Equilibrium Problems and Variational Models

Edited by

Patrizia Daniele Department of Mathematics University of Catania 95125 Catania Italy

Franco Giannessi Department of Mathematics University of Pisa 56127 Pisa Italy

Antonino Maugeri Department of Mathematics University of Catania 95125 Catania Italy

Contents

Preface	xiii
On Vector Quasi-Equilibrium Problems Oamrul Hasan Ansari and Jen-Chih Yao	1
1. Introduction	1
2. Preliminaries	3
3. Existence Results	6
4. Some Applications	10
References	15
The Log Quadratic Provinal Methodology in Convey On	
timization Algorithms and Variational Inequalities	10
timization Algorithms and Variational mequanties	15
Alfred Austender and Marc Teboulle	
1 Introduction	20
2 Lagrangians and Provimal Methods	21
2. The quadratic augmented Lagrangian	21
2.2. Provimal Minimization Algorithms	22
2.3. Entropic Provimal Methods and Modified Lagrangians	24
2.4. Difficulties with Entropic Provincel Methods	24
2.5. Toward Solutions to Difficulties	20
2.0. Toward bolations to Difficulties	20
3.1 The LO Function and its Conjugate: Basic Properties	29
3.2. The Logarithmic Quadratic Provinal Minimization	29
4 The LOP in Action	33
4. The Exprime LOP for Variational Inequalities over Deluhedra	22
4.1. I imma Logi for variational inequalities over rolyneura	00
4.2. Lagrangian Methods for convex optimization and variational	24
4.2 Dual and Primal Dual Decomposition ashaman	04
4.5. Dual and Frimal-Dual Decomposition sciences	30
4.4. Frimai Decomposition: Block Gauss-Seidel Schemes for Linearly	00
constrained Problems	39

4.5. Convex Feasibility Problems 41 4.6. Bundle Methods in Nonsmooth Optimization 43 References 45 The Continuum Model of Transportation Problem 53 Patrizia Daniele, Giovanna Idone and Antonino Maugeri 53 1. Introduction 53 2. Calculus of the solution 56 References 59 The Economic Model for Demand–Supply Problems 61 Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 62 4. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique 79 Vladimir F. Demyanov 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function φ 88 6.	vi	
4.6. Bundle Methods in Nonsmooth Optimization 43 References 45 The Continuum Model of Transportation Problem 53 Patrizia Daniele, Giovanna Idone and Antonino Maugeri 53 1. Introduction 53 2. Calculus of the solution 56 References 59 The Economic Model for Demand-Supply Problems 61 Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 62 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique 79 Vladimir F. Demyanov 80 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 88 6.1. Properties of the function φ 88 <td< td=""><td>4.5 Convex Fessibility Problems</td><td>41</td></td<>	4.5 Convex Fessibility Problems	41
References 45 The Continuum Model of Transportation Problem 53 Patrizia Daniele, Giovanna Idone and Antonino Maugeri 53 1. Introduction 53 2. Calculus of the solution 56 References 59 The Economic Model for Demand–Supply Problems 61 Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 62 3. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique 79 Vladimir F. Demyanov 80 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function φ 94 6.3. The	4.6. Bundle Methods in Nonsmooth Optimization	43
The Continuum Model of Transportation Problem 53 Patrizia Daniele, Giovanna Idone and Antonino Maugeri 53 1. Introduction 53 2. Calculus of the solution 56 References 59 The Economic Model for Demand-Supply Problems 61 Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique 79 Vladimir F. Demyanov 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 94 6.2. Properties of the function φ 94 6.3. The rate of descent of the function φ 94 6.4. An Exact Penalty function <t< td=""><td>References</td><td>45</td></t<>	References	45
The Continuum Model of Transportation Problem 53 Patrizia Daniele, Giovanna Idone and Antonino Maugeri 53 1. Introduction 53 2. Calculus of the solution 56 References 59 The Economic Model for Demand–Supply Problems 61 Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique 79 Vladimir F. Demyanov 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 86 6. Exact penalty functions 88 6.1. Properties of the function φ 98 6.2. Properties of the function φ 94 6.3. The rate of descent of the function φ 94 6.4. An Exact Penalty function		
Patrizia Daniele, Giovanna Idone and Antonino Maugeri 1. Introduction 53 2. Calculus of the solution 56 References 59 The Economic Model for Demand–Supply Problems 61 Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique 79 Vladimir F. Demyanov 79 1. Introduction 79 2. Statement of the problem 81 3. An equivalent statement of the problem 83 5. Penalty functions 86 61. Properties of the function φ 88 62. Properties of the function φ 84 63. The rate of descent of the function φ 97 64. An Exact Penalty functions 88 61. Properties of the function φ 97	The Continuum Model of Transportation Problem	53
1. Introduction 53 2. Calculus of the solution 56 References 59 The Economic Model for Demand–Supply Problems <i>Patrizia Daniele and Antonino Maugeri</i> 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique <i>Vladimir F. Demyanov</i> 79 1. Introduction 79 2. Statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function φ 88 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 103	Patrizia Daniele, Giovanna Idone and Antonino Maugeri	
1. Introduction 56 2. Calculus of the solution 56 References 59 The Economic Model for Demand–Supply Problems $Patrizia Daniele and Antonino Maugeri$ 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique $vladimir F. Demyanov$ 79 Vladimir F. Demyanov 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 97 6.4. An Exact Penalty function 99 7.1. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by cla	1 Introduction	53
References 59 The Economic Model for Demand–Supply Problems 61 Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique yladimir F. Demyanov 79 Vladimir F. Demyanov 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 86 7. Properties of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 103 7.2. Discussion and Remarks 103	2. Calculus of the solution	56
The Economic Model for Demand–Supply Problems 61 Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique <i>Vladimir F. Demyanov</i> 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 88 61. Properties of the function φ 94 62. Properties of the function φ 94 63. The rate of descent of the function φ 97 64. An Exact Penalty function 99 71. Necessary conditions for an Extremum 100 71. Necessary conditions generated by classical variations 103 72. Discussion and Remarks 103 <td>References</td> <td>59</td>	References	59
The Economic Model for Demand–Supply Problems 61 Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique 79 Vladimir F. Demyanov 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6.1. Properties of the function φ 84 6.2. Properties of the function φ 94 6.3. The rate of descent of the function φ 94 6.4. An Exact Penalty functions 90 7.1. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 103 7.2. Discussion and Remarks 103		
Patrizia Daniele and Antonino Maugeri 61 1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique <i>Vladimir F. Demyanov</i> 79 Vladimir F. Demyanov 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6.1. Properties of the function φ 88 6.2. Properties of the function φ 97 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 103 7.2. Discussion and Remarks 103 <td>The Economic Model for Demand–Supply Problems</td> <td>61</td>	The Economic Model for Demand–Supply Problems	61
1. Introduction 61 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique y Vladimir F. Demyanov 1. Introduction 79 Vladimir F. Demyanov 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 88 6. Exact penalty functions 88 6.1. Properties of the function φ 97 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty functions 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 103 7.2. Discussion and Remarks 103	Patrizia Daniele and Antonino Maugeri	
1. Introduction 62 2. The first phase: formalization of the equilibrium 62 3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique <i>Vladimir F. Demyanov</i> 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 97 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty functions 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 103 7.2. Discussion and Remarks 103 References 106	1. Introduction	61
3. The second phase: formalization of the equilibrium 67 4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique $vladimir F. Demyanov$ 79 Vladimir F. Demyanov 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions for an Extremum 100 7.2. Discussion and Remarks 103 References 106	2. The first phase: formalization of the equilibrium	62
4. The dependence of the second phase on the first one 70 5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penal- ization Technique <i>Vladimir F. Demyanov</i> 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	3. The second phase: formalization of the equilibrium	67
5. General model 71 6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penal- ization Technique <i>Vladimir F. Demyanov</i> 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 84 6.2. Properties of the function φ 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	4. The dependence of the second phase on the first one	70
6. Example 72 References 77 Constrained Problems of Calculus of Variations Via Penalization Technique 79 Vladimir F. Demyanov 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	5. General model	71
References77Constrained Problems of Calculus of Variations Via Penalization Technique79Vladimir F. Demyanov791. Introduction792. Statement of the problem803. An equivalent statement of the problem814. Local minima835. Penalty functions866. Exact penalty functions886.1. Properties of the function φ 886.2. Properties of the function G 946.3. The rate of descent of the function φ 976.4. An Exact Penalty function997. Necessary conditions for an Extremum1007.1. Necessary conditions generated by classical variations103References106	6. Example	72
Constrained Problems of Calculus of Variations Via Penalization Technique 79 $Vladimir F. Demyanov$ 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty functions 90 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	References	77
Constrained Problems of Calculus of Variations Via Penal- ization Technique 79 $Vladimir F. Demyanov$ 79 1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 84 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106		
1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106 106	Constrained Problems of Calculus of Variations Via Penal-	70
Vitainit' F. Demyanov791. Introduction792. Statement of the problem803. An equivalent statement of the problem814. Local minima835. Penalty functions866. Exact penalty functions886.1. Properties of the function φ 886.2. Properties of the function G 946.3. The rate of descent of the function φ 976.4. An Exact Penalty function997. Necessary conditions for an Extremum1007.1. Necessary conditions generated by classical variations1007.2. Discussion and Remarks103References106		19
1. Introduction 79 2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 103 References 106	Vlaaimir F. Demyanov	
2. Statement of the problem 80 3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 103 References 106	1. Introduction	79
3. An equivalent statement of the problem 81 4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	2. Statement of the problem	80
4. Local minima 83 5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	3. An equivalent statement of the problem	81
5. Penalty functions 86 6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	4. Local minima	83
6. Exact penalty functions 88 6.1. Properties of the function φ 88 6.2. Properties of the function G 94 6.3. The rate of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	5. Penalty functions	86
6.1. Properties of the function φ 886.2. Properties of the function G 946.3. The rate of descent of the function φ 976.4. An Exact Penalty function997. Necessary conditions for an Extremum1007.1. Necessary conditions generated by classical variations1007.2. Discussion and Remarks103References106	6. Exact penalty functions	88
6.2.Froperties of the function G946.3.The rate of descent of the function φ 976.4.An Exact Penalty function997.Necessary conditions for an Extremum1007.1.Necessary conditions generated by classical variations1007.2.Discussion and Remarks103References106	6.1. Properties of the function φ	88
6.3. The face of descent of the function φ 97 6.4. An Exact Penalty function 99 7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	6.2. The rote of decent of the function of	94
7. Necessary conditions for an Extremum 100 7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	6.4. An Exact Density function	00
7.1. Necessary conditions generated by classical variations 100 7.2. Discussion and Remarks 103 References 106	7 Necessary conditions for an Extremum	100
7.2. Discussion and Remarks103References106	7.1 Necessary conditions generated by classical variations	100
References 106	7.2. Discussion and Remarks	103
	References	106

	vii
Variational Problems with Constraints Involving Higher– Order Derivatives	109
Vladimir F. Demyanov and Franco Giannessi	
1. Introduction	109
2. Statement of the problem	110
3. An equivalent statement of the problem	111
4. Local minima	114
5. Properties of the function φ	115
5.1. A classical variation of z	115
5.2. The case $z \notin Z$	117
5.3. The case $z \in Z$	120
6. Exact penalty functions	123
6.1. Properties of the function G	123
6.2. An Exact Penalty function	127
7. Necessary conditions for an Extremum	127
References	133
On the strong colorbility of a unilational boundary only.	
On the strong solvability of a unilateral boundary value	195
problem for Nonlinear Parabolic Operators in the Plane	135
Rosalba Di Vincenzo	
1 Introduction	135
2 Hypotheses and results	136
3 Preliminary results	137
4 Proof of the theorems	138
Beferences	140
	110
Solving a Special Class of Discrete Optimal Control Prob-	
lems Via a Parallel Interior–Point Method	141
Carla Durazzi, Valeria Ruggiero and Gaetano Zanghirati	
1. Introduction	142
2. Framework of the Method	143
3. Global convergence	149
4. A special class of discrete optimal control problems	152
5. Numerical experiments	157
6. Conclusions	160
References	160
R03738-332838.	

Solving Large Scale Fixed Charge Network Flow Problems 163 Burak Eksioğlu, Sandra Duni Eksioğlu and Panos M. Pardalos 1. Introduction 164 2. Problem Definition and Formulation 166 3. Solution Procedure 167 3.1. The DSSP 167 3.2. Local Search 169 4. Computational Results 171 5. Concluding Remarks 181 References 181 Variable Projection Methods for Large-Scale Quadratic **Optimization in data Analysis Applications** 185

Emanuele Galligani, Valeria Ruggiero and Luca Zanni 1. Introduction 185 2. Large QP Problems in Training Support Vector Machines 188

3. Numerical Solution of Image Restoration Problem1934. A Bivariate Interpolation Problem2005. Conclusions206References207

213

Strong solvability of boundary value problems in elasticity with Unilateral Constraints

Sofia Giuffrè

1.	Introduction	213
2.	Basic assumptions and main results	215
3.	Preliminary results	217
4.	Proof of the theorems	218
Re	ferences	223

Time Dependent Variational Inequalities – Some Recent Trends 225

Joachim Gwinner

1.	introduction	
2.	Time - an additional parameter in variational inequalities	229

viii

	2.1. Time-dependent variational inequalities and quasi-variational in-	
eq	ualities	230
	2.2. Some classic results on the differentiability of the projection on	
clo	sed convex subsets in Hilbert space	236
	2.3. Time-dependent variational inequalities with memory terms	237
3.	Ordinary Differential Inclusions with Convex Constraints: Sweeping	
Pr	ocesses	240
	3.1. Moving convex sets and systems with hysteresis	241
	3.2. Sweeping processes and generalizations	242
4.	Projected dynamical systems	247
	4.1. Differentiability of the projection onto closed convex subsets	
re	visited	247
	4.2. Projected dynamical systems and stationarity	250
	4.3. Well-posedness for projected dynamical systems	251
5.	Some Asymptotic Results	252
	5.1. Some classical results	252
	5.2. An asymptotic result for full discretization	253
	5.3. Some convergence results for continuous-time subgradient proce-	
du	res for convex optimization	256
Re	ferences	259
0		
C	the Contractibility of the Efficient and Weakly Efficient $\frac{1}{2}$	005
96	ts in R ²	265
	Nguyen Quang Huy, Ta Duy Phuong and Nguyen Dong Yen	
1.	Introduction	265
2.	Preliminaries	266
3.	Topological structure of the efficient sets of compact convex sets	267
4.	Example	276
Re	ferences	278
17		
E	distence Theorems for a Class of variational inequalities	001
an	d Applications to a Continuous Model of Transportation	281
	Francesco Marino	
1.	Introduction	281
2.	Continuous transportation model	282
3.	Existence Theorem	284

ix

287

3. Existence Theorem References

۱

On Auxiliary Principle for Equilibrium Problems Giandomenico Mastroeni	289
 Introduction The auxiliary equilibrium problem The auxiliary problem principle Applications to variational inequalities and optimization problems Concluding remarks References 	289 291 293 295 297 297
Multicriteria Spatial Price Networks: Statics and Dynam- ics Anna Nagurney, June Dong and Ding Zhang	299
 Introduction The Multicriteria Spatial Price Model Qualitative Properties The Dynamics The Discrete-Time Algorithm Numerical Examples Summary and Conclusions References 	299 301 306 309 311 314 318 319
Non regular data in unilateral variational problems Pirro Oppezzi	323
 Introduction The approach by truncation and approximation Renormalized formulation Multivalued operators and more general measures Uniqueness and convergence References 	323 324 328 328 330 331
Equilibrium Concepts in Transportation Networks: Generalized Wardrop Conditions and Variational For- mulations Massimo Pappalardo and Mauro Passacantando	333
 Introduction Equilibrium model in a traffic network 	333 334

х

	xi
References	344
Variational Geometry and Equilibrium	347
Michael Patriksson and R. Tyrrell Rockafellar	
1. Introduction	347
2. Variational Inequalities and Normals to Convex Sets	349
3. Quasi-Variational Inequalities and Normals to General Sets	352
4. Calculus and Solution Perturbations	357
5. Application to an Equilibrium Model with Aggregation	361
References	367
On the Calculation of Equilibrium in Time Dependent	
Traffic Networks	369
Fabio Raciti	
1. Introduction	369
2. Calculation of Equilibria	370
3. The algorithm	371
4. Applications and Examples	372
5. Conclusions	376
References	376
Mechanical Equilibrium and Equilibrium Systems	379
Tamás Rapcsák	
1. Introduction	379
2. Physical motivation	380
3. Statement of the mechanical force equilibrium problem	381
4. The principle of virtual work	382
5. Characterization of the constraints	383
6. Quasi-variational inequalities (QVI)	384
7. Principle of virtual work in force fields under scleronomic and holo-	
nomic constraints	385
8. Dual form of the principle of virtual work in force field under sclero-	300
nomic and holonomic constraints	388
9. Procedure for solving mechanical equilibrium problems	391
10. Existence of solutions	395
References	307
	501

Fa M	lse Numerical Convergence in Some Generalized Newton ethods	401
	Stephen M. Robinson	
1.	Introduction	401
2.	Some generalized Newton methods	402
3.	False numerical convergence	405
4.	An example	408
5.	Avoiding false numerical convergence	411
Re	ferences	415
Di	stance to the Solution Set of an Inequality with an	
In	creasing Function	417
	Alex M. Rubinov	
1.	Introduction	417
2.	Preliminaries	418
3.	Distance to the solution set of the inequality with an arbitrary increas-	
ing	function	420
4.	Distance to the solution set of the inequality with an ICAR function	423
5.	Inequalities with an increasing function defined on the entire space	427
6.	Inequalities with a topical function	429
Re	ferences	430
Tr	ansportation Networks with Capacity Constraints	433
	Laura Scrimali	
1.	Introduction	433
2.	Wardrop's generalized equilibrium condition	434
3.	A triangular network	436
4.	More about generalized equilibrium principle	438
5.	Capacity constraints and paradox	442
Re	ferences	443

xii