Jacobian of the coordinate transform (r, θ ) → (G, NBφ) is

zero, and hence there exists a scalar function Θ : R2 → R such

that Θ (G, NBφ) = 0. Two different cases can be distinguished. (i) If

∂Θ/∂(NBφ) = 0, then Θ does not depend on NBφ , and the relation

Θ (G, NBφ) = 0 implies that G is constant, which is equivalent to

the absence of any matter and G = 0. (ii) If ∂Θ/∂(NBφ) 
= 0, then

the implicit-function theorem enables us to write NBφ = NBφ(G).

Discarding the case without matter, we retain possibility (ii) and

conclude that

NBφ = g((e + p)Φ2N2r2 sin2 θ ) , (44)

with g being an arbitrary scalar function. However, the regularity

properties of an axisymmetric vector field in the case of spatial

spherical coordinates (r, θ , φ) impose some further restrictions on

g. For the covariant component Uφ of an azimuthal vector field

U = Uφe3, it can be shown (Bardeen & Piran 1983) that

Uφ(r, θ ) = r2 sin2 θ m(r, θ ) , (45)

where m is an arbitrary axisymmetric scalar function. Application

of equation (45) to NBφ allows us to conclude that g can be written

as g(x) = xf (x), with an arbitrary regular scalar function f . The

resulting expression for NBφ after application of equation (45) to

equation (44) reads

NBφ = (e+p) Φ2N2r2 sin2 θf ((e+p) Φ2N2r2 sin2 θ ) . (46)

By inserting equation (46) into equation (42), the gradient of the

magnetic potential M̃ reads

∂M̃

∂xi
=

f

4π

∂

∂xi
[(e+p) Φ2N2r2 sin2 θ f ] = Ri . (47)

In general, M̃ cannot be determined in closed form. However, in-

spection of equation (47) reveals that for the sub-case of a monomial

function f (x) = λmxm (not to be meant as a summation over repeated

indices), a solution can be written down immediately. In this case,

equation (46) simplifies to

NBφ = λm ((e+p) Φ2N2r2 sin2 θ )m+1 , (48)

and the solution to equation (47) is given by an algebraic expression,

namely

M̃ =
λ2

m

4π

(

m + 1

2m + 1

)

((e+p) Φ2N2r2 sin2 θ )2m+1 . (49)

The simplest function f is obtained for m = 0 and corresponds to a

constant function of value λ0. In this case, equation (46) reduces to

NBφ = λ0 (e+p) Φ2N2r2 sin2 θ , (50)

and thus

Bφ = λ0 (e+p) Φ2Nr2 sin2 θ , (51)

supplemented by equation (49), which yields the simplified expres-

sion

M̃ =
λ2

0

4π
(e+p) Φ2N2r2 sin2 θ . (52)

For all models computed in this study, the magnetic field component

Bφ is given by equation (51) and the magnetic potential M̃ by

equation (52). Because M̃ vanishes on the axis of symmetry, M̃c =
0, and the integral of equation (41) reads

H + ν − ln Γ + M̃ = Hc + νc , (53)

where Hc and νc are the central values of H and ν, respectively. Note

that a general prescription for the determination of the magnetic field

Bφ and the magnetic potential M̃ can be found in Kiuchi & Yoshida

(2008) and Gourgoulhon et al. (2011).

3.5 Perfect-conductor relation

According to Ohm’s law and assuming an infinite conductivity for

the neutron star matter, the electric field E′ as measured by the fluid

comoving observer O1 has to vanish, namely

E′
α = Fαβuβ = (0, 0, 0, 0) . (54)

In the case of a purely poloidal magnetic field (Bocquet et al. 1995),

the perfect-conductor relation equation (54) is non-trivial as it estab-

lishes a dependence between At and Aφ and forces a dependence of

the angular velocity on Aφ , i.e. Ω = Ω(Aφ). In the case of a purely

toroidal magnetic field, on the other hand, the perfect-conductor

condition is trivially satisfied and no condition is set on the rota-

tion law, so that differentially rotating models can be built as in the

unmagnetized case.

It is thus possible to consider differentially rotating configura-

tions following the procedure for the unmagnetized case. The mag-

netic field B′ as measured by the fluid comoving observer O1 now

becomes

B ′
α = − 1

2
ηαβγ δF

γ δuβ

=
ΓΦ sin θ

Ψ2

(

Ω

[

∂Aθ

∂r
−

∂Ar

∂θ

]

,0, 0,−
[

∂Ar

∂θ
−

∂Aθ

∂r

])

.
(55)

Note that B ′
t + ΩB ′

φ = 0 and that B ′
φ = ΓBφ .
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Neutron stars with a toroidal magnetic field 3411

3.6 Equation of state

To solve the system of equations introduced in the previous section,

we need a prescription relating the energy density e and pressure p

to the baryon number density n. The simplest of such relations is

offered by the polytropic EOS, in which case the following identities

hold:

e(n) = mbn + κ
nγ

γ − 1
, (56)

p(n) = κnγ , (57)

where κ is the polytropic constant and γ the adiabatic index. Com-

bining equations (40), equations (56) and (57), the log-enthalpy H

and n can be expressed as functions of each other, namely, as

H (n) = ln

(

1 +
κ

mb

γ

γ − 1
nγ−1

)

, (58)

n(H ) =
(

γ − 1

γ

mb

κ
(eH − 1)

)

. (59)

Hereafter, we will assume γ = 2 and refer to this EOS as to Pol2.

In addition to the Pol2 EOS, we have considered a sample of seven

single-constituent one-parameter EOSs treating the neutron star

matter as a perfect fluid and derived from very different models

of the ground state of cold (zero temperature) dense matter in this

work as they are provided by the LORENE library.

More specifically, we have considered the APR EOS (Akmal

et al. 1998), the BBB2 EOS (Baldo et al. 1997), the BN1H1 EOS

(Balberg & Gal 1997), the BPAL12 EOS (Bombaci 1996), the FPS

EOS (Pandharipande & Ravenhall 1989), the Sly4 EOS (Douchin

& Haensel 2001) and the GNH3 EOS (Glendenning 1985). All of

these realistic EOSs are provided in tabulated form, which requires

the interpolation of listed thermodynamical quantities n, e and p be-

tween contiguous sampling points. Thermodynamical consistency

of the interpolated values is ensured by an interpolation procedure

based on Hermite polynomials introduced by Swesty (1996), which

is crucial for the accuracy of the resulting numerical models (Sal-

gado et al. 1994).

The properties of the spherical non-rotating and unmagnetized

reference models with a gravitational mass of M = 1.400 M⊙ can

be found in Table 5. The softest EOS of this sample is the BPAL12

EOS, which yields the smallest circumferential radius of Rcirc =
10.06 km, whereas the stiffest one is the GNH3 EOS, which yields

the largest circumferential radius of Rcirc = 14.20 km.

3.7 Global quantities

A number of global quantities which characterize the numerical

models presented in this study can be computed and will be needed

in the course of this investigation. These are given as follows. The

gravitational mass:

M ≡
∫

NΨ2Φ

(

E + S +
2

N
NφJφ

)

r2 sin θ dr dθ dφ , (60)

the total angular momentum:

J ≡
∫

Ψ2Φ Jφ r2 sin θ dr dθ dφ , (61)

the total magnetic energy:

M ≡
∫

Ψ2Φ Er2 sin θ dr dθ dφ , (62)

the total kinetic energy:

T ≡ 1
2
ΩJ (63)

and the gravitational binding energy:

W ≡ M − T − Mp − M , (64)

where the total internal energy Mp is defined as

Mp ≡
∫

Ψ2ΦΓe r2 sin θ dr dθ dφ , (65)

while the total baryon mass of the star is given by

Mb ≡
∫

Ψ2Φ Γn r2 sin θ dr dθ dφ . (66)

Other important quantities that are more closely related to the

deformation of the star are the circumferential radius Rcirc, which

is defined through the stellar equatorial circumference as measured

by the observer O0 and is related to the equatorial coordinate radius

R according to

Rcirc ≡ Φ(R, π/2) R , (67)

the surface deformation (or apparent oblateness)

ǫs ≡ re/rp − 1 , (68)

where re, rp are the equatorial and polar coordinate radii, respec-

tively, and the quadrupole distortion ǫ of the star (Bonazzola &

Gourgoulhon 1996):

ǫ ≡ −
3

2

Izz

I
, (69)

where Izz is the quadrupole moment measured in some asymp-

totically Cartesian mass-centred coordinate system (Thorne 1980),

while the moment of inertia I = Izz is defined as I ≡ J/Ω. We stress

that no moment of inertia other than the latter can be defined in a

meaningful way for axisymmetric rotating bodies and that the rota-

tion must be rigid and about the axis of symmetry. Furthermore, we

note that −(3/2)Izz differs from the standard quadrupole moment

Q and that in the case of QI coordinates, the latter can be read off

from the asymptotic expansion of ln N according to

ln N = −
M

r
+

M2

12r3
+

Q

r3
P2(cos θ ) + · · · . (70)

Thorne’s quadrupole moment Izz is the relevant quantity when

the gravitational-wave emission from a distorted star has to be

determined, and the corresponding values are extracted from the

asymptotic expansion of certain components of the metric tensor g

in QI coordinates following the procedure presented in Bonazzola

& Gourgoulhon (1996).

4 N U M E R I C A L I M P L E M E N TAT I O N

AND TESTS

4.1 Numerical scheme

The analytic scheme presented in Section 3 has been implemented

by extending an existing multidomain, surface-adaptive spectral

method for unmagnetized relativistic stars presented in Bonazzola,

Gourgoulhon & Marck (1998), Gourgoulhon et al. (1999) and part

of the LORENE
1 C++ class library for numerical relativity. We refer to

Bonazzola et al. (1998) and Gourgoulhon et al. (1999) for a detailed

1 http://www.lorene.obspm.fr

C© 2012 The Authors, MNRAS 427, 3406–3426

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
7
/4

/3
4
0
6
/9

7
3
9
6
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



3412 J. Frieben and L. Rezzolla

Table 1. Comparison of results for the normalized oblateness ǫs/h computed in the Newtonian limit for

various polytropic EOSs with results from Sood & Trehan (1972) [values for ǫ/h from table 1 of Sood &

Trehan (1972) where ǫ = (re − rp)/r0 and r0 is the radius of the unperturbed model]. The perturbation

parameter h = λ2
0/(4π

2) is a measure of the strength of the magnetic field.

γ 2 5/3 3/2 4/3 9/7

Sood & Trehan (1972) (ǫ/h) −0.213 77 −0.142 84 −0.092 92 −0.033 74 −0.017 24

This work (ǫs/h) −0.213 76 −0.142 18 −0.092 92 −0.033 74 −0.017 24

description of the numerical method and of the tests carried out. The

numerical solution is computed by iteration, starting from crude

initial conditions of a parabolic log-enthalpy profile, no rotation,

flat space and no magnetic field. Convergence is monitored by

computing ||Hn − Hn−1||/||Hn−1|| where ||Hn−1|| is the sum of the

absolute values of the log-enthalpy H over all collocation points

at iteration step n − 1. A convergent solution is assumed to be

found when the normalized log-enthalpy residual decreases below

a prescribed threshold, which is usually chosen to be of the order

of 10−8 or smaller. The computational domain is divided into a

spherical nucleus containing the star and two shells covering the

exterior, where the last one maps on to a finite interval the whole

exterior space, from a certain radius R up to spatial infinity. The

default number of collocation points used in our study has been

nθ = 17 in the angular direction and nR = (33, 33, 17) in the radial

direction, where the different numbers refer to the nucleus and the

two shells, respectively. However, depending on the circumstances,

the numerical resolution has been increased when necessary, i.e. up

to nθ = 129 and nR = (257, 257, 129) in the case of huge models

with a matter distribution strongly deviating from a spherical one

(cf. Table 3 and Fig. 6).

4.2 Comparison with Newtonian results

The results of the numerical scheme in the Newtonian limit have

been compared with those of an earlier investigation in the Newto-

nian regime. Sood & Trehan (1972) have in fact computed linear

perturbations of polytropic stars induced by a toroidal magnetic field

corresponding to the Newtonian limit of equation (51), namely

Bφ

r sin θ
= λ0 ρr sin θ , (71)

where ρ denotes the Newtonian mass density. In Table 1, we show

normalized values of the resulting oblateness for different adiabatic

exponents produced with the present code and the corresponding

results from Sood & Trehan (1972). We note that Sood & Trehan

(1972) measured the deformation as ǫs = (re − rp)/r0 where r0 is

the radius of the unperturbed model. Values computed according

to this definition coincide with ǫs = re/rp − 1 within the rounding

error of tabulated values. Clearly, for the perturbation parameter

h = λ2
0/(4π

2), the respective values of ǫs/h agree to within 10−5,

except for γ = 5/3, for which the difference is about 10−3. However,

for γ = 5/3, certain functions intervening in the solution of the

perturbed Lane–Emden equation become singular at the surface of

the star (Das & Tandon 1977), suggesting a larger numerical error

for the γ = 5/3 case as computed by Sood & Trehan (1972).

4.3 Virial identities

In order to monitor the global error of the numerical models com-

puted with the new code we have calculated the two general-

relativistic virial identities GRV2 (Bonazzola 1973; Bonazzola &

Gourgoulhon 1994) and GRV3 (Gourgoulhon & Bonazzola 1994).

We recall that these identities have to be fulfilled by any solution

to the Einstein equations equations (14)–(17) and are not enforced

during the iterative procedure that leads to the solution. The GRV2

identity, in particular, has been shown to be directly related to the

global error of a numerical solution (Bonazzola et al. 1993), while

the GRV3 identity is an extension of the virial theorem of New-

tonian physics to general relativity [see Nozawa et al. (1998) for

details of the practical implementation]. For strongly magnetized

non-rotating models based on a polytropic EOS with γ = 2 and

the moderate number of collocation points specified in Section 4.1,

the violations to the identities GRV2 and GRV3 have been found

to be of the order of 10−6 or better. For the huge models listed in

Table 3, corresponding values are of the order of 10−4 which re-

quired the number of collocation points to be multiplied by a factor

of 8 compared to their default values. In the case of rapid rotation,

on the other hand, the numerical grid is not perfectly adapted to the

stellar surface, and the spectral approximation suffers from Gibbs

phenomena, as reported in Bonazzola et al. (1993). However, the

corresponding values of the identities GRV2 and GRV3 are still of

the order of 10−5. For realistic EOS, values of GRV2 and GRV3 are

of the order of 10−4 or better.

5 N ON-ROTATI NG MAG NETI ZED MODELS

Non-rotating models of neutron stars with a toroidal magnetic field

always generate static space–times for which the time Killing vector

e0 is hypersurface-orthogonal. Note that this assumption does not

always hold in the case of a poloidal magnetic field because the

additional presence of an electric field gives rise to an azimuthal

Poynting vector [cf. Bonazzola et al. (1993)], which introduces a

non-zero angular momentum even when the star does not rotate. As

a consequence, the shift vector component Nφ does not vanish.

Although we are interested in the construction of rapidly rotating

models (that we will present in Section 6), non-rotating configura-

tions allow us to investigate the effects of the magnetic field without

the influence of rotationally induced effects. As a representative

example, Fig. 2 shows isocontours of the magnetic field strength

and baryon number density for the non-rotating model PP-Pol2

built with the Pol2 EOS and for the maximum field strength (the

physical properties of model PP-Pol2 are listed in Table 4). The

unmagnetized reference model with a circumferential radius of

Rcirc = 12.00 km is symbolized by a grey disc. In agreement with

the simple structure function defined in equation (51), the toroidal

magnetic field shown in the left-hand panel vanishes on the axis

of symmetry, reaches a maximum value of Bmax = 7.408 × 1017 G

in the equatorial plane deep inside the star and decreases towards

the surface of the star, where it vanishes, so that the magnetic field

is fully contained inside the star. The forces exerted by the mag-

netic field can be visualized through the magnetic potential M̃ ,

which shows a distribution similar to that of the magnetic field

strength and that, for this reason, we do not report here. It should be

noted that the magnetic potential M̃ is repulsive since it is positive

C© 2012 The Authors, MNRAS 427, 3406–3426
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Neutron stars with a toroidal magnetic field 3413

Figure 2. Isocontours of magnetic field strength (left-hand panel) and baryon number density (right-hand panel) in the (x, z) plane of model PP-Pol2 of a

non-rotating star with a gravitational mass of M = 1.400 M⊙ and a circumferential radius of Rcirc = 12.00 km in the unmagnetized case built with a polytropic

EOS with γ = 2 for a maximum average magnetic field strength of 〈B2〉1/2 = 2.917 × 1017 G. The grey disc indicates the dimensions of the unmagnetized

reference model. Physical properties of model PP-Pol2 are listed in Table 4.

everywhere by construction. This is to be contrasted with the mag-

netic potential associated with the purely poloidal magnetic field

adopted in Bocquet et al. (1995), that was instead attractive. As a

result, the corresponding forces are the opposite, despite the isocon-

tours appear to be very similar. Note also that in the present case of

a purely toroidal magnetic field defined according to equation (51),

the isocontours of M̃ coincide with the flow lines of the electric

current j , which are nested loops in the meridional plane. Finally,

we note that M̃ vanishes at the surface of the star, implying that the

latter coincides with an isosurface of the gravitational potential ν,

as required by equation (53) when ln Γ = 0 and M̃ = 0.

The forces that can be derived from M̃ vanish on the axis of sym-

metry and reach their maximum in the equatorial plane. Between

the centre of the star and the maximum of M̃ , they are directed

inwards, inducing an approximately cylindrical compression of the

central region of the star, which responds by a prolate deformation

visible in the right-hand panel of Fig. 2. In the outer layers of the

star, on the other hand, the magnetic forces are directed radially

outward, pushing them away from the centre, which results in a

growth of the dimensions of the star whose circumferential radius

has increased now to a value of Rcirc = 14.34 km.

Both the apparent shape and the matter distribution are prolate,

corresponding to negative values of the surface deformation and of

the quadrupole distortion, namely ǫs = −0.0806 and ǫ = −0.1986,

respectively. The value of ǫs is significantly smaller than that of ǫ,

and this is due to the fact that terms of higher order in the multipole

expansion of the gravitational potential ν fall off rapidly while, at the

same time, the surface of the star must coincide with an isosurface

of ν. This interpretation is supported by the fact that this difference

is significantly smaller for small perturbations around this model, as

confirmed by comparing values of respective distortion coefficients

bB and cB reported in Section 7.

The strength of the magnetic field is controlled by the magneti-

zation parameter λ0 (cf. equation 52), and the physical quantities

associated with our models can be parametrized accordingly, in

particular the maximum magnetic field strength Bmax. In Fig. 3,

we compare our results with those reported in fig. 6 of Kiuchi &

Yoshida (2008),2 considering in particular the variation of the grav-

itational mass M, of the circumferential radius Rcirc, of the central

baryon number density nb,c and of the mean deformation ē. The

comparison is made as a function of the maximum magnetic field

strength Bmax and for a non-rotating reference model built with the

Pol2 EOS and having a baryon mass of Mb = 1.680 M⊙ and a

circumferential radius of Rcirc = 14.30 km in the unmagnetized

case. For each of these quantities χ , we define the difference as

�χ (Bmax,Mb) ≡ [χ (Bmax,Mb) − χ (0,Mb)]/χ (0,Mb). We note

that in Kiuchi & Yoshida (2008) the mean deformation is defined

as ē ≡ (Izz − Ixx)/Izz, where Ixx and Izz are the moments of iner-

tia relative to the corresponding axes (cf. equation 3.12 of Kiuchi

& Yoshida 2008); this measure is similar but different from our

measure of the quadrupole distortion ǫ.3

The most prominent feature of this comparison is that Bmax is

not a monotonic function of λ0, thus being responsible for the

presence of a turning point located at a magnetic field strength of

Bmax = 6.141 × 1017 G. While our results (blue solid lines) agree

qualitatively with those of Kiuchi & Yoshida (2008) (red dashed

lines), we find significant quantitative differences for all of the

quantities considered, the largest one being an increase in nb,c of 7

per cent against the smaller 3 per cent increase found by Kiuchi &

Yoshida (2008). Another important difference is in the values of the

maximum magnetic field strength, which is Bmax = 6.141 ×1017 G

for us and Bmax = 5.503 ×1017 G for Kiuchi & Yoshida (2008). The

differences between the two calculations are smaller when compar-

ing the mean deformations ē, but only for moderate values of Bmax.

Furthermore, the measure of ē is considerably different from the

quadrupole deformation ǫ (green dotted line), suggesting that the

definition of ē is not suitable for estimating the gravitational-wave

2 The data from fig. 6 of Kiuchi & Yoshida (2008) have been read off with

the utility G3DATA, see https://github.com/pn2200/g3data.
3 More specifically, the definition of ē is valid only in a Newtonian frame-

work, where (Izz − Ixx)/Izz = (I − Ixx)/I = QNewt/I, and QNewt is the

Newtonian quadrupole moment.
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3414 J. Frieben and L. Rezzolla

Figure 3. Comparison of the gravitational mass M, circumferential radius Rcirc, central baryon number density nb,c and mean deformation ē along with the

maximum magnetic field strength Bmax attained inside the star as a function of the magnetization parameter λ0 for a Pol2 EOS model with a baryon mass of

Mb = 1.680 M⊙ and a circumferential radius of Rcirc = 14.30 km in the unmagnetized case with results of Kiuchi & Yoshida (2008). The relative variation

of some quantity χ is defined as �χ (Bmax, Mb) ≡ (χ (Bmax, Mb) − χ (0,Mb))/χ (0,Mb).

emission of a distorted star because it overestimates correspond-

ing values by about a factor of 2 for this reference model. Similar

differences in the values of ē and ǫ have been found also for the

unmagnetized model with a baryon mass of Mb = 1.780 M⊙ ro-

tating at Ω = 3.230 × 103 s−1 from table IV of Kiuchi & Yoshida

(2008); in this case, the respective values of the mean deforma-

tion of ē = 0.077 64 and 0.074 62 differ by about 4 per cent, the

quadrupole distortion for the same model is ǫ = 0.038 70 which is

again only half of the value of ē.

In addition to the polytropic Pol2 EOS, we have computed non-

rotating models for the sample of realistic EOSs discussed in Sec-

tion 3.6 and for reference models having a gravitational mass of

M = 1.400 M⊙ in the unmagnetized case (basic physical properties

of the unmagnetized reference models are collected in Table 5). Be-

cause we cannot show equilibrium models for all of these models,

we have decided to use as alternative reference EOS the APR one

and to complement model PP-Pol2 at the maximum field strength

limit, with the corresponding model PP-APR, which nicely illus-

trates the impact of a prototypical realistic EOS on the resulting

equilibrium model.

Fig. 4 shows isocontours of magnetic field strength and baryon

number density for model PP-APR at the maximum field strength

limit, whose physical properties are collected in Table 4 (again,

the dimensions of the unmagnetized reference model with a cir-

cumferential radius of Rcirc = 11.34 km are indicated by a grey

disc). The maximum magnetic field strength attains a value of

Bmax = 8.046 × 1017 G in the equatorial plane. Because the APR

EOS is stiffer than the Pol2 EOS, the matter distribution appears less

condensed and the peaks of the magnetic field have moved slightly

outwards. Moreover, both the surface deformation ǫs = −0.1176

and the quadrupole distortion ǫs = −0.3045 are larger than the

corresponding values of model PP-Pol2 by ∼50 per cent. In con-

trast with model PP-Pol2, a substantial fraction of the stellar in-

terior below the surface appears to be field-free. This is easy to

understand: according to equation (51), in fact, the amplitude of

the toroidal magnetic field is proportional to (e + p), so that the

presence of a low-density crust as in the APR EOS suppresses the

presence of a toroidal magnetic field in the outer layers of the star.4

The contour of the unmagnetized reference model not only em-

phasizes the significant prolate deformation of the maximum field

strength model, but also the important increase in the dimensions

of the star.

Overall, the non-rotating models built with realistic EOSs show a

behaviour which is qualitatively similar to that of the polytropic

Pol2 EOS as shown in Table 2 and, for increasing magnetiza-

tion, all realistic EOS exhibit a maximum value of the magnetic

field strength 〈B2〉1/2, beyond which it then decreases. The smallest

value is obtained for the GNH3 EOS, with 〈B〉 ≡ 〈B2〉1/2 = 2.161

× 1017 G; the largest one is instead obtained for the BPAL12 EOS,

with 〈B2〉1/2 = 4.790 × 1017 G. Relevant data for all maximum

field strength models are collected in Table 2 and reveal that the

values of the maximum magnetic field strength decrease with in-

creasing circumferential radii Rcirc, and which itself is a telltale of

the stiffness of the EOS. As a result, the soft BPAL12 EOS with a

4 As customary, we consider the crust not as a solid but as a perfect fluid in

analogy with the fluid treatment of the core.
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Neutron stars with a toroidal magnetic field 3415

Figure 4. Isocontours of magnetic field strength (left-hand panel) and baryon number density (right-hand panel) in the (x, z) plane of model PP-APR of a

non-rotating star with a gravitational mass of M = 1.400 M⊙ and a circumferential radius of Rcirc = 11.34 km in the unmagnetized case built with the APR

EOS for a maximum average magnetic field strength of 〈B2〉1/2 = 3.597 × 1017 G. The grey disc indicates the dimensions of the unmagnetized reference

model. The physical properties of model PP-APR are listed in Table 4.

Table 2. Non-rotating neutron star models computed with different EOSs at the maximum field-strength limit. The gravitational mass is M = 1.400 M⊙
for each EOS respectively in the unmagnetized and non-rotating case for which properties are listed in Table 5. Bmax is the maximum value of the magnetic

field, 〈B2〉1/2 the root mean square average of the magnetic-field strength determined over the volume of the star, nb,c the central baryon number density

(×0.1 fm−3), M the gravitational mass, Rcirc the circumferential radius, I the moment of inertia, M/|W | the ratio of the total magnetic energy M to the

potential energy W, ǫs the surface deformation, ǫ the quadrupole distortion and GRV2/GRV3 the estimates of the global error of respective models based

on the relativistic virial identities introduced in Section 4.3.

EOS Bmax 〈B2〉1/2 nb,c M Rcirc I M/|W | ǫs ǫ | GRV2 | | GRV3 |
(×1017G) (×1017G) (×0.1 fm−3) (M⊙) (km) (×1038 kg m2)

Pol2 7.408 2.917 8.409 1.427 14.34 1.278 0.3186 −0.0806 −0.1986 7 × 10−11 3 × 10−9

APR 8.046 3.597 6.036 1.438 13.58 1.136 0.2922 −0.1176 −0.3045 5 × 10−7 4 × 10−7

BBB2 8.475 3.781 7.132 1.439 13.31 1.093 0.3133 −0.1138 −0.2899 3 × 10−6 4 × 10−6

BN1H1 6.414 2.830 7.174 1.432 15.14 1.319 0.2810 −0.1086 −0.3065 2 × 10−5 2 × 10−5

BPAL12 12.10 4.790 13.91 1.438 11.83 0.897 0.4589 −0.0782 −0.1729 3 × 10−6 4 × 10−6

FPS 9.090 4.019 7.908 1.440 12.99 1.046 0.3308 −0.1122 −0.2809 1 × 10−5 2 × 10−5

GNH3 5.090 2.161 4.182 1.427 17.06 1.605 0.1984 −0.1083 −0.3313 5 × 10−6 1 × 10−5

SLy4 7.523 3.341 5.972 1.436 14.04 1.191 0.2848 −0.1156 −0.3076 6 × 10−6 3 × 10−6

circumferential radius of only Rcirc = 11.83 km yields the model

with the highest maximum magnetic field strength, while the stiff

GNH3 EOS the model with the lowest one.

We note that in Fig. 3, we have employed the peak magnetic field

strength Bmax and not the average magnetic field strength 〈B2〉1/2,

which reaches its turning point already at a lower magnetization

level. For this reason, all models based on a realistic EOS are located

in a region where �nb,c > 0, as can be seen by a comparison with

the related values of the unmagnetized models compiled in Table 5.

The maximum values of the peak magnetic field strength Bmax are

sensibly larger than those of the average magnetic field strength

〈B2〉1/2, attaining their maximum value for the model built with the

FPS EOS with Bmax = 1.210 × 1018 G.

The slight increase of the gravitational mass is the result of dif-

ferent contributions, which can be illustrated by the example of the

PP-Pol2 model. More specifically, the increase by 0.02682 M⊙ in

the gravitational mass of the maximum field strength model with

respect to the unmagnetized model. This increase is the sum of

a positive contribution of 0.030 36 M⊙ due to the total magnetic

energy, of a negative contribution of −0.021 60 M⊙ due to the in-

ternal energy lost because of the increased volume, and of a positive

contribution of 0.018 06 M⊙ by which the magnetized model is less

gravitationally bound than its unmagnetized counterpart. Further-

more, all maximum field strength models exhibit smaller moments

of inertia than in the unmagnetized case because of the lateral com-

pression of the stellar core. Finally, we note that after reaching

a minimum value, the moments of inertia increase continuously

with the magnetization, as the growth of the dimensions of the star

becomes significant.

The values of the surface deformation ǫs and of the quadrupole

distortion ǫ obtained for our sample of maximum field strength

models also show a noticeable dependence on the stiffness of the

EOS. In particular, the value of ǫ decreases (its absolute value

increasing) with the increase of the circumferential radius Rcirc.

The Pol2 EOS model appears somehow at variance with this trend,

but we believe this is caused by our choice of a comparatively large

circumferential radius of Rcirc = 12.00 km in the unmagnetized

case, and which does not reflect the rather soft character of this

C© 2012 The Authors, MNRAS 427, 3406–3426
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3416 J. Frieben and L. Rezzolla

Figure 5. Surface deformation ǫs (left-hand panel) and quadrupole distortion ǫ (right-hand panel) for non-rotating models built with the Pol2 EOS and the

APR EOS as a function of the root mean square magnetic field strength 〈B2〉1/2 from the unmagnetized limit up to the maximum field strength models PP-Pol2

and PP-APR, respectively. The physical properties of models PP-Pol2 and PP-APR are listed in Table 4.

Figure 6. Isocontours of magnetic field strength (left-hand panel) and baryon number density (right-hand panel) in the (x, z) plane of model MM-Pol2 of a

non-rotating star with a gravitational mass of M = 1.400 M⊙ and a circumferential radius of Rcirc = 12.00 km in the unmagnetized case built with the Pol2

EOS for an average magnetic field strength of 〈B2〉1/2 = 0.1400 × 1017 G. The physical properties of model MM-Pol2 are listed in Table 3.

EOS. Lower and upper bounds for the quadrupole distortion are

set by the two extremal EOS of our sample: the model built with

the soft EOS BPAL12 with a radius of less than 12.00 km exhibits

the smallest quadrupole distortion despite of the largest ratio of

magnetic energy to binding energy, whereas the large GNH3 model

with a radius of 17.06 km shows the largest quadrupole distortion

for the lowest ratio of magnetic energy to binding energy of the

whole sample.

Much of what discussed so far is summarized in Fig. 5, where

we present the dependence of the surface deformation ǫs and of

the quadrupole distortion ǫ on the average magnetic field strength

〈B2〉1/2, for the representative Pol2 EOS and the APR EOSs. Note

that up to 〈B2〉1/2 ≃ 2.0 × 1017 G, the behaviour of both distortions is

essentially the same for the two EOSs and an almost perfectly linear

function5 of 〈B2〉. This is not particularly surprising and indeed ear-

lier Newtonian studies (Wentzel 1960; Ostriker & Gunn 1969) have

suggested to parametrize the quadrupolar distortion ǫNewt induced

5 This is not straightforward to deduce from Fig. 5, which reports ǫs and ǫ as

a function of 〈B〉. However, it is very apparent when plotting the distortions

as a function 〈B2〉 (not reported here for compactness).

in a self-gravitating incompressible fluid by a toroidal magnetic

field as a simple function of the ratio of the magnetic energy to the

binding energy, and hence as a function which is quadratic in the

magnetic field strength. Fig. 5 suggests therefore that this behaviour

is preserved also in general relativity and up to very large magnetic

fields, thus offering the possibility of expressing the magnetically-

induced deformation in terms of a simple algebraic expression with

coefficients which will correct the previously known Newtonian

ones. A more detailed discussion of this point is presented in Sec-

tion 7 and in Appendix A.

We conclude this section by commenting on a novel and partic-

ularly interesting result of our analysis of non-rotating configura-

tions, namely, that no physical or numerical limit was found for

the magnetization level. More specifically, after suitably increasing

the number of collocation points according to the desired level of

accuracy, we were able to find solutions with very large values of

the surface and quadrupolar deformations. As an example, we could

obtain convergent solutions of the non-rotating reference model of

Kiuchi & Yoshida (2008) with a baryon mass of Mb = 1.680 M⊙
and a circumferential radius of Rcirc = 14.30 km in the unmagne-

tized case, now strongly magnetized and attaining a circumferential

radius of Rcirc = 101.5 km and a related value of �Rcirc = 6.098.

C© 2012 The Authors, MNRAS 427, 3406–3426
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Neutron stars with a toroidal magnetic field 3417

Figure 7. Isocontours of magnetic field strength (left-hand panel) and baryon number density (right-hand panel) in the (x, z) plane of model MM-APR of a

non-rotating star with a gravitational mass of M = 1.400 M⊙ and a circumferential radius of Rcirc = 11.34 km in the unmagnetized case built with the APR

EOS for an average magnetic field strength of 〈B2〉1/2 = 0.2313 × 1017 G. The physical properties of model MM-APR are listed in Table 3.

While the average magnetic field strength 〈B2〉1/2 = 0.1461 × 1017 G

is about an order of magnitude smaller than the maximum value of

〈B2〉1/2 = 2.241 × 1017 G reached at a circumferential radius of

Rcirc = 17.09 km, the ratio of magnetic energy to binding energy

is much higher with values of M/|W | = 0.4868 and 0.1308, re-

spectively. The surface deformation of this model reaches a value

of ǫs = −0.2403 and the quadrupole distortion reaches an impres-

sive value of ǫ = −6.946. While clearly unrealistic for ordinary

neutron stars, young protoneutron stars may, in principle, attain

these magnetizations and possibly these sizes (Villain et al. 2004);

clearly, this represents a possibility that deserves a more careful

investigation.

In order to illustrate the extreme effects of the toroidal magnetic

field at high levels of magnetization, we have computed model

MM-Pol2 of the Pol2 EOS reference model with a gravitational

mass of M = 1.400 M⊙ and a circumferential radius of Rcirc =
12.00 km in the non-rotating and unmagnetized case, now inflated

to a circumferential radius of Rcirc = 100.0 km. Such an ‘extra-

large’ model is shown in Fig. 6, which, as the previous ones, reports

the isocontours of magnetic field strength (left-hand panel) and

baryon number density (right-hand panel) for an average magnetic

field strength of 〈B2〉1/2 = 0.1400 × 1017 G. The physical properties

of model MM-Pol2 are listed in Table 3. In this case, therefore, the

surface and quadrupolar deformations reach the extreme values of

ǫs = −0.2609 and ǫ = −7.803, respectively.

Although new and somewhat surprising, these results are not

totally unexpected, and we note that already for a purely poloidal

magnetic field, Cardall et al. (2001) doubted the existence of a mass-

shedding limit in the non-rotating case. This leads to the conclusion

that the non-convergence limit encountered by Kiuchi & Yoshida

(2008) at Rcirc = 28.85 km may be due to their numerical scheme.

Furthermore, to confirm that the extreme distortions reported for

model MM-Pol2 are not a peculiarity of the Pol2 EOS, we have found

similar equilibria also for model MM-APR, built with the APR EOS

with a gravitational mass of M = 1.400 M⊙ and a circumferential

radius of Rcirc = 11.34 km in the unmagnetized case. This is shown

in Fig. 7 and exhibits the same spindle-shaped matter distribution of

the stellar core for a circumferential radius of Rcirc = 90.26 km and

an average magnetic field strength of 〈B2〉1/2 = 0.2313 × 1017 G.

The physical properties of model MM-APR are listed in Table 2,

but we note here that the surface and quadrupolar deformations

reach the extreme values of ǫs = −0.1248 and ǫ = −4.810, re-

spectively. These values are smaller than those of model MM-Pol2

(despite the ratio of magnetic energy to binding energy is similar

and M/|W | ≈ 0.5) but shows quite clearly that extremely large

deformations are a feature of non-rotating models, independently of

the EOS.

6 ROTAT I N G M AG N E T I Z E D M O D E L S

Having investigated non-rotating models in the previous section,

we next turn to models that include rotation, which is well known

to induce deformations of the stars that are the opposite of those

discussed so far, namely, of introducing an oblateness generically

both in the surface deformation and in the quadrupole distortion. In

particular, we are concerned with determining the limits of the space

of solutions in terms of both the magnetization and the rotation rate.

To probe in detail such a space of solutions we consider two rotating

models corresponding to maximum field strength configurations of

the Pol2 EOS. The first of these reference models, which we refer

to as PO-Pol2, has a mean magnetic field strength of 〈B2〉1/2 =
2.324 × 1017 G and rotates at an angular velocity of Ω = 3.969 ×
103 s−1, thus with a moderate ratio of kinetic energy to binding

energy of T/|W| = 0.032 00. The second model, which we refer

to as OO-Pol2, has a mean magnetic field strength of 〈B2〉1/2 =
1.393 × 1017 G and rotates rapidly at an angular velocity of Ω =
5.050 × 103 s−1, with a ratio T/|W| = 0.071 36 (see Table 4 for a

complete list of the physical properties).

The magnetic field strength and the baryon number density of

both models are shown in Fig. 8, with the top row referring to

PO-Pol2 and the bottom one to OO-Pol2. The denomination of

these two models becomes apparent when considering the corre-

sponding surface and quadrupole deformations. While in fact the

qualitative properties of PO-Pol2 seem to resemble those of the

non-rotating model PP-Pol2, the surface of this model is markedly

flattened and indeed with a positive oblateness of ǫs = 0.1521.

C© 2012 The Authors, MNRAS 427, 3406–3426
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3418 J. Frieben and L. Rezzolla

Table 3. The same as in Table 2 but for models with large magnetizations of M/W ≈ 0.5.

Model Bmax 〈B2〉1/2 nb,c M Rcirc I M/|W | ǫs ǫ | GRV2 | | GRV3 |
(×1017 G) (×1017 G) (×0.1 fm−3) (M⊙) (km) (×1038 kg m2)

MM-Pol2 2.514 0.1400 1.832 1.508 100.0 9.024 0.5006 −0.2609 −7.803 2 × 10−5 1 × 10−4

MM-APR 6.166 0.2313 4.219 1.544 90.26 4.909 0.5095 −0.1248 −4.810 8 × 10−6 1 × 10−4

Table 4. Neutron star models at the maximum field strength limit. The gravitational mass is M = 1.400 M⊙ for each EOS, respectively, in the unmagnetized

and non-rotating case for which properties are listed in Table 5. Bmax is the maximum value of the magnetic field strength, 〈B2〉1/2 the root mean square value

of the magnetic field strength determined over the volume of the star, nb,c the central baryon number density (×0.1 fm−3), M the gravitational mass, Rcirc the

circumferential radius, I the moment of inertia, Ω the angular velocity, T/|W| the absolute value of the ratio of total kinetic energy T and potential energy

W, M/|W | the absolute value of the ratio of total magnetic energy M and potential energy W, ǫs the surface deformation, ǫ the quadrupole distortion, and

GRV2/GRV3 the estimates of the global error of respective models based on the relativistic virial identities introduced in Section 4.3.

Model Bmax 〈B2〉1/2 nb,c M Rcirc I Ω T/|W| M/|W | ǫs ǫ | GRV2 | | GRV3 |
(×1017G) (×1017G) (×0.1 fm−3) (M⊙) (km) (×1038 kg m2) (×103 s−1)

PP-Pol2 7.408 2.917 8.409 1.427 14.34 1.278 0.000 0.000 00 0.1326 −0.0806 −0.1986 4 × 10−11 3 × 10−9

PO-Pol2 5.898 2.324 7.077 1.427 16.35 1.549 3.969 0.032 00 0.1056 0.1521 −0.0684 1 × 10−10 2 × 10−10

OO-Pol2 3.264 1.393 5.470 1.424 19.05 1.971 5.050 0.071 36 0.0422 0.5861 0.0856 7 × 10−7 4 × 10−6

PP-APR 8.046 3.597 6.036 1.438 13.58 1.136 0.000 0.000 00 0.1754 −0.1176 −0.3045 5 × 10−7 4 × 10−7

PO-APR 7.361 3.255 5.861 1.437 14.64 1.247 4.219 0.026 71 0.1494 0.0703 −0.1622 2 × 10−6 1 × 10−6

OO-APR 5.548 2.551 5.493 1.432 16.31 1.431 6.004 0.062 76 0.0878 0.4591 0.0072 2 × 10−6 3 × 10−6

Table 5. Static reference models without magnetic field and with a gravitational mass of M = 1.400 M⊙. nb,c is the central baryon number density (×0.1 fm−3),

Mb the baryon mass, Rcirc the circumferential radius, I the moment of inertia, bB the magnetic distortion coefficient defined in equation (73), bΩ the rotational

distortion coefficient defined in equation (73), cB the magnetic distortion coefficient defined in equation (73), cΩ the rotational distortion coefficient defined in

equation (73), and GRV2/GRV3 the estimates of the global error of respective models based on the relativistic virial identities introduced in Section 4.3.

EOS nb,c Mb Rcirc I bB bΩ cB cΩ | GRV2 | | GRV3 |
(×0.1 fm−3) (M⊙) (km) (×1038 kg m2)

Pol2 7.942 1.523 12.00 1.280 5.860 × 10−7 6.137 × 10−9 8.338 × 10−7 2.456 × 10−9 4 × 10−13 3 × 10−12

APR 5.538 1.553 11.34 1.306 6.545 × 10−7 5.579 × 10−9 7.922 × 10−7 2.481 × 10−9 6 × 10−5 8 × 10−5

BBB2 6.368 1.555 11.13 1.256 5.809 × 10−7 5.229 × 10−9 6.989 × 10−7 2.282 × 10−9 6 × 10−5 8 × 10−5

BN1H1 5.018 1.529 12.90 1.590 1.137 × 10−6 8.215 × 10−9 1.547 × 10−6 3.845 × 10−9 5 × 10−6 3 × 10−6

BPAL12 11.88 1.549 10.06 0.971 2.619 × 10−7 3.528 × 10−9 3.178 × 10−7 1.267 × 10−9 2 × 10−5 3 × 10−5

FPS 6.949 1.559 10.85 1.200 4.912 × 10−7 4.821 × 10−9 5.798 × 10−7 2.076 × 10−9 5 × 10−5 7 × 10−5

GNH3 3.654 1.512 14.20 1.814 1.577 × 10−6 1.078 × 10−8 2.362 × 10−6 5.132 × 10−9 1 × 10−4 1 × 10−4

SLy4 5.376 1.546 11.72 1.367 7.422 × 10−7 6.141 × 10−9 9.310 × 10−7 2.756 × 10−9 9 × 10−5 1 × 10−4

The matter distribution inside the star, however, is still prolately

deformed, as confirmed by a negative value of the quadrupole dis-

tortion, namely ǫ =−0.0684. On the other hand, for modelOO-Pol2

both the surface deformation and the quadrupole distortion are pos-

itive, i.e. ǫs = 0.5861 and ǫ = 0.0856, even though the isocontours

of the baryon number density are still prolate towards the centre of

the star. Interestingly, for model PO-Pol2, for which the magnetic

field is still dominating, the ratio of the magnetic energy to the

binding energy M/|W | exceeds that of the kinetic energy to the

binding energy T/|W|, whereas for model OO-Pol2, the opposite is

true. Hence, while this condition does not hold in all cases, we can

take the inequality M/T � 1 as a first approximate criterion for the

production of a negative quadrupole distortion. A more quantitative

discussion on this will be presented in Section 7.

In our sampling of the space of parameters we have computed a

total of more than 900 models of rotating and magnetized equilib-

rium configurations of the Pol2 EOS, which are uniquely labelled

by the values of the angular velocity Ω and of the magnetization

parameter λ0. The latter extends up to a maximum obtained for a

non-rotating model with a radius of Rcirc = 19.45 km and a ratio of

magnetic energy to binding energy of M/|W | = 0.2448.6 Overall,

the space of physical solutions is delimited by four boundaries: (1)

the non-rotating limit with Ω = 0; (2) the unmagnetized limit with

B = 0; (3) the (self-imposed) ‘truncation limit’ with respect to the

magnetization parameter λ0; (4) the mass-shedding limit, beyond

which no rotating solution does exist.

We have already noted that for non-rotating models the mean

magnetic field strength 〈B2〉1/2 is not a monotonic function of the

magnetization parameter λ0 and that after attaining a maximum

value of 〈B2〉1/2 = 2.917 × 1017 G, it decreases continuously as the

magnetization is increased. This behaviour has been found also for

rotating models, thus implying a non-uniqueness for models in the

space (Ω2, 〈B2〉). Such a degeneracy could be avoided by replac-

ing the average magnetic field strength with a quantity that grows

monotonically with magnetization, e.g. the circumferential radius

6 Note that the ‘extra-large’ models shown in Figs 6 and 7 are located

beyond the truncation limit and thus do not belong to what we consider as

the parameter space.
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Neutron stars with a toroidal magnetic field 3419

Figure 8. Isocontours of magnetic field strength (left-hand panel) and baryon number density (right-hand panel) in the (x, z) plane of the PO-Pol2 and

OO-Pol2 models of a star, built with a polytropic EOS with γ = 2 with a gravitational mass of M = 1.400 M⊙ and a circumferential radius of Rcirc = 12.00 km

in the unmagnetized and non-rotating case, which is now rotating at Ω = 3.969 × 103 s−1 (top) and Ω = 5.050 × 103 s−1 (bottom), respectively. The grey

disc indicates the dimensions of the unmagnetized reference model. The physical properties of models PO-Pol2 and OO-Pol2 are listed in Table 4.

Rcirc or the ratio of magnetic energy to binding energy M/|W |.
However, because of their fundamental astrophysical importance,

we have chosen to report the results for the surface deformation ǫs

and the quadrupole distortion ǫ in terms of the mean magnetic field

strength 〈B2〉1/2 as the ordering quantity and of the angular velocity

Ω.

The presence of this degeneracy implies that when evaluated in

the space of parameters (Ω2, 〈B2〉), the distortions ǫs and ǫ will

select a two-dimensional surface which can be split up along the

turning points of maximum magnetic field strength into a lower

sheet, where 〈B2〉1/2 increases as a function of the magnetization

parameter λ0, and an upper sheet, where the opposite happens. The

left-hand panel of Fig. 9, in particular, shows the surface deforma-

tion ǫs for the lower part of the solution space, while the right-hand

panel is its continuation beyond the turning point of 〈B2〉1/2 and

thus represents the upper sheet of the surface. Since non-rotating

magnetized models always have a prolate shape, i.e. ǫs < 0, while

rotating unmagnetized models always have an oblate one, i.e. ǫs >

0, it follows that rotating models between these limiting cases are

divided into prolate ones and oblate ones by a neutral line ǫs = 0.

According to its definition in equation (68), the neutral line ǫs =
0 does not require the stellar interior to be spherically symmetric

and, indeed, when moving towards large values of the circumfer-

ential radius Rcirc, models with comparable values of the equatorial

and polar coordinate radii re, rp (i.e. with ǫs → 0) show a progres-

sively more pronounced ‘diamond shape’ caused by an increasingly

spindle-shaped matter distribution inside the star.

Unlike the magnetic potential, the centrifugal one is not confined

to the star, and its influence increases moving away from the axis

of rotation, reaching its minimum at the equator of the star. Note

that M̃ = 0 at the surface of the star, so that the latter is now an

isosurface of the function ν − ln Γ (cf. equation 53). From Fig. 9,

C© 2012 The Authors, MNRAS 427, 3406–3426
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3420 J. Frieben and L. Rezzolla

Figure 9. Isocontours of the surface deformation ǫs for the Pol2 EOS reference model with a gravitational mass of M = 1.400 M⊙ and a circumferential radius

of Rcirc = 12.00 km in the unmagnetized and non-rotating case. The curved line which connects the non-rotating model with a maximum average magnetic

field strength of 〈B2〉1/2 = 2.917 × 1017 G with the unmagnetized model rotating at the mass-shedding limit of Ω = 5.205 × 103 s−1 separates the lower part

of the solution space (left-hand panel) where the mean magnetic field strength increases as a function of the field strength parameter λ0 from the upper part of

the solution space (right-hand panel) where the mean magnetic field strength decreases as a function of the latter. In the right-hand panel, we have also shown

the lower sheet lying underneath.

we further infer that for any fixed angular velocity Ω ≥ Ω0, where

Ω0 = 2.594×103 s−1 is the maximum angular velocity at the mag-

netization truncation limit, the mass-shedding limit is reached for

some oblate shape and ǫs > 0. Since the toroidal magnetic field

is a source of additional pressure, augmenting the magnetization

not only increases the deformation of the surface and of the mat-

ter distribution, but it also causes an expansion, particularly of the

circumferential radius Rcirc. At a sufficient level of magnetization,

it will therefore be possible to reach the mass-shedding angular ve-

locity, i.e. the rotation frequency such that the condition of geodesic

motion at the equator is satisfied, and the star will develop the

characteristic cusp at the equator. Because this angular frequency

is smaller than the corresponding one for an unmagnetized model

having the same rest mass, the toroidal magnetic field indirectly sets

a reduced limit of the spin frequency of these objects. In Fig. 9, this

mass-shedding limit corresponds to the lower right-hand bound-

ary of the upper part of the solution space (see right-hand panel)

and along this limit, the Newtonian condition of geodesic motion,

Ω2R3
circ = const, is fulfilled. Note also that with the exception of the

unmagnetized one, all mass-shedding models appear to belong to

the upper sheet of the solution space. For models rotating at angular

velocities up to that of model OO-Pol2, i.e. Ω = 5.050 × 103 s−1,

we have verified this proposition directly by determining the turn-

ing point of 〈B2〉1/2; for even more rapidly rotating models for

which the numerical determination of the maximum field strength

limit has not been conclusive, it is supported by extrapolating the

boundary between lower and upper part of the solution space be-

yond model OO-Pol2 towards the unmagnetized mass-shedding

limit.

Using a small set of additional rotating models computed be-

yond the magnetization truncation limit, we have started exploring

the behaviour of the equilibrium models in these rather extreme

conditions. Overall, we have found that the angular velocity of

mass-shedding models decreases progressively, while the boundary

associated with the mass-shedding limit and the neutral line ǫs =
0 converge to the point (Ω2, 〈B2〉) = (0, 0). These results suggest

therefore that the solution at (Ω2, 〈B2〉) = (0, 0) in the upper sheet

of the space of solutions corresponds to the limit of a non-rotating

model of infinite radius and vanishing mean magnetic field strength.

This fascinating suggestion clearly requires a more extensive anal-

ysis to be confirmed; we postpone this to a subsequent work.

Fig. 9 also reveals that unlike in the unmagnetized rotating case

with the same angular velocity Ω, all magnetized mass-shedding

configurations behave qualitatively identically when the magneti-

zation is altered, namely, lowering their magnetization moves them

away from the mass-shedding limit. Accordingly, rotation becomes

sub-critical, and the characteristic cusp at the equator disappears,

which is accompanied by a decrease of the surface deformation.

Slowly rotating models pass through different stages as the mag-

netization is lowered from the mass-shedding limit to the given

angular velocity Ω down to the limit of vanishing magnetization.

More specifically, we find that (i) below the mass-shedding limit, ǫs

remains positive, but decreases continuously until the neutral line

ǫs = 0 is crossed for the first time; (ii) the models then become in-

creasingly prolate because the toroidal magnetic field becomes the

principal source of deformation until they reach some negative min-

imum value of ǫs; (iii) as the magnetization is further decreased, ǫs

increases progressively, and models eventually become oblate again

when they cross the neutral line ǫs = 0 for a second time, and rotation

prevails over a decreasing toroidal magnetic field. For models rotat-

ing at moderate angular velocities of 3 × 103 � Ω � 5 × 103 s−1,

the behaviour is similar to that of slowly rotating ones, except that

ǫs remains positive, so that the models always exhibit an oblate

shape regardless of the level of magnetization. Finally, rapidly ro-

tating models with Ω � 5×103 s−1 remain close to the magnetized

mass-shedding limit regardless of the magnetization level.

Generally speaking, for any fixed angular velocity Ω, the line

Ω = const is tangential to exactly one level curve of ǫs. The touch-

ing point determines the magnetization level for which the surface

deformation attains its minimum. For decreasing angular velocity,

these minima move to higher magnetizations and smaller values of

ǫs. The angular velocity Ω′ for which the maximum magnetic field

strength model exhibits ǫs = 0.007 separates rotating models into

two groups: (1) models rotating at Ω > Ω′ are always oblate, and

the model of minimum (positive) surface deformation is located in

the lower part of the solution space; (2) models rotating at Ω <

C© 2012 The Authors, MNRAS 427, 3406–3426
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Neutron stars with a toroidal magnetic field 3421

Figure 10. Isocontours of the quadrupole distortion ǫ for the Pol2 EOS reference model with a gravitational mass of M = 1.400 M⊙ and a circumferential

radius of Rcirc = 12.00 km in the unmagnetized and non-rotating case. The curved line which connects the non-rotating model with a maximum average

magnetic field strength of 〈B2〉1/2 = 2.917 × 1017 G with the unmagnetized model rotating at the mass-shedding limit of Ω = 5.205 × 103 s−1 separates the

lower part of the solution space (left-hand panel) where the mean magnetic field strength increases as a function of the field strength parameter λ0 from the

upper part of the solution space (right-hand panel) where the mean magnetic field strength decreases as a function of latter. In the right-hand panel we have

also shown the lower sheet lying underneath.

Ω′ include a model of minimum surface deformation ǫs ≤ 0.007,

which is located in the upper part of the solution space.

Fig. 10 provides an equivalent representation of the data shown

in Fig. 9 but this time in terms of the quadrupole distortion ǫ. Also

in this case, the space of the numerical solutions is split into an

upper sheet and a lower one, where the distinction is the same

one as made for the surface distortion ǫs. For all models, ǫ in-

creases monotonically as a function of the magnetization, and the

neutral line ǫ = 0 extends from the non-rotating and unmagne-

tized reference model, up to a strongly magnetized mass-shedding

model with 〈B2〉1/2 ≈ 2 × 1017 G rotating at an angular velocity

of Ω ≈ 4.5 × 103 s−1 and with T/|W| ≈ 0.06. Thus, even rapidly

rotating models can exhibit a prolate matter distribution provided

the magnetization is sufficiently strong. Although we have trun-

cated the solution space towards high magnetizations, the minimum

quadrupole distortion of ǫ = −0.6127, which corresponds to the

strongest prolate deformation of our sample and has been obtained

for the non-rotating model at the magnetization truncation limit, ex-

ceeds considerably the quadrupole distortion ǫ = 0.1537 of the un-

magnetized mass-shedding model rotating at Ω = 5.205 × 103 s−1

with T/|W| = 0.09380. This significant difference can be explained

by the large ratio M/|W | = 0.2448 of the magnetized model. Since

no mass-shedding limit has been encountered in the non-rotating

magnetized case, M/|W | can possibly attain arbitrarily high values

and accordingly, the quadrupole distortion ǫ can, in principle, grow

without bounds, too. We leave the assessment of this conjecture to

a subsequent work.

We also note that whereas all mass-shedding models exhibit an

oblate surface deformation for which ǫs > 0, only rapidly rotating

mass-shedding models with Ω � 4.5 × 103 s−1 show a positive

quadrupole distortion with ǫ > 0. On the other hand, all mass-

shedding models rotating at lower angular velocities actually pos-

sess a prolate matter distribution and ǫ < 0 which, moreover, seems

to grow without bounds for increasing magnetization like in the

non-rotating case. Altogether, Figs 9 and 10 reveal that the neutral

lines ǫs = 0 and ǫ = 0 differ significantly, suggesting the division

of the space of solutions of magnetized and rotating models into

three classes: (1) models for which apparent shape and distortion

of the matter distribution are both prolate, thus with ǫs < 0 and

ǫ < 0, which we label PP for prolate–prolate; (2) models for which

the apparent shape is oblate and the distortion of the matter distri-

bution is prolate, thus with ǫs > 0 and ǫ < 0, which we label PO for

prolate–oblate; (3) models for which apparent shape and distortion

of the matter distribution are both oblate, thus with ǫs > 0 and

ǫ > 0, which we label OO for oblate–oblate. As a result, in contrast

with the results of Kiuchi & Yoshida (2008), rotating models with a

strong toroidal magnetic field do not necessarily exhibit a negative

quadrupole distortion ǫ (cf. discussion in Section 2 and Fig. 1).

Representative models for each of the three classes located at

the maximum field strength limit have been presented in Section 5,

namely model PP-Pol2, the non-rotating configuration with a pro-

late apparent shape and a prolate matter distribution, and earlier

in this section, namely model PO-Pol2, with a prolate apparent

shape and an oblate matter distribution, and model OO-Pol2 with

an oblate shape and an oblate matter distribution. Within Figs 9 and

10, their positions in the lower and upper parts of the solution space

have been marked by red dots along the line of maximum mag-

netic field strength related to 〈B2〉1/2. Note that no model exists for

which the apparent shape is prolate and the distortion of the matter

distribution oblate, i.e. ǫs < 0 and ǫ > 0; therefore, because of the

different nature of the forces caused by a toroidal magnetic field and

rotation, a class OP does not exist. While magnetic and centrifugal

forces distort the matter distribution at a comparable level with re-

spect to the involved amounts of magnetic and kinetic energy, the

magnetic potential is confined and does not act on the surface of the

star directly through equation (53). Therefore, already in the mag-

netized and non-rotating case, the surface deformation is always

smaller than the quadrupole distortion. Moreover, since centrifu-

gal forces act more efficiently at large distances from the rotation

axis, their influence on the surface of the star can be significant,

and indeed the value of ǫs = 0.7242 obtained at the unmagnetized

mass-shedding limit is considerably larger (in absolute terms) than

the value obtained for the non-rotating model at the upper magneti-

zation limit of ǫs = −0.1369; the opposite is true when considering

C© 2012 The Authors, MNRAS 427, 3406–3426

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
7
/4

/3
4
0
6
/9

7
3
9
6
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



3422 J. Frieben and L. Rezzolla

Figure 11. Isocontours of magnetic field strength (left-hand panel) and baryon number density (right-hand panel) in the (x, z) plane of the PO-APR and OO-APR

models of a star, built with the APR EOS with a gravitational mass of M = 1.400 M⊙ in the unmagnetized and non-rotating case, which is now rotating at

Ω = 4.219 × 103 s−1 (top) and Ω = 6.004 × 103 s−1 (bottom), respectively. The grey disc indicates the dimensions of the unmagnetized reference model.

Physical properties of models PO-APR and OO-APR are listed in Table 4.

the quadrupole distortion with respective values of ǫ = −0.6127

and 0.1537.

In order to assess the general validity of our results obtained in

the rotating case for the analytic Pol2 EOS, we have compared the

two rotating models PO-Pol2 and OO-Pol2 with the corresponding

models PO-APR and OO-APR, built with the APR EOS for identical

values of the T/|W| ratio at the unmagnetized limit, i.e. T/|W| = 0.03

and 0.07. The physical properties of all models are listed in Table 4,

where it is clear that the effects of rotation are less pronounced

for the two APR models because of the stiffer nature of the APR

EOS. The APR models admit a higher maximum value of T/|W| =
0.1052 at the unmagnetized mass-shedding limit, which should be

compared with the corresponding T/|W| = 0.09380 for the softer

Pol2 EOS. Moreover, as discussed in Section 5, the APR EOS

reference model supports a higher maximum field strength when

compared to the Pol2 EOS one, which causes magnetic effects to

be stronger for the two models PO-APR and OO-APR.

The toroidal magnetic field strength and the baryon number den-

sity for the PO-APR and OO-APR models are reported in Fig. 11,

which shows that the matter distributions are less condensed (the

EOS is stiffer) and the peaks of the magnetic field strength have

moved slightly outward. Their prolate deformation appears more

pronounced in agreement with the higher ratio M/|W |, and the

outer crust is easily discernible because the magnetic field is es-

sentially absent from this low-density region. The ratio T/|W| for

models PO-APR and OO-APR is smaller than that of their unmag-

netized counterparts, in agreement with their smaller moments

of inertia. In contrast, models PO-Pol2 and OO-Pol2 are al-

ready located in the region of increasing moments of inertia and

show ratios T/|W| = 0.03200 and 0.07119, which are larger than

those of the unmagnetized models rotating at the same angular

velocities Ω.

Finally, Fig. 12 compares the dependence of ǫs and ǫ on the

magnetization levels for the four reference rotating models (cf.

C© 2012 The Authors, MNRAS 427, 3406–3426
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Neutron stars with a toroidal magnetic field 3423

Figure 12. Surface deformation ǫs (left-hand panel) and quadrupole distortion ǫ (right-hand panel) for rotating models built with the Pol2 EOS and the APR

EOS as a function of the mean square magnetic field strength 〈B2〉 from the unmagnetized limit up to the maximum field strength models PO-Pol2 and PO-APR

as well as OO-Pol2 and OO-APR. The angular velocities are chosen such that T/|W| = 0.03 and T/|W| = 0.07, respectively, in the unmagnetized case.

Fig. 5, where the comparison was made for the non-rotating models

PP-Pol2 and PP-APR). Clearly, there is a good qualitative agree-

ment between the two EOSs with differences that are due mostly to

the higher maximum magnetic field strength and the higher max-

imum value of T/|W| supported by models PO-APR and OO-APR.

Note that model OO-Pol2 is so close to the mass-shedding limit

that it is the only one for which models rotating at the same angu-

lar velocity Ω show increasing ǫs from the unmagnetized limit on.

While all sequences in the left-hand panel of Fig. 12 maintain an

oblate shape, those associated with models PO-Pol2 and PO-APR

show a transition from an oblate matter distribution to a prolate one

(right-hand panel of Fig. 12).

7 D ISTO RTION C OEFFICIENTS

Despite the complex behaviour shown by the equilibrium models

when both the magnetic field strength and the rotation are varied, it

is possible to express such a behaviour through a very simple alge-

braic expression. This was pointed out already by Wentzel (1960)

and Ostriker & Gunn (1969), who have considered this issue in

earlier Newtonian studies and have suggested to parametrize the

quadrupole distortion ǫNewt induced by a toroidal magnetic field

and by rotation in a self-gravitating incompressible fluid, respec-

tively, as

ǫNewt = ǫB + ǫΩ = −aB

M

|W |
+ aΩ

T

|W |
, (72)

where aB = aΩ = 3.750. This approximation was adopted also by

Cutler (2002) in order to derive an estimate for the quadrupole dis-

tortion of neutron stars, within a Newtonian framework. Since neu-

tron stars are highly relativistic objects, we next consider whether

an expression similar to equation (72) can be derived in a relativis-

tic regime and the quantitative differences that then emerge with

respect to a Newtonian treatment.

We start by recalling that already in Section 6 we have remarked

how the surface deformation ǫs and the quadrupole distortion ǫ for

highly magnetized and rapidly rotating models exhibit an almost

linear dependence on Ω2 and on 〈B2〉. As a result, we can express

these quantities in terms of ‘deformation coefficients’

ǫs = −bB

〈

B2
15

〉

+ bΩ Ω2, ǫ = −cB

〈

B2
15

〉

+ cΩ Ω2 , (73)

where B15 expresses the magnetic field strength in units of 1015 G

and Ω is expressed in s−1. The distortion coefficients bB , bΩ for the

surface deformation ǫs and the coefficients cB, cΩ for the quadrupole

distortion ǫ can be easily computed through the directional deriva-

tives along the coordinate axes of Ω2 and 〈B2〉 and are collected in

Table 5 besides the basic properties of the unperturbed models for all

of the EOSs considered. The importance of these distortion coeffi-

cients is that they provide all the information needed to compute the

resulting values of ǫs and ǫ by simply inserting appropriate values

for the angular velocity Ω and for the mean magnetic field strength

〈B2
15〉1/2 in equation (73). In addition, the approximate expressions

of equation (73) can cover a very large portion of the physically

realistic space of parameters and, for example, in the case of the

Pol2 EOS the phenomenological relations yield relative errors � 8

per cent up to values of 〈B2〉1/2 = 1×1017 G and angular velocities

of Ω = 2 × 103 s−1, which largely cover all known magnetars.

We note that the quadratic dependence expressed by equation (73)

applies only to old and cold neutron stars without a superconducting

proton phase, or to hot protoneutron stars. However, for type II

superconducting neutron stars, it has been shown that below the

first critical magnetic field strength Hc1 ≈ 1015 G, the magnetic

field is confined to flux tubes of strength Bc1 ≈ 1015 G, which

enlarge the anisotropic part of the average electromagnetic stress

tensor (Jones 1975; Easson & Pethick 1977) by a factor of Hc1/B.

As a result, for magnetized models with 〈B〉 < 1015 G, a linear

dependence of the matter distortion on the average magnetic field

strength is expected, and at 〈B〉 = 1015 G, the enhancement factor

is Hc1/B = 1, and this allows us to match the normal-MHD and the

superconducting case at this value of 〈B〉. As a result, equation (73)

has to be modified taking the alternate form

ǫs = −bB 〈B15〉 + bΩ Ω2, ǫ = −cB 〈B15〉 + cΩ Ω2 , (74)

In principle, the coefficients appearing in equation (74) should be

calculated from the self-consistent equilibrium models of magne-

tized superconducting relativistic stars, something which is still

rather difficult to do. In practice, however, it is possible to take as

coefficients the same as those in equation (73), bearing in mind,

however, that the corresponding estimates are useful only as a first

approximation and as an improvement over the corresponding co-

efficients by Cutler (2002).

Beyond the second critical magnetic field strength Hc2, where

Hc2 > Hc1, superconductivity is suppressed, and equation (73) ap-

plies without restriction yielding the usual quadratic scaling.

Fig. 13 offers a graphical representation of the distortion coef-

ficients for the surface deformation (left-hand panel) and for the

quadrupole distortion (right-hand panel). The coefficients bB and

cB as well as bΩ and cΩ are computed for different EOSs and

using the reference non-rotating models with a gravitational mass

C© 2012 The Authors, MNRAS 427, 3406–3426
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3424 J. Frieben and L. Rezzolla

Figure 13. Distortion coefficients bB and bΩ for ǫs (left-hand panel) as well as cB and cΩ for ǫ (right-hand panel) derived in the linear regime by perturbing a

non-rotating and unmagnetized star with a gravitational mass of M = 1.400 M⊙.

of M = 1.400 M⊙. Also shown as a grey-shaded band are the

distortion coefficients of non-rotating models with a Pol2 EOS hav-

ing the same gravitational mass, but where the polytropic constant

is varied to obtain different circumferential radii Rcirc (these have

therefore Rcirc ≥ 9.891 km). The influence of the different EOSs is

in fact most easily followed through the associated circumferential

radius Rcirc, which had already turned out to be a crucial quantity

for the maximum field strength models presented in Section 5. As

we explain in Appendix A, using basic scaling considerations, the

magnetic distortion coefficients exhibit a dependence of the type

bB , cB ∝ R4
circ, whereas the rotational distortion coefficients exhibit

a dependence of the type bΩ, cΩ ∝ R3
circ.

Also shown for comparison in Fig. 13 are the Newtonian refer-

ence model from Cutler (2002), labelled Pol2C10, and its numerical

equivalent as computed with our code in the Newtonian limit, la-

belled as Pol2N10.7 Note that both Newtonian models have similar

values of cB and that the Pol2N10 data point is rather close to the

reference band of relativistic Pol2 EOS models. However, the ro-

tational distortion coefficient cΩ reported in Cutler (2002) exceeds

the correct Newtonian one of model Pol2N10 by almost a factor

of 2. Furthermore, both data points largely overestimate the correct

relativistic result obtained for model Pol2R10 which is about a fac-

tor of 4 smaller and located at the lower end of the relativistic Pol2

EOS. This simple example highlights therefore how a Newtonian

treatment is inadequate for the determination of realistic distortion

coefficients for real neutron stars.

8 C O N C L U S I O N S

We have computed models of rotating relativistic stars with a

toroidal magnetic field under the assumption that the matter is a

single-constituent perfect fluid described by a one-parameter EOS

and behaves as a perfect conductor subject to the laws of ideal MHD.

We have investigated the combined effects of a toroidal magnetic

field and rotation on the apparent shape and on the internal mat-

ter distribution, focusing in particular on the quadrupole distortion,

as this is the relevant quantity for the gravitational-wave emission.

Models of maximum field strength have been computed for a sam-

ple of eight different nuclear matter equations of state, together with

the surface deformation and the quadrupole distortion.

7 Only the quadrupole distortion coefficients cB and cΩ for model Pol2C10

were considered by Cutler (2002).

We have found that non-rotating models appear to admit ar-

bitrary levels of magnetization accompanied by a seemingly un-

limited growth of size and quadrupole distortion. In particular,

we have been able to compute a highly magnetized model for

the Pol2 EOS with a baryon mass of Mb = 1.680 M⊙, whose

circumferential radius of Rcirc = 14.30 km in the unmagnetized

case inflates to Rcirc = 101.5 km for an average magnetic field of

〈B〉 = 0.1461 × 1017 G. These results should be contrasted with

those of Kiuchi & Yoshida (2008), who reported a loss of con-

vergence for this model at a moderate level of magnetization and

corresponding to a value of merely Rcirc = 28.85 km.

When considering rotating models we have instead found that the

increase in equatorial size introduced by the toroidal magnetic field

reduces the frequency at which mass shedding would otherwise ap-

pear in unmagnetized models. Overall, the full space of solutions

can be split up into three distinct classes for which the surface dis-

tortion and the quadrupole distortion are either prolate and prolate,

oblate and prolate, or oblate and oblate, respectively.

We have also determined the relativistic distortion coefficients

whose absolute value depends mainly on the radius of the star for

all the EOSs considered. Using such coefficients it is possible to

compute the surface deformation and the quadrupole distortion by

means of a simple algebraic expression which is effective for all

magnetizations and rotation rates of known magnetars. Finally, a

comparison with the corresponding Newtonian distortion coeffi-

cients has shown that the latter overestimate the quadrupole distor-

tion induced by the toroidal magnetic field by about a factor of 6

and the one induced by rotation by about a factor of 3. Hence, they

are inadequate for strongly relativistic objects like neutron stars.

The results presented here relative to equilibrium configurations

provide the first basic steps to explore the stability properties of

magnetized stars, whose analysis in full general relativity has re-

cently seen a spur of activity (Ciolfi et al. 2011; Kiuchi, Yoshida

& Shibata 2011; Lasky et al. 2011; Ciolfi & Rezzolla 2012; Lasky,

Zink & Kokkotas 2012; Zink, Lasky & Kokkotas 2012). We will

investigate the stability properties of our models in a forthcoming

paper.

AC K N OW L E D G M E N T S

We thank Eric Hirschmann for useful discussions. This work was

supported in part by the DFG grant SFB/Transregio 7. JF grate-

fully acknowledges financial support from the Daimler und Benz

Stiftung.

C© 2012 The Authors, MNRAS 427, 3406–3426

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
7
/4

/3
4
0
6
/9

7
3
9
6
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Neutron stars with a toroidal magnetic field 3425

R E F E R E N C E S

Akmal A., Pandharipande V. R., Ravenhall D. G., 1998, Phys. Rev. C, 58,

1804

Balberg S., Gal A., 1997, Nucl. Phys. A, 625, 435

Baldo M., Bombaci I., Burgio G. F., 1997, A&A, 328, 274

Bardeen J. M., Piran T., 1983, Phys. Rep., 96, 205

Bocquet M., Gourgoulhon E., Novak J., 1995, A&A, 301, 757

Bombaci I., 1996, in Bombaci I., Bonaccorso A., Fabrocini A., Kievsky A.,

Rosati S., Viviani M., eds, Perspectives on Theoretical Nuclear Physics.

Edizioni ETS, Pisa, p. 223

Bonanno A., Rezzolla L., Urpin V., 2003, A&A, 410, L33

Bonazzola S., 1973, ApJ, 182, 335

Bonazzola S., Gourgoulhon E., 1994, Classical Quantum Gravity, 11, 1775

Bonazzola S., Gourgoulhon E., 1996, A&A, 312, 675

Bonazzola S., Gourgoulhon E., Salgado M., Marck J. A., 1993, A&A, 278,

421

Bonazzola S., Gourgoulhon E., Marck J. A., 1998, Phys. Rev. D, 58, 104020

Cardall C. Y., Prakash M., Lattimer J. M., 2001, ApJ, 554, 322

Carter B., 1970, Commun. Math. Phys., 17, 233

Carter B., 1973, in DeWitt C., DeWitt B. S., eds, Black Holes – Les Houches

1972: Stationary-axisymmetry, Circularity, and the Papapetrou Theo-

rem. Gordon and Breach Science Publishers, New York, p. 159

Ciolfi R., Rezzolla L., 2012, ApJ, 760, 1

Ciolfi R., Ferrari V., Gualtieri L., Pons J. A., 2009, MNRAS, 397, 913

Ciolfi R., Ferrari V., Gualtieri L., 2010, MNRAS, 406, 2540

Ciolfi R., Lander S. K., Manca G. M., Rezzolla L., 2011, ApJ, 736, L6

Colaiuda A., Ferrari V., Gualtieri L., Pons J. A., 2008, MNRAS, 385, 2080

Cutler C., 2002, Phys. Rev. D, 66, 084025

Das M. K., Tandon J. S., 1977, Ap&SS, 49, 277

Douchin F., Haensel P., 2001, A&A, 380, 151

Duncan R. C., Thompson C., 1992, ApJ, 392, L9

Easson I., Pethick C. J., 1977, Phys. Rev. D, 16, 275

Frieben J., Rezzolla L., 2007, Rotating neutron star models with a toroidal

magnetic field, Talk at SFB/TR7 Video Seminar, http://wwwsfb.tpi.uni-

jena.de/VideoSeminar/Files/20070618-frieben.pdf

Fujisawa K., Yoshida S., Eriguchi Y., 2012, MNRAS, 422, 434

Glendenning N. K., 1985, ApJ, 293, 470

Gourgoulhon E., 2012, Lecture Notes in Physics, Vol. 846, 3 + 1 Formalism

in General Relativity. Springer-Verlag, Berlin

Gourgoulhon E., Bonazzola S., 1993, Phys. Rev. D, 48, 2635

Gourgoulhon E., Bonazzola S., 1994, Classical Quantum Gravity,

11, 443

Gourgoulhon E., Haensel P., Livine R., Paluch E., Bonazzola S., Marck J.,

1999, A&A, 349, 851
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APPENDIX A : A SSESSMENT O F R ESULTS BY

C U T L E R ( 2 0 0 2 )

As anticipated in Section 7, earlier Newtonian studies have sug-

gested to express the quadrupole distortion ǫNewt induced in a self-

gravitating incompressible fluid by a toroidal magnetic field and

by rotation, respectively, as function of the total magnetic energy

M, of the kinetic energy T , and of the potential energy W, namely

through equation (72) (Wentzel 1960; Ostriker & Gunn 1969). For

a spherical star built with a polytropic EOS with γ = 2 it is easy to

estimate that

T =
1

5
κ1MR2Ω2, W = −

3

4

M2

R
, (A1)

where κ1 = 0.653 45 is a constant derived by Lai, Rasio & Shapiro

(1993). As a result, the ratio of the kinetic to binding energy will

scale as T/|W|∝R3. On the other hand, the total magnetic energy

M of the same body reads

M =
1

8π

∫

V

B2 dV =
4π

3
R3〈B2〉 , (A2)

where 〈B2〉 denotes the mean square average of the magnetic field

strength B inside the star. It then follows that M/|W | ∝ R4. Even-

tually, the total distortion ǫ can be expressed in terms of mean

magnetic field strength 〈B2〉1/2 and angular velocity Ω, namely (cf.

equation 73)

ǫNewt = ǫB + ǫΩ = −cB

〈

B2
15

〉

+ cΩ Ω2 . (A3)

For a Newtonian model with M = 1.400 M⊙ and a radius of R =
10.00 km, Cutler (2002) has computed cB according to equations

(A1) and (A2) and reported the distortion coefficients as

cB = 1.600 × 10−6 , cΩ = 7.600 × 10−9 . (A4)

However, if we use equations (A1) and (A2) and adopt an identical

model with M = 1.400 M⊙ and R = 10.00 km, we obtain

cB = 1.610 × 10−6 , cΩ = 3.516 × 10−9 , (A5)

where cΩ = 6.725 × 10−9 for an incompressible fluid. Although

the estimates for cB agree reasonably well, our value for cΩ is less

than half the one quoted in Cutler (2002), which is instead close to
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Table A1. Distortion coefficients for a Newtonian star

with M = 1.400 M⊙ and R = 10.00 km for a polytropic

EOS with γ = 2. For comparison, values for an incom-

pressible model with the same properties are included.

γ aB aΩ cB cΩ

∞a 3.750 3.750 2.013 × 10−6 6.725 × 10−9

2b 3.750 3.750 1.610 × 10−6 3.516 × 10−9

2c 3.518 3.804 1.511 × 10−6 3.569 × 10−9

2d – – 1.511 × 10−6 3.567 × 10−9

2e 3.750 – 1.600 × 10−6 7.600 × 10−9

aDistortion coefficients cB and cΩ according to equa-

tion (72). In the incompressible case, T = IΩ2/2 with

I = (2/5)MR2, and W = −(3/5)M2/R.
bAs before but using equations (A1) and (A2).
cDistortion coefficients derived from the linear perturba-

tion of a numerical Newtonian model.
dDistortion coefficients from Haskell et al. (2008) revised

by Haskell et al. (2009).
eDistortion coefficients from Cutler (2002).

the corresponding value for a homogeneous sphere. To validate our

estimates, we have additionally computed the distortion coefficients

with our numerical code in the Newtonian limit and obtained

cB = 1.511 × 10−6 , cΩ = 3.569 × 10−9 , (A6)

which agree well with the estimates from equation (A5). The re-

maining difference is due to the fact that aB = aΩ = 3.750 only in the

incompressible case and need to be corrected in the compressible

one. After taking into account this EOS dependence, full agreement

is achieved, as can be verified in Table A1, which provides a com-

pilation of the different values for the coefficients cB and cΩ and

where the coefficients aB and aΩ have been added when available.
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