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Equilibrium Signaling in Spatially Inhomogeneous

Diffusion and External Forces
Malcolm Egan, Bayram Cevdet Akdeniz and Bao Quoc Tang

Abstract—Complex fluid media where molecules are suscep-
tible to forces due, for example, to external magnetic fields,
complicates the design of molecular communication systems. In
particular, the equations governing the motion of each molecule
in time do not typically admit tractable solutions, which makes
receiver design challenging for standard communication schemes;
e.g., based on concentration shift keying. In this paper, a new
communication scheme is proposed, which leads to simple expres-
sions for receiver statistics, even when spatially inhomogeneous
diffusion and external forces are present. The proposed scheme
exploits the equilibrium statistics of the system, which arise
in a wide range of scenarios. This approach is illustrated in
a bounded system with inhomogeneous diffusion and external
forces determined by a quadratic potential.

I. INTRODUCTION

A key feature of any molecular communication system is the

underlying mechanism governing the motion of information-

carrying molecules in a fluid medium. For systems with a finite

number of such molecules, the motion is inherently stochas-

tic, due to random fluctuation caused by thermal processes

or interactions with the molecules comprising the fluid. As

such, statistical mechanics provides a sound framework to

characterize the statistics of the location of each molecule [1].

There are two basic statistical models for diffusion. The

first approach is known as the master equation, where the

individual molecules can jump between discrete voxels [2].

The second approach is based on the Langevin stochastic

differential equation, where the position of each molecule lies

on a continuum [3]. Both approaches induce a Markov process,

which can be described via a Fokker-Planck equation (also

known as a Kolmogorov forward equation).

While the master equation approach is particularly useful

for capturing both stochastic chemical kinetics and diffusion,

the Smoluchowski equation arising in the Langevin approach

is derived from a Newtonian perspective [4]. That is, the effect

of friction and external forces on diffusion can be explicitly

modeled. Indeed, the vast majority of work in molecular

communications has implicitly adopted the Langevin approach

in the absence of external forces, which leads to molecular

motion governed by Brownian motion without drift. In some

cases, drift has also been introduced, which corresponds to the

assumption that information-carrying molecules are acted on

by a force leading to a homogeneous velocity [1].

Key difficulties in designing molecular communication sys-

tems governed by the Smoluchowski equation are incorpo-
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B.Q. Tang is with the Institute of Mathematics and Scientific Computing,
University of Graz, Austria.

rating the effect of boundary conditions, spatially inhomoge-

neous diffusion coefficients, and external forces. Nevertheless,

particularly for sufficiently small systems with a reflective

boundary, the geometry of the system has a strong impact

on the motion of information-carrying molecules on short

time scales [3]. On the other hand, active transport—such

as in bacterial chemotaxis—is often modeled via external

forces with a more complex functional form [1]. Both of

these difficulties typically mean that the resulting Fokker-

Planck equation—describing the probability a molecule is

in a location x at time t—does not admit a simple closed

form solution, requiring further approximations or numerical

methods.

As a simple expression for the probability a given molecule

is observed by a receiver at a given time t is not generally

available, it is challenging to derive near optimal decision rules

for detection at the receiver for many standard communica-

tion schemes. For example, concentration shift keying (CSK)

typically requires an accurate approximation for the statistics

of the number of molecules observed by the receiver before

a given time t, often optimized to reduce the probability of

error [5].

In this paper, we propose an alternative communication

scheme that admits a simple approximation for the probability

a molecule lies in a receiver at a sampling time. Our scheme

is applicable for systems which have a finite volume (i.e., a

bounded environment), a passive receiver, where inertial forces

are dominated by drag forces, no degradation of information-

carrying molecules, and may be affected by an external force

defined by a scalar potential as well as spatially inhomo-

geneous diffusion coefficients. As such, outside of special

cases, it is difficult to solve the full Fokker-Planck equation to

yield near optimal decision rules for the short sampling times

required for standard CSK schemes.

The key idea underlying our approach is that while the

full Fokker-Planck equation may be intractable, the long-

term behavior of the system may be dramatically simpler. In

particular, the Smoluchowski equation often converges to an

equilibrium state as the sampling time t → ∞ [3].

While the model in this paper accounts for diffusion—albeit

in the presence of external forces—the presence of an equi-

librium state bears a number of similarities with the Fokker-

Planck equation arising from the reaction-diffusion master

equation (RDME) accounting for chemical reactions and a

simplified model of diffusion [6]. Recently, we developed

an analogous communication scheme for RDME models [2],

valid for non-trivial geometries but without external forces,

and we show that the same detection algorithm can be applied

to the Langevin model considered in this paper.
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To illustrate our approach, we consider a system with

a quadratic potential and inhomogeneous diffusion coeffi-

cients, which can, for example, arise due to the presence

of electrostatic steering of molecules [7]. While deriving the

optimal sampling time and the resulting detection rule requires

extensive numerical computations in the case of standard CSK

schemes, the equilibrium distribution admits a very simple

form. We show that even for finite sampling times, it is feasible

to obtain a good approximation for the receiver statistics and

use this to obtain a near optimal decision rule for sufficiently

long symbol periods.

II. SYSTEM MODEL

Let Ω = [bl, br], −∞ < bl < br < ∞ be a bounded one-

dimensional domain consisting of transmitting and receiving

devices, with a fluid medium separating the devices. Messages

to be sent by the transmitter are encoded into the quantity of

molecules of a chemical species S, which diffuses within the

domain Ω. The receiver domain is denoted by ΩRx.

Consider a single information-carrying molecule, which is

colloidal; i.e., larger than the liquid molecules forming the

fluid medium. In this paper, we assume that the motion of each

molecule is independent and governed by the Smoluchowski

equation [3]

γ(x)
dx

dt
= F (x) + σ(x)ξ(t), (1)

where x = x(t) ∈ R is the location of the molecule at time

t, ξ(t) is a standard Wiener process, γ(x) > 0 is a friction

constant, σ(x) > 0 is the scale parameter of the noise, and F
is an external force.

Associated with the Smoluchowski equation in (1) is a

Fokker-Planck equation, given by [3]

∂

∂t
p(x, t|x0, t0) =

∂2

∂x2
(D(x)p(x, t|x0, t0))

−
∂

∂x

(

F (x)

γ(x)
p(x, t|x0, t0)

)

, (2)

where p(x, t|x0, t0) is the probability density function for the

location x of the molecule at time t, given an initial location x0

at time t0, and D(x) = σ(x)2

2γ(x)2 is the diffusion coefficient. Note

that both the Smoluchowski equation in (1) and the Fokker-

Planck equation are equivalent descriptions of the system

dynamics. Moreover, in general, the diffusion coefficient is

spatially inhomogeneous; i.e., the diffusion coefficient depends

on the location x. In the special case where there are no

external forces and the diffusion coefficient, D, is constant,

the Fokker-Planck equation for Brownian motion (commonly

called Fick’s law) is obtained as

∂

∂t
p(x, t|x0, t0) = D

∂2

∂x2
p(x, t|x0, t0). (3)

To account for the finite volume of the system, it is

necessary to also introduce boundary conditions. In the case of

reflective boundaries, considered in this paper, the boundary

conditions are given by

j(bl, t|x0, t0) = 0

j(br, t|x0, t0) = 0, (4)

where

j(x, t|x0, t0) =
∂

∂x
(D(x)p(x, t|x0, t0))−

F (x)

γ(x)
p(x, t|x0, t0)

(5)

is the flux at location x.

Under certain conditions detailed in the following section,

the Fokker-Planck equation in (2) admits an equilibrium state.

That is, the solution p∞(x) satisfies the condition that the flux

vanishes; i.e.,

j(x, t|x0, t0) = 0. (6)

Moreover, the form of p∞ is sufficiently tractable to develop

near optimal detection rules for sufficiently long symbol

periods. In the following section, we develop a new signaling

and detection scheme exploiting this property.

III. SIGNALING AND DETECTION

In this section, we detail our proposed scheme. We focus on

the case of binary signaling with equally likely symbols. That

is, for the transmitter to send a bit 1, it generates ∆ molecules

of species S within the transmitter. For the case of bit 0, the

transmitter generates zero molecules of S. As we will show,

the precise locations where the molecules of S are generated

within the transmitter does not affect receiver design, due to

the fact that the equilibrium solution remains the same.

A. Communication Scheme

Assume that the system operates using time slots with

duration Ts and that no molecules of S are present in the

system at time t = 0. The bit to be transmitted in time slot n
is denoted by sn. Molecules of S may then diffuse throughout

the system; however, no molecules degrade.

Consider the n-th time slot. Due to the previous n − 1
transmissions, there are NTx(nTs) molecules of species S in

the transmitter. At a time nTs + δ shortly after the beginning

of the n-th time slot, transmitter produces a quantity of S

depending on the bit to be transmitted. In particular,

NTx(nTs + δ) =

{

NTx(nTs) + ∆ sn = 1,
NTx(nTs) sn = 0,

(7)

for δ > 0 a sufficiently small period of time; that is, δ is chosen

such that no molecules of S diffuse outside of the transmitter.

The key idea behind the proposed communication scheme is

that for sufficiently large Ts, the total number of molecules of

S will be approximately drawn from the stationary distribution

of the Fokker-Planck equation. As such, since the equilibrium

statistics are known, near-optimal detection rules can be de-

rived.

B. Equilibrium Statistics

In the presence of reflective boundary conditions, the

Fokker-Planck equation admits an equilibrium solution if the

fluctuation-dissipation condition is satisfied and the external

force is determined by a scalar potential. That is, in the

presence of a scalar potential, a sufficient condition for an

equilibrium solution to exist is for the fluctuation-dissipation

condition to hold.
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In particular, a general form of the fluctuation-dissipation

condition1 accounting for spatially inhomogeneous diffusion

is given by [9]

∂

∂x
D(x) = F (x)(γ(x)−1 −D(x)β), (8)

where β = 1
kBT

, kB is Boltzmann’s constant and T is the

temperature of the system.

In this case, the Fokker-Planck equation in (2) can be written

as

∂

∂t
p(x, t|x0, t0) =

∂

∂x

(

D(x)
∂

∂x
p(x, t|x0, t0)

)

−
∂

∂x
βF (x)D(x)p(x, t|x0, t0). (9)

If the external force is determined by a scalar potential

function U , the force satisfies F = −∂U
∂x

and U is bounded

in [bl, br], then the equilibrium solution to the Fokker-Planck

equation in (2) is given by [3, Sec. 5.2]

p∞(x) = Ze−βU(x), (10)

where Z =
(

∫ br

bl
e−βU(x)dx

)−1

is the normalizing constant.

Note that scalar potentials are ubiquitous; for example, arising

from electrostatic and gravitational fields. We also highlight

that the equilibrium solution p∞ in (10) is remarkable in that

it only depends on β and the potential U . That is, given

these parameters, it is straightforward to obtain the asymptotic

statistics of the system. This is true even if the diffusion

coefficient is spatially inhomogeneous.

The equilibrium solution to the Fokker-Planck equation

provides information about the statistics for the location of

a single molecule. The probability that the molecule lies in

the receiver at a sufficiently large sampling time Ts can then

be well approximated by

pRx(Ts) ≈

∫

ΩRx

p∞(x)dx =

∫

ΩRx

Ze−βU(x)dx. (11)

To derive the statistics for the quantity of molecules in the

receiver at the sampling time Ts, let Xi be a Bernoulli random

variable with success probability pRx(Ts), which indicates

whether or not molecule i lies in the receiver. Suppose that ∆
molecules have been emitted into the system before a sampling

time nTs. The total number of molecules in the receiver at the

sampling time is then given by

Xtot =

∆
∑

i=1

Xi. (12)

Since each molecule’s motion is assumed to be independent,

for a sufficiently large ∆, it follows from the central limit

theorem that Xtot is then well approximated by a Gaussian

random variable

X̃tot ∼ N (∆pRx(nTs),∆pRx(nTs)). (13)

for pRx(nTs) sufficiently small.

1The reader is referred to [8] for a general discussion of fluctuation-
dissipation conditions.

C. Near-Optimal Detection

Under the assumption that the statistics for the number of

molecules in the receiver at a sampling time nTs given ∆
molecules are present in the system at time (n− 1)Ts + δ is

given by (13), it is now feasible to derive detection rules. In

particular, we seek to obtain an estimate for the transmitted

sequence (s1, . . . , sn+1) ∈ {0, 1}n+1. Although the observa-

tion process is Markovian, for a sufficiently large time slot

Ts, the observations NRx = (NRx(Ts), . . . , NRx((n+ 1)Ts))
at each sampling time kTs, k = 1, 2, . . . are approximately

independent.

Let s ∈ {0, 1}n+1 denote a potential vector of transmitted

bits. Under the Gaussian approximation in (13), the joint

likelihood of the observations is given by

fNRx|s(n)

=

n+1
∏

i=1

1
√

2πµr

∑i
j=1 sj

exp

(

−
(ni − µr

∑i
j=1 sj)

2

2µr

∑i
j=1 sj

)

,

(14)

where µr = pRx(Ts)∆, with ∆ as in (7). Moreover, assuming

the independence of elements of NRx and the validity of (14),

the optimal detection rule is given by

ŝ
∗ = arg max

s∈{0,1}n+1
fNRx|s(n). (15)

A form of the Viterbi algorithm with appropriate branch

weights can be used to efficiently solve the optimiza-

tion problem in (15). The algorithm is detailed in Algo-

rithm 1. For the k-th symbol sk ∈ {0, 1}, let p(nk|sk) =
log(fNRx,1(kTs)|sk(nk)), where sk are the symbols in s up

to time kTs. In the k-th symbol interval, it is necessary

to compute Pk−1,0 and Pk−1,1, which correspond to the

probability of the most probable sequence until the (k− 1)-th
symbol is 0 and 1, respectively.

Algorithm 1 Detection Algorithm

1: Initialize: k = 0.

2: while k < n+ 1
k = k + 1.

logPk,0 = maxi logPk−1,i + p(nk|0).
logPk,1 = maxi logPk−1,i + p(nk|1).
rk,0 = argmaxi logPk−1,i + p(nk|0).
rk,1 = argmaxi logPk−1,i + p(nk|1).
End while.

3: s∗n+1 = argmaxi Pn+1,i.

j = n+ 1.

4: while j > 1
j = j − 1.

s∗j = rj,s∗
j+1

.

End while.

5: Return: s∗.

We remark that Algorithm 1 has the same form as the near

optimal detection algorithm developed in [2] for equilibrium

signaling in the presence of chemical reactions. The reason for

this is that both systems converge to an equilibrium inducing

receiver observations with known approximately Gaussian

statistics.
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Fig. 1. Verification of (13) for varying Ts, with ∆ = 1000 molecules,
D0 = 10−11m2/s, κ = 10−9 N/m, β = 1

4.11×10−21 J, α = 0.1.

IV. NUMERICAL RESULTS

In this section, we illustrate our communication scheme

in the presence of spatially inhomogeneous diffusion and a

quadratic external potential, which acts by pushing molecules

towards the center of the channel. We note that this scenario

is challenging for standard CSK schemes due to the fact that

the finite time behavior of the system must be characterized.

In particular, as the Fokker-Planck equation does not admit

tractable solutions for finite times, detection rules are difficult

to obtain.

We assume that the system lies in the domain

[−4 µm, 4 µm], the transmitter is placed at x = −1 µm
and the receiver is defined by the domain [1 µm, 2 µm].
The diffusion coefficient is assumed to be D(x) = D0e

−αx2

,

with D0, α > 0, which is spatially inhomogeneous due

to the dependence of the diffusion coefficient on x.

Note that larger D0 and smaller α increase the rate of

convergence to equilibrium. We assume that molecules are

influenced by a quadratic external potential leading to a

force F = −κ|x|, κ > 0. The friction and scale parameters,

γ and σ respectively, in (2) are then determined via the

fluctuation-dissipation condition in (8), which ensures that

the system converges to an equilibrium state.

In order to obtain a solution of (2), we utilize the Eu-

lerMaruyama method, detailed in [10]. To account for the

reflective boundary conditions, when a molecule passes the

boundary, it is projected into the domain [−4 µm, 4 µm]
as detailed in [11]. Unless otherwise stated, parameters are

chosen as D0 = 10−11 m2/s, κ = 10−9 N/m, β =
1

4.11×10−21 J, α = 0.1.

Due to the fact that we require a finite sampling time, a key

question is how small the symbol period can be while still

yielding a good approximation of the equilibrium distribution.

Fig. 1 plots the empirical estimate of the distribution for

the number of molecules with different symbol periods. The

distribution is estimated via kernel density estimation with

bandwidth parameter h = 5. Observe that the receiver statistics

rapidly converge to the distribution expected from (13).

In Fig. 2, we plot the average probability of error as

defined in [2, Eq. (36)] for varying quantity of molecules

∆. In particular, we have calculated the probability of error

for the communication channel defined in Section III by

transmitting 100 consecutive bits and repeating this process for

5000 iterations. Observe that the probability of error rapidly
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Fig. 2. Average probability of error with different initial position, xd µm,
of the receiver with a region [xd µm, xd + 1 µm] and varying quantity of
molecules ∆.

decays, suggesting that the detection rule is well adapted to the

receiver statistics. We also see that as the distance between the

transmitter and receiver increases, corresponding to varying

xd, the probability of error increases, which is a consequence

of the external force applied to each molecule. In particular,

the external force concentrates the probability density function

for the location of a single molecule towards the center of the

domain.

V. CONCLUSION

To develop molecular communication strategies in complex

environments, it is necessary to have accurate characterizations

of the statistics for the number of molecules within the re-

ceiver. In this paper, we proposed a new method to derive near

optimal detection rules for sufficiently large symbol periods.

Numerical results validated our approach in the presence

of a force governed by a quadratic potential and spatially

inhomogeneous diffusion.
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