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Introduction

The aims of Chapters 2A-2C are as follows: In Chapter 2A, we develop
the physicochemical thermodynamic properties of matter in the particular
cases of equilibrium states, equilibrium displacements, and equilibrium
stability. The best way to treat this problem is to use the concept of
chemical affinity introduced by De Donder and developed by Prigogine,
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Defay, Glansdorff, and their co-workers. To do this, we base our formula-
tion on the fundamental book of Prigogine and Defay (1967).
In Chapter 2B, we introduce the concept of irreversibility in a local way.
In Chapter 2C, we discuss surface phenomena, following the method
of Bakker and Gibbs-Defay.

I. Thermodynamic Potentials

We shall briefly review some properties of the thermodynamic poten-
tials developed exhaustively in Chapter 1.

First, as seen in Chapter 1, the classical definition of the second law
is that, for all reversible changes in a closed system at a uniform tem-

perature T,
dS = dQ|T  (reversible). (1.1)

For a closed system, the state is defined by the variables T, V, and &
(& is the extent of reaction, or simply the reaction coordinates (sce Chapter
1, Section XX), so that

S=8(T, V, &). (1.2)
For all irreversible changes in a closed system,

dS > dO|T (irreversible). (1.3)

Following Clausius, we may now introduce a new quantity dQ' always
positive, which represents the difference between T'dS and dQ in the
course of an irreversible change. It is defined by

dS — (dQ|T) = dQ'|T = 0 (irreversible). (1.4)
Equations (1.1) and (1.3) can now be combined to give

dS = dQ|T + dQ'|T, (1.5)
with
dQ' =0 (reversible),
dQ' >0 (irreversible).
Clausius called dQ' the uncompensated heat, which is always positive or

zero; in classical thermodynamics, it played a purely qualitative part.
It was used to delimit reversible changes for which dQ' = 0, and when
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dealing with nonequilibrium states it was sufficient to write dQ’ > 0
without attempting an explicit calculation of its value.

The term “uncompensated heat” is not a particularly happy choice.
The uncompensated heat dQ' is never the heat received by the system,
but arises from irreversible changes taking place in the interior of the
system.

The entropy of a system can vary for two reasons and for two reasons
only: either by the transport of entropy d.S to or from the surroundings
through the boundary surface of the system, or by the creation of entropy
d,S inside the system. We have then [see Chapter 1, Eq. (11.2)]

dS = d,S + d;S, (1.6)

and for a closed system
d.S = dQ|T (1.7)
d,S = dQ'|T. (1.8)

The entropy created in the system is thus equal to the Clausius un-
compensated heat divided by the absolute temperature; this gives the
uncompensated heat a physical significance (see Chapter 1, Section XI).

The inequality (1.4) states that the creation of entropy is always
positive, that is, irreversible processes can only create entropy, they cannot
destroy it.

We note that for an ssolated system

dS = d;S > 0. (1.9)

Now, thermodynamic potentials are special state functions whose prop-
erties may be characterized, if certain variables are maintained constant,
by a decrease when irreversible processes take place in the system. Thus,
the thermodynamic potentials indicate the presence of irreversible phe-
nomena in changes in which the corresponding variables are maintained
constant.

Limiting our work to systems submitted only to quasistatic work (see
Chapter 1, Section VII), we use the following four sets of variables:

DR By gcwiwioy Fan s S OK VI "

(1.10)
S)P'"I)"""t; Trptnlt°~'a”¢;

where n,, ..., n, are the numbers of moles of components 1, ...,c¢c.
The other symbols are defined in Chapter 1.
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It may be interesting to note that each set of variables constains a
thermal variable (S or T'), a mechanical variable (p or V), and chemical
variables (n,, ..., n,) related to the extents of reactions (¢, ..., &,).

The choice of a set of variables is only governed by practical factors.
To each set of variables there corresponds a thermodynamic potential,

Combining the first law of thermodynamics [see Chapter 1, Egs.
(8.3) and (7.1)]

dU =dQ — pdV (1.11)

with the second law (1.5) expressed in a modern form by De Donder
(1923) (see also Duhem, 1899, 1911; Planck, 1927, 1930; Poincare,
1908), we obtain

dQ = dU + pdV = TdS — dQ'. (1.12)

We now put formula (1.12) into various forms corresponding to various
experimental conditions under which physicochemical changes can take
place:
1. Internal energy U
From (1.12), we get
dU =TdS —pdV — dQ'. (1.13)
Thus, for all irreversible reactions taking place at constant S and V,

dU = —dQ' < 0. (1.14)

Thus, an irreversible change at constant entropy and volume is accom-
panied by a decrease in the internal energy. The internal energy thus
plays the part of an indicator of irreversible processes for changes at
constant S and V.

2. Enthalpy H

From the definition of the heat content or enthalpy [see Chapter 1,

Eq. (9.3)]
H= U+ pV, (1.15)

(1.13) may be written
dH = TdS + V dp — dQ'. (1.16)
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For an irreversible reaction at constant S and p, we have therefore
dH = —dQ' < 0. (1.17)

Thus, an irreversible change at constant entropy and pressure is accom-
panied by a decrease in the enthalpy. The enthalpy is the thermodynamic
potential associated with the physical variables S and p.

3. Helmholtz Free Energy F

We define the Helmholtz free energy F by the relation [see Chapter 1,
Eq. (16.3)]
F=U-TS, (1.18)

and we see, from (1.13) and (1.18), that
dF = —SdT — pdV — dQ'. (1.19)
For an irreversible change at constant 7' and V, we have therefore
dF = —dQ' < 0; (1.20)

the function F is the thermodynamic potential associated with the
variables T, V.

Thus, an irreversible change at constant temperature and volume is
accompanied by a decrease in the Helmholtz free energy.

4. Gibbs Free Energy G
We define the Gibbs free energy G by the relation
G=U—-TS+pV=H-TS. (1.21)
Combining (1.13) with (1.21), we have
dG = —SdT + Vdp — dQ'". (1.22)
For an irreversible change at constant T and p, (1.22) reduces to
dG = —dQ' < 0. (1.23)

Thus, an irreversible change at constant temperature and pressure is
accompanied by a decrease in the Gibbs free energy.
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Remark. The function — S is a thermodynamic potential corresponding
to the variables U, V, n,, ..., n,. Indeed, (1.12) gives, at constant U
and V,

—dS = —dQ'|T < 0. (1.24)

This conclusion is expected because a closed system where U and V
are maintained constant is in fact an isolated system. This is the classical
statement that the entropy of an isolated system increases with time.

IL Affinity

We shall consider here uniform systems in the absence of gravity, i.e.,
systems where pressure, temperature and composition are the same within
each phase.

The diffusion equilibrium is thus reached within each phase of the
system. The mechanical equilibrium excludes the barycentric motion and
the viscosity, while the thermal equilibrium excludes transport of heat.

In fact, it is well known that a real system submitted to variations of
temperature and pressure is not strictly uniform. The concept of a uni-
form system is thus an idealization of reality, but the approximation may
be accepted if the variations of T and p are very slow.

If chemical reaction and phase changes take place in the same manner
at each point of the system and if the exchanges of heat with the external
world are slow enough to maintain a uniform temperature throughout
all the system, the only irreversible processes are then general changes
which can be expressed in terms of a reaction coordinate £. The produc-
tion of entropy must be determined solely by &, and with De Donder
(1922) we may write

dQ' = A dE > 0. (2.1)

The inequality corresponds to spontaneous reaction, while the equality
corresponds to the equilibrium.

De Donder introduced the function of state A called the affinity of
the reaction, which does not depend upon the kind of transformation
considered but depends solely on the state of the system at a particular
instant.

In fact, De Donder introduced his relation (2.1) as a hypothesis, but
Defay (1938) showed afterwards that, for a given value of d&, dQ' will
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be the same whatever may be the values of dp and dT during the change
under consideration. With the variables 7', p, & we have

dU=(%—) dr+(‘f,;/) dp-{-(%g) dé (22)
and also
dV=(%) dT+(a;,) dp+(3§) & (23)

Let us define the following quantities (see Chapter 1, Section XVIII):

(37),, +2(57),, = (2.4)
) AR,
() A= o

The quantities C,; (heat capacity of the system at constant pressure and
composition), ky, (latent heat of pressure change at constant temperature
and composition), and ry, (heat of reaction at constant T and p) are
the thermal coefficients in the variables 7', p, and &.

Substitution in (1.11) then leads to

dQ = C,; dT + hyp;dp — ry, d&. (2.7)
Now, we may write

dS=(g—‘7s.—) dT + ( a.;') dp + ( ‘;‘:) & (28)

Combining (2.7) and (2.8) with the Clausius equation
dQ' = TdS — dQ, (2.9)

r) = Ol [ ) = &

aT
( ) e rn]%, (2.10)

we obtain

= ["Gr
+
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where dT[dt and dp/dt, which are the changes of the temperature and
pressure in unit time, are quantities which can vary arbitrarily and may be
given either positive or negative values. On the other hand, we consider
the speed of reaction d&/dt as a function of state (Prigogine and Defay,
1967, p. 18; De Donder, 1937, p. 936, 1938, p. 15), so that

dtjdt = v(T, p, ). (2.11)

Moreover, the three coefficients of d7'/dt, dp/dt, and d&|dt are functions
of T, p, & Equation (2.10) shows that, for a given state of the system,
if the coefficients of d7/dt and dp/dt are not zero, then by assigning
dT|dt and dp|dt suitable values, we may give dQ'/dt any value we wish;
in particular, we can make dQ’'/dt negative, which is contrary to the
second law. It is thus necessary for these coefficients to be zero, that is,

as as
T(W)’s s g T(—bp—)n —Rp=0. (212)

Equation (2.10) reduces then to the form (2.1) with
A =rp, + T(3S[08)r,. (2.13)

Because 7y, and S are functions of T, p, and &, it results that 4 is also a
function of T, p, and &, and thus it is a function of the state of the system.
Combining De Donder’s inequality (2.1) with (2.11), we may write

dQ'|dt = AdEldt = A - v =0, (2.14)
whence,
A >0, v=>10
A<, v<~0
A=0, v=»_0,

for, if we had v == () with 4 = 0, we should have a chemical reaction
proceeding at a finite rate in a reversible manner, which is impossible.

CONCLUSIONS

(a) The affinity is always of the same sign as the rate of reaction and
thus gives the sign of the rate.
(b) When the affinity is zero, the system is in equilibrium.
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The converse of this second statement is, however, not true:

v>0 gives 4 >0
v<0 gives 4 <0

v=0 and 4=0:
true equilibrium
v=0 and 4#0:
false equilibrium.

v # 0, whence dQ’' >0 and Av >0 {
v=0, whence dQ' =0 and Av=0

We describe a system as being in a state of false equilibrium when no
reaction proceeds even though the affinity of the reaction is not zero.
The necessary and sufficient conditions for true equilibrium in a chemical
reaction is then given by

A(T, p, &) = 0. (2.15)

In place of (2.2), we may write, in the variables T, V, &,

By comparing (2.16) and (1.11), we may write

dQ = Cyp,dT + lp, dV — rqy dE, (2.17)
where
(0U|dT)ye = Cy,, (2.18)
(DUIVYre + p = I, (2.19)
(OU|0E)py = —Tpp. (2.20)

The quantity Cy, is the heat capacity at constant volume and composi-
tion. Iy, is the latent heat of volume change of the system, and ryy is
the heat of reaction at constant 7" and V.

The same arguments as above [see (2.12)] lead to

T(3S]dT)ye — Cye = 0;  T(8S|OV)ps — lpe = 0.  (2.21)

and
A = ryy + T(0S|08)yy. (2.22)

It is easy to see that, at low temperatures, a measurement of rpp gives as
first approximation the value of the affinity 4 according to Berthelot’s
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point of view. But, generally, 4 and ryy are different because of the
term 7'(3S/0&)yy. If this term is important, then it is possible to obtain

A=>0 with rpp <0 (endothermic reaction).

III. Affinity and Thermodynamic Potentials

Now combining (2.1) respectively with (1.13), (1.16), (1.19), and
(1.22), we obtain (Prigogine and Defay, 1967, Chapter IV)

dU=TdS —pdV — Adt (3.1)
dH = TdS + Vdp — A dt (3.2)
dF = —SdT — pdV — A dé (3.3)
dG = —SdT + V dp — A dL. (3.4)

For a closed system, we have then
U=U(S,V,&),H=H(S,p,¢), F=FT,V,£),G=G(T,p,¢§). (3.5)

We now compare (3.1)-(3.4) with the corresponding total differentials,
and so obtain the connection between (1) an extensive thermal variable S
and an intensive thermal variable 7', (2) an extensive mechanical variable
V and an intensive mechanical variable p, and (3) an extensive chemical
variable & and an intensive chemical variable A:

()= (@Fla=> (&)~ 09
@)=t (=% (& ),s @)
(@r)== (@)= (&)= 63

(aT),, -5, (G)a=" (ae), =4

the affinity is thus equal to the slope with respect to & of the thermo-
dynamical potential related to the appropriate variables.

It is now easy to find the so-called Gibbs-Helmholtz equation by
combining (1.18) and (3.8); we then find

U = F — T(3F|aT)y,. (3.10)
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We may now derive a further set of important relations from (3.6)-(3.9). '
With the second derivatives, we have, for example, in the variables
T- Vu Eand T.P, 8'

(_gis/‘)rs = (%)s'e’ (%::_)Tr a (%/%)rs’ (gg)” - (%‘;—)T"

(3.11)

()= ~(or)e (o)~ ()0 (BE)s, (o)

(3.12)

Other groups of equations and many applications are given in the funda-
mental book of Prigogine and Defay (1967, p. 54).

From a general point of view, we observe that a partial derivative of
a thermal variable (7 or S) with respect to one of the mechanical variables
(p or V) is equal to the partial derivative of the conjugate mechanical
variable (V' or p) with respect to the other thermal variable (S or T).
Similar statements hold for the other pairs of variables (7, S) and
(A4, %) and (p, V) and (4, &).

In further sections, we will see some applications of Eq. (3.12).

IV. The Gibbs Chemical Potential

A, Tre CHeEMICAL POTENTIAL

Let us suppose that the functions of state U and S introduced by the
first and second laws of thermodynamics also exist in open systems,
so that we may write

U=UT,V,m,...,n) =U(S,Vym, ...,n) (4.1)
S=S(T, V, sy ..., ). (42)

Now, in closed systems, we used the symbols dn, and dV’ to represent
the changes, respectively, in number of moles n, and in volume in the
time dt (dt > 0). However, in open systems, we have to introduce a new
symbol for differentiation, 4, to avoid any confusion with the symbol d.
The dn, are chosen quite arbitrarily and they represent virtual or true
variations of any kind in the number of moles n,.
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From (3.1), we then have

oU=(%g—) os+(gg) 6V+2,(an)sm6n,, (4.3)

where the subscript # means that all the n, remain constant during the
derivation and the subscript 7, means that all n’s except n, remain con-
stant.

We may write now the following equalities:

().~ (5s), = (G7)u=(a7). @9

because the state of an open system in which all the n, remain constant
changes exactly as it would in a closed system in which & remains
constant.

Combining (4.4), (4.3), and (3.6), we obtain

au

U=T8S—psV+3 o, (4.5)

5 v (a")' )"Slﬂ J

If we use H, F, and, G, we obtain
SH — T S + V6p+z(a )s (4.6)
pong

OF = —S 8T — p6V+Z( ) (4.7)

TVug
G = —S 8T + Vap+z(gf) on,. (4.8)

y y { Tpng

Nevertheless, we can write 8H, &F, and 4G in another way; i.e., from
(4.5) and the definitions (1.15), (1.18) and, (1.21), we deduce that

au
on 4.9
a"y )SV-; o ( )

8H = T 85 + V6p+2(
y

on

8F=—S8T —p oV + z( (4.10)

Y

on, )sva,

au

3G = —S 3T + Vdp+2(a" on,. (4.11)

y

)SVna
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Comparing these equations with (4.6), (4.7), and (4.8), we thus have
[see Chapter 1, Egs. (16.5), (16.8)]

8U =T8S — p oV + S p, o, (4.12)
y

OH =T3S+ V o+ Zudn, (4.13)

OF = —S 3T —p oV + T, tn, (4.14)

0G = —S3T+V o+ T, bn, (4.15)

where the symbol u,, called by Gibbs (see Prigogine and Defay (1967),
p. 68) the chemical potential of component y, is the common value of
the derivatives

oUu oH oF aG
T .04 - =AY = 4.16
i ( a”y )SVng ( a"y )Spng ( 8"y )T'Vnﬁ ( a"y )Tpnﬂ ( )

As the thermodynamic potentials are extensive functions, the chemical
potential x, is an intensive quantity; it is the partial molar quantity
corresponding to a thermodynamic potential. Thus, the chemical po-
tential describes the local properties of the system (for electrochemical
systems, see Sanfeld (1968a)).

If the system is composed of many phases (e, 4, ...) at the same pres-
sure and the same temperature, it is easy to show (Prigogine and Defay,
1965, p. 75) that, for example, (4.15) and (4.16) must be replaced by

3G = —S 8T + Vop+zz(gf,) e (4.17)

M= ( - )VSnﬁ ( gﬂH )sn ( gﬂp )rv.g & (-g%)ryng (4.18)

B. AFFINITY AND THERMODYNAMIC POTENTIALS AS FUNCTIONS OF THE
CHeMICAL POTENTIALS

In accordance with the principle of conservation of mass, the stoichi-

ometric equation for a reaction r may be written [see Chapter 1, Eq.
(20.3)]

zXnM, =0, (4.19)
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where M, is the molecular weight of component y. Now, from Egs.
(4.19) and (4.18) and the form of A given by (3.9), combined with
[see Chapter 1, Eq. (20.2)]

df' = d'”y.l';f’ (4.20)
we obtain
aG v .
A,——Z-:%}v;, on s ——%,Yv;,y,. (4.21)

At the true equilibrium of reaction, we have

A4,=0 (4.22)
or

zz,:rrpyc-_-o (r=l,2,...,7)- (4-23)

Practical examples of chemical and passage equilibrium will be given in
further sections.

Now, the extensive function G given by (4.17) is homogencous of the
first degree with the extensive variables n,', ...,n7% ..., n* as inde-
pendent variables. We may then apply to G Euler's theorem for homo-
geneous functions, i.e.,

G=3x3Snwur (4.24)

The chemical potentials u* of the y constituents in the « phases of the
system are thus functions of the independent variables T, p, n)', ...,
n2 ...,n" On the one hand, they define all the thermodynamic prop-
erties of the system studied, and on the other hand they enable us to
write the conditions of chemical equilibrium in the form (4.23) which
is at once both simple and general.

The total volume ¥ of the system can be written in function of the
volume of each homogeneous phase V* so that

V=3 VT, p,ns ..., n5. (4.25)

In the same way, if we neglect all the surface energies and entropies
between the phases, then the thermodynamic potentials may be written as

G=3 G (4.26)
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and the chemical potential may be written simply as

oG aG*
s ( dn * )T;mg ( on> )Tpns ( ‘
Similarly, it is casy to show that
aH=
S (W)mg (%)
on = ( g ) : (4.29)
anra TV"ﬁ

w5 hr and s are thus the partial molar quantities corresponding,
respectively, to the extensive functions G*, H% and S=

C. Tue Gises-Dunem EQUATION

The differentiation of (4.24) combined with the corresponding equa-
tion (4.17) gives the fundamental Gibbs-Duhem equation

SOT —Vip+ X Ensduz=0. (4.30)
=y

If the system is described by the variables T, p, u%, ..., % ..., pc’,
one of these variables is not independent. The relation (4.30) enables
us to calculate one of the increments 87, &p, or du,* when the others
are known,

For an isothermal, isobaric change, (4.30) reduces to

XX b = (4.31)

Applying Euler’s theorem, (4.31) becomes (now dropping all the sub-
scripts related to the number of moles)

ZEn y(‘;’;: ), =o (+32)

Or, from the so-called reciprocity relation (Prigogine and Defay, 1967,
p. 70)

( 3’:.;: ),, - ( ?,’,‘,:Z )r,. BHB=12...,¢) (433
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| Eq. (4.32) may be rewritten as

of 0"\ _
T ( - )r, —0. (4.34)
Remark. From the second partial derivative of G(T', p, n,, ..., n.) and
from Eq. (4.15) and (3.9), we have
Ay N aS o
( aT )pn = —( a"y )Tp = (435)
duy\ (VN
( % )n - (‘_au, )n i (4.36)
Differentiating H = U + pV and G = U — TS + pV, we obtain
hy = u, + pv, (437)
p, = u,— Ts, + pv,. (4.38)

The specific molar entropy s, determines the variation of u, with T,
while the specific molar enthalpy determines the variation of g /T with 7.
Indeed, from (4.37) and (4.38), we find

u,=h,— Ts,, (4.39)
and thus
(uy|T)|0T = — h,|T%. (4.40)

D. ComMPARISON WITH THE FORMULATION OF LEWIS AND RANDALL*

As we have seen previously, the affinity 4 is a function of the instan-
taneous state of the system given by the derivative of the thermodynamic
potential G with respect to &, at constant T and p for each state of the
matter [see Eq. (3.9)]

A = —(9G|88)r,. (4.41)

Now, the symbol 4G used by Lewis and Randall means a finite variation
of the function, e.g.,

AG = Gﬂw — Glnlll‘l (tWO SmteS). (4.42)

In fact, the fundamental difference between A and AG is not related to

® Lewis and Randall (1923).
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the existence of two states of matter, because, in 4 = A(7, p, &), the
extent of reaction £ is also related to the initial state of matter:

§=(mn,—nf)r, (4.43)

where n' is the number of moles of the components y when ¢ = 0.
The difference comes from the relation (4.24). For one phase, Eq. (4.24)
reduces to

G=Xnu, (4.44)
14
and thus

AG = (§ nrpy)nw — (Do (4.45)

Since u, does not necessarily have the same value in the initial and in the
final states,

AG # 3 p(n, —n}'). (4.46)
v
From (4.43) and (4.46), we obtain the inequality
AG # X v u,, (4.47)
Y

where
AG, = AG|E. (4.48)

According to the Lewis approach, the chemical potentials u, are implicitly
considered as constant, or have a mean value so that, if £ = 1,

4G = X vip). (4.49)
y
This hypothesis is quite correct if the initial composition, temperature,

and pressure are only weakly modified by the chemical reactions. Strictly
speaking, for a chemical reaction

"AA + »gB = ».C + D,
A, for a given well-defined state, is
A = vouc + Ypitp — Yala — VBlB, (4.50)

and thus does not simply represent a decrease in free energy or a difference
between two states. Because the use of a mean value gives rise to some
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difficulties in the neighborhood of equilibrium, where G takes a minimum
value, it would be better to define AG as a single operator of the type
(4.50). For details about this problem, see the fundamental work of
Prigogine and Defay (1967, Chapter V).

E. Passage FrRoMm A CLOSED TO AN OPEN SySTEM

As we already saw, the functions A(T, p, &) and G(T, p, &) are well
defined in closed systems, with the definition (2.1),

A dt = dQ',
the relation [Eqgs. (3.9)]
= —(0G|08)r,,
and the formula [Eq. (3.4)]
8G = —S T + V ép — A 8¢

For an open system, we presumed that the function G must also exist
in the form

G = G(T, P, M5 +..098) (4.51)

Now, when an open system undergoes a change in which all the n,
remain constant, the change is exactly as it would be in a closed system
in which & remains constant, so that the two first derivatives of (3.9)
become

(0G[aT )y = —S (4.52)

(3G|0p)ra = V. (4.53)

The last derivative of (3.9) can also be written in the form

() =3 () & (454

because, in G = G(T,p, &), & depends on n,. Now, the derivative
dn |d& means dn [df, because, in closed systems, the change dn, in the
number of moles of y in a time interval d¢ will be only the change arising
as a result of internal (subscript i) chemical reactions, and

din JdE = »,. (4.55)
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On the other hand, from the form (4.51), it results that in the deriva-
tive (#G/dn )y, the variations of n, are of any kind, e.g., result from
transport across the boundaries of the system to or from the surro-
undings.

Combining (4.54), (4.55), and (4.16), we obtain the well-known
passage equation from closed to open systems

(3G|08)r, = E v, (4.56)

Inserting Eq. (4.55) and (4.21) in Eq. (3.4) then gives for open systems
0G=—SoT+Vép+ Zpu,odn,. (4.15)
\

The passage from a closed system (where the function 4 is well defined)
to an open one (where the intensive functions g, are locally defined) is
thus realized without any difficulty.

V. The Phase Rule

A. GENERAL DEMONSTRATION

We will now consider the number of phases which can coexist and the
relationship of the properties of each component to the equilibrium
behavior of the system. First, let us remember that a phase composed
of one or several components is a macroscopic homogeneous portion of
a system.

Since all gases are completely miscible, there can never be more than
one gas phase; however, a number of independent liquid or solid phases
may be formed. The phase rule, like all basic thermodynamic relation-
ships, is independent of assumptions pertaining to the particular nature
of matter; it is not concerned with the quantities of the various phases,
but only with intensive variables. The Gibbs phase rule only permits us
to fix arbitrarily a certain number of intensive variables when the system is
in equilibrium.

We consider a system with ¢ components, ¢ phases at the same pressure
and the same temperature, and »' distinct chemical reactions (omitting
those which consist solely of the passage reactions).
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In the systems considered here,* composed of ¢ constituents and ¢
phases, the intensive variables are

TPy N sy N s NG essg NS (5.1)

where the mole fractions N * of y in the phase « are defined by
Nj= n,,'/},;, nr. (5.2)
Nevertheless, the (2 4 ¢¢) intensive variables are not all independent,

and, at equilibrium, general relations bind these variables.
Whatever the state of the system, we have ¢ relations of the type

z Ny‘ = 1. (5.3)

The equilibrium conditions are:

(1) There are ¢(¢ — 1) conditions of transfer equilibrium of each
constituent among the various phases

pl=prl=...=p (y=1,...,¢) (54)

(2) There are r' conditions of equilibrium for the chemical reactions,
A,=—§§vay = (r=1...,7) (5.5)

The number of relations among the 2 + ¢4 intensive variables is thus
4c(d—1)+r. (5.6)

The variance or the number of degrees of freedom, i.e., the number of in-
dependent intensive variables, is thus given by (Gibbs, 1928; De Donder,
1920; Jouguet, 1921; Bowden, 1938)

w=2+4(c—r)—¢. (5.7)

Remark. 1f a component is insoluble in the phase , the supplementary
insolubility condition
Ng=0 (5.8)

gives rise to a loss of a condition like (5.4). Thus, the phase rule (5.7)
remains valid.

*® For charged systems, see Sanfeld (1968). For anisotropic systems, see Steinchen
(1970).
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B. ExamrLEs

1. One-component systems, ¢ = 1 and r' = 0

For a onc-component system, a phase diagram is usually a plot of
pressure against temperature.

a. Water Phase Diagram. The behavior of water is shown in a limited
region in Fig. 1. The lines represent the equilibrium between the phases,
and thus establish the fixed relationship between pressure and tempera-
ture. We consider three cases:

(f) The system consists of only one phase (vapor, liquid, or solid):
¢ = 1 and w = 2. The system is divariant and the areas between the
lines representing the equilibrium between the phases correspond to
regions in which only a single phase exists and in which 7" and p may be
varied independently.

(1) The system consists of two phases (liquid and vapor, liquid and
solid, or solid and vapor): ¢ = 2 and @ = 1. The system is monovariant.
If the pressure is fixed, then the equilibrium temperature of the coexist-
ing two phases will be a function of the chosen pressure. Equilibrium
between any two phases can exist only if the value of 7 for a particular p
falls on the line dividing the areas (see Fig. 1), e.g., liquid and gas.
At each line grouping the representative points of two-phase systems, the
affinity of passage of the substance from one phase to the other is zero.

(i) The system consists of three phases (vapor, liquid, and solid):
¢ = 3 and w = 0. We cannot fix either 7" or p arbitrarily and the three
phases coexist only at the point of intersection of the three equilibrium

Liquid
ﬁlr iqui

0° ToC
F1G. 1. Phase diagram for water in the vicinity of the triple point,
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12,000
atm B

.
Fic. 2. Phase diagram for water at high pressure.

lines. This triple point is invariant. For water, the coexistence of the
three phases occurs at a temperature of +7.6 10-? °C and a pressure of
4.6 mm of mercury.

At high pressures, a number of different crystalline forms (different
phases) of ice have been observed. The phase diagram (see Fig. 2) is
not complete because only limited information is available. Four triple
points corresponding to the coexistence of the three forms of ice (ice II,
III, and IV) are shown.

More than three independent phases cannot coexist in equilibrium in
a one-component system,.

b. Sulfur Phase Diagram. 'The four phases, clinorhombic, orthorhombic,
liquid, and vapor, cannot all be in simultaneous equilibrium (Fig. 3).
Any two of these are separated by a line along which they can coexist,
while there are three triple points corresponding to the different forms of
sulfur. Along the line AC, there is equilibrium between orthorombic
(OR) and clinorhombic (CR); along DA, between orthorhombic and
vapor (V); along AB, between clinorhombic and vapor; along BE,
between vapor and liquid (L), etc.

The systems composed of three phases are invariant and their states
are represented by isolated points or triple points (4, B, and C). At the
equilibrium, it is impossible to find systems composed of four phases
because the variance would then be less than zero.

2. Binary Systems

The phase diagrams, particularly for binary or ternary systems, are
of great practical importance in metallurgy and physical chemistry, and
much work has been done on their classifications.
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Fi1c. 3. Phase diagram of sulfur,

Here we have several cases:

(f) ¢ =1, w=3. For example, two components in a vapor state
without chemical reaction. The temperature, the pressure, and the com-
position can be fixed arbitrarily.

(#) ¢ = 2, w = 2. A mixture of alcohol and water in the presence of
their vapor (without air). Two variables (the pressure and the tem-
perature, or the pressure and the composition in one phase, or the tem-
perature and the composition in one phase) can be fixed arbitrarily.

a. Equilibrium between Vapor and Liquid. (1) We consider first the case
where the temperature has been taken as constant. The total pressure
will be determined by the composition of either phase. Thus, we may
represent the composition of either phase by the abscissa in a rectangular
system of coordinates, and the pressures at constant temperature as
ordinate (see Fig, 4).

The vaporization curve p(N,’') gives the equilibrium pressure, i.e.,
the vapor pressure of the solution at the considered temperature 7' and
for a given composition of solution, N,'. For the same pressure (for ex-
ample, py), the vapor phase (C") is in equilibrium with the solution
(C’). Nevertheless, the composition of the vapor phase IV, is generally
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Fic. 4. Vapor-liquid phase diagram at constant temperature.

different from that of the liquid phase. The curve p(N,") is called
condensation curve.

The point 4 situated above curve p(N,') only represents a liquid phase,
although the point B situated behind curve p(V,”) only represents a
vapor phase.

Excluding all the false equilibria, the point D within the area enclosed
by two curves represents a two-phase system consisting of the liquid
C" and the vapor C"' in such proportions that the overall composition of
the whole system is N,. If # is the total number of moles in the system,

it is easy to see that
Ny — N, DC’

nrt
T:' N’_ N’u — CMD‘ (5'9)

Thus, when D approaches the condensation curve, more and more of
the system will be vaporized, and when D is close to the vaporization
curve, the system will nearly all be in the liquid phase.

Fractional distillation. Let us assume that initially we have a solution
in the state E. The decrease of pressure from pg to p;, yields a partial
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vaporization and results in the formation of two phases C' and C".
The proportion of these two phases is given by (5.9).

The mechanism is very simple: (1) From E to F' no vaporization.
(2) At F', the vaporization begins. The state of the vapor phase produced
is represented by F'' (Nf"" = NI’). (3) In the liquid phase, the fraction
of the component 1 decreases, and thus F' goes down to C' along the
vaporization curve, while the state of the vapor phase sinks along the
condensation curve from F'' to C".

If the pressure decreases from pj, to py.., all the liquid phase becomes
a vapor phase, and, below this pressure, only the vapor phase subsists
with the same composition as the initial E liquid phase (point J).

Now, let us assume that we stop the vaporization or the condensation
when the composition of the two obtained phases is different. This
phase is then submitted to a new partial vaporization or condensation,
and so on. This process is called fractional distillation.

From the experimental point of view, a one-step separation can occur
on a plate of a fractionation column (Keeson, 1939; Bosnjakovic, 1935;
Brown et al., 1955; Ponchon, 1921; Savarit, 1922; Daniels and Alberty,
1961); the number of plates (separation steps) required to give the
desired fractionation depends on the shape of the phase diagram. The
effectiveness of a given fractionation column is indicated by the number
of theoretical plates corresponding to the number of separation steps
which it performs.

(2) We now consider the case where the pressure has been taken as
constant. The independent variables are p and N,'. The curve T(N,'),
boiling point as a function of liquid composition N,', is called the boiling
curve (Fig. 5).

A horizontal line cuts the boiling and condensation curves at P’ and
P". These points, corresponding to the same temperature, give the
composition of the liquid, N,', and the vapor, N,”, which are in equi-
librium with one another at the temperature 7'. If we neglect the effect
of surface tension, a bubble containing vapor and the solution represents
two phases at the same pressure.

Azeotropic mixtures. Maximum- or minimum-boiling mixtures are
called azeotropes (Fig. 6). An argument based on the Gibbs-Konovalow
theorem shows that the composition of the two phases must be identical
at the point of maximum or minimum.

In an azeotropic system, one phase may be transformed to the other
at constant temperature, pressure and composition without affecting the



2A. Equilibrium, Stability, and Displacements 125

T4 Vapor

Liquid

bt e e e > > —— ——

b s ————————

N2 Ny 8 N;
-
0 1

Fre. 5. Vapor-liquid phase diagram at constant pressure.

equilibrium state (Fig. 6) (see, for example, Wade and Merriman
(1911)).

The azeotrope behaves in some respects like a pure substance, since it
distils at constant temperature and pressure without change in composi-
tion. If, however, the pressure at which the distillation is carried out is
altered, the composition is also altered (see Fig. 7), and hence the sub-
stance corresponds to a mixture, and not a pure one. Azeotropic mixtures
are not uncommon.

Water and hydrogen chloride form an azeotropic mixture with a
maximum boiling point of 108.6°C at 1760 mm Hg pressure, when the

~
~

0o I N” 0 1 N”
(a) (b}

Fic. 6. Vapor-liquid equilibrium in a binary system forming an azeotrope.
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’

N

el

0 1 N;

Fic. 7, Variation of the azeotropic maximum with pressure.

weight per cent of HCI is 20.222, Ethylalcohol and water form an azeo-
trope with a minimum boiling point of 78.15°C (95.57%, ethanol).
For azeotropic data on a large number of systems, see Horsley (1952)
and MacDougall (1926, p. 181).

Remark. At each minimum in the isobaric curves, there corresponds a
maximum in the isothermal curves, and conversely.

b. Equilibrium between Solution and Crystal. (1) Melting-point curves.
Solid solution. The phase diagram is similar in many respects to that for

T A N g g
Liquid solution

L Qu,‘du’

SOI,‘UU‘

Solid solution

0 1 jz
Ni Cu N:

Fi1G. 8. Solid-liquid equilibrium (p = const) where solid solutions are formed.
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the vapor pressure of binary liquids. Examples are the systems Ni 4 Cu
(Fig. 8) and HgBr, + Hgl, (Fig. 9). The liquidus gives the composition
of the liquid phase, and the solidus gives the composition of the solid
solution in equilibrium with the liquid solution. An extremum in the
phase diagram might be expected if the two components form an inter-
mediate compound. However, the extremum itself is not a proof of the
existence of such a compound.

T“

Liquid solution

Solid solution Ny

Fi1G. 9. Azeotropic liquid-solid phase diagram.

If the composition at which the maximum occurs is independent of
the pressure, then it is probably associated with a compound. The
pressure test is useful in the study of vapor-liquid mixtures.

For the solid-state problem, an X-ray examination of the crystal struc-
ture provides more reliable evidence.

(2) Melting-point curves. Eutectics. The two phases give a divariant
system where p and N, are arbitrary. The phase diagram is given in
Fig. 10. Here, 4 and B are the melting points of pure components 1 and 2,
AE is the equilibrium curve for the solution (composition N,') and the
crystals of pure component 1, and BE is the equilibrium curve for the
solution (composition N,’) and the crystals of pure compoenent 2. The
point of intersection of these two curves is called the eutectic point.
At this point, the system has the eutectic composition at the eutectic
temperature and the solution is in equilibrium with pure crystals of 1
and 2. The system is thus univariant, and the coexistence of the three
phases is governed by the arbitrary choice of the pressure.
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2e

Fic. 10. Freezing-point curves of a binary system forming a eutectic (p = const),

In the presence of air, the variance is not altered, because air can be
regarded as a single component, since its composition remains constant
throughout (aside from the vapors derived from the solution).

(3) False binary systems. If the two components A and B of a binary
system react together to form an addition component C so that 4 + B
= C, the variance is not affected, because ¢ =3, r' = 1,¢ —r' = 2.
Figure 11 shows the appearance of the phase diagram when the two pure
substances form an addition compound.

=

1
> Ny
B Apparent

Fic. 11. Eutectic phase diagram for binary systems forming an addition compound.
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As abscissa, we plot the apparent molar fraction of component B,
i.e., the molar fraction given by the experimentator which ignores the
existence of the addition compound.

In the absence of solid solutions, we obtain two cutectics E, and E,.
At E,, there is an equilibrium: solution + crystal 4 + crystal C; at
E,, there is an equilibrium: solution + crystal C + crystal B.

The maximum M represents the melting point of a well-defined
compound, the crystal C. At this maximum, the apparent composition
remains constant when the pressure is changing.

One speaks of a congruent melting point (Prigogine and Defay, 1967,
p- 377) when the solid compound melts to form a liquid phase which has
the same composition as the solid. In the NaF-MgF, system (Eggers
et al., 1964, p. 263-265), the intermediate compound has the formula
NaMgF,. Two eutectics are observed, NaF-NaMgF, and NaMgF,-
MgF,.

An eutectic may disappear, and is then replaced by a transition point
r where there are three phases in equilibrium (Fig. 12).

One speaks of an incongruent melting point for the intermediate
compound if, when melting occurs, the liquid has a composition different
from that of the compound and a new solid phase is also formed.

According to Counts et al. (1953), (see also Eggers et al. (1964)), the
compound CaF,-BeF, is unstable above 890°C. During the transition
in the melting process, we have three different phases in equilibrium,
and the system is at an invariant point called peritectic one.
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Fic. 12, Eutectic phase diagram with a transition point.
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3. Ternary Systems

On account of the great complexity of the phenomena observable in
the case of three-component systems, we shall have to be content with a
brief discussion of some of the simpler cases (Vogel, 1937). The com-
position of a ternary mixture is best represented by a point in an equi-
lateral triangle whose vertices 1, 2, and 3 represent the three pure com-
ponents. If the side of the triangle is taken as unity, then the mole frac-
tions N,, N,, and N, in the solution under consideration are given by
the distances, measured along lines parallel to the sides of the triangle,
of the point P from the sides of the triangle remote from vertices 1, 2,
and 3, respectively (Figs. 13 and 14). This representation ensures auto-

Fic. 13. Ternary phase diagram, Fic. 14. Ternary phase diagram.

matically that N, + N, 4+ N, = 1. The sides of the triangle represent
the binary systems (1 + 2), (2 4 3), (3 + 1), and the vertices represent
pure components. Now let us consider systems without chemical reac-
tions. Different cases are possible: ¢ = 1, w =4 (case A); ¢ = 2,
w=23(case B); ¢ =3, w=2(case C); ¢ =4, w=1 (case D); ¢ =5,
w = 0 (case E).

Example 1. Case A. A gas mixture with three components. The vari-
ables p, T, N,, N, are given arbitrarily.

Example 2. Case B. Solidification of a ternary solution without solid
solution. With two phases, the system is trivariant; we can, for example,
consider the pressure and composition of the solution N, Ny’ and see
how the equilibrium temperature changes with these variables. If the
pressure is taken as constant, then we may construct a diagram in which
the equilibrium temperature between liquid and one of the solid phases
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is shown as a function of N, and N,'. We obtain a surface in three-
dimensional space.

Example 3. Case E. Ternary eutectic in the presence of vapor of the
solution without air. An example of a classical ternary system with binary
and ternary eutectics is the alloy system Bi -+ Pb 4 Sn [for details see
Prigogine and Defay (1962), p. 185, MacDougall (1926)].

Remarks. (1) The diagrams become very complicated if the various
components can form solid solutions in one another (Findlay, 1951).

(2) If the three components are linked by a chemical reaction, the
variance is reduced by one and the behavior is simplified. Example:
CaCOj (solid) == CaO (solid) + CO, (gas). The system here is mono-
variant, and, at equilibrium, its state is completely specified when the
temperature is fixed.

(3) To cover a complete specification of the state of a system in terms
of both intensive and extensive variables, we must calculate how many
variables must be fixed to determine completely the equilibrium state of a
closed system. This problem, related to the conditions of enclosure (Pri-
gogine and Defay, 1967, p. 186), is treated exhaustively in the work of
Duhem (1899, vol. IV).

VI. The Equilibrium Constant

A. INTRODUCTION

In Sections II and IV, we discussed the conditions of thermodynamic
equilibrium in a system subject to various constraints, and found that
the conditions could be expressed by saying that chemical affinity is
zero when equilibrium prevails. Now, the chemical affinity is determined
by the temperature, pressure, and composition of the system, so that, if
this function is a known function of the variables just mentioned, then
the thermodynamic behavior of the system can be readily predicted.
Because the affinity and the chemical potentials are connected by Eq.
(4.21), in order to obtain specific numerical answers for the equilibrium
composition in a particular system, we must know the explicit form of
the equation of state

= (T, p, N, ..., N5
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In this section, it will be part of our work to show somewhat more
explicitly how the state of equilibrium depends on the quantities of the
various substances present, first, when all the substances are ideal gases,
and second, when the system is a dilute solution.

From a practical point of view, if substances which can react with one
another are brought together, it will be found that, in general, when all
change seems to have ceased, the original substances are still present,
although their concentrations may be extremely small.

We commonly say that the original and final substances are in chemical
equilibrium.

Experimenters are especially interested in determining the extent to
which a given chemical reaction will take place and in finding out how
the final state of equilibrium depends, not only on the temperature and
the pressure, but on the concentrations of the reacting substances.

B. THE SINGLE-COMPONENT PERFECT GAS

The perfect gas is a fictitious substance, defined by certain properties
which are not possessed by any actual substance, but which are supposed
to be approached by every actual gas as its pressure is indefinitely dimin-
ished. We may state, then, that the perfect gas is a substance which
fulfills the two following conditions:

(1) Its internal energy is a function of temperature alone (Joule's law),
or, in other words,

auU(T)laV = 0. (6.1)

(2) At constant temperature, the volume ¥V occupied by a given

number of moles of gas varies in inverse proportion to the pressure
(Boyle's law)

pV = nf(T), (6.2)

where f(T) is a function independent of the nature of the gas.

The combination of these two laws gives the well-known equation of
state

pV = nRT, (6.3)

where R is the gas constant (R = 0.08205 1 atm deg~! mol-! or 1.987
cal mol-* deg—?).
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Now let us assume that no chemical reaction can occur in the gas.
Any transformation of a system remaining uniform is reversible, and,
thus, from (1.13), (6.3), and (2.18), we have, per mole,

ds = ¢,(T)d(In T) + R d(In v), (6.4)

where ¢, is the partial molar heat capacity at constant volume. Integration
of (6.4) from the initial state s'(7", ¢') to the final state (7, v) gives (for
an application, see Chapter 8, Section VIII)

s =s%T)— RTInp, (6.5)
where

s¥(T) = (T, v') + f:. ‘—(Tﬂ dT — RIn¢' + RIn RT.  (6.6)

Combining (6.5), (6.3), and (4.38), we obtain
= u*T)+ RTnp. (6.7)

For the free energy F of a perfect gas, Eq. (1.18), (6.5), and (6.1) give
F = a[f4(T) + RT In(n|V)), (6.8)

where
f*(T)= e(T) — Ts*(T) + RT In RT. (6.9)

C. T MuLTicOMPONENT PERFECT GAS

We first suppose that we have several separate single-component perfect
gases. If they are mixed together and if the free energy of the mixture
is equal to the sum of the free energies that each of the gases would have
if it alone were to occupy the same volume at the same temperature, then
they make a multicomponent perfect gas.

Applying Eq. (6.8), we obtain

F=3F(T,V,n)=Sn[f*T)+ RTIn(n/V)]. (6.10)

To find the equation of state, we must use (3.8) and (6.10):
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and thus
PV = nRT, (6.12)

where n = X_n . The equation of state is thus formally identical to the
corresponding equation of state of a single-component perfect gas.

From (6.10), (3.8), and (3.10), it is then easy to show that
S=XS/(T,V,n), (6.13)
Y

U=3U.,. (6.14)

Let us define the partial pressure p, of the component y by
p,=pN,. (6.15)

This definition is true whether the gases in the mixture are perfect or
not. It follows then from (6.15) and (6.11) that

t=2%2p,, p,=nRT/V=CRT (Dalton’s law). (6.16)

The partial pressure of y is thus equal to the pressure which would be
exerted by n, moles of pure y in the same volume, and at the same tem-
perature. It is a purely mathematical construct with no direct physical
meaning.

The chemical potential of the y component in the mixture is most
conveniently computed by recalling that [see Eq. (4.16)]

Hy = (OF|0n,)ryn,- (6.17)

Evaluating this derivative from Eqgs. (6.10) and (6.17) gives

u, = u*T)+ RTInp,, (6.18)

where
w,*(T) = f,*(T) + RT 4 RT In RT. (6.19)

The chemical potential of a single component y in a mixture of perfect
gases is equal to the chemical potential that component would have alone
if it were at the same temperature and the reduced pressure p,.
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We now evaluate the chemical affinity by applying (4.21) and (6.18).
This gives
A = RT In[K(T)/p3, ..., pE], (6.20)

where the function K,(T) is defined by
K,(T) = exp{ " [z w,,‘,'(r)] / RT}. (6.21)

At the equilibrium, 4 = 0 and (6.20) reduces to the well known law
of Guldberg-Waage
K(T)=pp, ..., . (6.22)

The quantity K,(7), called the equilibrium constant, is characteristic
of the reaction under consideration and is a function only of the tem-
perature.

The partial pressures used in (6.22) are equilibrium quantities.

If reactants and products (assumed to be perfect) are mixed under
nonequilibrium conditions, a spontaneous change is expected until the
partial pressure quotient reaches the equilibrium value. In certain
circumstances, it is more convenient to express the equilibrium constant
as a molar fraction or a concentration quotient.

Replacing in (6.18) p, respectively by pN, and C,RT as in Egs. (6.15)
and (6.16), we get

#y= (T, p) + RTIn N, (6.23)
and
#y= u$°(T) + RTIn C,, (6.24)
where
w (T, p) = w,*(T) + RTInp (6.25)
and
w3%(T) = pu,*(T) + RT In RT. (6.26)

A similar treatment as above may be developed by using (4.21) and (6.23)
or (6.24). We then obtain

A = RT In[Ky(T, p)IND, ..., Nx] (6.27)

A = RT n[K(T)/Cp, ..., C), (6.28)
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where the functions Ky and K, are defined by

Ky exp{—[ 3 nu°(T, p)] / RT} (6.29)
Ko exp{—[ ¥ 7,443"(7')] / RT}. (6.30)
At the equilibrium, (6.27) and (6.28) then reduce to
Ku(T,p)= N3, ..., Nz (6.31)
K(T)=Cp, ..., C. (6.32)

The equilibrium constants may be used to evaluate the chemical affinity,
or, alternatively, the latter may be used to evaluate the equilibrium
constants. From (6.25), (6.26), (6.29), and (6.30), it is easy to show that
the three equilibrium constants are related by the formulas

Kx(T, p) = p~Ky(T) (6.33)
K(T) = (RT)"K,(T), (6.34)

where » is the algebraic sum of the stoichiometric coefficients for the
reaction and is given by

v=Xr,. (6.35)

y
For the reaction considered as a multicomponent ideal gas
4HCI(g) + O4(g) = 2H,0(g) + 2Cly(g),

we have

K,(T) = puopts,/Phapo,
Kx(T, p) = Nii,oN&,/NiiaNo,
Kc( y A P) = Cfl.ON&IJCﬁCICO.

and the three constants are related by
Ky(T, p) = pKy(T) = CK(T, p)

where C = X C,; thus, Ky(T, p) is here proportional to pressure.
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D. DePENDENCE OF THE EQUILIBRIUM CONSTANT ON TEMPERATURE AND
PRESSURE

1. The Clausius-Kirchhoff Equations

Let us first show how the thermal coefficients are interrelated. Thus,
we will be able to find the dependence of the equilibrium constant on
temperature and on pressure.

The internal energy U being a function of 7', V, and £, we have the
identities

#U  #U U U #U U

ovoT ~ oTov ' avaE ~ atav’ aTok  okar ()

Thus from (2.17)-(2.20), we obtain

jf‘(?a[ej )" (%"-) = (agg‘) (Kirchhoff-maus(i;)?)

37 (55 )= a’"),‘— [Xze=2)]  (De Donder) o
(f;e) Ot — p)] — )

We may proceed in an analogous manner in the variables T, p, and §.
From (1.15) and (2.4)-(2.6), we may write

C,: = (9H|AT),, (6.39)
V + hyy = (0H|3p)r, (6.40)
rop = —(3H|0E)r,. (6.41)

The enthalpy H being a function of T, p, and £, we then have from (2.7)

‘;T‘(%l‘),,— (‘g?) - (aggf)r (Kirchhoff-Clausius)
P

(6.42)

ac  [B(hpe + V) .
( a;—e )7'5 = [_Tr;?_'—— e (Clausius) (6.43)
op (a_e),, = _(—a;l) [ i), (Clausivs).  (6:44)
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Now, since C,, is a function of state of the system, we have .
( 05 )Tﬂ - g ( a“y )Tpn‘, dE o % Y¥lrrs (6'45)

where ¢, is the partial molar heat capacity of y at constant pressure,
defined by

Cpy = (9C4|0m,)1pny- (6.46)

Combining (6.45) and (6.42), we obtain

Py

(Kirchhoff). (6.47)

(Orp,[0T)p: = — X v,c
¥

This equation is of importance since it enables us to calculate the heat
of a reaction at any temperature provided that it is known at one tem-
perature, and that we know the partial molar heat capacities of the
components taking part in the reaction (see the example in Section
VIII).

The Clausius-Kirchhoff equations are quite general because they do
not suppose any particular state of matter (perfect or nonperfect gas,
ideal liquid or nonideal liquid, solid).

2. Influence of Temperature on Equilibrium Constants

The influence of temperature on the equilibrium constant is now easy
to establish. Indeed, the entropy being a function of state, we have

3'S/0T 98 = 8°Sak aT, (6.48)

and then, from the first of Egs. (2.12), combined with (2.13) and (6.41),
we can write

aA|T)
aT

R ) 6.49
Te (6.49)

Thus, combining (6.49) and (6.27), we find the well-known equation of
van't Hoff

aT RT?*"

( a[ln Ky(T, p)] ) _ Iy (6.50)
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From (6.50) and (6.33), we also obtain

M) _ e (6.51)
or, in another form,

If the reaction is accompanied by an absorption of heat (ry, < 0),
the equilibrium constant increases with temperature, while, for an exo-
thermic reaction (ry, > 0), it decreases.

Example. For the dissociation of water vapor, 2H,0 = 2H, + O,,
the reaction is endothermic and thus is favored by a high temperature.

These equations enable us to calculate the rate at which the equilibrium
constant is changing with the temperature when 7y, is known; and if we
know ry, as a function of the temperature, then (6.51), may be in-
tegrated. Thus, from the equilibrium constant at any temperature, we
may calculate its value at any other temperature.

By integration of (6.51) between 7% (initial) and 7', we get

In K(T) — In K,(T") = — | :. (rzp|RT?) dT. (6.53)

From (6.47), it is then possible to know the explicit form of 75,(7") and
then to calculate the integral (6.53). A detailed example is given in Sec-
tion VIIL

Remarks. (1) The same equations as above may be written in the
variables 7', V, and & To derive the relationship between the thermal
coefficients Cy,, Ir,, and rypy with 7, V, and £ as variables, it is most
convenient to consider first the total differential dU in the variables
T, V, and & [see Eq. (2.16)] and then to replace dV by the value given
in terms of T, p, and & [see Eq. (2.3)].

Employing Eqs. (2.2), (2.4)-(2.6), and (2.18)-(2.20), we can write
the required general relations between the thermal coefficients in the
two sets of variables 7', V, & and T, p, & (see Chapter 1, Section XVIII):

Cye = Cy¢ + Ir(9V[0T),, (6.54)

hye = Iy (3V[3p) 7, (6.55)
f'r’ =Try — l'r‘(aVIaE)T’. (6.56)
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For a perfect gas, (2.19) and (6.55) reduce, respectively, to

lpg=p (perfect gas) (6.57)

hp: = p(aV|dp)p; = —V  (perfect gas). (6.58)
Furthermore,

(aV[aT),, = nR|p (perfect gas) (6.59)

(aV]0&)y, = vRT[p  (perfect gas). (6.60)

Equations (6.54) and (6.56) thus become

Cpe — Cyy=nR  (Mayer's formula) (6.61)

Trg — Ty = —wRT. (6.62)

It is then easy to show that Eqs. (6.49) and (6.51) may be written in

the form

oAIT)\ _ _ rrw

( = )" = - (6.63)
diin K(T)] _ v

—ar = R (5:6%)

(2) From the experimental point of view, if rp, is independent of 7,
then (6.53) may be written

In K,(T) = (rr,/RT) + const. (6.65)

An example of a reaction for which In K, is a linear function of 1/T
over a wide temperature range is given in Section VIIL.

(3) Influence of pressure on the equilibrium constants. Let us write
the last of Eqs. (3.12) as

(04]6p)re = —(3V[08)r, = —Ary, (6.66)

where Ay, is the change in the volume of the system produced by the
chemical reactions at constant 7' and p,

dry =S rp,. (6.67)
b d

The variation of the affinity of reaction with the pressure is seen to be
appreciable only if the reaction is accompanied by a considerable change
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in volume when it takes place at constant temperature and pressure.
If a reaction is accompanied by an increase in volume when the pressure
is kept constant, an increase in pressure will reduce the affinity of the
reaction.

Example. For the gas reaction 2H, +4 O, = 2H,0, 4;, < 0 and the
affinity of the reaction increases with pressure. From the experimental
point of view, according to this, it could be interesting to work at high
pressure.

Combining (6.67) and (6.27), we obtain

d[ln Ky(T, p))/dp = — A1/ RT. (6.68)

An increase in pressure increases the equilibrium constant if the
reaction is accompanied by a decrease in volume (44, < 0); and, con-
versely, if A4, = 0, the equilibrium constant is decreased (Le Chatelier’s
principle). For a perfect gas mixture, (6.67) and (6.16) give

A, = vRT|p, (6.69)
so that (6.68) reduces to the formula

p{o[ln Ky(T, p)])/0p} = —. (6.70)

E. IpeaL SysTeEMmS

In order to discuss the behavior of ideal systems, we need to express
the chemical potentials of the components in a form in which the molar
fractions or the partial pressures appear explicitly.

One-Phase System
An ideal system may be defined by the equation
u, =T, p) + RTIn N,. (6.71)

Mixtures of perfect gases and very dilute solutions are referred to as
ideal systems. If the solution is ideal for all values of N, and for all y,
it is then called a perfect solution.

Pure components are always ideal systems because

#y = w(T, p). (6.72)



142 A. Sanfeld

Now, combining (4.21) and (6.71), we obtain .
A = RT In[Kx(T, p)INY, ..., N}, (6.73)
where Ky(T, p) is defined by the equation
RTIn Ky(T,p) = — X » LT, p) (6.74)
At the equilibrium, !
A=0 and Ky(T,p)= Ny, ...,N:¢ (Guldberg-Waage), (6.75)

and we obtain again the van't Hoff expression (6.50) and Eq. (6.68) valid
here for an ideal system,

{ a[ln 1?7(‘ T, p)] }' _ ;1;, (van't Hoff) (6.76)
d[ln Ky(T, p)] = Ar’
{ A }1, - (6.77)

F. MuLTIPHASE SYSTEMS

When each of the phases is ideal, we have following the definition
[see (6.71)]
ur=L{5T,p)+ RTIn N5, (6.78)

and the multiphase system is then called an ideal system.

Passage Reaction

If the reaction consists in a transfer of a component y from one phase
() to another ('), we have, from (4.21), (6.78), and (6.73),

A,=p) —pu = RTIn K,x(T,p) — RTIn(N,"IN,); (6.79)

when the equilibrium of transfer is attained, (6.79) reduces to the well-
known Nernst distribution law

N,IN, = K,x(T, p). (6.80)

It is physically obvious, and also an experimental fact, that, for tri-
variant systems (for example, three components and two phases), the
composition of y in one phase, N,’, at constant temperature and pressure
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varies proportionally to the composition of y in the other phase, N/,
following (6.80). For a divariant system, both the temperature and pres-
sure can be fixed arbitrarily. For example, we can study a pure liquid
in the presence of a gascous phase such as nitrogen. Neglecting the weak
solubility of nitrogen in the liquid (subscript /), (6.80) becomes

va — KIN(Tv P)s

where V designates the vapor phase. The composition of the vapor of
the liquid in the vapor phase is thus only a function of 7" and p.

For a monovariant system—for example, a pure liquid in the presence
of its own vapor—the Nernst law K,y(7, p) = 1 shows that the pressure
depends only upon the temperature. This result is consistent with the
phase rule.

Example. Chemical reactions between two different phases. For the ther-
mal dissociation of calcium carbonate in air,

CICO.(') = c‘o(’) -+ CO|(8)-

let us assume that each reacting component is present in one phase and
that CO,(g) + air is a mixture of perfect gas. Then it is easy to see that

A = RT n[K (T, p)/Nco,]

For equilibrium, N¢o, = Ky(T, p), or pco, = pKy(T, p), which shows
that the equilibrium partial pressure of CO, depends both upon the
total pressure p and the temperature.

In the absence of air (N, = 1), we find Ky(7), p) = 1, and the equi-
librium pressure of carbon dioxide depends only upon the temperature.

Remark. 1f the condensed phases (liquids and solids) in a heter-
ogeneous system are pure components and the gas is a mixture, it is more
convenient, from a practical point of view, to express the equilibrium
constant in terms of partial pressures.

Applying (4.21) and (6.18) to our system, we obtain

A== ZvudT,p) — Zvp;*(T) — RT Zv;In p;, (6.81)

where the subscripts 7 and j refer, respectively, to the condensed pure
constituents and to the gaseous components. We then may write

A = RT In(Ky/I1 p7), (6.82)
i
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where
RTIn Ky = — T vul(T, p) — T vu;*(T). (6.83)
i j

As for condensed phases, the chemical potentials u,(7, p) are practically
independent of pressure (Prigogine and Defay, 1967, p. 163); the con-
stant K varies only with the temperature.

Example:
NiO(s) + CO(g) = Ni(s) 4+ CO4(g).

For equilibrium, (6.82) reduces to Ky = pco,/pco and Ky does not
depend upon the total pressure.

VII. Standard Functions and Functions of Mixing

A. StanpArD FUNCTIONS

In general, every intensive thermodynamic quantity 6 in a uniform
system 0 = 6(T,p, Ny, ..., N,), can be split up arbitrarily into the
sum of two functions—for example, a standard part 6%(7, p) which
depends only upon the temperature and the pressure, and a function of
mixing 6™(7, p, N,, ..., N,):

0 = 0T, p) + 0™(T, p, Ny, ..., N,). (7.1)
For example, an idecal system characterized by (6.87) gives

u' = LT, p) (7.2)
u® = RTIn N, (7.3)

The affinity of such a system is written

A = A* 4 Am, (7.4)

where
A= — B3, p) (7.5)
A= — ¥ v RTInN,. (7.6)

The chemical potential being the partial molar quantity corresponding
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to the Gibbs free energy G, we have, from (3.9),
ou, /0T = —s,,, (7.7)

where the partial molar entropy of y is defined by

5, = (0S/dn,)r,. (7.8)
Now, combining (7.2), (7.3), and (7.7), we find
s, = —(0,,/oT) — RIn N, (7.9)
and
s = —a¢ [oT (7.10)
sm=—RInN,. (7.11)

In the same manner, the entropy of reaction can be written as

(), = (5), + (), =B =—Zngf

—RXv»InN,. (7.12)
g

The quantity (dS/d%)}, is often called the standard entropy of reaction.
As the partial molar volume for an ideal system is only a function of
T and p, we may write

v, = vt = dutdp = d( |op (7.13)
and
Apy = Apy + A7, = T v0,. (7.14)
y

It is easy to show that, for ideal systems,
Ty =rrp=—Xvh=—3vh'=T"3 09, T)T (7.15)
y y y

and
¢y, = Oh,|0T = 0h}*[0T, (7.16)

where A, is the partial molar enthalpy of y.

For perfect solutions, A*, s, and ©* are equal to the molar enthalpy.
molar entropy, and molar volume of the pure component, respectively,
On the other hand, the identity

aT T oT 12
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enables us to show that

as
rh + T( = ) = A (7.18)
and
ary s
= — 5;" v,0h, - (7.19)
From (2.13) and (7.5),
a8 .
3+ T( o ) — A, (7.20)

The following equations are also easily verified

AT a&yT)  rr,
[_7___ = z, vt =, (7.21)
aA® an 5 )
( % )T_— — Bl === —dy,.  (722)

As, in general, every property (9X/df)y,, where X is any extensive

variable, can be added together in the same way as chemical reactions,

it is immediately clear that this is particularly true for 4%, r7,, (8S/3&)7,,

and A%,. More explicitly, standard affinities, standard heats of reaction,

standard expansions, and standard entropies of reaction can be added together

in the same way as the chemical equations for the reactions themselves.
Now, from (6.75) and (7.5), we sec that

Ky(T, p) = exp(4*|RT). (7.23)

This equation enables us to calculate the equilibrium constant of any reac-
tion which can be obtained by a linear combination of known reactions.

B. Stanparp FuncTioN oF FORMATION

Many tables give values of the standard affinities and heats of reaction
at a temperature of 298.17°K (25°C) and a pressure of 1 atm (symbols
A° and r3,). It is much more convenient to consider standard affinities
of reaction than equilibrium constants. This is because standard affinities
can be added and subtracted in just the same way as stoichiometric
equations, so that the standard affinity and the equilibrium constant of a
reaction not included in the table is easily calculated.
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A reaction involving a compound produced from its elements (these
clements being taken in their normal physical state under specified
conditions), is called a formation reaction.

It is also necessary to specify the physical condition of the compound
which is formed, although this need not necessarily be the stable state
under the conditions considered.

At 298.16°K and 1 atm pressure, the normal physical state of the
elements are the gas state (for example, hydrogen, oxygen, fluorine),
the liquid state (for example, mercury, bromine), the solid state (for
example, sodium, rhombic sulfur, iodine). The standard values for the
formation of an element in the stable physical state are, by definition,
zero.

For example, Aj, is equal to zero for the formation of solid iodine,
I,(s) — I,(s), but for the formation of gaseous atomic hydrogen, {H,(g)
—+ H(g), the standard affinity at 298.16°K and 1 atm is not zero,
because atomic hydrogen is not stable at this temperature and this
pressure.

In general, the standard affinity of formation A °, the standard heat of
formation r3,, , and the standard entropy change of formation (85°/9%,)z,
are defined as the standard affinity, standard heat, and standard entropy
of the formation reaction of the component y. Equation (7.18) then
becomes

a8°

AP =15, + 298.16(—6—5—)“. (7.24)
y

In Table I, values of r3,, and A4 ° are given for some compounds (Pri-
gogine and Defay, 1967, p. 99). The values of (95°/d¢)) are easily
calculated from (7.24).

Unstable compounds such as O,, NO, and NO, have negative standard
affinities of formation at 218°K and 1 atm, while for the other inorganic
compounds they are usually positive. For elements in an unstable physical
state, A° is negative [S (monoclinic) and Cl(g)].

Now, from a practical point of view, the standard affinity A4* of a
reaction can be evaluated from the knowledge of the equilibrium constant
(7.23). This last quantity is given by measuring the mole fractions of the
various components at the equilibrium. Conversely, if the standard
affinity is known, we can evaluate the position of equilibrium.

A large positive standard affinity of formation means that the com-
pound will not decompose spontancously into its elements under the
standard conditions, since the synthesis reaction is practically complete.
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TABLE I

StanpArD THeaMopyYNAMIC FuNcTiONs OF ForRMATION AT T = 298.16°K, p = 1 aTM

r;’-, A° 5°
i S (keal mol-1) (keal mol-')  (cal mol-* °K~1)
Ca s 0 0 9.95
CaCO, (calcite) “ 288.450 269.780 222
(aragonite) s 288.490 269.530 21.2
Ca0 s 152.800 145.360 7.8
Hg 1 0 0 18.5
Hg, 2 —27.100 - -
Na s 0 0 12.48
NaCl s 98.232 91.785 17.3
H, g 0 0 31.211
H g —52,089 —48.575 27.393
F, 4 0 0 48.6
Cl, g 0 0 53.286
cl g —29.012 —25.192 39.457
Bry 1 0 0 36.4
g —7.340 —0.751 58.639
I, s 0 0 27.9
R —14.876 —4.630 62.280
1 g —25.482 —16.766 43.184
HI o —6.200 —0.310 49314
0, N 0 0 49,003
0 ¢ —59.159 —54.994 38.469
0, g —34.000 —39.060 56.8
H,0 ¢ +57.798 54.635 45.106
1 +68.317 56.690 16.716
H,0, aq. (m=1) 45.680 31.470 =
S (rhombic) s 0 0 7.62
(monoclinic) s —0.071 ~0.023 7.78
N, W 0 0 45.767
N g —85.566 —81.476 36.615
NO g —21.600 —20.719 50.339
NH, g +11.040 3.976 46.01
co g 26.416 32.808 47.301
Co, g 94,052 94.260 51.061
CH, g 17.889 12.140 44.50
CH,0H 2 48.100 38.700 56.8
1 57.036 39.750 30.3
C,H,0H g 56.240 40.300 67.4
1 66.356 41.770 38.4
CH,COOH 1 116.400 93.800 38.2
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This does not prove, however, that the compound will not decompose
to form a more stable compound.

As an example, hydrogen peroxide at 25°C and 1 atm will not decom-
pose spontaneously to H, and O,, but will completely to H,O(l) and

0,(g):
A° = —A?hol - A?l.o -+ iA(O)' — 25,220 cal mol-1.

Other important examples are found in organic chemistry.

But the affinity only indicates the tendency of a reaction to proceed
and says nothing about the kinetics of the reaction. In organic chemistry,
we frequently find that a number of different substances can be formed
from the same starting materials, so that it is usually necessary to employ
a specific catalyst to accelerate the required reaction. An interesting
example is given by the oxidation of acetone (Prigogine and Defay,
1967, p. 98).

Remark. In American tables, we find the mean value

A= —(AG|A&);, and AE=1,

Furthermore, in place of AG, the symbol used usually is AF, so that
in American tables we find the quantity

AF = —A.

C. VARIATION OF STANDARD AFFINITY WITH TEMPERATURE AND PRESSURE

Let us integrate (7.21) between two temperatures 7 and 7, = 298.1°K
at constant pressure p, = 1 atm. We find

A'(z;r) A’(T° P°) _ = T ar, (7.25)

The quantity A*(T°, p°) can be evaluated with the help of the standard
affinity of formation and 7, can be calculated with the help of (7.19).
Now, to know the influence of the pressure upon the standard affinity,
we must integrate (7.22) at constant temperature. The molar volumes
are experimental quantities.
Finally, to calculate the affinity, we may use Eqs. (7.4)-(7.6),

A=AT,p)— RTE»,InN,. (7.26)
14
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VIII. Numerical Examples

Example 1. We consider a perfect gas mixture resulting from the
reaction
2CO(g) + Oy(g) = 2CO4(g).

(1) 73, at 1 atm is a function of the temperature, following Kirchhoff’s
law (6.47)
rhy = — j 3 v,c,, dT + B, (8.1)
Y

where f is the constant of integration.

Now, the molar heat capacities are usually expressed in an empirical
power series of the form (Bryant, 1933; Ewell, 1940; Thacker et al.,
1941; Kelley, 1960; Spencer, 1945)

=a+bT+cT*+ -
CO:  6.25 + 2.091 x 103T — 0.459 x 10T
CO,:  6.85 + 8.533 X 10T — 2.475 x 10-°T*
O, 6.26 + 2.746 x 10T — 0.770 x 10-°7=.

We then obtain

rrp = f + 5.06T — 5.069 x 10-°7T* + 1.087 x 10-°7%.  (8.2)

At 298.16°K, 7y, = X, v 2%,,, and, from the Table I, 7y, = 135,272 cal.
Putting this value in Eq. (8.2) for T = 298.16°K, we get the expression
for ry,

Prp = 134,185 + 5.06T — 5.069 x 10-3T* 4 1.087 x 10-T%. (8.3)

(2) We now calculate the affinity as a function of the temperature by
using (7.25). From Table I,

A%(298.16° 1 atm) = X, v, 4,° = 122,904 cal;
¥y

thus,

122,904

A'(T, 1 atm) = T

> ] r;.’
T—7[ T aT. (8:4)
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Putting (8.3) in the integral of (8.4), we find

AT, 1 atm) = 134,185 — 10497 — 5.06T In T + 5.069 x 10-3T*
— 0.543 x 10-973, (8.5)

(3) The equilibrium constants Ky(7, p) and K,(T) can be calculated

with the help of (7.23) and (6.33). The combination of (7.23), (8.5),
and (6.33) gives

logyy K,(T) = log,o Ky(T, 1 atm) = (29.427/T) — 1.1 log,, T
+ 5.069 % 10-2T2 — 0.543 x 10-°T%, (8.6)

Applying (6.22) to our reaction, we can write
Ky(T) = peo,/peopo, (8.7)

where K, (T') is not a function of the pressure, but only of the tempera-
ture (Fig. 15).

20F /

log,, Kp(T)
=)
T

0 | PP SCAN l__
0 1/2 |

/7T x 10°

F1c. 15. Equilibrium constant as a function of temperature for the reaction 2CO
> Og =y 2C0..
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It follows immediately from (6.15) and (8.7) that

K/(T) = L __N_:“Z'__ (8.8)
3 P N::oNo,

Let us now introduce the degree of dissociation « in such a way that we
have at equilibrium « moles of CO, /2 moles of O,, and (1 — «) moles
of CO,.

Equation (8.8) then becomes

Ky(T) = (1 — a)*(2 + a)/pa’. (8.9)

For any value of « and p, we are thus able to calculate the equilibrium
temperature with the help of the Fig. 15.

For example, at @ =10-3: for p=1atm, K,(T)=2 x 10° atm~! and
T = 1600°K; for p = 0.1 atm, K,(T') = 2 x 10"atm~'and T = 1520°K.

Example 2. In the thermal dissociation of calcium carbonate, CaCO,(s)
(aragonite) = CaO(s) -4- CO,(g), each constituent occurs in one phase
only.

(1) 7y, at 1atm as a function of the temperature. The empirical values
of the molar heat capacities are

CaCO,;:  26.35 (290°K-1030°K)
CO: 11.78
COs: 7471 x10°T — 1.86 X 10-°T™,

From Kirchhoff’s law (6.47), we thus obtain

rre =P + 7.57T — 3.55 x 10-T* 4 0.62 x 10-*T3.  (8.10)

At 298.16°K, from Table I, we have rp, = —41,638 cal, and (8.10)
then becomes

rrp = —43,600 + 7.57T — 3.55 x 103T* 4- 0.62 x 10-*73. (8.11)

At 1200°K, rp, = 38,500 cal.
(2) From Table I, we have

A*(298.16, 1 atm) = ¥ »,4.° = —29,910 cal.
Y
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Now, from (7.21) and (8.11), it results

AY(T, 1 atm) = —43,600 — 17.4T log,, T + 86.2T + 3.6 x 10-3T*
— 0.3 X 10-°7>. (8.12)

At 900°K, A*(900°, 1 atm) ~ —9700 cal.

(3) From (7.23), the equilibrium constant at 900°K and 1atm is
then equal to Ky ~ 3.8 x 10-%,

(4) If the reaction is studied in the presence of air, Ky(T, p) = N,
and poo, = pNco,, and thus, at 900°K and 1 atm, Ny, ~ 3.8 x 103,
Pco, == 3.8 x 102 atm.

(5) The affinity of the reaction can be calculated with the help of
(7.26).

At 1atm and 900°K and for Ngo, = 103,

A= A'RTIn Ngo, = —9700 — RT'In 3.8 x 10-* ~ 2600 cal. (8.13)

In the absence of air, N¢o, = 1 and p = peo,, and Ky(T,p) =1,
which shows that the equilibrium pressure of carbon dioxide depends
only on the temperature.

Example 3. Let us now consider the synthesis of ammonia, N, - 3H,
= 2NH,, as a mixture of perfect gases. Using Eq. (6.67), we obtain

Ar, = 205y, — vy, — 3vg, = —2vy,. (8.14)

From (6.66), we see, then, that the affinity of the reaction increases

with pressure.
Combining (6.66) and (8.14), we can write

aA|ap — 2RT|p, (8.15)
or

A(T, p) — A(T, 1 atm) = 2RT In p;

at 10®atm, A(T, p) — A(T, 1 atm) ~ 8000 cal. This reaction is exo-
thermic because ry, > 0; rp, = 22,800 cal (see Table I). From (6.50),
we see that the synthesis of ammonia is favored by a decrease of tempera-
ture.

Example 4. We may examine the formation of methanol in a mixture

of gases
CO(g) + 2H,(g) = CH,0H(g). (8.16-1)
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The heats of combustion of H,, CO, and CH,OH at 298.16°K and 1 atm
are (sec Table I)

Hy(g) + §04(g) = H,0(1) Prean, = 68,317 cal (8.16-11)

CO(r) + #0,(g) = CO4(g) Prsamy = 67,636 cal  (8.16-111)
CH,0H(g) + 104(g) = CO,(g) + 2H,0(1)  rp,av, = 182,586 cal.  (8.16-1V)
The heat of reaction of (I) is then equal to

Yrpm = Trpamny + 2Prpan — Prpavy = 21,684  cal.

Using Table I, we find the same result for the reaction (I),

"r,m = '%,m.on — I'Tpco = 21,684 cal.

The standard affinity 4§, for the reaction (I) is equal to 5892 cal. Using
(7.18), we can also obtain AJ,:

e o = 56.8  cal, o = 47.3  cal, Si = 3121 cal,
Ay =rfpm + T T v,5,° = 5908 cal.
y
Example 5. Entropy of a gas. We now consider the vaporization of

methanol
CH,0H(l) = CH,0OH(g). (8.17)

We shall calculate the standard entropy of the vapor of methanol (as-
sumed here to be perfect) si;, (298.16, 1 atm), knowing the corresponding
value of the liquid s, (298.16, 1 atm) and the heat of vaporization of
CH,OH at 298.16°K and 0.163 atm.

From (6.5), we find at 0.163 atm and 298.16°K

519(298.16°K, 1 atm) = s{;,(298.16°K, 0.163 atm) + RIn0.163. (8.18)
On the other hand,
5p(298.16°K, 0.163 atm) = ,,(298.16°K, 0.163 atm) + 4S,,,, (8.19)

where A4S, is the entropy of vaporization, equal to the heat of vaporiza-
tion divided by the temperature. From Table I, we take the values of

ﬁ‘;m,onm = 48,100 cal, '%,cn.onm = 57,036 cal.
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* The heat of reaction rp, of (8.16-1) is thus equal to —8936 cal and the
heat of vaporization to 8936 cal. The entropy of vaporization is thus

ASyyp = 8936/298.16 ~ 29.98 cal °K-1.

We then obtain

5t0(298.16°K, 0.163 atm) = 3,(298.16°K, 0.163 atm) -+ 29.98. (8.20)

As a first approximation, we neglect the effect of pressure upon the en-
tropy of the liquid. We thus have, from Table I,

51(298.16°K, 0.163 atm) ~ },(298.16°K, 1 atm) = 30.3 cal. (8.21)

Combining (8.18), (8.20), and (8.21), we find
50)(298.16°K, 1 atm) = 56.68 cal.

It is interesting to know the influence of pressure on the entropy of liquid
methanol. For methanol, the value of the dilatation coefficient is known,

1 (v
- (“a‘T),, — 0.1199 X 10-*, (8.22)

The specific mass is about 0.8 g cm~?* and the molar volume is equal to
40 cm?. It is easy now to calculate the derivative (ds/dp)y with the help
of (3.12). We then obtain

(3s/ap)y = —0.1199 % 40 x 105 = —4.8 x 10-¢ 1°K-1, (8.23)

Integrating (8.23), we find
50,(0.163 atm) = s§,(1 atm) + 4.02 x 10-* latm °K ~ 30.3 cal

Thus, the pressure has no influence on the entropy of the liquid.

IX. Real Gases
A. INTRODUCTION

The ideal gas law may be derived directly on the basis of simple
kinetic assumptions in which the translation energy of molecular motion
is the main consideration.
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All gases behave like ideal gases at sufficiently high temperatures and
sufficiently high molar volumes. As the molar volume is decreased,
however, real gases exhibit a more complicated behavior. As a gas is
compressed, its properties at first deviate only slightly from those of an
ideal gas. Under sufficient compression, however, every real gas undergoes
a condensation to the liquid or solid state, in which condition it deviates
very far indeed from ideal gas behavior. The result is that all real gases
must be treated by a more realistic equation of state in such a way as
to explain such phenomena as condensation, intermolecular collisions,
and a variety of transport properties, such as diffusion and viscosity.
The modification of the perfect gas model involves the inclusion of at-
tractive and repulsive intermolecular forces. A detailed discussion of
the intermolecular forces in gases and of the state equations is to be
found in several fundamental books (Fowler and Guggenheim, 1939;
Mayer and Mayer, 1940; Hirschfelder et al., 1965).

Our purpose here consists in the evaluation of the thermodynamic
functions from the virial equation of state, and in the introduction of the
notion of fugacity.

B. THE ViriaL EQUATION OF STATE

Kammerling-Onnes (1902) suggested that, with decreasing molar
volume v, the properties of every real gas can be expressed in a power
series in 1/v of the form

£ 5 (1+ B(T) C'()Z") 1 ) (9.1)

where the coefficients B(T), C(T), ..., are functions of the temperature.
The forms of these functions depend on the types of intermolecular
forces in the gas. The function B(T) is called the second virial coefficient,
C(T) the third virial coefficient, etc. Enough terms are taken to acco-
modate the accuracy of the data available. The well-known equation of
van der Waals may be shown to be correct only in terms to B(T).
Nevertheless, for a slightly imperfect gas, we need only retain two
terms of the expression, giving
nRT
p="0(1+3) 92)

The virial coefficients are often expressed in terms of cm? mol-!,
but B(T) is not the volume of the mole, because it passes through zero



2A. Equilibrium, Stability, and Displacements 157

and becomes negative at low temperature. It has a maximum at a high
temperature and then declines with rising 7. The temperature corre-
sponding to B(T') = 0 is called the Boyle temperature. At this tempera-
ture, the Boyle-Mariotte law pv = const is observed.

C. Free ENERGY AND CHEMICAL POTENTIAL

We now consider a mixture of real gases defined by the variables
T Vit 50005 M
Knowledge of F(T, V,n,, ...,n,) immediately gives the state equa-
tion, because
= —0aF(T, V,n,, ...,n)/0V. (9.3)

Conversely, the knowledge of a state equation permits us to calculate
the thermodynamic functions of a gas. This fact is more interesting
because F is not an experimental quantity. Furthermore, observable
properties of a gas are usually summarized in the form of an equation
of state.

If the volume tends to infinity, the free energy F tends toward the
value F* corresponding to a perfect gas, so that, by integrating (9.3),
we find

FT,V,n,...,n)— lim F*T,V,,m,...,n)

Fy>oo

= — lim [ :.pdV. (9.4)

Votoo
For a perfect gas, we may write (9.4) in the form

FMT,V,n,,....,n)— lim F¥T,Vy,n, ..., n,)

Vo-bm
: v
P é’fl f o Pt av, (9.5)
where

p* = nRT|V. (9.6)

Combining (9.4) and (9.5), we find
F(T,V,ny, ...,n) — F¥T,V,n,,...,n)=— lim j" (p— p*)dV.
Wtes 200 (9.7)

Substituting (9.2) and (9.6), in (9.7), we have
F = F* + B(RTn*V) (9.8)
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and, from (4.16),
u=u*T,V)+ 2(BRTn|V). (9.9)

We have, therefore, from (6.7) and (9.9), the value of the chemical
potential of a real gas

u = pu*(T) + RT In(nRT|V) + 2(BRTn|V) (9.10)

D. Fucacrry

The fugacity of a pure real gas is a corrected pressure, defined in such
a way that the chemical potential u can be expressed in a classical form

u=p*T)+ RTIn¢. (9.11)

This intensive quantity gives the effects of intermolecular forces on the
thermodynamic properties of gases.
Comparing (9.11) and (9.10), we may write

In ¢ = In(nRT|V) + 2(Bn|V). (9.12)

For a slightly imperfect gas, 2Bn/V is small compared with unity and
(9.12) becomes, as a first approximation,

"';,T (1 +2B -%-) (9.13)

Comparing this relation with (9.2) yields

or
9 =2p—p*. (9.15)

Now, in the limit of zero total pressure, the fugacity ¢ is identical
with the pressure.

Example. At T = 382°K, the saturation vapor pressure of fluoro-
benzene is equal to 1.974atm and the molar volume v = 15 x 10?
cm?® mol~'. We then obtain p* = 2.085 atm, ¢ = 1.86 atm,

Remark. At the Boyle temperature, ¢ = p = p*.
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- E. INTERNAL ENERGY

It is well known that in a Joule expansion a real gas tends to cool. This
fact is a direct consequence of the dependence of the internal energy on
the volume. Indeed, substituting (9.8) in (3.10), we find

U= U®* — n*(RT*|V) dB/dT, (9.16)
where
U®* = F* — T oF*|dT. (9.17)

We thus have
(au) o RT* dB

=" T (215)

The derivative dB/dT being positive, the interval energy increases with V.
As in a Joule expansion, dU = 0, and, because V increases, T must
decrease in order to maintain U constant.

F. MixTture oF REAL GASES

The state equation for a mixture of two slightly imperfect gases is

p="t" pry BL [(Buns + 2Bunin, + Buns?l,  (919)
where the coefficients B,,, B,,, and B,, are related to the interaction,
respectively, between molecules of type 1, of types 1 and 2, and of
type 2.
The free energy can thus be obtained by substituting (9.19) in (9.7):

F = F* 4 (RT|V)[Byyn,* + 2B,,n,n, + Byyn,?), (9.20)
and, from (4.16),

s = m¥(T) + RTIn anT 2RT

-+ v [Byn, + Byyng)

"z;R/T & ZRT [Bu"t + Byn,).

(9.21)

ps = p,*(T) + RT In

Now, in order to obtain the fugacity in terms of the virial coefficients,

let us assume that for real gases (6.15) applies in the same manner, and
thus

TP, =pXN,=0p. (9.22)
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Nevertheless, in this case, the partial pressure of a component is not
necessarily equal to the pressure of the same component alone occupying
the same volume at the same temperature,

In a real gas mixture, we may retain the simple form of (6.18) by use
of the fugacity

by =w*T)+ RTIng,, (9.23)

where p,*(T) is the same function as for the perfect gases.
Combining (9.23), (9.21), and (6.18), we obtain

nRT Byn, + Byn,
Ing, =In 7 42 7 ;
RT o+ B (:24)
Ing, = In ": 2 B,.n, 1 2072 !

On the other hand, from (4.21) and (9.23), the affinity of a reaction
is readily expressed in terms of fugacities

A=—ZFTru*(T)—RT X v, Ing,. (9.25)
We then have
A = RT In[Ky(T) gy - - @], (9.26)
where
In K,(T) = _[ 5 ,,,‘,'(T)] /R (9.27)
v

The equilibrium then gives the extension to real gases of the Guldberg-
Waage law of mass action

Ky(T) =gt -« @. (9.28)

Instead of the fugacities used in the expression of chemical potential,
it is sometimes advantageous to use a corrected mole fraction a, called
the activity of component y. Let us define this activity a, by

a, = exp[(n, — u,°)/RT), (9.29)

where u,° is the same function as in perfect gases; i.e., from (6.23) and
(6.25),
(T, ) = w,*(T) + RTInp, (9.30)

but here p is the pressure of the real gas.
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The chemical potential is then
pu, = w,(T,p) + RT Ina,. (9.31)

The activity is thus an intensive function of T, p, N,, ..., N,, and
contains all the effects arising from the interactions. This quantity has
been introduced by Lewis and Randall (1923).

Usually, the chemical potential is expressed in a more explicit manner:

u, = u°(T,p) + RTInf,N, (9.32)

where the coefficient f,,, called the activity coefficient, is a function of
T,p, Ny, ..., N,. This coefficient may then be defined by the relation

f,=a,/N,. (9.33)

In the limit of zero total pressure, the activity a, is identical to the
mole fraction NV, and thus the activity coefficient is equal to unity.
Accordingly, for a perfect gas mixture, all the activity coefficients are
unity.

Now, it is easy to calculate the activity when one knows the fugacity.
Indeed, comparing (9.32) to (9.23) and (9.30), we find

@, = pf N,. (9.34)
For a pure constituent y, N, = 1 and
o, = tf,. (9.35)

The activity coefficient of a pure gaseous component differs from unity
because ¢ # p.

The chemical potential of an isolated component may then be written,
following (9.30) and (9.32),

#,= w, T, p) + RTInf, = u,%(T) + RTInp + RTInf,. (9.36)

The quantity u,° corresponds to the chemical potential of an isolated
component in a perfect gaseous state at pressure p and temperature T
It is called the standard chemical potential u* while the quantity
RTInf,N, is the function of mixing u ™.

Let us express now the affinity in terms of activity. From (4.21) and
(9.32), we find

A=—3vu>T,p)— RT v, Inf,N, (9.37)
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and thus
A = RT In[Ky(T, p)/(N, 1) -+« (N £)], (9.38)
where

In Ky(7, p) = —[§ v.u. (T, p)] /RT. (9.39)
The quantity —X » 1 °(T, p) is called the standard affinity 4%, and thus
Ky(T, p) = exp[A*/RT]. (9.40)

At equilibrium, the Guldberg-Waage equation becomes
Ky(T,p) = (N i) =+« (NS (9.41)

As Ky(T, p) is the same function as in the perfect gas, we also find
[see Eq. (6.33)]
Ku(T, p) = pK,(T). (9.42)

The other standard functions (superscript s) and mixing functions
(superscript m) are given as follows:

1,?=_T30L(;1/Q., h,-=—7‘*—8—(’-i‘;°—71.z—)—.
iy = —R72 2000 (9.43)
S )
sm = —Rinf,N, — RT 20 (9.44)
o= w=2,
o = RTL:PM (9.45)
Try = — 2)} v, Ty = — g it
== S (9.46)
(58),, = B (5 )y =2
(_gf_): =T (9:47)
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The variation of the equilibrium constant with temperature and pres-
sure can be calculated in the same manner as for the perfect gases [see
Eqgs. (6.50), (6.68), and (7.21)-(7.23)]:

Gn Ku(T,p)) _ 1 8T) _ 1 o 3wIT)
aT =R 9 = R2War
1
= — 2 (9.48)
nK(T,p)] _ 1 o4 1 o o
ap “RT .. RT=" 3
—— 2y vy0) . Ary
= 2 (9.49)

Remark. The standard entropy of a constituent in a perfect gas mix-
ture is equal to the entropy of the isolated constituent at the same tem-
perature and pressure. But this is not true for real gases. Indeed, Eq.
(9.44) reduces, for a real isolated gas, to

s,;" = —RInf, — RT d(Inf,)/aT. (9.50)

The entropy of real isolated gases can be evaluated by calorimetric
measurements. To obtain the standard entropy s° (see Table I), we
must subtract the above value of 5™ from the experimental value.

X. Stability of Chemical Systems

In this section, we shall discuss the stability of equilibrium states and
present some conclusions concerning the properties of thermodynamic
variables in stable equilibrium systems.

A. DE Donper’'s METHOD

If, in a closed system P, a reaction may take place, its state is charac-
terized by two physical variables x and y (for example, T and p) and by
a chemical variable £ We have

dn, = v, d& (y=12,...,¢) (10.1)

Let us assume that, at time ¢, the system is in an equilibrium state.
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The rate of reaction vp is thus zero,

vp=0. (10.2)

At the same time, let us consider another system P’ characterized by
the same physical variables x and y as the system P but by a different
chemical variable & 4 d&.

The system P’ is not in general in an equilibrium state and its rate
of reaction vy, is then

ve: # 0. (10.3)

In comparison with the system P, the system P’ is thus a perturbed
system. The perturbation consists here in the virtual displacement from
& to & 4 dE with constant values of x and y.

Now, we know that [see Chapter 1, Eq. (20.2)]

n,=nC+ vk (10.4)

The considered perturbation d¢ is thus identical to a slight change of all
the n, proportionally to d§,

dn, = v, d. (10.5)

At constant x and y, the system P is said to be stable with respect
to the perturbations if the rate of reaction of the perturbed system P
tends to bring this system to the equilibrium state P (De Donder, 1942;
Duhem, 1911, Chapter XVI).

Let us now represent the systems P and P’ on the xy£ axes (see Fig. 16)
and let us assume that the system P is stable. There are two cases:

(1) 8& > 0 (system P'), vp. is directed in the direction opposite to
the £ axis; the rate of reaction dé/dt = v, is then negative.

(2) 8% < 0 (system P''), the rate of reaction v,.. is directed in the
same direction as the £ axis and is positive.

The criterion of stability is thus

Vpo 65 = 0. (10.6)

There are two kinds of perturbations: those in which 8¢ can have only
one sign (unilateral perturbations), and those in which 8% can be either
positive or negative (bilateral perturbations). An example of a unilateral
perturbation is the appearance of a vapor bubble in a system which was
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initially completely liquid, while the reverse reaction is impossible as
long as there is no vapor phase.

If a stable system is perturbed, it reverts to the initial equilibrium; if
it is unstable, the perturbation proceeds to a finite extent.

£l ?p.
.

|
.

:"

y
Fic. 16. Equilibrium stability of a system P.

Remark. A perturbation is not necessarily related to any external action
on the system. Molecular fluctuations lead to small variations of the
macroscopic quantities from their equilibrium values. There is, in fact,
a relation between the probability of a fluctuation and the production of
entropy which accompanies it.

B. TuEe PrIGOGINE-DEFAY METHOD

The method adopted by Prigogine (see Prigogine and Defay (1967),
p. 205) is based upon the direct evaluation of the entropy production
in the course of a perturbation and so permits a discussion of stability
with respect to any kind of perturbation. The entropy production cor-
responding to a change from a state P(x, y, £5) to a state P'(£p/) is given
from (2.1) by

Opr = [ A(E) d, (10.7)

where, for a specified process, the physical variables x and y are functions
completely determined by &.
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Developing the affinity in the form of a Taylor series, (10.7) be-
comes

' 1 [ dA 1 din-
Qb = Ap 46 + 5 (S) (480 + -+ + - i (A6, (108)

where Ap = A(¢p) and A& = &p, — &p.
For a small variation A&, we have two cases:

(l.) Ap = 0 and Q}p: — Ap JE; (10.9)
(@) Ap=0 and  Qpp = ¥(dA|dE)p(dE)". (10.10)
The transformations characterized by Egs. (10.8)-(10.10) are called
perturbations, where P is an equilibrium state. They are related to the
infinitesimal change 4f and to the conditions under which they are

carried out. If, for example, x and y remain constant during the per-
turbations, (10.10) becomes

Qppr = 1(0A]05),,p(88)". (10.11)

Now, the state P is said to be stable with respect to the transformation
P — P' if the production of entropy accompanying it is negative, and thus

Oppe < 0. (10.12)

On the other hand, for the inverse spontaneous process, P’ — P, the
production of entropy is positive.

C. TuHerMoDYNAMIC CONDITIONS OF STABILITY. UNILATERAL
PERTURBATIONS

The unilateral perturbation is characterized by the fact that 44 can
have only one sign; for example, let us take 8¢ > 0. Thus, for a reaction

déldt = 0, (10.13)

and, from (2.1), it follows that the system will be in equilibrium provided
that

A <0. (10.14)
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If Ap 50 (10.12) and Eq. (10.9) yield the condition of stability
Ap <0, (10.15)

which is in fact the condition of equilibrium.
If Ap =0, Eq. (10.10) gives the condition of stability

(dA]d&)p < 0, (10.16)
or, if x and y remain constant,

(04]88)p < 0. (10.17)

Now, combining (3.6) and (10.15), we find that, if P is a stable equi-
librium state, the internal energy U increases in the perturbations,

(0U]3&)psp > 0, (10.18)

where U is a function of £ only (V and S are maintained constant).
On the other hand, we have from (10.10), (10.17), and (3.6)

(BU)3E)psp =0,  (3*U]3E)gsp > 0. (10.19)

and the internal energy U has a horizontal tangent at P; it increases
during a perturbation if P is a stable equilibrium state,

With regard to the stability of phases, the initial system (unperturbed)
consists of a single phase, while the final system (perturbed) contains,
in addition to the original phase, a small amount of a new phase whose
properties (partial molar volume, volume, composition, etc.) differ only
infinitesimally from those of the original phase, or differ from them by a
finite, nonzero, amount. Usually, we say that the initial phase is stable
when it is stable with respect to all other phases whether infinitesimally
different from them or not. In this case, the phase can never give rise
spontancously to a new phase in macroscopic amounts.

The initial phase is called a metastable phase when it is stable with
respect to phases infinitesimally different from it, but there is at least one
other phase with respect to which it is not stable. This means that,
in the absence of nuclei, the system may remain indefinitely in equilibrium
without the appearance of a new phase (supercooled liquids).

Finally, the initial phase is called an unstable phase when it is unstable
with respect to the phases infinitesimally different from it. Practically, this
means that the phase will disappear and give rise to one or more neigh-
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boring phases (molecular fluctuations) until we arrive at a phase which .
is stable with respect to adjacent phases.

Remark. Instead of (10.18), we may write the classical conditions

(H|8%),s > 0, (10.20)
(3F|3¢)ypp > 0, (10.21)
(0G[08)ry > 0. (10.22)
If Ap = 0, then we have
(0H|3E),s =0,  (0*H[35),s > 0 (10.23)
(0F|3&)yr =0,  (0°F[08)yr >0 (10.24)
(0G|0E)ry =0,  (8°G|3E%)q, > 0. (10.25)

D. StasiLity wiTH RESPECT TO BILATERAL PERTURBATIONS

We have seen earlier (Section IT), that false equilibrium may be charac-
terized by v = 0 and A £ 0. Thus, if such a system is perturbed, it
does not revert to its initial situation. Only true equilibrium could be
stable. The first condition of stability is thus 4, = 0 in a state P.

Furthermore, in the perturbed state P', the system must take a rate
satisfying the inequality (10.6). We may calculate Ap.

Ap. = Ap + (04]08)5p 0. (10.26)
From the stability condition 4, = 0, Eq. (10.26) reduces to
Ap = (0A]0F),p OE. (10.27)
Now, from De Donder’s inequality (2.14),
Apvp >0, (10.28)

which characterizes a spontaneous process; it follows that the sign of
vp. i8 given by the inequality

(0A]0E)pp dEvp, = 0. (10.29)
This relation is consistent with the criterion of stability only if

(04]08)0p < 0. (10.30)
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' Thus, two conditions, 4p — 0 and (10.30), are necessary and sufficient
to express the stability of a system.
Remark. At constant T and p, the two conditions are
A=0, (04]9&)p, =0. (10.31)
At constant T" and V, we have

A=0, (34)3E)ry = 0. (10.32)

In Section III, we saw that

1-~{) -, -(9),

The conditions of stability 4 = 0 and (10.30) are:

(1) (AU[3&)ps =0, (a*U[9&%) sy > 0; (10.34)
when S and V are maintained constant, U is thus minimum in a stable
equilibrium state (Fig. 17).

(#)  (0H[d%)s, =0, (*H|3&%)s, > 0; (10.35)
in a stable equilibrium state, / is minimum at constant S and p.

(i)  (0F|0&)py =0,  (0*F|0E )y > 0; (10.36)
in a stable equilibrium state, F is minimum at constant 7" and V.

(i)  (9G[3%)r, =0,  (8°G|aE)y, > 0; (10.37)

in a stable equilibrium state, G is minimum at constant T and p.
The inequality (10.37) may be rewritten as

arp, <0, (10.38)
where
a"'ﬂ = (aA/ae)T‘p _ —(6’0/35’)“. (10.39)
Thus, from (10.33) and (4.21),
ary = — %7, ou, [0 = — 3 § Y Valk,s < 0, (10.40)

¥
where
By = O, [Ony. (10.41)
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F1c. 17. Minimum internal energy for a stable equilibrium state.

Equation (10.40) can be rewritten in the form

2
an, = 4 B S - — 1) <0, (10.42)
y 8 v a
This condition is satisfied if u 4 is negative for all y 5= f.
Prigogine and Defay (1967, Eq. (7.13)) showed that this condition is
always satisfied by ideal systems. Thus, all stable states of an ideal system
are stable equilibrium states at constant 7" and p.

E. Expricit Forms oF THE STABILITY CONDITIONS

For a system at constant energy and volume [see Eq. (3.1)], the stability
condition gives

8S <0  (E, V constant). (10.43)

Systems which are maintained at constant energy and volume are by

definition #solated systems. For such systems, entropy is maximum for
stable equilibrium and

(8)eg =0  (equilibrium) (10.44)
(88)eg <0 (stability) (10.45)
(825),, < 0. (10.46)

Let us now derive a relation for the second-order quantity 8%, where s
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is the specific mass entropy. For a system in equilibrium, the Gibbs
relation (4.12) may then be written in the classical form

Tos=du+pdv— Xu,oN, (10.47)
v

where u is the specific mass internal energy, o the specific volume,
N, the molar fraction, and g, is here the chemical potential per unit
mass. Let us first calculate 4% using as independent variables u, v, N;
then é*u = 0, 4% = 0, and §*N, = 0, and the Gibbs formula (10.47)
gives us directly

d% = 0T' du + &(pT*) dv — X d(u,T-') ON,. (10.48)
Yy
Combining (10.47) and (10.48), we obtain
T 8% = —OT s + 8p dv — X du, ON,. (10.49)
4
Let us now express the variation of the chemical potentials du, in the

variables T, p, N,. We obtain the quadratic form [see Chapter 1 (16.11)-
(16.13), (16.17), (18.3), (18.4), (18.18)-(18.20), (18.23), (18.25)],

1 e
| P _T_[ 7 (8T) + % (00)® + Yzﬂu,, 4N, 6Nﬁ]. (10.50)
where
e os
o= (37)., = 7)., e
ds
=T W) (10.52)
1 (v
e e 10.53
% v aP)r.v, : :
T (v \?
TP i A 10.54
== (57 ),N, (10.54)
gy )
x 10.55
Ho ( N, /1oy (19:25)

Now, in the system of variables pu, g, it is easy to show that

%(0s) = o 0%, (10.56)
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os being the volume entropy density; it becomes easy to calculate the
quantity d%.

The quadratic form has to be positive definite. From the inequality
(10.46), this leads to the following stability conditions:

¢, >0 (thermal stability) (10.57)
% >0  (mechanical stability). (10.58)

Both the specific heat (at constant volume) and the isothermal compres-
sibility have to be positive.
In addition, we also have

X 4,3 8N, 8N, > 0 (stability with respect to diffusion). (10.59)
8

Let us consider, for example, a perturbation which consists in the
appearance of a heterogeneity in the composition of a binary system
which is initially uniform. The inequality (10.59) guarantees that the
response of the system will restore the initial homogeneity.

The inequalities (10.57) and (10.58) ensure stability with respect to
thermal and mechanical disturbances, while (10.59) ensures stability
in respect to diffusion.

F. PHASE SEPARATION IN BiNArRY MIXTURES

As a simple illustration of the stability condition (10.59), let us consider
phase separations in binary mixtures. The stability conditions are then

pn >0, fieg > 0 (10.60)
l“" Han | >0. (10.61)
Hiz M2

On the other hand, from (4.33) we have
My — Moy (10-62)

n +n = (),
1#n ofbo1 (10.63)

Nyfiyg + Nty = 0.

Thus, the determinant in (10.61) vanishes and we have only to consider
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 the first two inequalities. Moreover,
7%y = Mytptg, (10.64)

and this implies that the two inequalities in (10.60) are equivalent and
that
Mz = pyy < 0. (10.65)

For mixtures of perfect gases and “‘perfect solutions” formed by com-
ponents of similar molecules, the influence of the activity coefficient
f, may be neglected and the chemical potentials take the form [see
Eq. (9.32)]

pu,= pu°(T,p)+ RTIn N, (10.66)

and it is easy to show that the inequalities (10.60) and (10.65) are verified.
However, this is no longer necessarily so for regular solutions (Prigogine,
1957). Indeed, in this case,

#y = (T, p) + RT In(1 — N,) + aN,* (10.67)
#s = ps°(T, p) + RT In N, + a(1 — N,)}, (10.68)
where « is a constant defined by

@ = Nyyz[es — (e + €2)], (10.69)

with N, the Avogadro number, z the number of nearest neighbors of a
molecule in the considered medium, and ¢, is the interaction energy
between a molecule y and a molecule . Now,

_ 0w RT -
My = aN! = = N! + ZGN!. (10./0)
If
2a/RT > 4, (10.71)

there exists a range of mole fractions where the stability conditions are
not satisfied. We then obtain phase separations, and the phase diagram
is represented schematically in Fig. 18.

There exists a critical point N, = 0.5, T, = (a/2)R. Above this critical
point, the two components are mixable in all proportions. Below, we
find two coexisting phases (for example, at T = T, we have two phases
corresponding to N, = y and N, = f). Inside the region acb, the stability
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0

Fic. 18. Phase separation in a regular solution at constant p.

condition (10.60-10.61) is violated. This curve is called the spinodal.
It separates unstable states from metastable states.

For metastable states, the stability conditions as derived in Section
X, E are satisfied; however, the Gibbs free energy (if we work at constant
p and T') is higher for the homogeneous mixtures than for a system formed
by two coexisting phases. Metastable systems are stable with respect
to small perturbations (the second-order stability conditions are satisfied,
but the system is unstable with respect at least to some finite pertur-
bations).

Remark. The limitations of the Gibbs—Duhem theory, the comparison
with the kinetic theory of stability, and the important problem of the
thermodynamic stability conditions for nonequilibrium states are dis-
cussed in detail by Glansdorff and Prigogine (1970).

XI. Equilibrium Displacements in Closed Systems

A. GeNerAL Laws

The problems encountered when considering equilibrium displace-
ments are similar to those met when studying stability. If the modifica-
tion is due to the variables 7" and p as well as to &, and if we maintain
constant the perturbed values p 4 8p and T + 47, a stable system may
tend to return to a new equilibrium state different from the initial state.
This modification is called the displacement of thermodynamic equi-
librium.
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Let us assume, for example, that only p and T are perturbed, respec-
tively, to p -+ ép and T'+ 87. We thus pass from an initial system in an
equilibrium state P to a perturbed system P‘, Then we maintain p 4 &p
and 7'+ 4T constant and the system evolves toward to a new equilibrium
state P’ (Fig. 19). At each point of the line PP, we have

A=0 (11.1)

Generally, a displacement on the surface A = () is called an equilibrium
displacement. Along an equilibrium displacement,

84 =0 (11.2)
and thus
dA adA dA
5T 8T + 3 op + 3% 88 = 0. (11.3)

Now each derivative may be rewritten. From (2.13) and (3.12), we find

0A[0T = (A — rp,)|T. (11.4)

[

A(-pTE)=0

-'H’

p
T \ {9039
T+ 3T

Fic. 19. Equilibrium displacement,

P
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From (3.12),
04|0p = — T v, = —Ady,. (11.5)
y

From (10.39),
A9 = ay,. (11.6)

Combining the above six equations, we obtain the general law of the
equiltbrium displacement:

(rrp/T) 6T + Apy Op — agy, 68 = 0. (11.7)
1. Isobaric Displacement, ép = 0

Equation (11.7) then reduces to the De Donder formula (see De
Donder (1925, 1927), Schottky et al. (1929, p. 492))

05 > 1 Trp
(aT ),,‘ = (11.8)

As the condition of stability is given by the inequality (10.38), Eq.
(11.8) expresses the van't Hoff theorem; if a reaction is exothermic
(rrp = 0), then 3£/dT < 0, and thus an increase in temperature moves
the equilibrium position of the reaction back (8% < 0). If the reaction
is endothermic (ry, < 0), a rise in temperature advances the equilibrium
position (8¢ = 0).

Further, De Donder’s formula (11.8) makes it possibile for us to cal-
culate the value of the derivative (8£/aT),.

Example. The reaction 2H, + O, = 2H,0 is exothermic. At ordinary
temperature, we have a false equilibrium. True equilibrium exists at
high temperatures and is stable at given temperature and pressure. If
the temperature increases, & decreases, and thus water vapour dissociates
partially into H, and O,.

Remark. The conclusions obtained here are consistent with the equa-
tion (6.50) giving the variation of Ky(7, p) with T'. But, from a practical
point of view, Egs. (6.49) and (6.50) are only interesting in the case of
perfect gases, where the chemical potentials are known.

2. Isothermal Displacement, 6T = 0

From (11.7), we then have the De Donder formula
(9/0p)r = Arylar,. (11.9)
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The condition of stability (10.38) and Eq. (11.9) express Le Chatelier's
theorem: if a reaction is accompanied by an increase in volume (4, > 0),
an increase in pressure leads to a reduction of the extent of reaction
(6§ < 0), and inversely.

3. Isomassic Displacement, 8& = (0

We may write

ap o 1 Tty
(‘a'T")f‘ 4y, T LR

Equation (11.10) is called the De Donder-Clapeyron-Clausius formula.

Let us assume that, in a chemical reaction, the composition of each
constituent remains constant; then we are able to calculate the variation
of the pressure with the temperature.

B. A ParticuLar Case: 4 = A(T, p)

Let us consider a pure constituent in two phases (Fig. 20). Here,
the affinity is independent of & because

A= W/(T,p) — w'(T, p). (11.11)
Thus,
A = A(T, p), (11.12)

and (11.7) reduces to the Clapeyron formula

R S T L (11.13)

Fic. 20. Matter transfer of a pure constituent between two phases,



178 A. Sanfeld

For example, in vaporization, v’ may be neglected with repect to v”, ‘
and, for a perfect gas,

o' = RT|p. (11.14)
Combining (11.13) and (11.14), we find
d(Iln p)/6T = L|RT", (11.15)
Integrating (11.15), we obtain
Inp = —(L/RT) + const. (11.16)

For chloroform (Fig. 21), we find for the latent heat L, = 7200 cal mol~*
and for the entropy of vaporization (A4S, )uemmue = 28 cal mol—* °K-',

Remark. From Eq. (2.13) at equilibrium, we may write
rrp = —T(0S[08)py = —T(s"" — 5'). (11.17)
Substituting (11.17) in (11.13) gives
/8T = (s — &')/(v"" — ©'). (11.18)

Iog,o P

1 1 1
3 3.3

I/T x10°

Fic. 21. Vapor pressure as a function of temperature for chloroform.
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C. THE LE CHATELIER-BRAUN THEOREM OF MODERATION

The van't Hoff and Le Chatelier theorems are characterized by the
fact that in both cases the reaction occurs in such a way that it exhibits
moderation of the factor perturbed.

If we increase the temperature, the reaction absorbs heat, and this
tends to moderate the increase of temperature. If we increase the pressure,
the reaction occurs in such a way that the volume decreases and thus
tends to moderate the increase of pressure.

But these theorems of restraint or of moderation cannot be applied
in the same manner when we use other variables. If we decrease the
volume of a system, the reaction produced does not tend to moderate
this decrease.

The problem of moderation must be studied by considering the real
transformation produced by the system when the system is perturbed.
An unambiguous answer can be deduced by using the fundamental
inequality Av > 0.

XII. Equilibrium Displacements in Open Systems

A. METHOD

In open systems, the equilibrium conditions may be modified by the
addition of certain constituents; for example, the addition of KOH to
the mixture HNO, 4 KOH.

In fact, equilibrium displacement in open systems can be studied by
noting the properties of equilibrium curves or equilibrium surfaces.

Furthermore, it is more convenient to use here the variables T, p,
Ny, ...,N.or T, p, uy, ..., u.. Nevertheless, the fundamental problem
is also related to the two equations

A=0 (12.1)
34 =0, (12.2)

with 44 a function of the chemical potentials.

B. Two-PHASE SysTEM

We consider a two-phase system and ¢ constituents with only passage
reactions from one phase to the other (Fig, 22). The equilibrium condi-
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tions (12.1) applied to the passages are

A =p'—p''=0 (y=1,...,¢) (12.3)
The equilibrium displacement condition (12.2) then becomes

ou,) =0du' =du, (y=1,...,0), (12.4)

where du, is the common value of du,' and du,".

FiG. 22. Matter transfer between two phases.

Let us now write the Gibbs-Duhem equation (4.30) for each phase:

—s' 0T +v' 0p— XN,/ du,=0
4 (12.5)
—s" 8T +v'"' dp— XN, du, =0
where '

§=8En/, o=V[Ea', N' =a'[En' (12.6)
¥ ¥ ¥y

By subtraction, Eq. (12.5) becomes
—(" — ) 8T + (v — v) p — S (N," — N,) du, = 0. (12.7)
¥

Because the variance of the system is [see Eq. (5.7)]
w=2+4+c—¢=c¢ (12.8)

the two equations (12.5) permit us to calculate the variation of two
variables of T, p, u,, ..., #, when the variations of the ¢ other variables
are given.
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For a pure constituent (subscript 1) in each phase, we have N,' = N,"
=1 and (12.7) reduces to

8pI8T = (s" — &)(2"" — v'). (12.9)

We here again find the Clapeyron equation (11.18).

C. Tue Gmses-KonovaLow THEOREMS

1. Isothermal Equilibrium Displacement
At constant temperature, (12.7) gives

(0 — ) 8p — T (N, — N,) du, = 0. (12.10)

If, during the equilibrium displacement, a state is characterized by
N/=N,) (r=1,...,¢), (12.11)

then (12.10) reduces simply to
8p = 0; (12.12)

the pressure must pass through an extreme value (maximum, minimum,
or inflection at horizontal tangent).

Equation (12.11) means that the two phases have the same composi-
tion. Such a system is called azeotropic (see Section V,B,2a). The above
Gibbs-Konovalow theorem may then be stated in the form: If, in an
isothermal equilibrium displacement of a two-phase binary system, the
composition of the phases becomes the same, then the pressure must
pass through an extreme value.

Example 1. Two constituents, two phases, and only passage reactions.
The system is thus bivariant. If 7" and u, are the independant variables,
we thus have u, = u,(7, u,). At constant temperature, (12.10) can be
written in the form

(0" — ') 7367{’? = (N, — N,')(%)T + (NS =N (12.13)

For N, = N," and N," = N,/, we find
8p/dus = 0 (horizontal tangent). (12.14)
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From the curve p = p(u,) at constant temperature, we thus obtain a
horizontal tangent. As u, increases with N, the curves p = p(N,’) and
p=p(N,”) at T constant will give an extremum of p for the state
N, = N," (see Fig. 6).

Example 2. Three constituents, two phases, and only passage reac-
tions. The system is thus trivariant. We choose T, u,, and pu, as inde-
pendent variables.

If, at constant temperature, u, and u, vary (Fig. 23), the maximum
of the surface corresponds to the state of same composition

N/ =N,", Ny=N,", Ny=DNy" (12.15)

The chemical potential of a constituent as a function of its composition
is given in Fig. 24.

ok

Ha

Ky
Fic. 23. Variation of the chemical potential with pressure.
2. Isobaric Equilibrium Displacement
In this case, (12.7) reduces to

(" —+s)oT+ X (N,”—N,') éu,= 0. (12.16)
Y

If the composition of the two phases is the same,

N/=N; (=1,...,¢)

and
oT = 0. (12.17)
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My

Fia. 24, Variation of the chemical potential with the composition.

This second theorem, also called the Gibbs—Konovalow theorem, may
be expressed in the form: In an equilibrium displacement at constant
pressure of a binary system, the temperature of coexistence passes
through an extreme value (maximum, minimum, or inflection with a

horizontal tangent) if the composition of the two phases is the same
(Fig. 6).

D. Tue RecrprocaL oF THE GiBBs-KoNOVALOW THEOREMS

1. Isothermal Transformation

For a binary system, let us give du, = 0 at constant temperature. The
equations (12.5) can be written

v' p — N,' ouy = N,' dp,
(12.18)
v 8p — N," dpy = N, dp,.

Thus,

’ N ’
8= {N"—N’ . '|} 12.19
p = dusg (Vi — N [| 5 ! (12.19)
If the pressure passes through an extreme value, ép = 0 at this point,

and, from (12.19), the phases must be of the same composition (N,"”
= Nl’ and N’“ = N").
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2. Isobaric Transformation

Similarly, it is easy to show that, if the temperature of coexistence
passes, at constant pressure, through an extremum, then the two phases
must have the same composition.

XIII. Thermodynamics of Solutions

A. INTRODUCTION

A solution is a condensed phase (liquid or solid) composed of several
components. Molecules of liquids and solids are strongly interacting,
but the molecules of liquids are randomly distributed, while the mole-
cules in solids are located in a regular array.

In the vicinity of the critical temperature and critical pressure, the
distinction between gases and liquids vanishes. In this section, we
develop the fundamental principles of the thermodynamics of solutions.
In order to aid in this investigation, it is convenient to distinguish between
ideal solutions and nonideal solutions. The fundamental quantity is the
activity coefficient described in asymmetrical and symmetrical reference
systems. This coefficient can be evaluated by different methods involving
the knowledge of vapor pressures. Finally, the last subsection is devoted
to a brief study of the excess functions.

B. Ipear SoLuTions

An ideal solution is defined in such a way that the chemical potential
of each substance composing the solution has a simple functional de-
pendence on a concrete composition variable. Under appropriate condi-
tions, the properties of a large class of real substances may be adequately
represented by the properties of ideal substances. This is often observed
for dilute solutions. It is found by experiment and from molecular
considerations (Prigogine, 1957) that a suitable form of the chemical
potential of an ideal component ¥ can be written

u, = w,°(T,p) + RTIn N,, (13.1)

where u °(T, p) is some reference value of the chemical potential. If
(13.1) is valid, then the solution is called a perfect solution. From
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" (13.1), we have

Ay Auy°(T,
0, == a(p ?) (13.2)
e O(m|T 8(u,?|T
7o == = = G2

Thus, at constant 7 and p, the molar volumes v, and the molar enthalpies
h, are constant over the whole region of ideality. On the other hand, it
is easy to show that, for a binary solution,

v = (1 — N,)v, + N,v,, (13.4)
where
v=V[n=3FNy,. (13.5)

As v, and v, are constant at a given temperature and pressure, the molar
volume o is thus a linear function of the mole fraction.

For a perfect solution, v, and v, are the molar volumes of the pure com-
ponents and the mixing process is accompanied by neither expansion
nor contraction. In the same way, if the molar global enthalpy 4 is
defined by

h=H[n= 3 Nh, (13.6)
v

the mixing of two components at constant T and p is accompanied by
neither an absorption nor evolution of heat.

For example (Fig. 25), the mixing of two systems by passage of com-
ponent 1 from a pure phase (') to a phase (') (solution of components
1 and 2) is characterized by the heat of reaction (see Section II)

rT’ — hll' — "1'- (13.7)
1)
1
I Liquid
l Liquid
1+2

Fic. 25. Matter transfer of a pure constituent 1 (') to a solution 1 + 2 ().
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Since in a perfect solution &, is only a function of 7'and p, (13.7) reduces
to rp, = 0. In other words, if, at constant pressure (dp = 0), the mixing
is carried out adiabatically (dQ = 0), no temperature change occurs.
Indeed, it is clear from (2.7) that

C’e dT = '1\’ df.
As Ty = 0, dT = 0.

C. Varor PRESSURE OF PERFECT SOLUTIONS

The equilibrium condition between a solution (/) and its vapor (v)
is given for two components 1 and 2 by

mt =" p =y (13.8)

Let us now assume that the solution is perfect and that the vapor is a
mixture of perfect gases. Then, combining (13.8) with (13.1) and (6.18),
we obtain

b= kN, P = kN, (l3°9)
where
kl — exp{ “?‘(Tv P}Q; F'l.(T) }
ol - (13.10)
ky = exp{ K (TrPLT sy (T) }

At ordinary conditions, u,® and u,° are practically independent of pres-
sure, and thus &, and k, are functions of T only.

The vapor pressure of each component in a perfect solution is thus
proportional to its mole fraction.

For N, = 1, p is the vapor pressure p,° of pure component y, and
thus &, = p,°. The so-called Raoult law is

21 =pP°N,, P2 = P:°N, (13.11)

and the total pressure p of a perfect solution is a linear function of
the molar fraction. Indeed,

P =1+ 2= P:°(1 — Ny) + p.°N,. (13.12)
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D. DiLute REAL SOLUTIONS

A large class of dilute real solutions may be considered as ideal systems.
Equation (13.1) is then verified from N, = 0 to N, = N, (2 is the index
of the solute). This limit of N, depends upon the nature of the system.
For nonelectrolytes, the range of validity is much larger than for strong
electrolytes. Equation (13.9) holds in the neighborhood of N, =0,
Ny=1 At N; =1, k, = ,° and

(£:° — £1)[ps° = N,. (13.13)

The Raoult law (13.11) is valid only for the solvent. It is interesting to
note that the relative lowering of the vapor pressure of the solvent is a
function of the molar fraction of the solute; it is independent of the nature
of the dissolved substance.

For the solute, (13.9) is often called Henry's law.

E. ReaL SoLuTions

In this section, we consider a real mixture of components for which
the laws of Raoult and Henry are not satisfied.

This fact must be related to the form of the chemical potential. Let us
arbitrarily choose a standard function u,°(7, p) and let us define a new
quantity called activity of the component y by the relation

a,= exp{"’(Tvpv Nla "k;‘vc)—"?o(T,p)} (1314)
or
u, = w(T,p) + RTIna,. (13.15)

The activity a, is a function of T, p, N,, ..., N,.

The decomposition of pu, into two functions u,°(7, p) and a/(T, p,
N,, ..., N,) is arbitrary; the quantity a, is then related to the choice
of a reference system based on the limit of the ratio @ /N, for particular
conditions. This ratio is called the activity coefficient f,. Deviations from
the laws of perfect solutions may be expressed formally by introducing
the activity coefficients f, in the expression for the chemical potential
of a perfect solution. The method due to Lewis and Randall (1923)
permits one formally to extend the properties of perfect solutions to
actual solutions in a most elegant way. The chemical potential now
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takes the form

p, = w°(T,p) + RTIn f,N,. (13.16)
In this case, (13.9) must be replaced by
pr=HkN,fi, ps=hkN.fy, (13.17)

where k,(T') and k,(T') are given by (13.10),
As the affinity is given by the classical relation

A=—Frp,, (13.18)

we obtain from (13.16) the general expression

A= RTW[KT, p)/(fiNY* - (fNJ),  (13.19)

where
— X v u (T, p) = RT In K (T, p). (13.20)
?

At equilibrium, 4 = 0 and the Guldberg-Waage law may be written
(fiND)" «++ (N = KT, p) (13.21)

F. AsyMMETRICAL REFERENCE SYSTEM

In the asymmetrical reference system, the dilute ideal solution is taken
as reference system for a study of less dilute solutions. As the solution
becomes more dilute, (13.16) approaches (13.1) with the same standard
function. In this case, the asymmetrical property

N, —0, fi—1 (13.22)
Ny—1, f,—1

means that

f| - l fOl’ N’ —’0
while

H—1 for N, —1.

In other words, (13.17) becomes

P =Pl.fh P =P:.f:- (13'23)
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where
2:* = p°N,, De® = RN, (13.24)

In Fig. 26, p,* and p,* are represented, respectively, by the Raoult line
P,0, and Henry line O,Q,. These two lines are tangential to the real
experimental curves p, and p,. From the curves p, and p, and from the
Raoult and Henry laws, it is easy to calculate the activity coefficients.
Indeed, from (13.23), we find

Lh=nin*  fi=plp.* (13.25)

Unfortunately, f, is given by the way of the tangent 0,0,, and this
line cannot be drawn with good precision.

Fic. 26. The Raoult and Henry laws.

From a practical point of view, it is more convenient to use the relation
between f, and f, derived from the Gibbs-Duhem equation. We shall
use this method in the symmetrical reference system (see Section H
on Boissonnas’ Method).

G. SYMMETRICAL REFERENCE SYSTEM

Let us now study the properties of a solution in the range N, = 0
(pure solvent) to N, = 1 (pure solute). In the symmetrical reference
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system, we define pu,°(7, p) by the relation
w, (T, p) = u(T,p, N, = 1), (13.26)

where u (T, p, N, = 1) is the chemical potential of the pure component.
From (13.26) and (13.16),

f,=1 for N,=1, (13.27)

which means that the activity coefficient of each pure component is equal
to the unity. Equations (13.17) give

Nl:‘lv P|°=k11

(13.28)
N.=1, P:° =k,
and thus
Pr=0"%,  pa= 0, (13.29)
where
* = p°N,, P2® = p2°Ny; (13.30)
thus,
Li=pip®  fi=pulpe®. (13.31)
The “ideal” pressures p,* and p,* are the Raoult lines P,0, and O,P,
(Fig. 27).

From the experimental values of the total pressure p, it becomes easy
to calculate f, and f,. Indeed

7 =pN,%, p:= pN,". (13.32)

The curves p, and p, can be calculated by titrating the solution (N,
and N,V are then known). The deviations from ideality are described as
negative or positive. In the first case, this means that the total pressure p
in less than the ideal pressure (line P, P,) or that f, < 1 (example: chloro-
form < ethyl ether solutions). In the second case, f, > 1 (example:
methylal 4 carbon disulphide) (Prigogine and Defay, 1967, pp. 338-339).

Remarks. (1) From a molecular point of view, we say that the vapor
pressure is constant with respect to the composition if the interactions
between the molecules 1-1, 1-2, and 2-2 are equal. If the attractions
1-2 < 1-1, 1-2, the vapor pressure is raised and f, > 1. Alternatively,
if 1-2 > 1-1, 1-2, then f, < 1. However, entropy effects also modify
the activity coefficients (Prigogine, 1957).
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p i P

0,

Chloroform Ether

Fi1c. 27. Deviation from ideality for the system chloroform-ether.

(2) If deviations from ideality are large enough, the total vapor
pressure p passes through a maximum or a minimum (azeotropy).

H. Tue BoissoNnas METHOD

If the composition of the vapor is unknown, p, and p, can be still
calculated.
From the Gibbs-Duhem relation [Eq. (4.30)] at constant T and p,

X N,du,=0, (13.33)
and thus, (13.16) leads to
d(In /1) d(In f,)
N[ -2RA S ]T’ AR e . ] (13.34)

In the symmetrical reference system, (13.34) reduces to the well-known
Duhem-Margules relation

[ g ”') ] + N "(",‘I‘V’:*) _=0. (13.35)
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This equation is valid only for an ideal vapor phase. Equation (13.35) '
can be transformed into

9, ! o% (13.36)

aN: I B (PI,Pz)(NleI) aN: )

For a very dilute solution, p, = p,°N,, and thus
dp, = p,°dN, and  dp,=dp + p,°dN,. (13.37)

Boissonnas (1939) suggested that the composition range be divided into
a number of equal intervals AN, and that Eqs. (13.36) and (13.37)
be used in the approximate forms

~ 4p
= TGN (3:35)

with
Apy = Ap + p,° AN, (for N,=0). (13.39)

From the curves p, and p,, it is easy to calculate f; and f,.

Remark. For an azeotrope, the two phases have the same composition
at the extremum and p,/N, = p,/N,. The relation (13.36) then becomes
wrong in the neighborhood of the extremum. Practically, we apply the
method of Boissonnas first from N, = 0 to a point neighboring the
extremum and then from N, = 0 until the vicinity of the azeotrope.
If, at the temperature considered, the vapor pressure p, (solute) is small
in comparison with p, (solvent), we may write

P = (13.40)
From the experimental value of p, it becomes easy to calculate f, , because
Ji = pi[ps°N,y. (13.41)

On the other hand, integrating Eq. (13.34), we find the value of f,
N
nfy=— [\ (Ni/No)d(nfy) (1342)

An interesting example of this case (butyl sebacate at 20°C dissolved in
methanol) was studied by Colmant (1954).

Analytical forms of activity coefficients are given in several publica-
tions (Prigogine and Defay, 1967, p. 339).
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1. Fugacity in Solution
The fugacity ¢, of a component y is defined in a solution by the relation

u, = u,*(T)+ RTIng,, (13.43)

where ., *(T) is the standard function of a perfect gas.
When a solution (/) is in equilibrium with its vapor (v), we have
u' =pw,*T)+ RT In g/

(13.44)
uy = pu,*(T)+ RTIng,

where ¢! is the fugacity in the solution and ¢, " that in the vapor. At equi-
librium,
o) =@, . (13.45)

This means that, for two phases in equilibrium, each component has
the same fugacity in the two phases.
Now, combining (13.43) and (13.18), we find the affinity of a reaction
in solution
A = RT In[K(T)/¢y* - -+ @] (13.46)

Nevertheless, as vapor pressures of numerous dissolved substances are
small, fugacities are not frequently used.

2. Molar Concentration and Molality
We know that the molar concentration of a solute C, is given by

C,=n,|V = N,|(N, + X Nu,). (13.47)

If the solution is very dilute, N, ~ 1, and
C,~= N,[v,°, (13.48)

where v,° is the specific molar volume of the pure solvent; the chemical
potential given by (13.16) then reduces to

#e = p°(T, p) + RT In f°C, (13.49)
where
w (T, p) = m°(T, p) + RT Inv,°(T, p). (13.50)
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For a reaction between dissolved substances, the affinity is given by -

A = RT In[K(T, p)/(f:*Ca)™* « -+ ([EC.)], (13.51)
where
RT In KT, p) = — X »,u2°(T, p). (13.52)
It follows that
KO(Tv P) = K( T, P)(le)-.’ (13'53)
and, at equilibrium,
(ffCy)™ -+ (f£C) = K(T, p). (13.54)

On the other hand, the molality of a dissolved substance m, is defined by
m, = 1000n,/n, M, = 1000N,/N,M,. (13.55)
For a dilute solution, N, ~ 1 and
m, ~ 1000N,/M,. (13.56)
The chemical potential given by (13.16) then reduces to

e = (T, p) + RT In fom, (13.57)

where
4" (T, p) = 1,° + RT In(M,/1000). (13.58)

The affinity of a reaction between dissolved substances is given by

A = RT In[K'(T, p)/( fi"my)™ - -+ (fe"m,)"] (13.59)
and
K'(T, p) = K(T, p)(M,/1000). (13.60)

At equilibrium, we have
(fammg)"™ -+« (f"m.) = K'(T, p). (13.61)

Remarks. (1) In the three systems, the molar fractions, the concentra-
tions and molalities, and the activity coefficients ( f,, f5, f;*) have the
same values in a dilute solution, but the three activities ( f,N,, f,°C,,
fi™m,) are different.

(2) The standard affinities usually found in the literature are quantities
related to molalities in dilute solutions.
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I. Excess Funcrions

The main problem with which we shall be concerned in this section
is the effect of mixing two or more substances. In other words, we shall
compare the properties of the mixture to those of the pure substances.
In order to separate the effects of mixing from the effects of changes in
temperature or pressure, we shall always compare the mixture to the
pure components taken at the same pressure and temperature. The total
volume V*° of separate components with specific volumes ©,° is given by

Ve =¥ np°. (13.62)
b
The change of the volume due to mixing V,,, is then
Va=V—V°= Xn(v,—9°), (13.63)
e

where V is the real volume of the solution.

Similarly, we have the enthalpy of mixing, the entropy of mixing, and
the Gibbs free energy of mixing:

Hy = ¥ n(h, — h,°) (13.64)
Sp= X n(s, —3,°) (13.65)
G = X m, (1, — 1,°), (13.66)

where the index © refers to the pure components in the same physical
state as into the solution.

Other important quantities of the same kind are the molar functions

Op = §N,(v, —v,°) (13.67)
ey = § N,(h, — h.°) (13.68)
Sm = §Ny(sy - $,°) (13.69)
&m = ‘)zf.N,(;ty — 1,°). (13.70)

The enthalpy of mixing H,, is the heat absorbed by the system at
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constant 7" and p because
[dQ = [dH = H — H,= Hy. (13.71)

Now, a solution will be described as perfect if the Gibbs free energy of
mixing g.P takes the following simple form

g? =RTEZN,In N, (13.72)
Yy

The corresponding heat of mixing /,? and volume of mixing v, are
zero. Alternatively, these properties may be used to test the validity of
the laws of perfect solutions for a given mixture. For the entropy of
mixing in a perfect solution, we find the positive expression

sw®=—REN,InN, > 0. (13.73)
y

Thus, in a perfect solution, all thermodynamic functions of mixing except
those containing the entropy are zero.

The entropy of mixing (13.73) has a simple meaning. To obtain its
interpretation, we must make use of the Boltzmann formula relating the
number of accessible configurations of the system to the entropy. This
problem is developed by Prigogine (1957).

From the experimental point of view, the discrepancies between real
and perfect systems are better illustrated by the excess functions. The
difference between the thermodynamic functions of mixing and the value
corresponding to a perfect solution (superscript p) at the same 7" and p
and composition will be called the thermodynamic excess function
(denoted by subscript ¢). Thus,

Up = Upyy hr = hm’ S =Sm — Su¥y Lo =ELm — En’- (]374)

The Gibbs free energy of mixing may be represented by the following
expressions [cf. (13.16) and (13.70)]

ga=RTEN,InfN,, (13.75)

where f, is defined in the symmetrical reference system. On the other
hand, since

e R s ar

Ay duy _ OedT) _ _ By 4376
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we obtain
v = RT ¥ N, d(Inf,)/dp

hy= —RT* ¥ N, 3(In f,)0T (13.77)

$m=—REN,Inf,N, — RT £ n,d(nf,)dT;
v v

the excess thermodynamic quantities then become

v,=RT ¥ N, d(Inf,)/dp (13.78)
hy= —RT* ¥ N, 8(Inf,)/aT (13.79)
ss=—RXEN,Inf,— RT XN, d(nf,)/dT (13.80)

where the excess entropy is defined by
Tsy = hy — go. (13.81)

The excess volume v, is found by measuring the mixing volume, %, by
the mixing heat, and g, by vapor-pressure curves. The relation (13.81)
then gives the value of the excess entropy. The orders of magnitude of
the excess free energy, excess enthalpy, and excess entropy for mixtures
of saturated hydrocarbons are shown in Figs. 28-31 for four systems
studied by different authors.*

We observe that the contribution of the excess enthalpy and of the
excess entropy (multiplied by T') to the excess free energy are of com-
parable magnitude.

In the case n-heptane + n-hexadecane (Fig. 28), g. is negative (ac-
tivity coefficients smaller than 1) and we have negative deviations from
Raoult’s law, since, when the activity coefficients are smaller than one,
the partial vapor pressures are smaller than those of perfect solutions.
However, for the other systems, we have positive deviations from Raoult’s
law and the partial vapor pressures are higher than those of a perfect

® For the system n-heptane + n-hexadecane at 20°C, see Bronsted and Koefeld
(1946), Van der Waals and Hermans (1949). For the systems A-hexane + cyclohexane
at 20°C and n-octane + tetracthylmethane at 50°C, see Prigogine and Mathot (1950a,b).
For the system 2,2 4-trimethylpentane + hexadecane at 24.9°C, see Van der Waals
(1950).
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F1c. 29. Excess functions for the system (1)n-hexane 4 (2) cyclohexane at 20°C.
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Fic. 30, Excess functions for the system 2-2-4-trimethylpentane (1) + n-hexa-
decane (2) at 24.9°C,
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Fic. 31. Excess functions for the system (1) n-octane -+ (2) tetraethylmethane at
50°C.
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solution. Generally, the excess functions have a simple parabolic form, but
for some systems (like systems containing alcohol or water), they may
be more complicated. The discrepancies to ideality are due to energy
and entropy effects [difference of interactions (h,) 1-1, 2-2, 1-2; entropy
effects (s,) related to the differences in molecular size].

In the system 2,2 4-trimethylpentane -4 hexadecane (Fig. 30), the
entropy effect partially compensates the energy effect in such a way
that g, ~ 0 (perfect solutions at 24.9°C). In the system n-octane -+ tetra-
ethylmethane (Fig. 31), the excess entropy is negative, and this means
that the mixing entropy is smaller than its value corresponding to a
perfect solution. The orientation disorder is larger in the pure substance
than in the mixture.

An interesting case is the system water - triethylamine (Fig. 32)
(Haase and Rehage, 1955). The excess entropy s, is negative and larger
in absolute value than sf,; the mixing real entropy s, is then negative.
Nevertheless, the mixing exists because of the effect of the mixing en-

2 T T T T
1 sn
0
=4 B 8
sm
5k J
Se
-3} il
_4 1 1 1 1
(o) 0.2 04 0.6 08 1

. N

Fic. 32. Excess entropy for the system triethylamine 4 water,
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thalpy A,,. The condition of stability of miscibility is given by g, < 0,
and thus &, — 7%, < 0, which means that, if s5,, is negative, A, is also
negative and large in absolute value. The mixture is exothermic.

Now, it is interesting to consider two limit cases for which the discrep-
ancies are only related, on one hand, to the energetic effects, and on
the other hand, to the entropy effects. First, from the above relations, it
is casy to show that

0G, /0T = —S., (13.82)
where
Go=RT X n,Inf, (13.83)
dGy/on, = RT In f, (13.84)
H,= —RT* ¥ n,d(Inf)/aT (13.85)
dH,[on, = —RT* d(In f,)[9T. (13.86)

1. Regular Solutions

The term “regular solutions" was introduced by Hildebrand® to
describe mixtures whose excess entropy was found experimentally to be
zero. Deviations from ideality arise entirely from the energetic term:

|he| > T| 5|,  ge~he, s.==0. (13.87)

For a binary system, we obtain

aS,/on, = 0, aS,/0n, =0 (13.88)
and
0*G,|aT dn, = 0, 3*G,|aT on, = 0, (13.89)
A(RT In f,)/0T = 0, d(RT In f,)|dT = 0, (13.90)
so that

Inf; cc 1/7, Inf, oc 1/T. (13.91)

The activity coefficients for regular solutions are thus inversely propor-
tional to the absolute temperature.

* See Fowler and Guggenheim (1939), Hildebrand (1929), Guggenheim (1935),
Prigogine (1957).
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2. Athermal Solutions

Here, the deviations from ideality arise entirely from the entropy term,
the mixing heat being zero (this is the origin of the term athermal):

TI‘°I>I"I!|! goz—ng. hQZOl (13.92)
For a binary system,
oH,|on, = 0, oH,|dn, = 0, (13.93)

so that
d(In £,)/dT = 0, d(In f,)/aT = 0. (13.94)

The activity coefficients of athermal solutions are independent of tem-
perature.

XIV. Osmotic Pressure

Measurements of osmotic pressure are frequently used to determine
activity coefficients and solution molecular weights. The measurements
are particularly useful in the determination of the properties of polymer
solutions. The system under consideration consists of a liquid solution
of components (phase ') separated from pure liquid (phase ') by a non-
deformable heat-conducting membrane permeable to component 1 alone
(Fig. 33). The temperature is assumed to be uniform in the system.

The affinity of passage of component 1 from the phase " to the
phase ' is

A=pu" —pu' = u,°(T,p") — (T, p') — RT In f'N,, (14.1)

I I
g

Solvent Solution
! 1+2+3..
+ &
—_—

Fic. 33. Osmotic phenomena.
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where u,° is the same function in the two phases. Let us assume now
that p" = p’. Equation (14.1) reduces to

(A)yrep = —RT In f'Ny'. (14.2)

This affinity cannot be equal to zero unless N,' = 1, which means that
the solvent is pure in each phase. In other words, when substances are
dissolved in the solution, we have N, < 1 and the affinity (4),._, is
positive; the solvent tends to pass from the pure solvent (') to the solu-
tion (') and increases in this solution phase. Hence, equilibrium cannot
be established unless p'’ = p'. The difference

II=p —p" (14.3)

is called osmotic pressure.
At equilibrium, (14.1) reduces to

w®(T,p") — w(T,p') = RTInfy Ny, (14.4)

For a displacement along an equilibrium line at 7' constant, we have

a"lo "o__ aﬂlo L / 4 s
T 0 — e by’ = RT o(n fyNy) (14.5)

with

d,
al;l — vl'(T p”)u

where the quantity ©,* is the standard molar volume.
Neglecting the compressibility of component 1, (14.5) and (14.3) give

8T = —(RTJ2,°) 8(In f,'Ny), (14.7)

dP = u,T, p'), (14.6)

where ©, is the molar volume of the solvent extrapolated to zero pressure.
Integrating (14.7) from N, =1 (IT = 0) to N, = N,’, we obtain

= —(RTJv,°) In f;'Ny'. (14.8)

For a sucrose solution of 0.88 mol 1-?, the experimentally observed
(Eucken, 1934) osmotic pressure is about 27 atm.

Instead of characterizing deviations from ideality of the solvent by
its activity coefficient f, , it is often advantageous to introduce the osmotic
coefficient I" of Bjerrum and Guggenheim defined by the equality

I'in N, = Inf,N,. (14.9)
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Comparing this with (14.8), we see that
I = —I'(RT[v,°) In Ny'. (14.10)
For very dilute solutions, (14.10) reduces to
IT=TRT ¥ C,. (14.11)
For an ideal dilute solution (C,” < 10-* mol 1-!), we find the classical

van't Hoff equation
II=RT X C,, (14.12)

which shows that the osmotic pressure is independent of the nature of
the solvent.
For a weak electrolyte AB = 4~ + B*, Eq. (14.11) may be rewritten

IT = I'RT(1 + a)C3g, (14.13)

where « is the dissociation degree and Cjy, the total concentration of AB.
The coefficient I" may be calculated if we know the experimental values
of IT and « (known, for instance, by electrical conductivity measurements).

Remark. Comparing (14.2) to (14.8), it follows that the affinity for
p'" = p' is given by
(A)’I-’ll = O,QH. (14.14)

XV. Equilibrium Curves between Two Phases

A. GENERALIZATION OF THE NERNST DisTRIBUTION LaAw

We know that the affinity 4, of transfer of component y from one phase
(") to the other (') is given by

A, = ) — " = (T, p)— (T, p) + RT In( £, N,'[f,"'N,"). (15.1)

At equilibrium,
LN I, N, = KT, p), (15.2)

where we have put

RTIn K (T, p) = (T, p) — n,/'(T, p). (15.3)
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For ideal phases, (15.2) reduces to the classical Nernst distribution law
(see 6.80)
N,IN,! = K x(T, p). (15.4)

The quantity K, is called the distribution or partition coefficient. At
T and p constant, the equilibrium constant K, is independent of mole
fractions.

Remark. The distribution law of matter in an electric field was estab-
lished a few years ago by Sanfeld and co-workers (1968c).

B. Van Laar ReLATION

For a general displacement along an equilibrium line, (15.2) becomes

N  d(nK,) 8 , d(nK,)sT
6[ln N ] = ofin K(T, p)) === A% ZESHC . (155)
We thus find from (9.48) and (9.49) that

6[ln f}x’ ] =— Lg'——g) T — ———-—Ag;?' L ap (15.6)
y y

This is the well-known van Laar equation, which we now apply to dif-
ferent cases:

1. Binary Systems Forming a Eutectic

Let us consider first the equilibrium between the solution (") and one
pure solid phase (") and the transfer of component 1 from the solution
to the solid phase (''):

Nl” == 1, N'u = 0, f]u = 1.

Applying the van Laar relation (15.6) for a displacement at constant p,
we obtain
oT

T (15.7)

Lll
o(In fi'N,") = R

where
Ly, = ry,(1) (15.8)

is the latent heat of fusion at the pressure considered.
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For a pure system, N,' = 1 and N," = 1, the variance is equal to
unity and we called 7, the fusion temperature of component 1 at the
pressure considered.

Integrating (15.7) from a point N,' =1 (f,' =1, T=Ty) to the
required value of N,', we obtain the equilibrium curve of a solution with
crystals 1:

L
mﬁN;=—£-—L~—Jﬂ. (15.9)

L
mmahi-————ﬁ, (15.10)

where T < Ty,.

This approximate equation is that of the line of coexistence at a given
pressure given in Fig. 34,

T4

Tlo

0 o
I i
1! 0,

N, -

Fic. 34. Shape of freezing-point curve.

We define the depression 0 of the freezing point of the solution by
0 = Tio T T.
For very dilute solutions, § << T'and 1/T ~ 6/T},; thus, (15.9) reduces to

Lll
RT;,

S

~TI'SN,, (15.11)

where the osmotic coefficient I' is defined by (14.9).
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The lowering of the freezing point is then given by

RT3,
Ly,

0=1r TN, (15.12)

If a solution is both very dilute and ideal, I'= 1, and we have, in terms
of molalities,

__RTY,
(- L moozm = 0. Zm; (15.13)

the quantity 6, is called the cryoscopic or freezing-point constant. It
depends only on the nature of the solvent. For water, 0, = 1.86, while
for benzene, 6, = 5.08.

For a substance 2, the coexistence line BE (Fig. 35) is represented by
the equation

L
= S R | (15.14)

ln f’,JV:' - R T,o T

At the eutectic point, crystals of both 1 and 2 and the solution coexist
in equilibrium and the two equations (15.9) and (15.14) are simultane-
ously satisfied.

If the solution is perfect, Ny, and T, (values at the eutectic point)
can be calculated from

y Il B i T,
- (15.15)
y 1 1 1
it = Mo = - [ — 7]

F1G. 35. Crystallization or freezing-point curves at constant pressure, with eutectic point.
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Fic, 36, Freezing point curves for o + p-chloronitrobenzene,

An example (Hollman, 1900; Kohman, 1925; Timmermans, 1936,
p. 54) is given in Fig. 36.

Remarks. (1) In the case of saturated salt solutions (excluding the
formation of mixed crystals)—for example, H,O 4+ NaCl—the line 4E
is called the freezing curve, while the line EB is called the solubility
curve of e.g.,, NaCl. A better definition is “crystallization” curves.

The solubility is obtained by solving Eq. (15.14); it increases with the
temperature (line ED).

The heat of fusion of ice in the presence of aqueous solutions of NaCl
and CaCl, - 6H,0 has been calculated by Defay and Sanfeld (1959).

(2) The equilibrium between a crystalline substance 7 and its ions
in solution is governed by the equation

”"(Tn P) = Vothy -+ VY (15'16)

where u* is the chemical potential of the solid. For example, for the system
NaCl = Na* 4 Cl-, the equilibrium condition is
Hxaes = fxas + picr- = uSar(T, p) + péy (T, p) + RT In fRuiCxae
X far-Cor) (15.17)

or

» — R — u2
fx‘i-..CN..fé.-Cc,-=exp{ Fraar — £ RT £9 } (15.18)
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At a given temperature and pressure, the product of activities is thus a
constant called the solubility product Kg. For very dilute solutions,
(15.18) reduces to

CxasCar- = Ks(T, p). (15.19)

Since the equilibrium Nernst tension of a cell depends on ion concentra-
tions, it is clear that the solubility product K can be determined by
electromotive-force measurements (Petré et al., 1969).

2. Mixed Crystals

Let us now consider the same components in a liquid and a solid
phase. At constant pressure, N, and N, can be calculated with the aid
of the van Laar equations (15.6):

flum‘ln . 7;',(1)
6[11‘ fl'N" ] RT"" oT 5
(15.20)
f’u (VQN ';‘,(2)
6[‘“ foNy ]‘ R 0T

Details of calculations are given by Prigogine and Defay (1967, Chapter
XXIIT). For the system Cu -+ Ni, the theoretical and experimental
curves (Seltz, 1934) are in good agreement, showing that this system is
nearly ideal (Fig. 37).
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Fic. 37. Phase diagram of system Cu + Ni ( ) observed; (———-) ideal,
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On the other hand, treating the two phases as regular solutions, Scat-
chard and Hamer (1935) have calculated the liquidus and solidus curves.
The results for the systems Ag + Pd and Au - Pt (Scatchard and
Hamer, 1935; Doerinckel, 1907; Grigorjew, 1929) are shown in Figs.
38 and 39.

1600

1500

1400

1300

T, °C

1200

1100

1000

900 1 ! 1 |

Pd

Fi1c. 38, Freezing-point diagram for the system Ag + Pd.

Remarks. (1) The systems Mn-Cu, Fe-V, Ni-Pd form azeotropes
(see Section V).

(2) Transition from mixed crystals to addition compounds and eu-
tectics with the phenomenon of miscibility gaps has been observed for
many systems (Timmermans, 1936, p. 76).

3. Boiling-Point Law

When a solute species 2 may be regarded as nonvolatile, the vapor
phase (') contains only the component 1 (Fig. 40). We then have N, = 1
and f,"" = 1, and, at p constant, (15.6) reduces to

3(In f/N,') = 'ij';.l,) o7, (15.21)
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Fic. 39. Freezing-point diagram for the system Au + Pt. ( ) calculated;
(====) ideal; (O) measured (Doerinckel); () measured (Grigorjew).

Conden““ w

e e = ——
b e — o —————

N2

Fia. 40. Boiling-point and condensation curves for solution of nonvolatile solute,
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where r7,(T) has a negative value (to permit vaporization, the system
must absorb an amount of heat), and thus

Frp(1) = —Ly(1), (15.22)

where L,(1) is the heat of vaporization of pure component 1, boiling at
the considered temperature.
Integrating (15.21), we find the equation of the boiling curve

Inf,'N, = V“) [ ] (15.23)
Ty
For a perfect solution,
In N, = '(” [ - ] (15.24)
10

and thus 7' > T,,, which means an elevation of boiling temperature
resulting from the addition of a nonvolatile solute.

Equation (15.23) may be rewritten in molalities (see Eqs. 15.11),
(15.12), and (15.13)

6=I0,%m,, (15.25)

where the boiling point or ebullioscopic constant 0, is defined in dilute
solutions by

_ RT3, M,
% =71 1000 (15.26)

In a perfect binary solution, the elevation of boiling point is proportional
to the molality of the dissolved substance. The coefficient f, is only a
function of the solvent. For water, 6, = 0.51°C; for benzene, 0, = 2.53°C.

4. Boiling Curves for Immiscible Liquids

For immiscible liquids (for example, hydrocarbon + water), we ob-
serve a eutectic-point vapor-liquid (Fig. 41). The only difference between
this system and the liquid-solid system is that here the condensed phase
is the liquid state. Two immiscible liquid components boil at the vapor—
liquid eutectic-point.

Example. The boiling point of cooking fat is about 170°C. An addition
of water decreases this temperature to under 100°C. Neglecting the small
effect of surface tension, the pressure inside the bubble is identical to
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r? o

Boiling

0 1
N2
Fic. 41. Evaporation of immiscible liquids at constant pressure.

that in the liquid. If the bubble forms at the boundary of two liquids
(1 and 2), the pressure in the bubble is equal to the pressure p in the
liquid, but p = p, + p,, where p, and p, are the partial vapor pressures
of components 1 and 2. At atmospheric pressure, p = p, and the boiling
point occurs at a temperature lower than that which should give p, = p,
and p, = p,. This phenomenon has an industrial application: steam
distillation. Let us now calculate the boiling temperature of two liquids
in contact. The evaporation of immiscible liquids at constant temperature
is given in Fig. 42.

0 1

FiG. 42. Evaporation of immissible liquids at constant temperature.
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Applying the van Laar relation at T constant, we obtain for the vapor
phase (')
Ary(1)

RT 6p)

8(ln N,'") = — (15.27)

where A3,(1) is the dilatation related to the transfer of component 1
from the liquid to the vapor. As a first approximation, let us assume that

(1) = RTp. (15.28)
Putting (15.28) in (15.27) and integrating from N, = 1 to N,", we get
In N," = In(p,o/p) (15.29)
curve AE: N, = p/p
curve BE: Ny’ = polp.

At the eutectic point, we have

Nit = pulpes  Nit = pulpe; (15.30)

thus,
NiiINze = prolpso (15.31)
Pe = Pro + Pao- (15-32)

The ratio of the molar fractions of the two components in the eutectic
vapor phase is equal to the ratio of the vapor pressures of the pure
substances. The eutectic vapor-liquid pressure at a given temperature
is equal to the sum of the vapor pressures of the pure substances at this
temperature (Gay-Lussac’s law).

Remark. Vapor-liquid equilibria of partially miscible systems can also
be found (Prigogine and Defay, 1967, p. 356).
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