
ORIGINAL RESEARCH
published: 04 May 2017

doi: 10.3389/fncom.2017.00024

Frontiers in Computational Neuroscience | www.frontiersin.org 1 May 2017 | Volume 11 | Article 24

Edited by:

Marcel van Gerven,

Radboud University Nijmegen,

Netherlands

Reviewed by:

Stefan Frank,

Radboud University Nijmegen,

Netherlands

Petia D. Koprinkova-Hristova,

Institute of Information and

Communication Technologies (BAS),

Bulgaria

*Correspondence:

Benjamin Scellier

benjamin.scellier@polytechnique.edu

†
Senior Fellow of CIFAR.

Received: 01 December 2016

Accepted: 28 March 2017

Published: 04 May 2017

Citation:

Scellier B and Bengio Y (2017)

Equilibrium Propagation: Bridging the

Gap between Energy-Based Models

and Backpropagation.

Front. Comput. Neurosci. 11:24.

doi: 10.3389/fncom.2017.00024

Equilibrium Propagation: Bridging
the Gap between Energy-Based
Models and Backpropagation

Benjamin Scellier * and Yoshua Bengio †

Département d’Informatique et de Recherche Opérationnelle, Montreal Institute for Learning Algorithms, Université de

Montréal, Montreal, QC, Canada

We introduce Equilibrium Propagation, a learning framework for energy-based models.

It involves only one kind of neural computation, performed in both the first phase (when

the prediction is made) and the second phase of training (after the target or prediction

error is revealed). Although this algorithm computes the gradient of an objective function

just like Backpropagation, it does not need a special computation or circuit for the

second phase, where errors are implicitly propagated. Equilibrium Propagation shares

similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving

the theoretical issues of both algorithms: our algorithm computes the gradient of a

well-defined objective function. Because the objective function is defined in terms of

local perturbations, the second phase of Equilibrium Propagation corresponds to only

nudging the prediction (fixed point or stationary distribution) toward a configuration

that reduces prediction error. In the case of a recurrent multi-layer supervised network,

the output units are slightly nudged toward their target in the second phase, and the

perturbation introduced at the output layer propagates backward in the hidden layers.

We show that the signal “back-propagated” during this second phase corresponds to

the propagation of error derivatives and encodes the gradient of the objective function,

when the synaptic update corresponds to a standard form of spike-timing dependent

plasticity. This workmakes it more plausible that amechanism similar to Backpropagation

could be implemented by brains, since leaky integrator neural computation performs both

inference and error back-propagation in our model. The only local difference between the

two phases is whether synaptic changes are allowed or not. We also show experimentally

that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be

trained by Equilibrium Propagation on the permutation-invariant MNIST task.

Keywords: artificial neural network, backpropagation algorithm, biologically plausible learning rule, contrastive

hebbian learning, deep learning, fixed point, Hopfield networks, spike-timing dependent plasticity

1. INTRODUCTION

The Backpropagation algorithm to train neural networks is considered to be biologically
implausible. Among other reasons, one major reason is that Backpropagation requires a special
computational circuit and a special kind of computation in the second phase of training. Here,
we introduce a new learning framework called Equilibrium Propagation, which requires only
one computational circuit and one type of computation for both phases of training. Just like

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
https://doi.org/10.3389/fncom.2017.00024
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00024&domain=pdf&date_stamp=2017-05-04
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:benjamin.scellier@polytechnique.edu
https://doi.org/10.3389/fncom.2017.00024
http://journal.frontiersin.org/article/10.3389/fncom.2017.00024/abstract
http://loop.frontiersin.org/people/396487/overview
http://loop.frontiersin.org/people/349358/overview

Scellier and Bengio Equilibrium Propagation

Backpropagation applies to any differentiable computational
graph (and not just a regular multi-layer neural network),
Equilibrium Propagation applies to a whole class of energy based
models (the prototype of which is the continuous Hopfield
model).

In Section 2, we revisit the continuous Hopfield model
(Hopfield, 1984) and introduce Equilibrium Propagation as a
new framework to train it. The model is driven by an energy
function whose minima correspond to preferred states of the
model. At prediction time, inputs are clamped and the network
relaxes to a fixed point, corresponding to a local minimum of the
energy function. The prediction is then read out on the output
units. This corresponds to the first phase of the algorithm. In the
second phase of the training framework, when the target values
for output units are observed, the outputs are nudged toward
their targets and the network relaxes to a new but nearby fixed
point which corresponds to slightly smaller prediction error. The
learning rule, which is proved to perform gradient descent on
the squared error, is a kind of contrastive Hebbian learning rule
in which we learn (make more probable) the second-phase fixed
point by reducing its energy and unlearn (make less probable)
the first-phase fixed point by increasing its energy. However, our
learning rule is not the usual contrastive Hebbian learning rule
and it also differs from Boltzmann machine learning rules, as
discussed in Sections 4.1 and 4.2.

During the second phase, the perturbation caused at the
outputs propagates across hidden layers in the network. Because
the propagation goes from outputs backward in the network,
it is better thought of as a “back-propagation.” It is shown by
Bengio and Fischer (2015) and Bengio et al. (2017) that the
early change of neural activities in the second phase corresponds
to the propagation of error derivatives with respect to neural
activities. Our contribution in this paper is to go beyond the early
change of neural activities and to show that the second phase
also implements the (back)-propagation of error derivatives with
respect to the synaptic weights, and that this update corresponds
to a form of spike-timing dependent plasticity, using the results
of Bengio et al. (2017).

In Section 3, we present the general formulation of
Equilibrium Propagation: a newmachine learning framework for
energy-based models. This framework applies to a whole class
of energy based models, which is not limited to the continuous
Hopfield model but encompasses arbitrary dynamics whose fixed
points (or stationary distributions) correspond to minima of an
energy function.

In Section 4, we compare our algorithm to the existing
learning algorithms for energy-based models. The recurrent
back-propagation algorithm introduced by Pineda (1987) and
Almeida (1987) optimizes the same objective function as ours
but it involves a different kind of neural computation in
the second phase of training, which is not satisfying from a
biological perspective. The contrastive Hebbian learning rule for
continuous Hopfield nets described by Movellan (1990) suffers
from theoretical problems: learning may deteriorate when the
free phase and clamped phase land in different modes of the
energy function. The Contrastive Divergence algorithm (Hinton,
2002) has theoretical issues too: the CD1 update rule may cycle

indefinitely (Sutskever and Tieleman, 2010). The equivalence of
back-propagation and contrastive Hebbian learning was shown
by Xie and Seung (2003) but at the cost of extra assumptions: their
model requires infinitesimal feedback weights and exponentially
growing learning rates for remote layers.

Equilibrium Propagation solves all these theoretical issues
at once. Our algorithm computes the gradient of a sound
objective function that corresponds to local perturbations. It
can be realized with leaky integrator neural computation which
performs both inference (in the first phase) and back-propagation
of error derivatives (in the second phase). Furthermore, we do
not need extra hypotheses such as those required by Xie and
Seung (2003). Note that algorithms related to ours based on
infinitesimal perturbations at the outputs were also proposed by
O’Reilly (1996) and Hertz et al. (1997).

Finally, we show experimentally in Section 5 that our model
is trainable. We train recurrent neural networks with 1, 2, and
3 hidden layers on MNIST and we achieve 0.00% training error.
The generalization error lies between 2 and 3% depending on the
architecture. The code for the model is available1 for replicating
and extending the experiments.

2. THE CONTINUOUS HOPFIELD MODEL
REVISITED: EQUILIBRIUM PROPAGATION
AS A MORE BIOLOGICALLY PLAUSIBLE
BACKPROPAGATION

In this section, we revisit the continuous Hopfield model
(Hopfield, 1984) and introduce Equilibrium Propagation, a novel
learning algorithm to train it. Equilibrium Propagation is similar
in spirit to Backpropagation in the sense that it involves the
propagation of a signal from output units to input units backward
in the network, during the second phase of training. Unlike
Backpropagation, Equilibrium Propagation requires only one
kind of neural computations for both phases of training, making
it more biologically plausible than Backpropagation. However,
several points still need to be elucidated from a biological
perspective. Perhaps the most important of them is that the
model described in this section requires symmetric weights, a
question discussed at the end of this paper.

2.1. A Kind of Hopfield Energy
Previous work (Hinton and Sejnowski, 1986; Friston and
Stephan, 2007; Berkes et al., 2011) has hypothesized that, given a
state of sensory information, neurons are collectively performing
inference: they are moving toward configurations that better
“explain” the observed sensory data.We can think of the neurons’
configuration as an “explanation” (or “interpretation”) for the
observed sensory data. In the energy-basedmodel presented here,
that means that the units of the network gradually move toward
lower energy configurations that are more probable, given the
sensory input and according to the current “model of the world”
associated with the parameters of the model.

1https://github.com/bscellier/Towards-a-Biologically-Plausible-Backprop

Frontiers in Computational Neuroscience | www.frontiersin.org 2 May 2017 | Volume 11 | Article 24

https://github.com/bscellier/Towards-a-Biologically-Plausible-Backprop
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

We denote by u the set of units of the network2, and by θ =

(W, b) the set of free parameters to be learned, which includes
the synaptic weights Wij and the neuron biases bi. The units
are continuous-valued and would correspond to averaged voltage
potential across time, spikes, and possibly neurons in the same
minicolumn. Finally, ρ is a non-linear activation function such
that ρ(ui) represents the firing rate of unit i.

We consider the following energy function E, a kind of
Hopfield energy, first studied by Bengio and Fischer (2015),
Bengio et al. (2015a,b), and Bengio et al. (2017):

E(u) :=
1

2

∑

i

u2i −
1

2

∑

i 6= j

Wijρ(ui)ρ(uj)−
∑

i

biρ(ui). (1)

Note that the network is recurrently connected with symmetric
connections, that is Wij = Wji. The algorithm presented
here is applicable to any architecture (so long as connections
are symmetric), even a fully connected network. However, to
make the connection to backpropagation more obvious, we will
consider more specifically a layered architecture with no skip-
layer connections and no lateral connections within a layer
(Figure 1).

In the supervised setting studied here, the units of the network
are split in three sets: the inputs x which are always clamped
(just like in other models such as the conditional Boltzmann
machine), the hidden units h (which may themselves be split in
several layers) and the output units y. We use the notation d
for the targets, which should not be confused with the outputs
y. The set of all units in the network is u = {x, h, y}. As usual
in the supervised learning scenario, the output units y aim to
replicate their targets d. The discrepancy between the output
units y and the targets d is measured by the quadratic cost
function:

C :=
1

2
‖y− d‖2. (2)

The cost function C also acts as an external potential energy for
the output units, which can drive them toward their target. A
novelty in our work, with respect to previously studied energy-
based models, is that we introduce the “total energy function” F,
which takes the form:

F := E+ βC, (3)

where β ≥ 0 is a real-valued scalar that controls whether the
output y is pushed toward the target d or not, and by how much.
We call β the “influence parameter” or “clamping factor.” The
total energy F is the sum of two potential energies: the internal
potential E that models the interactions within the network,
and the external potential βC that models how the targets
influence the output units. Contrary to Boltzmann Machines
where the visible units are either free or (fully) clamped, here
the real-valued parameter β allows the output units to be weakly
clamped.

2For reasons of convenience, we use the same symbol u to mean both the set of

units and the value of those units.

FIGURE 1 | The input units x are always clamped. The state variable s

includes the hidden units h and output units y. The targets are denoted by d.

The network is recurrently connected with symmetric connections. Left.

Equilibrium Propagation applies to any architecture, even a fully connected

network. Right. The connection with Backpropagation is more obvious when

the network has a layered architecture.

2.2. The Neuronal Dynamics
We denote the state variable of the network by s = {h, y} which
does not include the input units x since they are always clamped.
We assume that the time evolution of the state variable s is
governed by the gradient dynamics:

ds

dt
= −

∂F

∂s
. (4)

Unlike more conventional artificial neural networks, the model
studied here is a continuous-time dynamical system described by
the differential equation of motion (Equation 4). The total energy
of the system decreases as time progresses (θ , β , x, and d being
fixed) since:

dF

dt
=

∂F

∂s
·
ds

dt
= −

∥∥∥∥
ds

dt

∥∥∥∥
2

≤ 0. (5)

The energy stops decreasing when the network has reached a
fixed point:

dF

dt
= 0 ⇔

ds

dt
= 0 ⇔

∂F

∂s
= 0. (6)

The differential equation of motion (Equation 4) can be seen as a
sum of two “forces” that act on the temporal derivative of s:

ds

dt
= −

∂E

∂s
− β

∂C

∂s
. (7)

The “internal force” induced by the internal potential (the
Hopfield energy, Equation 1) on the i-th unit is:

−
∂E

∂si
= ρ′(si)

∑

j 6=i

Wijρ(uj)+ bi

− si, (8)

Frontiers in Computational Neuroscience | www.frontiersin.org 3 May 2017 | Volume 11 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

while the “external force” induced by the external potential
(Equation 2) on hi and yi is, respectively:

− β
∂C

∂hi
= 0 and − β

∂C

∂yi
= β(di − yi). (9)

The form of Equation (8) is reminiscent of a leaky integrator
neuron model, in which neurons are seen as performing leaky
temporal integration of their past inputs. Note that the hypothesis
of symmetric connections (Wij = Wji) was used to derive
Equation (8). As discussed in Bengio and Fischer (2015), the
factor ρ′(si) would suggest that when a neuron is saturated [firing
at the maximal or minimal rate so that ρ′(si) ≈ 0], its state is not
sensitive to external inputs, while the leaky term drives it out of
the saturation regime, toward its resting value si = 0.

The form of Equation (9) suggests that when β = 0, the output
units are not sensitive to the outside world d. In this case, we
say that the network is in the free phase (or first phase). On the
contrary, when β > 0, the “external force” drives the output unit
yi toward the target di. In this case, we say that the network is in
the weakly clamped phase (or second phase).

Finally, a more likely dynamics would include some form
of noise. The notion of fixed point is then replaced by that of
stationary distribution. In Appendix C, we present a stochastic
framework that naturally extends the analysis presented here.

2.3. Free Phase, Weakly Clamped Phase,
and Backpropagation of Errors
In the first phase of training, the inputs are clamped and β = 0
(the output units are free). We call this phase the free phase and
the state toward which the network converges is the free fixed
point u0. The prediction is read out on the output units y at the
fixed point.

In the second phase (which we call weakly clamped phase), the
influence parameter β is changed to a small positive value β > 0
and the novel term βC added to the energy function (Equation 3)
induces a new “external force” that acts on the output units
(Equation 9). This force models the observation of d: it nudges
the output units from their free fixed point value in the direction
of their target. Since this force only acts on the output units,
the hidden units are initially at equilibrium at the beginning of
the weakly clamped phase, but the perturbation caused at the
output units will propagate in the hidden units as time progresses.
When the architecture is a multi-layered net (Figure 1, Right),
the perturbation at the output layer propagates backwards across
the hidden layers of the network. This propagation is thus better
thought of as a “back-propagation.” The net eventually settles to
a new fixed point (corresponding to the new positive value of β)
which we call weakly clamped fixed point and denote by uβ .

Remarkably, the perturbation that is (back-)propagated
during the second phase corresponds to the propagation of error
derivatives. It was first shown by Bengio and Fischer (2015)
that, starting from the free fixed point, the early changes of
neural activities during the weakly clamped phase (caused by
the output units moving toward their target) approximate some
kind of error derivatives with respect to the layers’ activities.

They considered a regular multi-layer neural network with no
skip-layer connections and no lateral connections within a layer.

In this paper, we show that the weakly clamped phase also
implements the (back)-propagation of error derivatives with
respect to the synaptic weights. In the limit β → 0, the update
rule:

1Wij ∝
1

β

(
ρ

(
u

β
i

)
ρ

(
u

β
j

)
− ρ

(
u0i

)
ρ

(
u0j

))
(10)

gives rise to stochastic gradient descent on J := 1
2

∥∥y0 − d
∥∥2,

where y0 is the state of the output units at the free fixed point.
We will state and prove this theorem in a more general setting in
Section 3. In particular, this result holds for any architecture and
not just a layered architecture (Figure 1) like the one considered
by Bengio and Fischer (2015).

The learning rule (Equation 10) is a kind of contrastive
Hebbian learning rule, somewhat similar to the one studied by
Movellan (1990) and the Boltzmann machine learning rule. The
differences with these algorithms will be discussed in Section 4.

We call our learning algorithm Equilibrium Propagation. In
this algorithm, leaky integrator neural computation (as described
in Section 2.2), performs both inference (in the free phase), and
error back-propagation (in the weakly clamped phase).

2.4. Connection to Spike-Timing
Dependent Plasticity
Spike-Timing Dependent Plasticity (STDP) is believed to be a
prominent form of synaptic change in neurons (Markram and
Sakmann, 1995; Gerstner et al., 1996), and see Markram et al.
(2012) for a review.

The STDP observations relate the expected change in synaptic
weights to the timing difference between post-synaptic and pre-
synaptic spikes. This is the result of experimental observations
in biological neurons, but its role as part of a learning algorithm
remains a topic where more exploration is needed. Here, is an
attempt in this direction.

Experimental results by Bengio et al. (2015b) show that if the
temporal derivative of the synaptic weightWij satisfies:

dWij

dt
∝ ρ(ui)

duj

dt
, (11)

then one recovers the experimental observations by Bi and Poo
(2001) in biological neurons. Xie and Seung (2000) have studied
the learning rule:

dWij

dt
∝ ρ(ui)

dρ(uj)

dt
. (12)

Note, that the two rules (Equations 11, 12) are the same up to a
factor ρ′(uj). An advantage of Equation (12) is that it leads to a
more natural view of the update rule in the case of tied weights
studied here (Wij = Wji). Indeed, the update should take into
account the pressures from both the i to j and j to i synapses, so
that the total update under constraint is:

dWij

dt
∝ ρ(ui)

dρ(uj)

dt
+ ρ(uj)

dρ(ui)

dt
=

d

dt
ρ(ui)ρ(uj). (13)

Frontiers in Computational Neuroscience | www.frontiersin.org 4 May 2017 | Volume 11 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

By integrating Equation (13) on the path from the free fixed point
u0 to the weakly clamped fixed point uβ during the second phase,
we get:

1Wij ∝

∫
dWij

dt
dt =

∫
d

dt
ρ(ui)ρ(uj)dt =

∫
d

(
ρ(ui)ρ(uj)

)

= ρ

(
u

β
i

)
ρ

(
u

β
j

)
− ρ

(
u0i

)
ρ

(
u0j

)
, (14)

which is the same learning rule as Equation (10) up to a factor
1/β . Therefore, the update rule (Equation 10) can be interpreted
as a continuous-time integration of Equation (12), in the case of
symmetric weights, on the path from u0 to uβ during the second
phase.

We propose two possible interpretations for the synaptic
plasticity in our model.

First view. In the first phase, a anti-Hebbian update occurs

at the free fixed point 1Wij ∝ −ρ
(
u0i

)
ρ

(
u0j

)
. In the second

phase, a Hebbian update occurs at the weakly-clamped fixed

point 1Wij ∝ + ρ

(
u

β
i

)
ρ

(
u

β
j

)
.

Second view. In the first phase, no synaptic update occurs:
1Wij = 0. In the second phase, when the neurons’ state move
from the free fixed point u0 to the weakly-clamped fixed point uβ ,
the synaptic weights follow the “tied version” of the continuous-

time update rule
dWij

dt
∝ ρ(ui)

dρ(uj)

dt
+ ρ(uj)

dρ(ui)
dt

.

3. A MACHINE LEARNING FRAMEWORK
FOR ENERGY BASED MODELS

In this section we generalize the setting presented in Section 2.
We lay down the basis for a newmachine learning framework for
energy-based models, in which Equilibrium Propagation plays
a role analog to Backpropagation in computational graphs to
compute the gradient of an objective function. Just like the Multi
Layer Perceptron is the prototype of computational graphs in
which Backpropagation is applicable, the continuous Hopfield
model presented in Section 2 appears to be the prototype of
models which can be trained with Equilibrium Propagation.

In our new machine learning framework, the central object
is the total energy function F: all quantities of interest (fixed
points, cost function, objective function, gradient formula) can
be defined or formulated directly in terms of F.

Besides, in our framework, the “prediction” (or fixed point) is
defined implicitly in terms of the data point and the parameters of
the model, rather than explicitly (like in a computational graph).
This implicit definition makes applications on digital hardware
(such as GPUs) less practical as it needs long inference phases
involving numerical optimization of the energy function. But we
expect that this framework could be very efficient if implemented
by analog circuits, as suggested by Hertz et al. (1997).

The framework presented in this section is deterministic,
but a natural extension to the stochastic case is presented in
Appendix C.

3.1. Training Objective
In this section, we present the general framework while making
sure to be consistent with the notations and terminology
introduced in Section 2. We denote by s the state variable of the
network, v the state of the external world (i.e., the data point
being processed), and θ the set of free parameters to be learned.
The variables s, v, and θ are real-valued vectors. The state variable
s spontaneously moves toward low-energy configurations of an
energy function E(θ , v, s). Besides that, a cost function C(θ , v, s)
measures how “good” is a state is. The goal is to make low-energy
configurations have low cost value.

For fixed θ and v, we denote by s0θ ,v a local minimum of E, also
called fixed point, which corresponds to the “prediction” from
the model:

s0θ ,v ∈ argmin
s

E(θ , v, s). (15)

Here, we use the notation argmin to refer to the set of local
minima. The objective function that we want to optimize is:

J(θ , v) := C
(
θ , v, s0θ ,v

)
. (16)

Note the distinction between the cost function C and the
objective function J: the cost function is defined for any state s,
whereas the objective function is the cost associated to the fixed
point s0θ ,v.

Now that the objective function has been introduced, we
define the training objective (for a single data point v) as:

find argmin
θ

J(θ , v). (17)

A formula to compute the gradient of J will be given in Section
3.3 (Theorem 1). Equivalently, the training objective can be
reformulated as the following constrained optimization problem:

find argmin
θ ,s

C(θ , v, s) (18)

subject to
∂E

∂s
(θ , v, s) = 0, (19)

where the constraint ∂E
∂s (θ , v, s) = 0 is the fixed point condition.

For completeness, a solution to this constrained optimization
problem is given in Appendix B as well. Of course, both
formulations of the training objective lead to the same gradient
update on θ .

Note that, since the cost C(θ , v, s) may depend on θ , it can
include a regularization term of the form λ� (θ), where �(θ)

is a L1 or L2 norm penalty for example.
In Section 2 we had s =

{
h, y

}
for the state variable, v =

{
x, d

}

for the state of the outside world, θ = (W, b) for the set of learned
parameters, and the energy function E and cost function C were
of the form E (θ , v, s) = E

(
θ , x, h, y

)
and C (θ , v, s) = C

(
y, d

)
.

3.2. Total Energy Function
Following Section 2, we introduce the total energy function:

F(θ , v,β , s) := E(θ , v, s)+ β C(θ , v, s), (20)

Frontiers in Computational Neuroscience | www.frontiersin.org 5 May 2017 | Volume 11 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

where β is a real-valued scalar called “influence parameter.” Then
we extend the notion of fixed point for any value of β . The fixed

point (or energy minimum), denoted by s
β
θ ,v, is characterized by:

∂F

∂s

(
θ , v,β , s

β
θ ,v

)
= 0 (21)

and ∂2F
∂s2

(
θ , v,β , s

β
θ ,v

)
is a symmetric positive definite matrix.

Under mild regularity conditions on F, the implicit function

theorem ensures that, for fixed v, the funtion (θ ,β) 7→ s
β
θ ,v is

differentiable.

3.3. The Learning Algorithm: Equilibrium
Propagation
Theorem 1 (Deterministic version). The gradient of the objective
function with respect to θ is given by the formula:

∂J

∂θ
(θ , v) = lim

β→0

1

β

(
∂F

∂θ

(
θ , v,β , s

β
θ ,v

)
−

∂F

∂θ

(
θ , v, 0, s0θ ,v

))
,

(22)
or equivalently

∂J

∂θ
(θ , v) =

∂C

∂θ

(
θ , v, s0θ ,v

)
+ lim

β→0

1

β

(
∂E

∂θ

(
θ , v, s

β
θ ,v

)
−

∂E

∂θ

(
θ , v, s0θ ,v

))
.

(23)

Theorem 1 will be proved in Appendix A. Note that the
parameter β in Theorem 1 need not be positive (We only need
β → 0). Using the terminology introduced in Section 2, we

call s0θ ,v the free fixed point, and s
β
θ ,v the nudged fixed point (or

weakly-clamped fixed point in the case β > 0). Moreover, we
call a free phase (resp. nudged phase or weakly-clamped phase)
a procedure that yields a free fixed point (resp. nudged fixed
point or weakly-clamped fixed point) by minimizing the energy
function F with respect to s, for β = 0 (resp. β 6= 0). Theorem
1 suggests the following two-phase training procedure. Given a
data point v:

1. Run a free phase until the system settles to a free fixed point
s0θ ,v and collect ∂F

∂θ

(
θ , v, 0, s0θ ,v

)
.

2. Run a nudged phase for some β 6= 0 such that |β| is “small,”

until the system settles to a nudged fixed point s
β
θ ,v and collect

∂F
∂θ

(
θ , v,β , s

β
θ ,v

)
.

3. Update the parameter θ according to

1θ ∝ −
1

β

(
∂F

∂θ

(
θ , v,β , s

β
θ ,v

)
−

∂F

∂θ

(
θ , v, 0, s0θ ,v

))
. (24)

Consider the case β > 0. Starting from the free fixed point s0θ ,v
(which corresponds to the “prediction”), a small change of the
parameter β (from the value β = 0 to a value β > 0) causes
slight modifications in the interactions in the network. This
small perturbation makes the network settle to a nearby weakly-

clamped fixed point s
β
θ ,v. Simultaneously, a kind of contrastive

update rule for θ is happening, in which the energy of the

free fixed point is increased and the energy of the weakly-
clamped fixed point is decreased. We call this learning algorithm
Equilibrium Propagation.

Note that in the setting introduced in Section 2.1 the total
energy function (Equation 3) is such that ∂F

∂Wij
= −ρ(ui)ρ(uj),

in agreement with Equation (10). In the weakly clamped phase,

the novel term 1
2β

∥∥y− d
∥∥2 added to the energy E (with β > 0)

slightly attracts the output state y to the target d. Clearly, the
weakly clamped fixed point is better than the free fixed point in
terms of prediction error. The following proposition generalizes
this property to the general setting.

Proposition 2 (Deterministic version). The derivative of the
function

β 7→ C
(
θ , v, s

β
θ ,v

)
(25)

at β = 0 is non-positive.

Proposition 2 will also be proved in Appendix A. This
proposition shows that, unless the free fixed point s0θ ,v is already
optimal in terms of cost value, for β > 0 small enough,

the weakly-clamped fixed point s
β
θ ,v achieves lower cost value

than the free fixed point. Thus, a small perturbation due to a
small increment of β would nudge the system toward a state
that reduces the cost value. This property sheds light on the
update rule (Theorem 1), which can be seen as a kind of
contrastive learning rule (somehow similar to the Boltzmann
machine learning rule) where we learn (make more probable) the

slightly better state s
β
θ ,v by reducing its energy and unlearn (make

less probable) the slightly worse state s0θ ,v by increasing its energy.
However, our learning rule is different from the Boltzmann

machine learning rule and the contrastive Hebbian learning rule.
The differences between these algorithms will be discussed in
section 4.

3.4. Another View of the Framework
In Sections 3.1 and 3.2 (as well as in Section 2) we first defined
the energy function E and the cost function C, and then we
introduced the total energy F := E + βC. Here, we propose an
alternative view of the framework, where we reverse the order in
which things are defined.

Given a total energy function F (which models all interactions
within the network as well as the action of the external world on
the network), we can define all quantities of interest in terms of F.
Indeed, we can define the energy function E and the cost function
C as:

E(θ , v, s) := F (θ , v, 0, s) and C(θ , v, s) :=
∂F

∂β
(θ , v, 0, s) ,

(26)
where F and ∂F

∂β
are evaluated with the argument β set to 0.

Obviously the fixed points s0θ ,v and s
β
θ ,v are directly defined in

terms of F, and so is the objective function J(θ , v) := C
(
θ , v, s0θ ,v

)
.

The learning algorithm (Theorem 1) is also formulated in terms

Frontiers in Computational Neuroscience | www.frontiersin.org 6 May 2017 | Volume 11 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

of F3. From this perspective, F contains all the information about
the model and can be seen as the central object of the framework.
For instance, the cost C represents the marginal variation of the
total energy F due to a change of β .

As a comparison, in the traditional framework for Deep
Learning, a model is represented by a (differentiable)
computational graph in which each node is defined as a
function of its parents. The set of functions that define the nodes
fully specifies the model. The last node of the computational
graph represents the cost to be optimized, while the other nodes
represent the state of the layers of the network, as well as other
intermediate computations.

In the framework for machine learning proposed here (the
framework suited for Equilibrium Propagation), the analog of the
set of functions that define the nodes in the computational graph
is the total energy function F.

3.5. Backpropagation vs. Equilibrium
Propagation
In the traditional framework for Deep Learning (Figure 2, left),
each node in the computational graph is an explicit differentiable
function of its parents. The state of the network ŝ = fθ (v) and
the objective function J(θ , v) = C

(
θ , v, fθ (v)

)
are computed

analytically, as functions of θ and v, in the forward pass.
The Backpropagation algorithm (a.k.a automatic differentiation)
enables to compute the error derivatives analytically too, in the
backward pass. Therefore, the state of the network ŝ = fθ (v)
(forward pass) and the gradient of the objective function ∂J

∂θ
(θ , v)

(backward pass) can be computed efficiently and exactly4.
In the framework for machine learning that we propose here

(Figure 2, right), the free fixed point ŝ = s0θ ,v is an implicit

function of θ and v, characterized by ∂E
∂s (θ , v, s

0
θ ,v) = 0. The

free fixed point is computed numerically, in the free phase

(first phase). Similarly the nudged fixed point s
β
θ ,v is an implicit

function of θ , v, and β , and is computed numerically in the
nudged phase (second phase). Equilibrium Propagation estimates
(for the particular value of β chosen in the second phase)
the gradient of the objective function ∂J

∂θ
(θ , v) based on these

two fixed points. The requirement for numerical optimization
in the first and second phases make computations inefficient
and approximate. The experiments in Section 5 will show that
the free phase is fairly long when performed with a discrete-
time computer simulation. However, we expect that the full
potential of the proposed framework could be exploited on
analog hardware (instead of digital hardware), as suggested by
Hertz et al. (1997).

4. RELATED WORK

In Section 2.3, we have discussed the relationship between
Equilibrium Propagation and Backpropagation. In the weakly
clamped phase, the change of the influence parameter β creates a

3The proof presented in Appendix A will show that E, C, and F need not satisfy

Equation (20) but only Equation (26).
4Here, we are not considering numerical stability issues due to the encoding of real

numbers with finite precision.

FIGURE 2 | Comparison between the traditional framework for Deep

Learning and our framework. Left. In the traditional framework, the state of

the network fθ (v) and the objective function J(θ , v) are explicit functions of θ

and v and are computed analytically. The gradient of the objective function is

also computed analytically thanks to the Backpropagation algorithm (a.k.a

automatic differentiation). Right. In our framework, the free fixed point s0
θ ,v is

an implicit function of θ and v and is computed numerically. The nudged fixed

point s
β
θ ,v and the gradient of the objective function are also computed

numerically, following our learning algorithm: Equilibrium Propagation.

perturbation at the output layer which propagates backwards in
the hidden layers. The error derivatives and the gradient of the
objective function are encoded by this perturbation.

In this section, we discuss the connection between our
work and other algorihms, starting with Contrastive Hebbian
Learning. Equilibrium Propagation offers a new perspective
on the relationship between Backpropagation in feedforward
nets and Contrastive Hebbian Learning in Hopfield nets and
Boltzmann machines (Table 1).

4.1. Link to Contrastive Hebbian Learning
Despite the similarity between our learning rule and the
Contrastive Hebbian Learning rule (CHL) for the continuous
Hopfield model, there are important differences.

First, recall that our learning rule is:

1Wij ∝ lim
β→0

1

β

(
ρ

(
u

β
i

)
ρ

(
u

β
j

)
− ρ

(
u0i

)
ρ

(
u0j

))
, (27)

where u0 is the free fixed point and uβ is theweakly clamped fixed
point. The Contrastive Hebbian Learning rule is:

1Wij ∝ ρ
(
u∞i

)
ρ

(
u∞j

)
− ρ

(
u0i

)
ρ

(
u0j

)
, (28)

where u∞ is the fully clamped fixed point (i.e., fixed point with
fully clamped outputs). We choose the notation u∞ for the fully
clamped fixed point because it corresponds to β → +∞ with
the notations of our model. Indeed Equation (9) shows that in the
limit β → +∞, the output unit yi moves infinitely fast toward
yi, so yi is immediately clamped to yi and is no longer sensitive
to the “internal force” (Equation 8). Another way to see it is by

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2017 | Volume 11 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

TABLE 1 | Correspondence of the phases for different learning algorithms: Back-propagation, Equilibrium Propagation (our algorithm), Contrastive

Hebbian Learning (and Boltzmann Machine Learning) and Almeida-Pineida’s Recurrent Back-Propagation.

Backprop Equilibrium Prop Contrastive Hebbian Learning Almeida-Pineida

First Phase Forward Pass Free Phase Free Phase (or Negative Phase) Free Phase

Second Phase Backward Pass Weakly Clamped Phase Clamped Phase (or Positive Phase) Recurrent Backprop

considering Equation (3): as β → +∞, the only value of y that
gives finite energy is d.

The objective functions that these two algorithms optimize
also differ. Recalling the form of the Hopfield energy (Equation 1)
and the cost function (Equation 2), Equilibrium Propagation
computes the gradient of:

J =
1

2

∥∥y0 − d
∥∥2 , (29)

where y0 is the output state at the free phase fixed point u0, while
CHL computes the gradient of:

JCHL = E
(
u∞

)
− E

(
u0

)
. (30)

The objective function for CHL has theoretical problems: it may
take negative values if the clamped phase and free phase stabilize
in different modes of the energy function, in which case the
weight update is inconsistent and learning usually deteriorates, as
pointed out by Movellan (1990). Our objective function does not
suffer from this problem, because it is defined in terms of local
perturbations, and the implicit function theorem guarantees that
the weakly clamped fixed point will be close to the free fixed point
(thus in the same mode of the energy function).

We can also reformulate the learning rules and objective
functions of these algorithms using the notations of the general
setting (Section 3). For Equilibrium Propagation we have:

1θ ∝ − lim
β→0

1

β

(
∂F

∂θ

(
θ , v,β , s

β
θ ,v

)
−

∂F

∂θ

(
θ , v, 0, s0θ ,v

))

and

J(θ , v) =
∂F

∂β

(
θ , v, 0, s0θ ,v

)
. (31)

As for Contrastive Hebbian Learning, one has

1θ ∝ −

(
∂F

∂θ

(
θ , v,∞, s∞θ ,v

)
−

∂F

∂θ

(
θ , v, 0, s0θ ,v

))

and

JCHL(θ , v) = F(θ , v,∞, s∞θ ,v)− F(θ , v, 0, s0θ ,v), (32)

where β = 0 and β = ∞ are the values of β corresponding to
free and (fully) clamped outputs, respectively.

Our learning algorithm is also more flexible because we are
free to choose the cost function C (as well as the energy funtion
E), whereas the contrastive function that CHL optimizes is fully
determined by the energy function E.

4.2. Link to Boltzmann Machine Learning
Again, the log-likelihood that the Boltzmann machine optimizes
is determined by the Hopfield energy E, whereas we have the
freedom to choose the cost function in the framework for
Equilibrium Propagation.

As discussed in Section 2.3, the second phase of Equilibrium
Propagation (going from the free fixed point to the weakly
clamped fixed point) can be seen as a brief “backpropagation
phase” with weakly clamped target outputs. By contrast, in the
positive phase of the Boltzmann machine, the target is fully
clamped, so the (correct version of the) Boltzmann machine
learning rule requires two separate and independent phases
(Markov chains), making an analogy with backprop less obvious.

Our algorithm is also similar in spirit to the CD algorithm
(Contrastive Divergence) for Boltzmannmachines. In ourmodel,
we start from a free fixed point (which requires a long relaxation
in the free phase) and then we run a short weakly clamped phase.
In the CD algorithm, one starts from a positive equilibrium
sample with the visible units clamped (which requires a long
positive phase Markov chain in the case of a general Boltzmann
machine) and then one runs a short negative phase. But there
is an important difference: our algorithm computes the correct
gradient of our objective function (in the limit β → 0), whereas
the CD algorithm computes a biased estimator of the gradient
of the log-likelihood. The CD1 update rule is provably not the
gradient of any objective function and may cycle indefinitely in
some pathological cases (Sutskever and Tieleman, 2010).

Finally, in the supervised setting presented in Section 2, a
more subtle difference with the Boltzmann machine is that the
“output” state y in our model is best thought of as being part of
the latent state variable s. If we were to make an analogy with the
Boltzmann machine, the visible units of the Boltzmann machine
would be v =

{
x, d

}
, while the hidden units would be s =

{
h, y

}
.

In the Boltzmann machine, the state of the external world is
inferred directly on the visible units (because it is a probabilistic
generative model that maximizes the log-likelyhood of the data),
whereas in our model we make the choice to integrate in s special
latent variables y that aim to match the target d.

4.3. Link to Recurrent Back-Propagation
Directly connected to ourmodel is the work by Pineda (1987) and
Almeida (1987) on recurrent back-propagation. They consider
the same objective function as ours, but formulate the problem
as a constrained optimization problem. In Appendix B, we
derive another proof for the learning rule (Theorem 1) with the
Lagrangian formalism for constrained optimization problems.
The beginning of this proof is in essence the same as the one
proposed by Pineda (1987); Almeida (1987), but there is a major

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2017 | Volume 11 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

difference when it comes to solving Equation (75) for the costate
variable λ∗. The method proposed by Pineda (1987) and Almeida
(1987) is to use Equation (75) to compute λ∗ by a fixed point
iteration in a linearized form of the recurrent network. The
computation of λ∗ corresponds to their second phase, which
they call recurrent back-propagation. However, this second phase
does not follow the same kind of dynamics as the first phase
(the free phase) because it uses a linearization of the neural
activation rather than the fully non-linear activation5. From a
biological plausibility point of view, having to use a different kind
of hardware and computation for the two phases is not satisfying.

By contrast, like the continuous Hopfield net and the
Boltzmann machine, our model involves only one kind of neural
computations for both phases.

4.4. The Model by Xie and Seung
Previous work on the back-propagation interpretation of
contrastive Hebbian learning was done by Xie and Seung (2003).

The model by Xie and Seung (2003) is a modified version of
the Hopfield model. They consider the case of a layered MLP-
like network, but their model can be extended to a more general
connectivity, as shown here. In essence, using the notations of
our model (Section 2), the energy function that they consider is:

EX&S(u) :=
1

2

∑

i

γ
iu2i −

∑

i<j

γ
jWijρ(ui)ρ(uj)−

∑

i

γ
ibiρ(ui).

(33)
The difference with Equation (1) is that they introduce a
parameter γ, assumed to be small, that scales the strength of
the connections. Their update rule is the contrastive Hebbian
learning rule which, for this particular energy function, takes the
form:

1Wij ∝ −

(
∂EX&S

∂Wij

(
u∞

)
−

∂EX&S

∂Wij

(
u0

))

= γ
j
(
ρ

(
u∞i

)
ρ

(
u∞j

)
− ρ

(
u0i

)
ρ

(
u0j

))
(34)

for every pair of indices (i, j) such that i < j. Here, u∞ and
u0 are the (fully) clamped fixed point and free fixed point,
respectively. Xie and Seung (2003) show that in the regime
γ → 0 this contrastive Hebbian learning rule is equivalent to
back-propagation. At the free fixed point u0, one has ∂EX&S

∂si
(u0) =

0 for every unit si
6, which yields, after dividing by γ

i and
rearranging the terms:

s0i = ρ′
(
s0i

)

∑

j< i

Wijρ

(
u0j

)
+

∑

j>i

γ
j− iWijρ

(
u0j

)
+ bi

 .

(35)

In the limit γ → 0, one gets s0i ≈ ρ′(s0i)
(∑

j< iWijρ(u
0
j)+ bi

)
,

so that the network almost behaves like a feedforward net in this
regime.

5Reccurent Back-propagation corresponds to Back-propagation Through Time

(BPTT) when the network converges and remains at the fixed point for a large

number of time steps.
6Recall that in our notations, the state variable s does not include the clamped

inputs x, whereas u includes x.

As a comparison, recall that in our model (Section 2) the
energy function is:

E(u) :=
1

2

∑

i

u2i −
∑

i< j

Wijρ(ui)ρ(uj)−
∑

i

biρ(ui), (36)

the learning rule is:

1Wij ∝ − lim
β→0

1

β

(
∂E

∂Wij

(
uβ

)
−

∂E

∂Wij

(
u0

))
(37)

= lim
β→0

1

β

(
ρ

(
u

β
i

)
ρ

(
u

β
j

)
− ρ

(
u0i

)
ρ

(
u0j

))
,

and at the free fixed point, we have ∂E
∂si

(u0) = 0 for every unit si,
which gives:

s0i = ρ′
(
s0i

)

∑

j 6= i

Wijρ

(
u0j

)
+ bi

 . (38)

Here, are the main differences between our model and theirs.
In our model, the feedforward and feedback connections
are both strong. In their model, the feedback weights are
tiny compared to the feedforward weights, which makes the
(recurrent) computations look almost feedforward. In our second
phase, the outputs are weakly clamped. In their second phase,
they are fully clamped. The theory of our model requires a unique
learning rate for the weights, while in their model the update rule
forWij (with i < j) is scaled by a factor γ

j (see Equation 34). Since
γ is small, the learning rates for the weights vary on many orders
of magnitude in their model. Intuitively, these multiple learning
rates are required to compensate for the small feedback weights.

5. IMPLEMENTATION OF THE MODEL AND
EXPERIMENTAL RESULTS

In this section, we provide experimental evidence that our
model described in Section 2 is trainable, by testing it on the
classification task ofMNIST digits (LeCun andCortes, 1998). The
MNIST dataset of handwritten digits consists of 60,000 training
examples and 10,000 test examples. Each example x in the dataset
is a gray-scale image of 28 by 28 pixels and comes with a label
d ∈ {0, 1, . . . , 9}. We use the same notation y for the one-hot
encoding of the target, which is a 10-dimensional vector.

Recall that our model is a recurrently connected neural
network with symmetric connections. Here, we train multi-
layered networks with 1, 2, and 3 hidden layers, with no skip-layer
connections and no lateral connections within layers. Although
we believe that analog hardware would be more suited for our
model, here we propose an implementation on digital hardware
(a GPU). We achieve 0.00% training error. The generalization
error lies between 2 and 3% depending on the architecture
(Figure 3).

For each training example (x, d) in the dataset, training
proceeds as follows:

1. Clamp x.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 May 2017 | Volume 11 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

FIGURE 3 | Training and validation error for neural networks with one hidden layer of 500 units (top left), two hidden layers of 500 units (top right), and

three hidden layers of 500 units (bottom). The training error eventually decreases to 0.00% in all three cases.

2. Run the free phase until the hidden and output units settle to

the free fixed point, and collect ρ
(
u0i

)
ρ

(
u0j

)
for every pair of

units i, j.
3. Run the weakly clamped phase with a “small” β > 0 until

the hidden and output units settle to the weakly clamped fixed

point, and collect ρ
(
u

β
i

)
ρ

(
u

β
j

)
.

4. Update each synapseWij according to

1Wij ∝
1

β

(
ρ

(
u

β
i

)
ρ

(
u

β
j

)
− ρ

(
u0i

)
ρ

(
u0j

))
. (39)

The prediction is made at the free fixed point u0 at the end of
the first phase relaxation. The predicted value ypred is the index of
the output unit whose activation is maximal among the 10 output
units:

ypred := argmax
i

y0i . (40)

Note that no constraint is imposed on the activations of the
units of the output layer in our model, unlike more traditional
neural networks where a softmax output layer is used to constrain
them to sum up to 1. Recall that the objective function that we
minimize is the square of the difference between our prediction
and the one-hot encoding of the target value:

J =
1

2

∥∥d − y0
∥∥2 . (41)

5.1. Finite Differences
5.1.1. Implementation of the Differential Equation of

Motion
First we clamp x. Then the obvious way to implement
Equation (4) is to discretize time into short time lapses of
duration ǫ and to update each hidden and output unit si
according to

si ← si − ǫ
∂F

∂si
(θ , v,β , s). (42)

This is simply one step of gradient descent on the total energy F,
with step size ǫ.

For our experiments, we choose the hard sigmoid activation
function ρ(si) = 0 ∨ si ∧ 1, where ∨ denotes the max and ∧ the
min. For this choice of ρ, since ρ′(si) = 0 for si < 0, it follows
from Equations (8) and (9) that if hi < 0 then ∂F

∂hi
(θ , v,β , s) =

−hi > 0. This force prevents the hidden unit hi from going in the
range of negative values. The same is true for the output units.
Similarly, si cannot reach values above 1. As a consequence si
must remain in the domain 0 ≤ si ≤ 1. Therefore, rather than
the standard gradient descent (Equation 42), we will use a slightly
different update rule for the state variable s:

si ← 0 ∨

(
si − ǫ

∂F

∂si
(θ , v,β , s)

)
∧ 1. (43)

This little implementation detail turns out to be very important: if
the i-th hidden unit was in some state hi < 0, then Equation (42)
would give the update rule hi ← (1 − ǫ)hi, which would imply

Frontiers in Computational Neuroscience | www.frontiersin.org 10 May 2017 | Volume 11 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

again hi < 0 at the next time step (assuming ǫ < 1). As a
consequence hi would remain in the negative range forever.

5.1.2. Choice of the Step Size ǫ

We find experimentally that the choice of ǫ has little influence as
long as 0 < ǫ < 1. What matters more is the total duration of the
relaxation1t = niter×ǫ (where niter is the number of iterations).
In our experiments we choose ǫ = 0.5 to keep niter = 1t/ǫ as
small as possible so as to avoid extra unnecessary computations.

5.1.3. Duration of the Free Phase Relaxation
We find experimentally that the number of iterations required
in the free phase to reach the free fixed point is large and
grows fast as the number of layers increases (Table 2), which
considerably slows down training. More experimental and
theoretical investigation would be needed to analyze the number
of iterations required, but we leave that for future work.

5.1.4. Duration of the Weakly Clamped Phase
During the weakly clamped phase, we observe that the relaxation
to the weakly clamped fixed point is not necessary. We only
need to “initiate” the movement of the units, and for that we
use the following heuristic. Notice that the time constant of the
integration process in the leaky integrator equation (Equation 8)
is τ = 1. This time constant represents the time needed for a
signal to propagate from a layer to the next one with “significant
amplitude.” So the time needed for the error signals to back-
propagate in the network is Nτ = N, where N is the number
of layers (hiddens and output) of the network. Thus, we choose
to perform N/ǫ iterations with step size ǫ = 0.5.

5.2. Implementation Details and
Experimental Results
To tackle the problem of the long free phase relaxation and speed-
up the simulations, we use “persistent particles” for the latent
variables to re-use the previous fixed point configuration for a
particular example as a starting point for the next free phase
relaxation on that example. This means that for each training
example in the dataset, we store the state of the hidden layers
at the end of the free phase, and we use this to initialize the
state of the network at the next epoch. This method is similar in
spirit to the PCD algorithm (Persistent Contrastive Divergence)
for sampling from other energy-based models like the Boltzmann
machine (Tieleman, 2008).

We find that it helps regularize the network if we choose
the sign of β at random in the second phase. Note that the

weight updates remain consistent thanks to the factor 1/β in

the update rule 1Wij ∝
1
β

(
ρ

(
u

β
i

)
ρ

(
u

β
j

)
− ρ

(
u0i

)
ρ

(
u0j

))
.

Indeed, the left-derivative and the right-derivative of the function

β 7→ ρ

(
u

β
i

)
ρ

(
u

β
j

)
at the point β = 0 coincide.

Although the theory presented in this paper requires a unique
learning rate for all synaptic weights, in our experiments we
need to choose different learning rates for the weight matrices
of different layers to make the algorithm work. We do not have a
clear explanation for this fact yet, but we believe that this is due
to the finite precision with which we approach the fixed points.
Indeed, the theory requires to be exactly at the fixed points,
but in practice we minimize the energy function by numerical
optimization, using Equation (43). The precision with which we
approach the fixed points depends on hyperparameters such as
the step size ǫ and the number of iterations niter.

Let us denote by h0, h1, · · · , hN the layers of the network
(where h0 = x and hN = y) and byWk the weight matrix between
the layers hk−1 and hk. We choose the learning rate αk forWk so

that the quantities
‖1Wk‖

‖Wk‖
for k = 1, · · · ,N are approximately

the same in average (over training examples), where ‖1Wk‖

represents the weight change ofWk after seeing a minibatch.
The hyperparameters chosen for each model are shown in

Table 2 and the results are shown in Figure 3. We initialize the
weights according to the Glorot-Bengio initialization (Glorot
and Bengio, 2010). For efficiency of the experiments, we use
minibatches of 20 training examples.

6. DISCUSSION, LOOKING FORWARD

From a biological perspective, a troubling issue in the Hopfield
model is the requirement of symmetric weights between the
units. Note that the units in our model need not correspond
exactly to actual neurons in the brain (it could be groups of
neurons in a cortical microcircuit, for example). It remains
to be shown how a form of symmetry could arise from
the learning procedure itself (for example from autoencoder-
like unsupervised learning) or if a different formulation could
eliminate the symmetry requirement. Encouraging cues come
from the observation that denoizing autoencoders without tied
weights often end up learning symmetric weights (Vincent et al.,
2010). Another encouraging piece of evidence, also linked to
autoencoders, is the theoretical result from Arora et al. (2015),
showing that the symmetric solution minimizes the autoencoder
reconstruction error between two successive layers of rectifying

TABLE 2 | Hyperparameters.

Architecture Iterations Iterations ǫ β α1 α2 α3 α4

(first phase) (second phase)

784-500-10 20 4 0.5 1.0 0.1 0.05

784-500-500-10 100 6 0.5 1.0 0.4 0.1 0.01

784-500-500-500-10 500 8 0.5 1.0 0.128 0.032 0.008 0.002

The learning rate ǫ is used for iterative inference (Equation 43). β is the value of the clamping factor in the second phase. αk is the learning rate for updating the parameters in layer k.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 May 2017 | Volume 11 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

(ReLU) units, suggesting that symmetry may arise as the result
of an additional objective function making successive layers
form an autoencoder. Also, Lillicrap et al. (2014) show that
the backpropagation algorithm for feedforward nets also works
when the feedback weights are random, and that in this case the
feedforward weight tend to “align” with the feedback weights.

Another practical issue is that we would like to reduce the
negative impact of a lengthy relaxation to a fixed point, especially
in the free phase. A possibility is explored by Bengio et al. (2016)
and was initially discussed by Salakhutdinov and Hinton (2009)
in the context of a stack of RBMs: by making each layer a
good autoencoder, it is possible to make this iterative inference
converge quickly after an initial feedforward phase, because the
feedback paths “agree” with the states already computed in the
feedforward phase.

Regarding synaptic plasticity, the proposed update formula
can be contrasted with theoretical synaptic learning rules
which are based on the Hebbian product of pre- and post-
synaptic activity, such as the BCM rule (Bienenstock et al.,
1982; Intrator and Cooper, 1992). The update proposed here
is particular in that it involves the temporal derivative of the
post-synaptic activity, rather than the actual level of postsynaptic
activity.

Whereas our work focuses on a rate model of neurons,
see Feldman (2012) for an overview of synaptic plasticity that
goes beyond spike timing and firing rate, including synaptic
cooperativity (nearby synapses on the same dendritic subtree)
and depolarization (due to multiple consecutive pairings or
spatial integration across nearby locations on the dendrite, as well
as the effect of the synapse’s distance to the soma). In addition,
it would be interesting to study update rules which depend
on the statistics of triplets or quadruplets of spikes timings, as
in Froemke and Dan (2002) and Gjorgjievaa et al. (2011). These
effects are not considered here but future work should consider
them.

Another question is that of time-varying input. Although this
work makes back-propagation more plausible for the case of a
static input, the brain is a recurrent network with time-varying
inputs, and back-propagation through time seems even less
plausible than static back-propagation. An encouraging direction
is that proposed by Ollivier et al. (2015) and Tallec and Ollivier
(2017), which shows that computationally efficient estimators of
the gradient can be obtained using a forward method (online
estimation of the gradient), which avoids the need to store all past
states in training sequences, at the price of a noisy estimator of the
gradient.

AUTHOR CONTRIBUTIONS

BS: main contributor to the theory developed in Section 3 and the
experimental part (Section 5). YB: main contributor to the theory
developed in Section 2.

ACKNOWLEDGMENTS

The authors would like to thank Akram Erraqabi, Alex Lamb,
Alexandre Thiery, Mihir Mongia, Samira Shabanian, and Asja
Fischer and Devansh Arpit for feedback and discussions, as
well as NSERC, CIFAR, Samsung and Canada Research Chairs
for funding, and Compute Canada for computing resources.
We would also like to thank the developers of Theano7, for
developing such a powerful tool for scientific computing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2017.00024/full#supplementary-material

7http://deeplearning.net/software/theano/

REFERENCES

Almeida, L. B. (1987). “A learning rule for asynchronous perceptrons with

feedback in a combinatorial environment,” in Proceedings of the IEEE First

International Conference on Neural Networks, Vol. 2 (San Diego, CA; New

York, NY: IEEE), 609–618.

Arora, S., Liang, Y., and Ma, T. (2015). Why Are Deep Nets Reversible: A Simple

Theory, with Implications for Training. Technical Report, arXiv:1511.05653,

Princeton University.

Bengio, Y., and Fischer, A. (2015). Early Inference in Energy-Based Models

Approximates Back-Propagation. Technical Report, arXiv:1510.02777,

Universite de Montreal.

Bengio, Y., Lee, D.-H., Bornschein, J., and Lin, Z. (2015a). Towards biologically

plausible deep learning. arXiv:1502.04156.

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., and Wu, Y. (2015b). STDP

as presynaptic activity times rate of change of postsynaptic activity.

arXiv:1509.05936.

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., and Wu, Y. (2017).

STDP as presynaptic activity times rate of change of postsynaptic

activity approximates backpropagation. Neural Comput. 29,

1–23.

Bengio, Y., Scellier, B., Bilaniuk, O., Sacramento, J., and Senn, W. (2016).

Feedforward initialization for fast inference of deep generative networks is

biologically plausible. arXiv:1606.01651.

Berkes, P., Orban, G., Lengyel, M., and Fiser, J. (2011). Spontaneous cortical

activity reveals hallmarks of an optimal internal model of the environment.

Science 331, 83–87. doi: 10.1126/science.1195870

Bi, G., and Poo, M. (2001). Synaptic modification by correlated

activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24, 139–166.

doi: 10.1146/annurev.neuro.24.1.139

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for

the development of neuron selectivity: orientation specificity and binocular

interaction in visual cortex. J. Neurosci. 2, 32–48.

Feldman, D. E. (2012). The spike timing dependence of plasticity. Neuron 75,

556–571. doi: 10.1016/j.neuron.2012.08.001

Friston, K. J., and Stephan, K. E. (2007). Free-energy and the brain. Synthese 159,

417–458. doi: 10.1007/s11229-007-9237-y

Froemke, R. C., andDan, Y. (2002). Spike-timing-dependent synapticmodification

induced by natural spike trains. Nature 416, 433–438. doi: 10.1038/416433a

Gerstner, W., Kempter, R., van Hemmen, J., and Wagner, H. (1996). A neuronal

learning rule for sub-millisecond temporal coding. Nature 386, 76–78.

Gjorgjievaa, J., Clopathb, C., Audetc, J., and Pfister, J.-P. (2011). A triplet spike-

timing dependent plasticity model generalizes the bienenstock cooper munro

rule to higher-order spatiotemporal correlations. Proc. Natl. Acad. Sci. U.S.A.

108, 19383–19388. doi: 10.1073/pnas.1105933108

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of AISTATS’ 2010 (Montréal, QC),

249–256.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 May 2017 | Volume 11 | Article 24

http://journal.frontiersin.org/article/10.3389/fncom.2017.00024/full#supplementary-material
http://deeplearning.net/software/theano/
https://doi.org/10.1126/science.1195870
https://doi.org/10.1146/annurev.neuro.24.1.139
https://doi.org/10.1016/j.neuron.2012.08.001
https://doi.org/10.1007/s11229-007-9237-y
https://doi.org/10.1038/416433a
https://doi.org/10.1073/pnas.1105933108
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Scellier and Bengio Equilibrium Propagation

Hertz, J. A., Krogh, A., Lautrup, B., and Lehmann, T. (1997). Nonlinear

backpropagation: doing backpropagation without derivatives of the activation

function. IEEE Trans. Neural Netw. 8, 1321–1327. doi: 10.1109/72.641455

Hinton, G. E. (2002). Training products of experts by minimizing contrastive

divergence. Neural Comput. 14, 1771–1800. doi: 10.1162/089976602760128018

Hinton, G. E., and Sejnowski, T. J. (1986). “Learning and releaming in boltzmann

machines,” in Parallel Distributed Processing: Explorations in the Microstructure

of Cognition, Vol. 1, eds D. E. Rumelhart and J. L. McClelland (Cambridge, MA:

MIT Press), 282–317.

Hopfield, J. J. (1984). Neurons with graded responses have collective

computational properties like those of two-state neurons. Proc. Natl. Acad. Sci.

U.S.A. 81, 3088–3092.

Intrator, N., and Cooper, L. N. (1992). Objective function formulation of the BCM

theory of visual cortical plasticity: statistical connections, stability conditions.

Neural Netw. 5, 3–17. doi: 10.1016/S0893-6080(05)80003-6

LeCun, Y., and Cortes, C. (1998). The MNIST database of handwritten digits.

Available online at: http://yann.lecun.com/exdb/mnist/

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2014). Random

feedback weights support learning in deep neural networks. arXiv:1411.0247.

Markram, H., Gerstner, W., and Sjöström, P. (2012). Spike-timing-dependent

plasticity: a comprehensive overview. Front. Synaptic Neurosci. 4:2.

doi: 10.3389/fnsyn.2012.00002

Markram, H., and Sakmann, B. (1995). Action potentials propagating back into

dendrites triggers changes in efficacy. Soc. Neurosci. Abs. 21.

Mesnard, T., Gerstner, W., and Brea, J. (2016). Towards deep learning with

spiking neurons in energy based models with contrastive hebbian plasticity.

arXiv:1612.03214.

Movellan, J. R. (1990). “Contrastive Hebbian learning in the continuous Hopfield

model,” in Proceedings of the 1990 Connectionist Models Summer School (San

Mateo, CA).

Ollivier, Y., Tallec, C., and Charpiat, G. (2015). Training Recurrent Networks Online

without Backtracking. Technical report, arXiv:1507.07680, Centre National de

la Recherche Scientifique.

O’Reilly, R. C. (1996). Biologically plausible error-driven learning using local

activation differences: the generalized recirculation algorithm. Neural Comput.

8, 895–938.

Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural

networks. 59, 2229–2232.

Salakhutdinov, R., and Hinton, G. E. (2009). “Deep Boltzmann machines,” in

International Conference on Artificial Intelligence and Statistic (AISTATS’2009)

(Toronto, ON), 448–455.

Sutskever, I., and Tieleman, T. (2010). “On the convergence properties of

contrastive divergence,” in Proceedings of the International Conference on

Artificial Intelligence and Statistics (AISTATS), Vol. 9, eds Y. W. Teh and M.

Titterington (Toronto, ON), 789–795.

Tallec, C., and Ollivier, Y. (2017). Unbiased online recurrent optimization.

arXiv:1702.05043.

Tieleman, T. (2008). “Training restricted boltzmann machines using

approximations to the likelihood gradient,” in Proceedings of the 25th

International Conference on Machine Learning (New York, NY: ACM),

1064–1071.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A.

(2010). Stacked denoising autoencoders: Learning useful representations in

a deep network with a local denoising criterion. J. Mach. Learn. Res. 11,

3371–3408.

Xie, X., and Seung, H. S. (2000). “Spike-based learning rules and stabilization of

persistent neural activity,” inAdvances in Neural Information Processing Systems

12, eds S. Solla, T. Leen, and K. Müller (Boston, MA: MIT Press), 199–208.

Xie, X., and Seung, H. S. (2003). Equivalence of backpropagation and contrastive

Hebbian learning in a layered network. Neural Comput. 15, 441–454.

doi: 10.1162/089976603762552988

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer SF and handling Editor declared their shared affiliation, and

the handling Editor states that the process nevertheless met the standards of a fair

and objective review.

Copyright © 2017 Scellier and Bengio. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 May 2017 | Volume 11 | Article 24

https://doi.org/10.1109/72.641455
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1016/S0893-6080(05)80003-6
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.3389/fnsyn.2012.00002
https://doi.org/10.1162/089976603762552988
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation
	1. Introduction
	2. The Continuous Hopfield Model Revisited: Equilibrium Propagation as a More Biologically Plausible Backpropagation
	2.1. A Kind of Hopfield Energy
	2.2. The Neuronal Dynamics
	2.3. Free Phase, Weakly Clamped Phase, and Backpropagation of Errors
	2.4. Connection to Spike-Timing Dependent Plasticity

	3. A Machine Learning Framework for Energy Based Models
	3.1. Training Objective
	3.2. Total Energy Function
	3.3. The Learning Algorithm: Equilibrium Propagation
	3.4. Another View of the Framework
	3.5. Backpropagation vs. Equilibrium Propagation

	4. Related Work
	4.1. Link to Contrastive Hebbian Learning
	4.2. Link to Boltzmann Machine Learning
	4.3. Link to Recurrent Back-Propagation
	4.4. The Model by Xie and Seung

	5. Implementation of the Model and Experimental Results
	5.1. Finite Differences
	5.1.1. Implementation of the Differential Equation of Motion
	5.1.2. Choice of the Step Size ε
	5.1.3. Duration of the Free Phase Relaxation
	5.1.4. Duration of the Weakly Clamped Phase

	5.2. Implementation Details and Experimental Results

	6. Discussion, Looking Forward
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

