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EQUILIBRIUM POINTS OF NONATOMIC GAMES
OVER A BANACH SPACE1

BY
M. ALI KHAN

Abstract. Schmeidler's results on the equilibrium points of nonatomic games with
strategy sets in Euclidean «-space are generalized to nonatomic games with strategy
sets in a Banach space. Our results also extend previous work of the author which
assumed the Banach space to be separable and its dual to possess the Radon-Nikodym
property. Our proofs use recent results in functional analysis.

1. Introduction. In this paper we study Cournot-Nash equilibria of games with a
continuum of players, each of whom has a strategy set in a Banach space. The
importance of such games for economic theory has been recently underscored by
Dubey, Mas-Colell and Shubik [7]; see their Example 2, in particular. However, [7] is
primarily concerned with the equivalence of Walrasian and Cournot-Nash equilibria.
Our focus here is on the existence theory.

The results reported here can be seen as a continuation of research initiated by
Schmeidler [19], who formulated and studied nonatomic games over zz-dimensional
Euclidean space. They also extend earlier work of the author in at least three
important respects. To begin with, [14] assumed that each player's strategy set lies in
a separable Banach space whose dual has the Radon-Nikodym property. This
condition is not satisfied for the infinite-dimensional spaces typically studied in
economics; see Bewley [2] and Mas-Colell [18]. It is of interest that such an
assumption can be relaxed at the cost of a rather mild uniformity assumption on the
distribution of strategy sets. Secondly, it seems desirable to have results for con-
jugate Banach spaces which are not separable and for which the strategy sets are not
weakly compact but only norm bounded and weak* closed. We also present such
results here. They are especially relevant for commodity spaces studied in [2 and 18].
Finally, unlike [14], our results on the existence of mixed-strategy equilibria rely only
on preference orderings rather than on payoff functions. It is not known to us
whether our conditions on preferences are sufficient for them to be represented as
jointly measurable payoff functions. Such theorems are difficult to obtain even for a
finite-dimensional setting; see Wesley [21].
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738 M. ALI KAHN

The proofs of our theorems use recent results in functional analysis, specifically
the theory of vector measures. In particular, our proofs lean heavily on results due to
Castaing and Valadier [3], Diestel [4], Leese (see Theorem 8.4 in [20]) and Rosenthal
(see Theorem 13, p. 252 in [5]).

§2 of the paper develops the necessary preliminaries, and §3 is devoted to the
model and results. §4 presents the proofs.

2. Notational and terminology. Let (T, ÜT, p) be a complete, finite, nonatomic
measure space; i.e., ¡u is a real-valued, nonnegative, countably additive, nonatomic
measure defined on a complete a-field ^"of subsets of a point set T such that ¡jl(T)
is finite.

Let E denote a Banach space over the real numbers R, and let E* be its
topological dual. The norms in E and E* will be denoted by || ■ ||. For any set A in
E or E*, coA,coA,clA,extA will respectively stand for the closed convex hull,
convex hull, norm closure and the set of extreme points of the set A. For any set A
in £*, w* coA,w* clA will respectively stand for the weak* closed convex hull and
weak* closure of the set A.

Our next set of definitions involves Bochner integrable functions; see [5, Chapter
II] for details. Let L(p, E) denote the space of all (equivalence classes of) strongly
measurable functions from T to E. Let Lj(jn, E) denote the space of all (equivalence
classes of) £-valued Bochner integrable functions / defined on T with ||/|| =
St 11/(011 dp(t). Finally, let Lx(p, E) denote the space of all (equivalence classes of)
£-valued Bochner integrable functions defined on T that are essentially bounded,
i.e. such that

||/||oo = esssup{||/(f)||: îœT) < oo.

We shall abbreviate Lf(p, R) and Lx(p, R) to L,(ju) and Lx(p), respectively.
We shall also be concerned with functions /: T -» E* such that ||/|| G Lœ(fi) and

(x,f) is u-measurable for every x e E. Accordingly, we shall denote (the equiva-
lence classes of) such functions as L^(ju,, E*). It is well known that the topological
dual of Lj(u, E) is L™ (p, £*); see [6] for example.

We now turn to correspondence or set-valued mappings. Let £P(E) denote the
space of subsets of E. For any mapping X: T -> 3P(E), let Lx(p, X(-)) denote the
set {/e Lf(p, E): f(t) e X(T) for almost all t in T). Similarly, for L(p, X(-)),
Lx(p, X(-)) and Ll(p, X(-)).

We are now in a position to state some preliminaries on the integration of
correspondences. We shall need the following definitions. The term "Gel'fand
integral" follows [5, p. 53].

Definition 2.1. A set-valued mapping P: T -* @(X) is said to be measurable if
the graph of P, {(t,x) eTx£: x e P(t)), is an element of 5"® @(E), where
3d( X) is the set of norm Borel subsets of E. A set-valued mapping P: T -> S>( X*) is
said to be weak* measurable if the graph of P is an element of 3¡~® SSW'(E), where
BV,'(E) are the Borel subsets of E* in the weak* topology on E*. B™(E) shall
denote the Borel subsets of E in the weak topology on E.
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NONATOMIC GAMES OVER A BANACH SPACE 7:C)

Definition 2.2. A set-valued mapping P from T to £ or £* is said to be
integrably bounded if there exists g G Lx(p) such that sup{||x||: x G P(t)} < g(0
for almost all t in T. If P(t) ç AT, AT any bounded set, for all t in T,P is said to be
strongly bounded.

Definition 2.3. The Bochner integral of a set-valued mapping P: T -» 5P(E*) is
defined for any yi g J" by

j^P(t)dp(t)={lj(t)dp(t):f^Lx(p,P(-))\.

Definition 2.4. The Gel'fand integral of a set-valued mapping P: T -> ¿P(E*) is
defined for any A g 5" by

^P(t)dp(t) =^f(t)dp(t): /G L»(|u, £(•))},

where ^ /(i) iJ/i(r) is an element of £* such that

l<jSf(t)dp(t),x\ = f (f(t),x)dp(t)    forallxin£.

It is clear that an integrably bounded measurable set-valued map has a nonempty
Bochner integral; see Remark 1 in [15]. It can also be shown that a strongly bounded
weak* measurable set-valued map has a nonempty Gel'fand integral if £ is
separable; see Remark 2 in [15].

3. The model and results. A game consists of a set of players T, each of whom has
a strategy set X(t) and a preference relation > (, x) defined over X(t) X X(t). The
preferences of each player depend on the actions taken by all the other players and
are accordingly indexed by a play x: T -* X(t) which associates with each player t
his action x(t). We can thus summarize a game G by {X(t), > (, x)},eT. A
nonatomic game G is one where the set of players is represented by a nonatomic
measure space. Such a specification demands measurability assumptions. We thus
have

Definition 3.1. A nonatomic game G isa quadruple [(T, ST, fi), E, X, P], where
(1) (T, 3T, p) is a finite, complete, nonatomic measure space;
(2) £ is a Banach space;
(3) X: T -> @(E) is a measurable map; and
(4) P: T X L(p, X(-)) -> <?>(£ X £) is a map such that for all x in L(/i, X(-)),

the map P(-, x): T -> 0>(E X £) is measurable.
For all t in T and for all x in L(p, X(-)), we shall also use the notation

zi ^ (z,x) zi to ™an (z1; z2) g P(t, x).
An equilibrium strategy is a play in which no player finds it worthwhile to choose

another action in his strategy set given the actions of all other players. This basic
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idea, originally due to Cournot, can be formalized as

Definition 3.2. An equilibrium of a nonatomic game G is given by x* g
L(p, X(-)) such that for almost all t in T,

X*(t) *(,,**)y    for all yin X(t).

It is clear that under the generality of Definition 3.1, there will not exist, in
general, any equilibrium strategies. We shall need to assume that the strategy sets
and preference relations are convex. We shall also need topological assumptions
such as compactness of the strategy sets and closedness of preference relations as
well as their continuous dependence on the plays. The set of admissible plays also
embodies further restrictions. The existence results reported below differ essentially
in the topological assumptions underlying them.

Theorem 3.1. Let G = [(T, 9~, ix), £, X, P] be a nonatomic game such that
(1) £ is separable;
(2) for all t in T, X(t) is a nonempty, closed convex subset of a weakly compact set

K Q E;
(3) P is defined on T X Lx(p, X( ■ )) and is such that
(i) for all t in T and for all x in Lx(p, X(-)), > (I x) is a reflexive, transitive and

convex relation;
(ii) for all t in T, the graph of P(t, ■) given by

{(x, Zf, z2) G Lf(p, X(-)) X X(t) X X(t): Zf>(ux)z2)

is closed in the product topology, where Lx(p, X(-)) and X(t) are each endowed with
their relative weak topologies.

Then G has an equilibrium.

The first point to be noticed about Theorem 3.1 is that, despite condition (1), it is
valid for the spaces Lx(p) and rca(S), the set of all regular countably additive
scalar-valued set functions defined on the Borel a-field on a compact Hausdorff
space 5 with a countable base. The reason is essentially contained in the require-
ment that, for all t in T, X(t) is contained in a weakly compact subset of £; see
condition (2)of Theorem 3.1. We can thus state

Corollary 3.1. Theorem 3.1 is valid for the nonseparable spaces Lœ(p) and
rca(S).

It is clear that condition (2) of Theorem 3.1 imposes a strong uniformity
requirement on the distribution of strategy sets. A natural question arises as to the
extent to which it can be weakened. In the author's earlier work [14], the existence of
equilibrium strategies was shown under the requirement that the measurable map X
is integrably bounded and that, for all t in T, X(t) is nonempty, convex and weakly
compact. However, in order to cope with such a general specification on the strategy
sets, we needed the additional assumption that the dual of £ possess the Radon-
Nikodym property (RNP). Our next result shows the extent to which we can
generalize condition (2) without assuming RNP.
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Theorem 3.2. Theorem 3.1 is valid with (2a) substituted for (2) where
(2a) X is an integrably bounded map with weakly compact values and such that for

all e > 0, there exist Tt G ST, p(T - Te) < e, a bounded uniformly integrable subset J£
of Lf(p\T), and a weakly compact subset Ke ç £ such that x G L,(¡u, P(-)) implies
x(t) = £„X„/„(0*„ for almost all t in T, with scalars Xn such that E„|A„| < 1,
fn^Jeandxn& Ke.

The generality of (2a) can best be appreciated in steps. The first extension of the
assumption that all the strategy sets sit in the same weakly compact subset K of £
is to allow this compact set to change in a manner which is regulated by an
integrable function /; i.e. X(t) ç f(t)K. Such an assumption occurs, for example, in
Castaing's work; see [3, Corollary V.4]. The next step is to allow this change to be
regulated not by one integrable function but by a countably infinite number chosen
from a bounded, integrable family/; i.e. X(t) ç Y.„\„f„(t)x„, where A„ are scalars
such that £„|aJ < 1, /„ G J and xn g AT. The final step is to allow for the fact that
the above representation does not obtain for the strategy set of every trader and that
there is a subset of traders Te with ¡i(Te) < e whose strategy sets do not fit in this
mold. Once we allow e to take on arbitrarily small values and index J and A by e,
we obtain condition (2a).

It is by no means clear that Theorem 3.2 extends to the spaces Lx(a) and rca(S).
Thus it is worthwhile to have a result which pertains primarily to such spaces. It is of
interest, though maybe not surprising, that we can present such a result without
insisting on weak compactness of the strategy sets but only that they be norm
bounded and weak* closed.

Theorem 3.3. Let G = [(T, J~, p), £*, X, P] be a nonatomic game such that
(1) £* is the dual of a separable Banach space, and p is such that Lx([i) is

separable;
(2) the measurability assumptions on X and P in Definition 3.1 are the interpreted

with respect to the weak* Borel sets on £*;
(3) for all t in T, X(t) is a nonempty, convex, weak* closed subset of a norm

bounded set K c £*;
(4) P is defined on T X L* (p, X( ■ )) and is such that
(i) for all t in T and for all x in L^(it, X(-)), > <lx) is a reflexive, transitive and

convex relation;
(ii) for all t in T, the graph of P(t, •) given by

[x, zx,z2 G Ll(p, X(-)) X X(t) X X(t): zx > {l<x) z2)

is closed in the product topology, where L™ ( it, X( ■ )) is endowed with the relative weak*
topology, i.e. a(L* (it, £*), L,(ii, £)) and X(t) with relative Mackey topology, i..e
t(£*, £).

Then G has an equilibrium.

The reader should note that Theorems 3.1-3.3 do not depend on the nonatomicity
of the measure p.
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We now turn to the existence of pure strategy equilibria, i.e. Cournot-Nash
equilibria in which almost every player chooses an extreme point in his strategy set.
Here, following Schmeidler [19], we shall assume that the preferences of each player
are represented by a linear payoff function which satisfies the aggregation axiom in
the sense of [7]; i.e. it depends on the average response of all the other players. It is
at this point that integration becomes an essential aspect of the theory. Our first
result is

Theorem 3.4. Let G = [(£, ST, p), E, X, u] be a nonatomic game such that E and X
satisfy conditions (1) and (2) of Theorem 3.1, and u: T X X(t) X E -* R + is a map
such that

(i) for all x G £, u(-, -,x) is a Borel measurable function on {(/, x) G T X X(t):
x^X(t)};

(ii) for all t in T, x g £, u(t, ■, x) is linear and weakly continuous on X(t);
(iii) for all t in T, for all x G X(t), u(t,x, ■) is weakly continuous on E.
Then G has an approximate, pure strategy equilibrium; i.e. Ve > 0, there exists

x* g Lx([i.,exi X(-)) such that for almost all t in T, \\u(t, x*(t), x*) — u*(t)\\ < e,
where x* = jT x*(t)dp(t) andu* = Max,e XU)u(t, z, x*).

As will become clear in the proofs below, Theorem 3.4 relies in an essential way
on the validity of Theorem 3.1. Accordingly, we can also show

Corollary 3.2. Theorem 3.4 is valid for the nonseparable spaces Lx(p) and
rca(S) or, alternatively, with condition (2a) of Theorem 3.2 substituted for condition
(2) of Theorem 3.1.

All that remains is for us to obtain an analogue of Theorem 3.4 for the setup of
Theorem 3.3, where the game is defined on the dual E* of a separable Banach space.
The principal difficulty here is our formalization of a play as an element of
L™(iz, X(-)). As such, a play is weakly measurable and is not necessarily Bochner
integrable. However, we can appeal to results on the Gel'fand integral of a
set-valued mapping; see [15]. We can thus state our final result:

Theorem 3.5. Let G = [(T, ST, p), £*, X, u] be a nonatomic game such that E* and
X satisfy conditions (l)-(3) of Theorem 3.3 and u: T X X(t) X E* -* R+ is a map
such that

(i) for all x G £*, zz(í, -, -, x) is a weak* Borel measurable function on {(t, x) G
TX X(t): x G X(t)};

(ii) for all t in T, u(t, -,x) is linear and t(£*, E)-continuous on X(t);
(iii) for all t in T, for all x G X(t), u(t, x, ■ ) is weak* continuous on £*.
Then G has an approximate pure strategy equilibrium, i.e. Ve > 0, there exists

x* G L* (it, ext X(-)) such that, for almost all t in T,

\\u(t,x*(t),xT) - u*(t)\\ < e,

where xr = <fTx*(t)dp(t) andu* = Max,eX(l)u(t,z,xT).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We conclude this section with three open problems. First, are Theorems 3.4 and
3.5 vaild without the requirement that the preferences be represented as payoff
functions? It is clear that the nature of approximate pure strategy equilibria has to
be modified. A principal difficulty seems to be the continuity of the best response
sets, i.e. B(t, xT); see [12, paragraph 5, p. 30]. Second, are all of our theorems valid
when the preferences are nonordered? Third, can the assumption on it in Theorem
3.3 be relaxed?

4. Proofs. We begin with the proof of Theorem 3.1. It is an application of the
Fan-Glicksberg [9,10], fixed-point theorem to a map a which takes L,(it, X(-)) to
subsets of L,(it, X(-)). We endow Lx(p, X(-)) with its relative weak topology. We
use Diestel's theorem [4] to show that the domain of this map is compact.

Proof of Theorem 3.1. Consider the map a: Lx(p, X(-)) -» ^(£,(11, X(-)))
where

a(x) = {y g L,(it,£): y(t) G B(t,x) for almost all t in T),

B(t,x) = [y(t) G X(t): y(t) > (l>je) z for all z G *(*)}.

It is clear that any fixed point of the map a(-) yields an equilibrium of our
nonatomic game. Thus all we have to verify is that a(-) satisfies the conditions
required by the Fan-Glicksberg theorem. We do this in a series of claims.

Claim 1. £,(/!, A"(-)) is weakly compact.
Since X(t) Q K for all z in 7, AT weakly compact and hence bounded [8, II.3.20],

we can assert that the set Lx(p, X(-)) is bounded and uniformly integrable. We can
thus apply Theorem 2 in [4] to establish our claim.

Claim 2. L,(it, X(-)) is nonempty and convex.
We have already observed that L,(it, X(-)) is convex. Since the graph of X(-)

belongs to ^"® 38(E), Theorem 111.22 in [3] guarantees us a measurable selection.
Since X(t) is uniformly bounded, such a selection is certainly an element of
Lf(p,X(-)).

Claim 3. For each x in £,(it, X(-)) and for almost all / in T, B(t, x) 4= 0.
Since X(t) is closed and a subset of a weakly compact set AT, it is also weakly

compact [8, I.V.7a]. For all x in Lx(p, X(-)), > ((x) is reflexive, transitive and
weakly closed. We can thus apply the arguments of [12, Theorem 3, p. 29] to assert
that B(t,x) # 0.

Claim 4. For each x in £,(/x, X(-)), the graph of B(-,x) belongs to ST® 38(E).
The proof of this claim is based on an argument in Hildenbrand [11, p. 615].
Since the graph of the correspondence X(-) belongs to 3T® â?(£), we can appeal

to Definition 111.21 and Theorem 111.22 in [3] to assert the existence of a sequence
(/„(•)) 0l measurable selections of X(-) such that for every t in T, fn(t) is norm
dense in A(t).

Now let Bn(t,x) = {y(t) g X(t): y(t) > (/>Jc)/„(*)}■ Certainly the graph of T(-)
- (*(•)>/„(•)) belongs to ^® 36(E X £). Since the graph of P(-,x) also belongs
to ST® 3S(E X £), we can assert that the graph of £(-, x) n T(-) and hence of
fi„(-, x) belongs to ^® 3S(E X £).
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Now we show that B(t, x) = C\„B„(t, x) for almost all t in T. Certainly B(t, x) c
Bn(t,x) for every n. Suppose z G f)nB„(t,x), but z G B(t,x). Then there exists
y g X(t) such that y- > (l x) z. Since the norm topology is stronger than the weak
topology [8, V.3.5], we can find some /„*(r) arbitrarily weakly close to y. But  > (, K)
is weakly closed, and hence > (, A) is weakly open; and we obtain a contradiction.

We thus obtain

{(/, y) g T x E: y g B(t,x)) = f]{(t, y) G T X £: .y G BB(f,x)},

and the proof of our claim is complete.
C/az'/w 5. For each x in £,(11, A'(-)), a(x) is nonempty and convex.
Convexity follows routinely from the properties of >; (, x). Nonemptiness follows

from an application of Theorem 111.22 in [3].
Claim 6. For almost all ; in T, B(t, ■) has a closed graph in £,(tt, £) X £.
Let a net (y", x") converge in the weak product topology to (y,x) where

yv g B(t,x"). We have to show that y g B(t, x). Suppose not; i.e. there exists
z g X(t) such that z >■ ((x)y. Since >- ,lx. is weakly open, there exists a large
enough v such that z >- (tx) y", and we obtain a contradiction.

Claim 7. The graph of a(-) is weakly closed in £,(tt, £) X Lj(/x, £).
Since weakly sequentially closed subsets of a weakly compact set are weakly

compact (by the Eberlein-Smulian theorem) and hence weakly closed, we need only
consider a sequence (z",x") which tends weakly to (z,x). Now suppose that
y <£ a(x); i.e. there exists 5 G 5", p(S) > 0 such that y(t) G B(t, x) for all t in ST
Let

as(x) = (z G L,(/i|s, A'|s): z(f) G B(t,x) for almost all t G 5}.

Just as in Claim 5, as(x) is nonempty and convex. It is also closed. This can be seen
by considering a sequence z„ g as(x) which converges to z; i.e. lim^^Hz,, — z\\ = 0.
This implies that for almost all / in T, lim[,_(00||z>,(i) — z(t)\\ = 0. Our assertion
now follows from the closedness of B(t,x) established in Claim 6. Let ys be the
restriction of y to ju|s. By hypothesis ys £ as(x). We can now apply the Hahn-
Banach theorem [8, V.2.10] to assert that there exists a nonzero, continuous linear
functional / G (Lf(p, £))* such that f(ys) > f(z) for all z g as(x). But
(Lf(p, £))* = L^(ju, £*); see [6] for example. We may thus write

(1) f (y(t),f(t))dp(t)> f (z(t),f(t))dp(t)   Vze«s(x).

Since yn converges weakly to y, certainly

(2) lim  f {y"(t),f(t))dii(t)= f (y(t),f(t))dp(t).
n^co->S JS

Since j>"(0 g AT, AT weakly compact, for all / in T and for all zz, and ||/|| g Lx(p),
(y"(t)>f(t)) is integrably bounded. We can thus apply Proposition 4.1 in [1] to
conclude that

(3) lim   [ (y"(t),f(t))dp(l)G f  Limsup (y"(t),f(t))dp(t).
11 — 00 JS JS      « — 00
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Since f(t)eE*, certainly Limsup„^oo<i>',(0,/(0> = (Limsup,,^j>"(i),/(0>-
But, by Claim 6, each limit point of y"(t) g B(t, x) for almost all t in T. We thus
have a contradiction to (1), and the proof of the claim is complete.

We can now apply the Fan-Glicksberg theorem to complete the proof of Theorem
3.1.    Q.E.D.

Proof of Corollary 3.1. Consider the space Lx(p). By Rosenthal's theorem [5,
Theorem 13, p. 252], every weakly compact set is norm separable. Thus the strategy
set correspondence X(-) maps into a separable subset of Lx(p). Now apply all the
arguments in the proof of Theorem 3.1.

The fact that weakly compact subsets of rca(S) are norm separable follows from
Exercise 9.5.113 in Wilansky [22, p. 145].   Q.E.D.

Proof of Theorem 3.2. Note that the only place where we needed the fact that
for all t in T, X(t) ç K, K weakly compact, was in the proof of Claim 1 in the
proof of Theorem 3.1. This condition was used in applying Diestel's theorem.
However, under the alternative condition (2a), we can appeal to Corollary 5 in
Diestel [4] to establish Claim 1. The remaining argument in the proof of Theorem 3.1
applies unchanged.    Q.E.D.

Remark. It should be clear to the reader why the argument in the proof of
Corollary 3.1 fails to extend to the establishment of Theorem 3.2 for the spaces
L^(P) and rca^).

Next, we turn to the proof of Theorem 3.3. Its basic outline is the same as the
proof of Theorem 3.1, other than the fact that we now work with the weak* topology
on L* (it, X(-)). As such, we can no longer use Diestel's results. We have to fall back
instead on results in Castaing and Valadier [3].

Proof of Theorem 3.3. Consider the map a: L^(tt, X(-)) -+ ^(£^(11, X(-))),

a(x) = {y G L^(p, X): y(t) G B(t,x) for almost all / in £},

and B(t, x) as in the proof of Theorem 3.1. We shall show that a(-) has a fixed
point.

Claim 1. £* (ft, X) is weak* compact.
Apply Theorem V.l in [3].
Claim 2. £™ (¡u, X) is nonempty and convex.
Convexity is straightforward. Nonemptiness follows from Theorem III.37 in [3].

Note, however, that the theorem requires separability which we have not assumed
for our underlying Banach space £*. However, for all t in T, X(t) çz K, K is weak*
closed, and hence, without any loss of generality, can be chosen to be weak*
compact. We can now appeal to Theorem 9.3 in Wilansky [22, p. 143], to assert that
AT is separable and, hence, a Souslin subset of £.

Claim 3. For each x in L*(/t, AY-)), and for almost all t in T, B(t, x) 4= 0 and
is weak* closed.

Since the set {(z,, z2) g X(t) X X(t): zx > (tx) z2) is convex and Mackey closed,
it is also weak* closed; see [22, 8.3.6, p. 111]. Thus >- (, x) is weak* open, and the
proof can be completed as in [12, Theorem 3, p. 29].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



746 M. ALI KAHN

Claim 4. For each x in L™ (/x, A( • )), the graph of B( ■, x) belongs to F® 3SV'*(E*).
The proof follows that of Claim 5 in the proof of Theorem 3.1. The principal

difference to be noted is that we are now working with the weak* Borel sets on £*
rather than the norm Borel sets. We have already observed earlier that > {tx) is
weak* open. Thus the proof of Claim 5 in the proof of Theorem 3.1 applies.

Claim 5. For each x in £™(it, X(-)), a(x) is nonempty and convex.
This can be established as in the proof of Claim 6 in the proof of Theorem 3.1.

The fact that we can legitimately appeal to Theorem 111.22 in [3] follows from the
fact that AT is Souslin, as in the proof of Claim 2 above.

Claim 6. For almost all / in T, B(t, ■) has a closed graph in L* (jtt, £*) X £*.
Once we recall that >■ (tx) is weak* open, the argument is identical to that of the

proof of Claim 7 in the proof of Theorem 3.1.
Claim 7. For each x in £*(/t,, X(-)), a(x) is closed in the weak* topology on

Ll(p, £*), i.e. a(£^(ft, £*), Lx(p, £)).
From Claim 3, we know that the map B(-,x) has nonempty and weak* compact

values. They are also convex. We can thus appeal to Theorem III.37 in [3] and to
Claim 4 above to assert that B(-,x) is scalarly measurable. We can now appeal to
Theorem V.l in [3] to assert that a(x) is weak* closed.

Claim 8. The graph of a(-) is closed in the product topology on L™ (/x, £*) X
LZ(li,E*).

Observe first that under condition (1) of Theorem 3.3, £1(it, £) is separable. We
can now appeal to [22, Theorem 9.5.3] to assert that the graph of a(-) is a subset of a
compact metric space. We can thus consider a sequence (x", y") which converges in
the weak* topology to (x, y). Suppose that y £ a(x); i.e. there exists S^ST,
p(S) > 0 such that y(t) <£ B(t,x) for all t in S. Let as(x) = {z G £*(ju|s, X\s):
z(t) g B(t,x) for almost all t in S}. From Claims 5 and 7 above, as(x) is
nonempty, convex and weak* closed. Let ys be the restriction of y to it|s. By
hypothesis ys G as(x). We can now apply the Hahn-Banach theorem [8, V.2.10] to
assert that there exists a nonzero, continuous linear functional / g L,(ii, £), / 4= 0,
such that f(ys) > f(z) for all z G as(x); i.e.

(1) f (y(t),f(t))dp(t)> f (z(t),f(t))dp(t)    VzG«s(x).

Since y" converges in the weak* topology to y, certainly

(2) Lim f (y"(t),f(t))dp(t) = / (y(t),f(t))dp(t).
n -» oo JS JS

Since y" is integrably bounded and /(•) is Bochner integrable, certainly there exists
g g L,(ii|s) such that \(y"(t), f(t))\ < g(0 IOT almost all / in S. We can now
apply Proposition 4.1 in [1] to conclude that

(3) Lim/ (y"(t),f(t))dp(t)e [ Limsup ( y"(t),f(t)) dp(t).
n-<x>Js JS       „-oo
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Since (•,/(/)) is weak* continuous, certainly

lim8up<y(0,/(0> = (Lim supy"(t), /(/))■
„—»oo \      „ —»00 '

But by Claim 6, every limit point of y(t) is an element of B(t,x) for almost all t in
T, and we have a contradiction to (1) and the proof of Claim 8 is complete.

We can now apply the Fan-Glicksberg theorem to complete the proof of Theorem
3.3.    Q.E.D.

We now turn to the proofs of our results on the existence of approximate
pure-strategy equilibria. The proofs are modelled on the proof of Theorem 2 in [19].
However, there are two basic differences. First, we have to appeal to results in [15]
on the integration of set-valued mappings whose range does not have RNP. Second,
we no longer assume that ext X(-) is measurable but, thanks to Leese [20, p. 879],
deduce it as a consequence of our other assumptions.

Proof of Theorem 3.4. Observe, first of all, that the hypotheses of Theorem 3.4
imply those of Theorem 3.1. The only part to be verified relates to preferences.
However, all we have to do in this connection is to consider a mapping P:
T X Lx(p, X(-))^ @(E X E) such that for all t in T, for all x in Lx(p, X(-)),

u(t,Zf,x) > u(t,z2,x) « (Zf,Z2) G P(t,x) « Zf >(ttXfZ2.

We can now appeal to Theorem 3.1 to assert the existence of x g Lx(p, X(-)) such
that for almost all / in T, x(t) G B(t,xT). Let

Be(t,xT) = {x g ext X(t): u(t,x,xT) ^ u(t,y,xT) Vy g ext X(t)}.

We can assert
Claim 1. For all t in T, B(t, xT) = coBe(t, xT).
Since X(t) is a nonempty, weakly compact and convex subset of £, we can appeal

to a corollary of the Krein-Milman theorem [16, Corollary 11.2.3] to assert that there
exists z g ext X(t) such that

u(t,z,xT) = m* =   Max u(t,q, xT).
qeX(t)

Since z g Be(t,xT), it is clear that Be(t,xT) c B(t,xT). Since B(t,xT) is closed
and convex, coBe(t, xT) c B(t,xT). Now suppose the containment is strict; i.e.
there exists z g B(t,xT) and z £ coBe(t,xT). By the Krein-Milman theorem [16,
Theorem 11.2.1], there exist z, and z2 in ext X(t) and 0<A< 1 such that
z = \Zf + (1 - X)z2. If both Zf and z2 are in Be(t,xr), then by linearity of
u(t, -,xT), so is z. Thus, suppose at least one z, G Be(t, xr). But then u(t, z, xT) <
m*,a contradiction.

Claim 2. ¡T B(t, xT) dp(t) = dfT Be(t, xT) dp(t).
Since we are working in a separable Banach space £, the weak topology on AT is

metrizable [8, V.6.3]. In addition, the norm Borel a-algebra is identical to the weak
Borel a-algebra [17, Theorem 2.5(b)]. We can thus appeal to Theorem 3.5 in [13] to
assert that X(-) is measurable in the sense required by Theorem 8.3 in [20]. Since all
the remaining hypotheses of this theorem also hold, we can assert that ext X(-) is
measurable in the sense that its graph belongs to .J"® 3¿W(X). A further appeal to
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[17, Theorem 2.5(b)] allows us to assert that ext X(-) is measurable in the sense
required for Theorem 111.39 in [3]. The other hypotheses of this theorem are also
fulfilled, allowing us to conclude that Be(t,x) has a measurable graph in the sense
required for Theorem 1 in [15]. The other hypotheses of this theorem are also
trivially fulfilled. The proof of our claim is thus complete.

Now from Claim 2 we can assert that for all 8 > 0, there exists y g £,(¡u, ext X(■ ))
such that for almost all t in T, y(t) G Be(t, xT) and \\yT - xT\\ < 8. This implies,
by weak continuity of u(t, x(t), •), that for all e > 0 and for almost all / in T,

\u(t,x(t),xT) — zz*|| < e/2;

see [11, Corollary, p. 30]. But from Claim 1, for almost all t in T,
u(t,y(t),xT) = u(t,x(t),xT).

A further appeal to weak continuity of u(t,x(t), ■) allows us to assert that for
almost all t in T,

\\u(t, y(t),xT) - u(t, y(t), yT)\\ <£/2-
The proof of the theorem is now complete.   Q.E.D.

Proof of Corollary 3.2. Apply Corollary 3.1 and Theorem 3.2 in place of
Theorem 3.1 in the proof of Theorem 3.4. All the arguments go through.   Q.E.D.

Proof of Theorem 3.5. It is clear that the hypotheses of Theorem 3.5 imply those
of Theorem 3.3. We can thus assert the existence of x g Lx(p, X(-)) such that for
almost all / in T, x(t) g B(t, xT). Let Be(t, xT) be as in the proof of Theorem 3.4.
We now have

Claim 1. For all t in T, B(t, xT) = w* coBe(t, xT).
This is established in a manner entirely analogous to the proof of Claim 1 in the

proof of Theorem 3.4.
Claim 2. <fTB(t,xT)dp(t) = w*c\<fT Be(t, xT) dp(t).
As argued in the proof of Claim 2 in the proof of Theorem 3.3, we can assume

that X(-) has a Souslin range space. We can thus appeal to Theorem 3.5 in [13] and
to Theorem 8.3 in [20] to assert that the graph of ext X(-) belongs to y® 38W'(X).
We can now appeal to Theorem 111.39 in [3] to assert that the graph of Be(-,xT)
belongs to 3~® 38W\X). A final appeal to Corollary 1 in [15] completes the proof of
our claim.

The rest of the argument in the proof of Theorem 3.4 applies without any essential
changes.    Q.E.D.

Acknowledgement. I am especially indebted to Roko Aliprantis, Don Brown,
S. S. Khurana, Peter Loeb, Andreu Mas-Colell, Joe Ostroy, Salim Rashid, Rajiv
Vohra and Nicholas Yannelis for many stimulating discussions, and to an anony-
mous referee for his comments. Errors are, of course, solely mine.

References
1. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.
2. T. F. Bewley, The equality of the core and the set of equilibria in economies with infinitely many

commodities and a continuum of agents. Internat. Econom. Rev. 14 (1974), 383-396.
3. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in

Math., vol. 580, Springer-Verlag, New York, 1977.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONATOMIC GAMES OVER A BANACH SPACE 749

4. J. Diestel, Remarks on weak compactness in Lx(n, X), Glasgow Math. J. 18 (1977), 87-91.
5. J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, No. 15, Amer. Math. Soc, Providence,

R. I., 1977.
6. N.  Dincleanu,   Linear operations on  Lp-spaces,  Vector and  Operator Valued  Measures and

Applications (D. H. Tucker and H. B. Maynard, eds.). Academic Press, New York, 1973.
7. P. Dubey, A. Mas-Colell and M. Shubik,  Efficiency properties of strategic market games:   An

axiomatic approach, J. Econom. Theory 22 (1980), 339-362.
8. N. Dunford and J. T. Schwartz, Linear operators: Part I, Wiley, New York, 1958.
9. K. Fan, Fixed points and minimax theorems in locally convex linear spaces, Proc. Nat. Acad. Sei.

U.S.A. 38(1952), 121-126.
10. I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem with applications to

Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174.
11. W.  Hildenbrand,  Existence of equilibria for economies with production and a measure space of

consumers, Econometrica 38 (1970), 608-623.
12._, Core and equilibria of a large eocnomy. Princeton Univ. Press, Princeton, N. J., 1974.
13. C. J. Himmelberg, Measurable relations. Fund. Math. 87 (1975), 53-72.
14. M. Ali Khan, Equilibrium points of nonatomic games over a nonreflexive Banach space, 1. Approx.

Theory 43 (1985), 370-376.
15._On the integration of set-valued mappings in a nonreflexive Banach space. II, Johns Hopkins

Working Paper No. 109, September 1982 (Simon Stevins, forthcoming).
16. R. Larsen, Functional analysis, Dekker, New York, 1973.
17. P. Masani, Measurability and Pettis integration in Hilbert spaces, J. Reine Angew. Math. 297 (1978),

92-135.
18. A. Mas-Colell, A model of equilibrium with differentiated commodities, J. Math. Econom. 2 (1975),

263-295.
19. D. Schmeidler, Equilibrium points of nonatomic games, J. Statist. Phys. 7 (1973), 295-300.
20. D.  H. Wagner,  Survey of measurable selection theorems, SIAM J. Control Optim.  15 (1977),

859-903.
21. E. Wesley, Borel preference orders in markets with a continuum of traders. J. Math. Econom. 3 (1976),

155-165.
22. A. Wilansky, Modern methods in topological vector spaces, McGraw-Hill, New York, 1978.

Department of Economics, Cornell University, Ithaca, New York 14853

Department of Political Economy, Johns Hopkins University, Baltimore, Maryland 21218

Current address: Department of Economics, University of Illinois, 1206 South Sixth Street, Champaign,
Illinois 61820

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


