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Equilibrium of a Magnetically Confined Plasma in a Toroid

By M. D. Kruskal and R. M. Kulsrud *

A. INTRODUCTION

A static equilibrium of plasma (or of conducting
fluid) with scalar pressure p and magnetic field B is
often described by the magnetostatic equations

VP =jxB, (A1)
VXB =j, (A2)
V.B =0, (A3)

where j is the electric current density. In particular,
these equations apply to many proposed controlled
thermonuclear reactors and their prototypes, espe-
cially the stellarator * and the recently much discussed
stabilized pinch. In sections B, C, and D there are
derived 2 a variety of properties possessed by solu-
tions of (A1-3).

One of these properties is that if p is constant on
the boundary of its region of definition then, under
some mild additional assumptions, that boundary
must be topologically toroidal. However, prescribing
such a boundary surface and the value of  on it by
no means determines a unique solution, even though
there are as many equations as unknowns (two vector
and one scalar). One of our objects is to establish
additional conditions which together with the magne-
tostatic equations (and the boundary prescription} do
determine a unique solution. This is achieved in
several different ways, the additional conditions
always amounting to the specification of two numbers
for each surface of constant p.

An experiment is imagined (section E) in which an
ideal viscous hydromagnetic fluid exhibits a damped
motion until coming to rest in an equilibrium configura-
tion. A number of invariants with respect to any
such motion are described in section F. These lead
to constraints on the admissible trial states in a
variational principle (sections G, H, and I) suggested
by the experiment. The quantity varied is the poten-
tial energy which is the sum of the magnetic and the
internal fluid energies. The wvariational principle
provides a potentially powerful tool for proving the
existence of solutions of the magnetostatic equations
as well as for obtaining them numerically. It also

* Project Matterhorn, Princeton University, Princeton, N.]J.

213

provides a characterization of solutions by their
values of the invariants.

In Section J equations governing a steady state of
magnetic field and slowly diffusing plasma are intro-
duced.® These amount to the magnetostatic equa-
tions together with two auxiliary conditions (K3, 7)
for each surface of constant pressure (section K). The
system of equations obtained is expected to have a
solution which is unique, and this is verified in section
L for the limiting case of low pressure.

B. MAGNETIC SURFACES

The magnetostatic equations (Al1-3) have the

simple consequences

Vi =0, (B1)

B.Vp = 0, (B2)

j*vp =0, (B3)

B.VB = V(p + iB?), (B4)
V.(BxVp) =0, (B5)
B.Vj — j-VB, (B6)
B.V(B.j) = j-VB2 (B7)

)

Here (B1) follows from (A2), (B2, 3) from (Al), (B4
from (Al,2), (B5) from (A2) and (B3), (B6) from
the curl of (Al) in view of (A3) and (B1), and finally
(B7) from (Al) and (B5) in view of (A3) and (B1).

If $ is reasonably smooth and not constant in any
(small) region, the equation p = P determines a
family of surfaces characterized by their values of
the parameter P. By (B2) they are “ magnetic sur-
faces ”, in the sense that they are made up of lines
of magnetic force, and similarly by (B3) they are
“current surfaces”. If such a surface lies in a bounded
volume of space and has no edges (because of not
intersecting the edge of the region of definition of 4)
and if either B or j nowhere vanishes on it, then by
a well-known theorem ¢ it must be either a toroid
(by which we mean a topological torus) or a Klein's
bottle. The latter, however, is not realizable in
physical space.

Under normal circumstances each surface p = P
(excepting a set of values of P of measure zero) is
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traversed ergodically and consequently determined
by any line of force contained in it. Even when this
is not so, however, we shall call it a magnetic surface.

As suggested by the foregoing discussion, we now
explicitly assume that the magnetic surfaces form a
family of nested toroids. The innermost toroid is
degenerate, consisting of a single closed curve called
the (magnetic) axis. We shall usually also assume
that ¢ increases monotonically going inward (as is
proved for steady diffusing plasmas in section K)
and indeed that ¥ 5= 0 except on the axis.

C. SURFACE QUANTITIES

We now introduce two coordinate functions # and 0.
Each is to be multi-valued, its values at any point
differing by integers. The function # is to be con-
tinuous everywhere and to increase by unity during
one traversal of the magnetic axis. The function 6
is to be continuous everywhere except at the axis and
is to increase by unity during one small loop around
the axis. Finally, a pair of values of  and 6 is to
determine a unique point on each magnetic surface.
For definiteness we assume that %, 6, p form a left-
handed coordinate system.

For each particular magnetic surface we now define

V= f dr (C1)
U= f d7B? (C2)
K = f drB+j (C3)
p = f ATB.Vy (C4)
y = fczrn.ve (C5)
I = fdrj-Vn (C6)
7 Efdrj.ve, (C7)

where dt is the volume element and the region of
integration is always the interior of the particular
surface. (The integrals are well defined, since vy
and V0 are single-valued.) We note that V is the
enclosed volume and U is twice the enclosed magnetic
energy. There seems to be no simple physical inter-
pretation of K, but its vanishing will be seen to be
significant (section K). The integrands of (C4-7)
can be written as divergences by (A3) and (B1), so
we may apply Gauss’ theorem; however, since # and 0§
are not single-valued, it is necessary first to cut the
region of integration, say at =0 or at § =0 as
appropriate. Since by (B2) or (B3) the boundary
contribution vanishes except for the double boundary
at the cut, we then obtain, for example,

" ﬁi:l 45 (V) r)-Bry — .fn=0 as(Vn/,Vnl)-By
= [, 4S(vy)wn)B,  (C8)

where 45 is the area element and the integrations are
over those parts of the indicated surfaces of constant
n which are interior to the particular magnetic sur-
face. Thus p is the longitudinal magnetic flux inside
the magnetic surface, i.e., the magnetic flux through
any cross section of the interior. Similarly, [ is the
longitudinal current inside the particular surface.
On the other hand, y is what may be called the azi-
muthal magnetic flux inside the magnetic surface,
since it is the flux through any ribbon-like surface
of constant 6 of which one edge is the magnetic axis
and the other lies on the particular surface. Similarly,
J is the azimuthal current inside the particular surface.

Functions of position (like ) which are constant
on magnetic surfaces will be called surface quantities.
The quantities defined by (C1-7) may be interpreted
as functions of position in an obvious way and are
then surface quantities. Any surface quantity may
be considered as a function of any other, and deriva-
tives of one with respect to another are meaningful
and are themselves surface quantities.

It may be noted that definitions (C4-7) are in-
variant under continuous deformation of the coordi-
nate functions # and 6. All functions # with the
same direction of increase along the axis are deform-
able into each other. The analogous statement does
not hold for 6, however; two functions § are con-
tinuously deformable into one another if and only if
their ribbons of constancy wind around the axis the
same number of times. Two functions 0 differ by
an integral multiple of an acceptable function #, the
integral multiplier being the difference of the winding
numbers. If # is increased by an integral multiple
of , ¥ and J are increased by the corresponding
integral multiples of y and I, respectively. The
results of the next section are manifestly invariant
under these changes.

D. RELATIONS AMONG SURFACE QUANTITIES

Let w be any single-valued vector field satisfying
V(U xw) = 0. (D1)

Let z (P) be a particular point on each surface p = P.
For each point x in space define

y (x) — f " dxew, (D2)
z(

?)

where the path of integration lies on the surface; in
view of (D1) it follows from Stokes’ theorem that the
value of »(x) is independent of the path joining z to
x for all paths continuously deformable into each
other. However, not all paths are deformable into
each other, so » is multi-valued. It can clearly be
written

M 775b”=(’ dx-w + CP"O dx-w, (D3)
p—P J p=r

where A is some single-valued function and the loop
integrals are taken in the direction of increasing ¥
and 0, respectively.
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If it were not for the variability of the lower limit
in (D2), we would have ¥» = w; as it is we have

Vo X (Uy —w) =10 (D4
or equivalently
B:(Vy —w) =0, jo(V» —w)=0. (D5)

Now introduce two general surface quantities
F = f dtBw, G= f drj-w. (D)
By (D5, 3) and {C4-7) we then obtain

dF = dfdtB-Vv

= dy 4%3:0 ax-w -+ dx%ﬁ » dx-w, (D7)

n=

dG = d]{[) ax.w + d](ﬁ ax-w. (D8)
J 0=0 J n=0

We are now in a position to obtain various relations
among the surface quantities by special choices of
w satisfying (D1). In view of (A2) and (B3) we are
justified in choosing w=DB. In this case FF = U
and G = K, while by Stokes’ theorem applied to that
part of the respective surface # == 0 or § = 0 which
lies inside the magnetic surface we have

5677:0 ixB = — I, (DY)

%e:o ax-B = J + i;wzodx-B, (D10)

where the last integral is taken around the magnetic
axis (y = 0) in the direction of increasing #. From
(D7, 8) we, therefore, obtain

av — (] +%=0dx.n) dy — Idy,  (DI1)
iK — ( ]+§§w:0 dx-B/) il —1d].  (D12)

Another choice for w is the vector potential
A (Vx A =B), justified by (B2). This leads analo-

gously to
dfd‘tB-Az (x —}-35 . dx-A> dy — pdy, (D13)
w=
d [ arjB = (x +<J; dv.-Kdl —yd]. (D14
p=0
Our next choice is
w = (BxVp)/(Vp)?, (D15)
which may be justified by observing that
Vpxw =B (D16)

in view of (B2) and then using (A3). In this case we

have F = 0 and G = V in view of (Al). Also,
&ﬁ dx-w=§ dx .- wn — §> dxX « Wy
J =0 =1 n=0
= — [ _, dS(Vp/Vp)) -1V x (wn)]

= |,_p 4S5(VP/ VP

)+ (WX Vi)

— — D17
= [,_, dS(B-Vy)|Vp| = —dypjap. (P17
where the first step is trivial, the second follows from
Stokes’ theorem applied to the cut magnetic surface,
the third follows from (D1), the fourth from (D16),

and the last from (C4) and the fact that
dv = — dSdp/|Vp|
(since |dpl/|Vp| is the distance between two neigh-

boring magnetic surfaces). Similarly
%20 dx-w = dy/dp. (D18)
Thus (D7) is tautological, but (D8) gives
dpdV=dydl — dyd]. (D19)

Another possibility is to choose w to be a gradient,
thus satisfying (D1) trivially. Indeed, let w=Vq
be a gradient of a vector field and, therefore, a dyadic,
and note that nothing in the derivation of (D7, 8) is
invalidated. If q is single-valued, the loop integrals
in (D7, 8) vanish and we may conclude that F and G
themselves (now vectors) vanish, which is also obvious
from Gauss’ theorem. Since Vx is the unit dyadic,
taking g = x gives

f 7B =0, f d7j = 0. (D20)
Taking g =B instead and using (B4) gives
0— [drv(p + 1B = (D21)

— [, aS(vp/lvp))(p + 1B,

and since the first term of the integrand contributes
nothing (take p outside the integral and convert
back to a volume integral),

fp=p aS(Vp/|Vp|)B2=0. (D22)

E. AN IMAGINED EXPERIMENT

Suppose that everywhere in a given rigid toroidal
tube I with perfectly conducting walls there is a
viscous perfectly conducting fluid with an adiabatic
equation of state, and also a magnetic field tangent
to the tube walls at the walls. Suppose that any
heat generated by the viscosity is somehow magically
removed so that each element of fluid is isentropic.
The system can then lose but not gain energy since
there can be no energy flux through the walls.
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Let the fluid be initially at rest. In general, it will
not be in equilibrium and will start to move. As long
as it moves it loses energy, so it must eventually come
to rest in a state with less energy than its initial state.
Clearly, an initially resting state of minimum energy
cannot start moving at all and so must be in equili-
brium; i.e., satisfy the magnetostatic equations.

Since we are comparing resting states we are inte-
rested in the non-kinetic (i.e., potential) energy W

W= [, dv(§B*+ p/ly — 1)) (E1)

where the first and second terms of the integrand are
the energy densities of the magnetic field and of the
fluid, respectively; p being the ratio of specific heats
of the fluid. (If » =1 the second term should be
pInp)

F. INVARIANTS

It now appears that minimizing W should provide
equilibrium solutions. However, we must be careful.
If we minimize W outright we obtain B =0, $ =0,
which, although certainly an equilibrium solution, is
of no interest and is clearly not a state which will
be reached eventually by every initial state. We
have neglected to observe that any motion of our
fluid is subject to certain constraints. By a constraint
here is meant a condition that some quantity be an
invariant during any motion, an invariant being a
constant of motion which depends only on the instan-
taneous state and not on the velocity. (All constraints
here are holonomic.) Only states with the same
invariants can possibly be transformed into each
other by a motion. We should therefore not minimize
W among all states, but only among states with the
same values of the invariants as the initial state.

We must therefore find invariants. Since the fluid
is a perfect conductor it carries lines of force with it.?
Therefore any topological property of the lines of
force is an invariant. For instance, if in the initial
state there were a line of force ergodic in T then this
would have to be carried into a similarly ergodic line
in the final state. But the final state has to satisfy
(B2), so that p will be constant on the line and hence
constant everywhere (if it is to be continuous). Such
a state is not of interest. This example shows that
we must choose the initial magnetic field to have
precisely those topological properties possessed by
equilibria of interest.

Accordingly, we choose an initial magnetic field
which has a family of nested toroidal magnetic sur-
faces which are, however, not necessarily surfaces of
constant p. The quantities ¢ and y are then defined,
and since the lines of force are carried with the fluid,
w and y for the magnetic surface formed by some
definite set of fluid particles are invariant during a
motion. The quantities V, U, K, I and J are also
defined but need not be invariant.

The way in which a line of force intertwines with
itself as it is continued around its magnetic surface
many times is a topological property and therefore

another invariant, but it turns out to be describable
in terms of v and y and therefore does not provide
an independent constraint. Indeed, this intertwining
is characterized by the limit of the ratio of the number
of loops around the magnetic axis to the number of
traversals around the length of the toroid made by
a line of force indefinitely prolonged; i.e., the limit
of 0/n following the line. This limit is usually denoted
by /2 and is equal to dy/dy.

Let o be the mass density of the fluid. Then
odt is the mass of a little element of fluid and is
therefore invariant during a motion. Furthermore,
the adiabatic law assumed amounts to requiring that
p/o? be invariant for a fluid element. We thus have
two purely hydrodynamic constraints. But g is of
no interest since it enters neither into the magneto-
static equations nor into the potential energy W.
Eliminating ¢ we have only one invariant pt/vdr for
each element of fluid.

The invariants we have found (y and y for magnetic
surfaces, p/vdr for fluid elements) apply if we know
which fluid element in the final state corresponds to
each element in the initial state. However, there is
no reference to this correspondence in (E1). We
wish to minimize W for all states p, B which could
possibly be reached by a motion from the initial state;
i.e., for which there exists some correspondence pre-
serving the value of the invariants. The correspon-
dence not being known ahead of time, it now makes no
sense to require that ¢ and y are individually pre-
served. Nevertheless, the correspondence must be
chosen to preserve o and that same correspondence
must preserve y. Then y considered as a function of
p (for example) must be the same in the final state
as in the initial state. In short, the functional
relationship between y and g is an invariant which
can be specified without knowing the correspondence
ahead of time. What has been done, in effect, is to
label the surfaces with their values of y, after which
the only magnetic invariant left is ¥, now as a function
of the label .

These considerations so far only eliminate consider-
ation of the correspondence of surfaces as a whole.
To eliminate consideration of the correspondence of
fluid elements within a given magnetic surface, we
must use the invariant p1/7d7 to form a label. Assum-
ing that lines of force are ergodic on almost all sur-
faces and choosing the correspondence for one parti-
cular fluid element as a reference point arbitrarily, we
may use the integral of $*/¥dr along a little flux tube
going from some point on the surface to the reference
point as a label for that point. This label is clearly
invariant and hence extends the correspondence
from the arbitrary reference point to the whole sur-
face (since the line of force through the reference
point is assumed ergodic on the surface and hence
covers a dense set of points).

However, in establishing this labeling we have not
exhausted the information available from the in-
variance of p'/7dr. There remains the condition
that the integral of p/vdv over the shell-like volume
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bounded by two neighboring surfaces must obviously
be invariant. Introducing the surface quantity

M:fdfpl/y (F1)

(the integral being taken over the interior of the sur-
face), we may require equivalently that M be invariant.
(It may be observed that M is just proportional to
the mass contained within the surface if o happens to
be such that the fluid is isentropic; i.e., if p/g” is the
same for all fluid elements. The invariance of M
then represents conservation of mass.) As with y,
by considering M now to be a function of ¢, we elimi-
nate any reference to the correspondence.

G. STATEMENT OF VARIATIONAL PRINCIPLE

The preceding considerations suggest the following
variational principle: a function p and a solenoidal
magnetic vector field B in 7', forming nested toroidal
magnetic surfaces and having a fixed total longitudinal
flux and no normal component at the walls, make W
stationary among all such pairs with the same in-
variant functions y(y) and M(y) if and only if
Vp=(VxB)xB.

Before proving this it is desirable to reformulate it
so as to include y explicitly in the characterization of
a state, since otherwise it is difficult to tell whether
a neighboring field B has nested toroidal surfaces.
Correspondingly, we have an additional constraint
and an additional variational condition. Thus we
propose the following variational principle:

Consider all triples , B, and o in T satisfying the
constraints

(a) 1w has toroidal level surfaces, ¢ == C at the
walls, min 9 = 0, max y = C,

(b) V.B =0, (G1)
(c) B.Vy =0, (G2)
(d) fwgchB-vnzc, (G3)
(e) fwgchB-Vezx(c), (G4)
(M) [, dwptr=M(c); (G5)

here C is a constant and y(c) and M(c) are arbitrary
fixed functions defined for 0 < ¢ < C, which is also
the range of the last three conditions. Then a parti-
cular triple makes W stationary among all such triples
if and only if it satisfies the variational conditions

{(y) p is a function of v alone,
(z) Vp=(VxB)xB. (G6)

It should be noted that in non-degenerate cases in
which (almost) any magnetic line of force covers a
complete magnetic surface ergodically, (z) implies
(y) in view of (B2) and (G2). In degenerate cases
(y) is (partly) independent. But in these cases y is
not itself physically significant, only p and B, which

are consistent with a variety of functions . Just in
these degenerate cases we could have found additional
constraints in our imagined experiment (the integral
of p1/7dr in each thin closed flux tube) and by omitting
these from our formulation of the variational principle
we force upon ¢ a physical significance (the only
constraint on the flow of fluid elements is that they
stay on surfaces of constant ) which is reflected in
the variational condition (y).

H. PROOF

Given a function y satisfying (a), it is easily seen
by the methods used at the beginning of section D
that the most general field B satisfying (b) and (c) is
given by

B =VyXVy, (H1)

where y is a multivalued function such that (H1)
determines B uniquely; i.e., on each surface of
constant ¢ the various branches of » differ only by
constants. Furthermore, (d) and (e) are then satis-
fied if and only if » can be written

v=21+ny(y) — 0 (H2)

with A single-valued, as can be seen upon comparing
(H1) with (D16, 4) and referring to (D3, 17, 18).

Let us first assume that W is stationary and derive
(v) and (z). For the moment hold ¢ and A fixed and
vary only . Then

0=0W = (y — 1)—1densp

=y — 1) [ de [ _ (@S/vyop  (H3)

for any perturbation dp satisfying

y7,_. @S/Iuy)ptir=t6p =0, (H4)

which is obtained from (f) by varying $ and also
differentiating with respect to ¢. Picking dp so that
the integrand of (H4) approximates to the difference
of two Dirac delta functions with peaks at two points
of the same surface, we satisfy (H4) and see from
(H3) that » must have the same value at the two
points. Thus (y) is established. We now have
p = P(y), whereby (f)

Ple) =[M'(0)] |,_, @S/ wy))]". (H5)

Next we vary only 4, obtaining

0= 8W = fT drBSB = fT dTB-(Vyp X V52)

— fT dr8IN-(B X V), (HS)
(VxB)-Vy = 0. (H7)

Finally we wish to vary only . When we do so,
p = P(y) varies at a fixed point not only on account
of the argument i but also because P(c) does. To
compute the contribution of P(c) to 8W we note that
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sf ﬁ:adif dr = —
w=c¢ \Vy)l ¢ e

f droP (y

a oy
— as-———,
de L,c Wy

(HS)
) = [,dvPolog P

“helm o]
/[

yf were df JWI

= —yﬁ dcpfﬁ=cd5]vi

=— fT diP'(y)dp, (H9)

in which we have used the fact that dy = 0 at the
walls in view of (a). Accordingly we have

0= oW = fT dr[B.OB + (P'dy + OP)/(y — 1)]
:fT dr[Be(Vip xVy + Vyx Vdy) — P'dy]

= fT dréy[V-(Bx V) — P'], (H10)

in which we have used (H7); there is no trouble with
the discontinuity of Y0 at the magnetic axis because
Oy vanishes there (since ¢ and Vy both do). Thus
we obtain

(VxB).Vy =P (H11)

Taking the cross-product of (H1) with ¥ xB and

using the variational conditions (H7, 11) gives
(VXB)XB = P'V = Vp,

which establishes (z).

It is clear that all the steps can be reversed to show
that (y) and (z) imply that W = 0 for all perturba-
tions.

(H12)

. REMARKS

There is a noteworthy modification of the variational
principle. Suppose we omit condition (e). We are
then free to vary y{(c¢) so we obtain an additional
variational condition from

0= W — fT irB-6B

s
= [Tdesye) [,
0= ,dS(Vy/Vy)-(Bx V)
:fg dtV.(B x Vp) =fd‘rj-\717 = 1. (12)
That is, we obtain just the additional condition

appropriate for the steady-state of a diffusing plasma
(see section K).

(@S/|Vy|)B-(Vy x V), (I1)

Our variational principle characterizes equilibria as
stationary states of the potential energy W; i.e,
states for which the first variation of W wvanishes.
The stability of such equilibria has been investigated
elsewhere ¢ by examining the positive-definiteness of
the second variation of W.

Two limiting choices of 9 are particularly simple.
The first is y— oo (incompressibility) for which
M — V, so that we prescribe the volume to be en-
closed by each surface and vary the magnetic energy
alone. The second choice is y — 0 (pressure com-
pletely independent of density) for which M'Y ap-
proaches the maximum value of p on the surface, so
that we prescribe p(y) and vary the integral? of
1B — 5.

J.. THE STEADY SLOWLY DIFFUSING PLASMA

We now wish to obtain a complete set of equations
governing a steady-state plasma slowly diffusing
through a magnetic field to the containing walls of
the toroidal tube 7. We assume that the walls are
perfect electric conductors with purely tangential
magnetic field and also perfect plasma absorbers
(p = O there) and that new plasma is somehow intro-
duced or injected into T (necessary to maintain a
steady state) at the source density rate S, which may
depend on position. We assume that there is no
temperature gradient and ignore a variety of com-
plicating factors, such as nuclear reactions and radia-
tion, which might occur in applications of interest.

Our steady state is almost static so to lowest order
in the diffusion velocity v we have the magnetostatic
equations (A1-3). We also have the (first order)
equation of continuity

V.(pv) =S, Ju

where we have taken the plasma density to be ¢ in
view of the assumed isothermality. In addition we
have Maxwell’s equation

VXE =0 (J2)
and Ohm’s law 8 which we take in the form
E +vXB =jjo+ (Vp/p)a, (J3)

where E is the electric field, ¢ the conductivity
(assumed constant and scalar) and « a physical
constant.

Now (J2) holds everywhere in space (not just in 7))
so E is the gradient of a single-valued scalar. Since
V/p is also such a gradient we can introduce a single-
valued scalar ¢ in T satislying

E = V¢ + (Vp/p)a, (J4)
so that (J3) becomes
V¢ - vXB = j/o. (J5)

Let us consider (J5) as an equation for wv. The
condition that it have a solution is

B-V¢ = (B+j)/o (J6)
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and if this is satisfied the general solution of (J5) is
v =B2(Véd — jjo) X B + 4B, (J7)

where a is an arbitrary scalar function. Eliminating
v by (J7) and using (Al), we have for (J1)

V.(paB) = S + V.[(p/B*)(B X V$ + Vp/o)],  (J8)

which may be viewed as a diffusion equation of sorts
for p, the diffusion coefficient being p/B2%.

K. THE TWO AUXILIARY CONDITIONS

By (A3) and (B2) the left-hand side of (J8) may
be written pB.Va. Thus (J8) as well as (J6) are
what we may call “ magnetic differential equations ”;
namely equations of the type

B.Vy =5, (K1)
with scalar » and s. Viewed as an equation for » with
s given, (K1) determines how 7 varies along a magnetic
line of force. In the nondegenerate case that the line
covers a magnetic surface ergodically, (K1) and the
assignment of a value to # at one point determine 7 at
a set of points dense in the surface. A necessary con-
dition that the values of # so obtained be expandable
to a continuous single-valued function over the whole
surface is easily derived by integrating (K1) over the
shell volume between two neighboring magnetic
surfaces p == P and p = P + dP. By (A3), Gauss’
theorem, and (B2) the left-hand side then vanishes,
while after dividing by dP the right-hand side becomes

[,_psdS/vs =o.

It is plausible to assume {(and we shall) that, in the
nondegenerate case, (K2) is also a sufficient condition
for (K1) to have a continuous single-valued solution 7.
It is then clear that (K1) determines » up to a surface
quantity.

In accordance with the foregoing paragraph, the
conditions that (J6) permit a solution ¢ and (J8) a
solution a are

(K2)

[_p @s/vs)Bj=0, (K3)

[, @SIVE{S+V +[(£/B?) (B x Vp
+Vplo)]} =0. (K4)

The latter may be considerably simplified by multi-
plying by dP and integrating over all magnetic sur-

faces interior to a particular one; using Gauss’ theorem -

then leads to

f drST f aS(Vp/Vp

)-(BxV$+4Vp/o)p/B*=0,
(K3)

where the minus or plus sign is to be adopted accord-

ingly as p decreases or increases going outward (so

that FVp/|Vp| is the unit outward normal to the
magnetic surface). Eliminating ¥y by (Al) except

in the denominator, expanding out the inner products
of the cross products, and using (J8) gives

f d1STF f (dS/Vp)) (—§+Vé-+j2/o)p=0.

By (B1, 3) the term involving ¢ can be written as a
divergence; converting the surface integral to a shell
volume integral, we see by Gauss’ theorem and (B3)
that the contribution of that term is zero. Since S,
o, and p are essentially positive, we must take the
minus sign. Thus p decreases going outward (as
assumed at the end of section B) and (K6) may be
written

(K6)

[ p @S (Plo) [,_, (aS/¥p|)j=o0.

Our system of equations now consists of the magne-
tostatic equations (A1-3) together with the auxiliary
conditions (K3, 7). For any solution $, B, j of this
system we can find ¢ and a and therefore E and v,
which together with the solution represent a slowly
diffusing equilibrium. (The arbitrariness of a sur-
face quantity each in 4 and ¢ corresponds to a
physical arbitrariness in the total fluid flow along lines
of force and in the total charge on a magnetic surface,
respectively.)

Condition (K7) can be shown to be equivalent to
the energy balance equation, which could have been
written down a priori. Condition (K3) may be
written — dK/dp = O or, integrating, K = 0. When
(K3) holds (D12) can be integrated to show that I is
proportional to J + § dx.-B. Since I and ] but not
the loop integral vanish at the axis, the constant of
proportionality vanishes and I = 0. (Conversely the
vanishing of I for all surfaces entails that of K.)

Thus (K3) is equivalent to (I2), the extra variational
condition obtained by minimizing W without pre-
scribing ¥. In other words, in the diffusing plasma
the azimuthal magnetic flux adjusts to give the
lowest energy; the lines of force associated with the
longitudinal magnetic flux are permanently trapped
by the perfectly conducting walls, but “untwist ”
themselves locally as much as possible.

It is not hard to see that the vanishing of df at a
particular magnetic surface implies that the lines of
electric current there are closed curves and, indeed,
closed curves topologically like (deformable into)
curves of constant . The converse is even easier to
see (choose % to be constant on the current lines).

(K7)

L. THE LOW PRESSURE LIMIT

It is physically quite plausible to suppose that our
system of equations has a solution , B, j, and a
unique one for any reasonable general prescription
of the tube T, the source function S, the conductivity
¢ and the total trapped longitudinal magnetic flux C.
This supposition is further borne out by the varia-
tional principle which shows that two auxiliary con-
ditions for each magnetic surface are just the appro-
priate number. We now proceed to prove the suppo-
sition in the limiting case of low pressure under an
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assumption on the geometry of T which is apparently
necessary if the solution is to behave regularly in the
limit. This assumption is that the unique vacuum
magnetic field which is purely tangential at the walls
and has a prescribed total longitudinal flux C vanishes
nowhere and determines a nondegenerate family of
nested toroids. (For a wide class of toroidal geo-
metries this is assured to a high approximation by
rotational transform theory.?)

For p small (A1) becomes, in the limit, j X B=0 or
j=¢B (L1)

with g a scalar function. From (A3) and (B1) we
obtain the magnetic differential equation

B.vg =0, (L2)

which implies that g is a surface quantity. But then
using (L1) in (K8) and taking g out of the integral

gives g = 0 and, therefore, j = 0. Thus j must be
small if p is small.

Starting over now with p and j both small, we see
from (A2, 3) that to lowest order B must be the
unique magnetic field of our assumption. Now (Al)
is equivalent to the pair of equations obtained by
taking the inner and the cross products with B;
namely, (B2) and

j = [BxVpJB* + /B, (L3)

with % a scalar function. The only restriction (A2)
places on our remaining unknowns p and j is (B1).
We now adopt the point of view that (L3), (B1), and
(K3) are conditions on j, while (B2) and (K7) are
conditions on p.

Now (L3) expresses j, in terms of what we may
consider a new scalar unknown 4. But then (B1) is
equivalent to the magnetic differential equation

B.Vi = — (BXVp)-V(l/B? (L4)
by (A3) and (B5), while (K3) becomes
[,_p @S/ 02 1B2 = 0 (L5)

and may be viewed as determining the additive sur-
face quantity left arbitrary in %4 by (L4).

Of course by (B2) p is a surface quantity of the
magnetic surfaces of the vacuum field and is therefore
a function of ¢ only. It is now obvious from (L4, 5)
that % is determined completely independently of 4
except for being proportional to p'(y), and by (L3)
the same is true for j. Indeed, setting

i=2'y, h=1'% (L6)

we see that y and % are uniquely determined inde-
pendently of $ by the three equations obtained from
(L3-5) by replacing $, j, and 4 everywhere by v, ¥
and %, respectively.

We can now write (K7) in the form

Lgc dvS +pp'fo |, ydS[Vyl =0.  (L7)

{Note that S is of the second order of smallness com-
pared with p and j.) Thus (p2)’is determined and, since
p vanishes at the wall, $ is determined, whereupon j
1s determined by (L6). This completes the proof.

It may be noted that ($2)’ remains finite at the walls.
Thus ' becomes infinite there,  varying as the square
root of the distance to the walls.
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