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I n t r o d u c t i o n 

T h e a i m s of C h a p t e r s 2 A - 2 C a re as f o l l o w s : I n C h a p t e r 2A, w e d e v e l o p 

t h e p h y s i c o c h e m i c a l t h e r m o d y n a m i c p r o p e r t i e s of m a t t e r i n t h e p a r t i c u l a r 

cases of e q u i l i b r i u m s ta tes , e q u i h b r i u m d i s p l a c e m e n t s , a n d e q u i H b r i u m 

s t ab i l i t y . T h e b e s t w a y t o t r e a t t h i s p r o b l e m is t o u s e t h e c o n c e p t of 

c h e m i c a l a f f i n i t y i n t r o d u c e d b y D e D o n d e r a n d d e v e l o p e d b y P r i g o g i n e , 
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Defay, GlansdorfF, and their co-workers. T o do this, we base our formula-

tion on tiie fundamental book of Prigogine and Defay (1967). 

In Chapter 2B, we introduce the concept of irreversibility in a local way. 

In Chapter 2C, we discuss surface phenomena, following the method 

of Bakker and Gibbs-Defay . 

I. T h e r m o d y n a m î c Potent ia ls 

We shall briefly review some propert ies of the thermodynamic poten-

tials developed exhaustively in Chapter 1. 

First, as seen in Chapter 1, the classical définition of the second law 

is that, for ail réversible changes in a closed System at a uni form tem-

pérature T, 
dS=dQlT (réversible). (1.1) 

For a closed system, the state is defined by the variables T, V, and f 

(£ is the extent of reaction, or simply t h e reaction coordinates (see Chapter 

1, Section XX) , so that 

S = SiT, V, f ) . (1.2) 

For ail irréversible changes in a closed system, 

dS > dQIT (irréversible). (1.3) 

Following Clausius, we may now introduce a new quantity dQ' always 

positive, which represents the différence between T dS and dQ in the 

course of an irréversible change. I t is defined by 

dS - (dQIT) = dQ'jT > 0 (irréversible). (1.4) 

Equat ions (1.1) and (1.3) can now be combined to give 

dS = dQIT + dQ'jT, (1.5) 

with 

dQ' = 0 (réversible), 

dQ' > 0 (irréversible). 

Clausius called dQ' the uncompensated heat, which is always positive or 

zéro; in classical thermodynamics, it played a purely qualitative part. 

I t was used to delimit réversible changes for which dQ' = 0, and when 
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dealing with nonequilibrium states it was sufficient to write dQ' > 0 

without at tempting an explicit calculation of its value. 

T h e term "uncompensated hea t " is not a particularly happy choice. 

T h e uncompensated heat dQ' is never the heat received by the system, 

but arises f rom irréversible changes taking place in the interior of the 

System. 

T h e entropy of a system can vary for two reasons and for two reasons 

only: either by the transport of entropy d^S to or f rom the surroundings 

through the boundary surface of the system, or by the création of entropy 

d,S inside the system. We have then [see Chapter 1, Eq. (11.2)] 

dS = d^S + diS, (1.6) 

and for a closed system 

d,S = dQIT (1.7) 

d,S = dQ'lT. (1.8) 

T h e entropy created in the system is thus equal to the Clausius u n -

compensated heat divided by the absolute température; this gives the 

uncompensated heat a physical significance (see Chapter 1, Section X I ) . 

T h e inequality (1.4) states that the création of entropy is always 

positive, that is, irréversible processes can only create entropy, they cannot 

destroy it. 

W e note that for an isolated system 

dS=d,S>(). (1.9) 

Now, thermodynamic potentials are spécial state functions whose prop-

erties may be characterized, if certain variables are maintained constant, 

by a decrease when irréversible processes take place in the system. T h u s , 

the thermodynamic potentials indicate the présence of irréversible phe-

nomena in changes in which the corresponding variables are maintained 

constant. 

Limit ing our work to Systems submit ted only to quasistatic work (see 

Chapter 1, Section VI I ) , we use the following four sets of variables: 

5, F, Ml, . . . , w,; r , F, Wi, . . . ,M,; ^^^^^ 

S,p,ni, .. .,n^; T,p, n^, ..., n^; 

where Wj, are the numbers of moles of components 1, ...,c. 

T h e other symbols are defined in Chapter 1. 
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It may be interesting to note that each set of variables constains a 

thermal variable {S or T), a mechanical variable {p or V), and chemical 

variables (wj, . . . ,«<,) related to the extents of reactions 

T h e choice of a set of variables is only governed by practical factors. 

T o each set of variables there cor responds a thermodynamic potential. 

Combin ing the first law of t he rmodynamics [see Chapter 1, Eqs. 

(8.3) and (7.1)] 

dU=dQ-pdV (1.11) 

with the second law (1.5) expressed in a m o d e m form by D e Donder 

(1923) (see also D u h e m , 1899, 1911; Planck, 1927, 1930; Poincare, 

1908), we obtain 

dQ = dU + pdV = TdS - dQ'. (1.12) 

W e now p u t formula (1.12) into var ious fo rms corresponding to various 

expérimental conditions unde r which physicochemical changes can take 

place : 

1. Internai energy U 

F r o m (1.12), we get 

dU = TdS - pdV - dQ'. (1.13) 

T h u s , for ail irréversible reactions taking place at constant S and V, 

dU=-dQ'<0. (1.14) 

T h u s , an irréversible change at constant ent ropy and volume is accom-

panied by a decrease in the internai energy. T h e internai energy thus 

plays the part of an indicator of irréversible processes for changes at 

constant S and V. 

2. Enthalpy H 

F r o m the définition of the beat con ten t or enthalpy [see Chapter 1, 

Eq . (9.3)] 

H = U ^ p V , (1.15) 

(1.13) may be writ ten 

dH = TdS + V dp - dQ'. (1.16) 
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For an irréversible reaction at constant 5 and p, we bave therefore 

dH=-dQ'<0. (1.17) 

T h u s , an irréversible change at constant entropy and pressure is accom-

panied by a decrease in the enthalpy. T h e enthalpy is the the rmodynamic 

potential associated with the physical variables 5 and p. 

3. Helmholtz Free Energy F 

W e define the Helmhol tz f ree energy F by the relation [see Chapte r 1, 

Eq . (16.3)] 

F = U - T S , (1.18) 

and we see, f r o m (1.13) and (1.18), tha t 

dF= - S d T - p d V - dQ'. (1.19) 

For an irréversible change at constant T and V, we have therefore 

dF=-dQ'<0; (1.20) 

the func t ion F is the t he rmodynamic potential associated wi th the 

variables T, V. 

T h u s , an irréversible change at constant tempéra ture and volume is 

accompanied by a decrease in the He lmhol tz f ree energy. 

4. Gibbs Free Energy G 

W e define the Gibbs f ree energy G by the relation 

G = U - TS + pV = H ~ TS. (1.21) 

Combin ing (1.13) with (1.21), we have 

dG = - S dT + V dp - dQ'. (1.22) 

For an irréversible change at constant T and p, (1.22) reduces to 

dG = -dQ' < 0. (1.23) 

T h u s , an irréversible change at constant tempéra ture and pressure is 

accompanied by a decrease in the G i b b s free energy. 
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Remark. The function — 5 is a thermodynamic potential corresponding 

to the variables U, V, , . . . , n^. Indeed, (1.12) gives, at constant U 

and V, 

This conclusion is expected because a closed System where U and V 

are maintained constant is in fact an isolated System. This is the classical 

statement that the entropy of an isolated System increases with time. 

We shall consider here uniform Systems in the absence of gravity, i.e., 

Systems where pressure, température and composition are the same within 

each phase. 

The diffusion equilibrium is thus reached within each phase of the 

System. The mechanical equilibrium excludes the barycentric motion and 

the viscosity, while the thermal equilibrium excludes transport of heat. 

In fact, it is well known that a real System submitted to variations of 

température and pressure is not strictly uniform. The concept of a uni-

form System is thus an idealization of reality, but the approximation may 

be accepted if the variations of T and p are very slow. 

If chemical reaction and phase changes take place in the same manner 

at each point of the system and if the exchanges of heat with the external 

world are slow enough to maintain a uniform température throughout 

ail the System, the only irréversible processes are then gênerai changes 

which can be expressed in terms of a reaction coordinate f . The produc-

tion of entropy must be determined solely by and with De Donder 

(1922) we may write 

The inequality corresponds to spontaneous reaction, while the equality 

corresponds to the equilibrium. 

De Donder introduced the function of state A called the affinity of 

the reaction, which does not dépend upon the kind of transformation 

considered but dépends solely on the state of the system at a particular 

instant. 

In fact, De Donder introduced his relation (2.1) as a hypothesis, but 

Defay (1938) showed afterwards that, for a given value of d^, dQ' will 

-dS = -dQ'jT < 0. (1.24) 

n . Âff in i ty 

dQ' = A d i > 0 . (2.1) 
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be the same whatever may be the values of dp and dT during the change 

unde r considération. With the variables T, p, we bave 

and also 

dV 
dV 

dT 

Let us define the following quantities (see Chapter 1, Section X V I I I ) 

dU\ . I dV 

[dT 

ldU\ , / d V \ 

/dU\ , f d V \ 

(2.4) 

(2.5) 

(2.6) 

T h e quanti t ies Cp^ (beat capacity of the system at constant pressure and 

composit ion), h^^ (latent beat of pressure change at constant température 

and composition), and r^^ (beat of reaction at constant T and p) are 

the thermal coefficients in the variables T, p, and f . 

Substi tut ion in (1.11) then leads to 

dQ = dT -\- hj-f dp — r^j, d^. 

New, we may write 

(2.7) 

Combining (2.7) and (2.8) with the Clausius équation 

dQ'= TdS-dQ, (2.9) 

we obtain 

dQ' 

dt \ dT 
C. 

+ 

pi 

dS 

dè 

dT 

dt + 
dS 

dp 

dp 

Tv dt ' 
(2.10) 
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where dTjdt and dpjdt, which are the changes of the température and 

pressure in unit time, are quantities which can vary arbitrarily and may be 

given either positive or négative values. On the other hand, we consider 

the speed of reaction d^jdt as a func t ion of state (Prigogine and Defay, 

1967, p. 18; De Donder , 1937, p. 936, 1938, p. 15), so that 

d^dt = v{T,p,^). (2.11) 

Moreover, the three coefficients of dTjdt, dpjdt, and d^jdt are functions 

of T, p, i. Equation (2.10) shows that , for a given state of the System, 

if the coefficients of dTjdt and dpjdt are not zéro, then by assigning 

dTjdt and dpjdt suitable values, we may give dQ'jdt any value we wish; 

in particular, we can make dQ'jdt négative, which is contrary to the 

second law. I t is thus necessary for thèse coefficients to be zéro, that is, 

dS\ ^ . ^/ dS 

Equat ion (2.10) reduces then to the fo rm (2.1) with 

A = rr^+ TidSjd^)rr,. (2.13) 

Because r^p^, and S are functions of T, p, and f , it results that A is also a 

funct ion of T, p, and and thus it is a funct ion of the state of the system. 

Combining De Donder ' s inequality (2.1) with (2.11), we may write 

dQ'jdt = A dijdt = A- v>0, (2.14) 

whence, 

^ > 0, V > G 

A <0, V < 0 

A = 0, V = 0, 

for, if we had v ^ 0 with A = 0, v/e should have a chemical reaction 

proceeding at a finite rate in a réversible manner , which is impossible. 

C O N C L U S I O N S 

(a) T h e affinity is always of the same sign as the rate of reaction and 

thus gives the sign of the rate. 

(b) W h e n the affinity is zéro, the system is in equilibrium. 
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T h e converse of this second s ta tement is, however, not t r u e : 

V ^ 0, whence dO'> 0 and Av > 0 | ^ ^ ^ ^'^^^ ^ ^ ^ 
^ I V < 0 gives ^ < 0 

V = 0, whence dQ' = 0 and Av -- 0 

V = 0 and ^ = 0 : 

t r ue equiUbrium 

v = 0 and A^^O: 

false equiUbrium. 

W e describe a System as be ing in a s tate of false equi l ibr ium w h e n no 

reaction proceeds even t h o u g h the affinity of the reaction is not zéro. 

T h e necessary and sufficient condi t ions for t rue equi l ibr ium in a chemical 

react ion is then given by 

A{T,p,^) = 0. (2.15) 

I n place of (2.2), we may wri te , in the variables T, V, f , 

By compar ing (2.16) and (1.11), we may wri te 

dQ = Cyf dT + dV - rrv d^, (2.17) 

where 

{dUldT)y,= Cy„ (2.18) 

(dUldV)r, + p = lTi, (2.19) 

{dUldè)Tr = -TTV (2-20) 

T h e quant i ty Cy^ is t h e hea t capacity at constant vo lume and composi -

t ion . Irp^ is the latent heat of vo lume change of the System, and r^^ is 

t h e heat of reaction at cons tan t T and V. 

T h e same a rgumen t s as above [see (2.12)] lead to 

T{dSjdT)yi~ Cy^ = 0; T{dSldV)T( - IT^ = 0. (2.21) 

and 

A = rTy+ T{dSld^)Ty. (2.22) 

I t is easy to see that , at low températures, a measu remen t of rrpy gives as 

first approximat ion t h e value of the affinity A according to Berthelot ' s 



2A. Equilibrium, Stability, and Displacements 109 

point of view. But, generally, A and différent because of the 

t e rm T{dSjd^)Ty. If this t e rm is impor tan t , then it is possible to obtain 

^ > 0 wi th r-py < 0 (endothermic reaction). 

m . Âf f in i ty a n d T h e r m o d y n a m i c P o t e n t i a l s 

N o w combin ing (2.1) respectively wi th (1.13), (1.16), (1.19), and 

(1.22), we obtain (Prigogine and Defay , 1967, Chapter I V ) 

d U = T d S - p d V - A d S (3.1) 

dH=TdS+Vdp-AdS (3.2) 

d F = - S d T - p d V - Adè (3.3) 

dG= - S d T J r V d p - A dî. (3.4) 

For a closed System, we have then 

U= U{S, V, S),H=H{S,p, è),F=F{T, V, ^),G=G{T,p, f ) . (3.5) 

W e now compare (3.1)-(3.4) with t h e corresponding total difFerentials, 

and so obtain the connection between (1) an extensive thermal variable S 

and an intensive thermal variable T, (2) an extensive mechanical variable 

V and an intensive mechanical variable p, and (3) an extensive chemical 

variable f and an intensive chemical variable A: 

= -A; (3.6) 

= -A; (3.7) 

= -A; (3.8) 

= -A; (3.9) 

the âffinity is thus equal to the slope w i th respect to f of the thermo-

dynamical potential related to the appropr ia te variables. 

I t is now easy to f ind the so-called G i b b s - H e l m h o l t z équation by 

combin ing (1.18) and (3.8); we t hen f ind 

U=F~ T{dFldT)y(. (3.10) 
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W e may now dérive a fur ther set of important relations f rom (3.6)-(3.9). 

With the second derivatives, we have, for example, in the variables 

T, V, i and T, p, 

/ dS\ _ ( dp\ I dS\ _ ( d A \ I dp \ _ ( d A \ 

(3.11) 

/ dS \ _ / dV\ I dS \ _ / dA \ I dV \ ^ / dA \ 

\ dp Ir, ~ [ ÔT j , / \ IT, ^ [ dT j , / [ di " \ dp Iri 

(3.12) 

Other groups of équations and many applications are given in the funda-

mental book of Prigogine and Defay (1967, p. 54). 

F rom a gênerai point of view, we observe that a partial derivative of 

a thermal variable {Tor S) with respect to one of the mechanical variables 

{p or F ) is equal to the partial derivative of the conjugate mechanical 

variable ( F or p ) with respect to the other thermal variable {S or T). 

Similar statements hold for the other pairs of variables (T, S) and 

(A, and ip, V) and (A, f ). 

In fur ther sections, we will see some appHcations of Eq . (3.12). 

rV. T h e Gibbs C h e m i c a l Potent ia l 

A . T H E C H E M I C A L P O T E N T I A L 

Let us suppose that the funct ions of state U and S introduced by the 

first and second laws of thermodynamics also exist in open Systems, 

so that we may write 

U= U{T, V,n„ . . . , « , ) ^ U{S, F, «1, . . . , « , ) (4.1) 

5 = 5 ( r , F , « i , (4.2) 

Now, in closed Systems, we used the symbols dn^ and dV to represent 

the changes, respectively, in n u m b e r of moles and in volume in the 

t ime dt {dt > 0). However, in open Systems, we have to introduce a new 

symbol for difîerentiation, ô, to avoid any confusion with the symbol d. 

T h e ÔTiy are chosen quite arbitrarily and they represent virtual or t rue 

variations of any kind in the n u m b e r of moles n^. 



2A. Equilibrium, Stability, and Disp lacements 111 

From (3.1), we then have 

where the subscript n means that ail the remain constant during the 

dérivation and the subscript means that ail w's except remain con-

stant. 

We may write now the following equalities: 

dU\ ldU\ , (dU\ (dU\ 
and h î T r = U T T (4-4) dS ly, \ d S l y , ""^ \dV)sn \ d V / s , 

because the state of an open System in which ail the remain constant 

changes exactly as it would in a closed System in which | remains 

constant. 

Combining (4.4), (4.3), and (3.6), we obtain 

Ô U = T ô S ~ p ô V + ^ ( - ^ ] ôn^. (4.5) 

If we use H, F, and. G, we obtain 

ÔH=TÔS+Vôp+^ f - P - ) ôn^ (4.6) 

Ô F = - S Ô T - p ô V + ^ ( ^ ) ôn^ (4.7) 

ÔG = ~SÔT+Vôp + 'E. { - ^ ] àn^. (4.8) 
\ on iTme 

Nevertheless, we can write ôH, ôF, and ôG in another way; i.e., from 

(4.5) and the définitions (1.15), (1.18) and, (1.21), we deduce that 

ÔH=TÔS+Vôp + T. ( 4 ^ 1 àn^ (4.9) 
y \ On^ JsVnff 

Ô F = - S ô T - p ô V + j : ( - ^ ] ôn^ (4.10) 
y \ "Tly I sVriff 

ÔG = - S à T + V ô p + ^ i - ^ ] ôn^. (4.11) 
V V " « y /SVn/! 

file:///dSly
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Compar ing thèse équat ions wi th (4.6), (4.7), and (4.8), we t hus have 

[see Chapter 1, Eqs . (16.5), (16.8)] 

ôU=TÔS-pôV +Y.l^yàn^ (4.12) 
Y 

àH=TôS+Vôp + ^H^àn^ (4.13) 
Y 

ÔF=-SôT-pôV+Y.fiyàn^ (4.14) 
Y 

dG=-SÔT-^V dp^^fi^àn^, (4.15) 

where the symbol Hy, called by G ibbs (see Prigogine and Defay (1967), 

p . 68) the chemical potential of component y, is the common value of 

the derivatives 

As the the rmodynamic potentials are extensive funct ions, the chemical 

potential iJ.^ is an intensive quan t i ty ; it is the partial molar quant i ty 

corresponding to a t he rmodynamic potential . T h u s , the chemical po-

tential describes the local propert ies of the System (for electrochemical 

Systems, see Sanfeld (1968a)). 

If the System is composed of many phases {a, à, ...) at the same pres-

sure and the same tempéra ture , it is easy to show (Prigogine and Defay, 

1965, p. 75) that , for example, (4.15) and (4.16) mus t be replaced by 

(4.17) 

(4.18) 

B . A F F I N I T Y A N D T H E R M O D Y N A M I C P O T E N T I A L S AS F O N C T I O N S OF THE 

C H E M I C A L P O T E N T I A L S 

In accordance with the principle of conservation of mass, the stoichi-

ometric équation for a reaction r may be writ ten [see Chapte r 1, Eq . 

(20.3)] 

i:i:KrMy = o, (4.19) 
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where is the molecular weight of component y. Now, f rom Eqs. 

(4.19) and (4.18) and the form of A given by (3.9), combined with 

[see Chapter 1, Eq. (20.2)] 

di, = d^n/lv;,, (4.20) 

we obtain 

= - S S = - S 2 (4.21 ) 

n y ""y a y 

At the t rue equilibrium of reaction, we have 

A,= 0 (4.22) 

or 
S S ' ' > / = 0 ( r = 1 ,2 , . . . , r ) . (4.23) 
at y 

Practical examples of chemical and passage equilibrium will be given in 

fu r the r sections. 

Now, the extensive function G given by (4.17) is homogeneous of the 

fîrst degree with the extensive variables «i*, . . . , n^", . . . , n / as inde-

pendent variables. W e may then apply to G Euler 's theorem for homo-

geneous functions, i.e., 

G = S 2 V / " / . (4.24) 
l y 

T h e chemical potentials /x^" of the y consti tuents in the a phases of the 

System are thus functions of the independent variables T, p, n^, . . ., 

n^, . . ., n / . On the one hand, they define ail the thermodynamic prop-

erties of the system studied, and on the other hand they enable us to 

Write the conditions of chemical equi l ibr ium in the form (4.23) which 

is at once both simple and gênerai. 

T h e total volume V of the system can be written in function of the 

volume of each homogeneous phase V'' so that 

V =Y.V^(T,p,n,^, ...,nt). (4.25) 

In the same way, if we neglect ail t he surface énergies and entropies 

between the phases, then the thermodynamic potentials may be written as 

G = S G" (4.26) 
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and the chemical potential may be writ ten simply as 

Similarly, it is easy to show that 

Y 
( ^ ] (4.28) 

fiy^, h^, and s^" are thus the partial molar quantities corresponding, 

respectively, to the extensive funct ions G", i /" , and 5". 

C . T H E G I B B S - D U H E M E Q U A T I O N 

T h e differentiation of (4.24) combined with the corresponding équa-

tion (4.17) gives the fundamenta l G i b b s - D u h e m équation 

m y 

If the System is described by the variables T, p, n^, . . . , [ly, . . . , Hci 

one of thèse variables is not independent . T h e relation (4.30) enables 

us to calculate one of the incréments àT, ôp, or ôfi^'' when the others 

are known. 

For an isothermal, isobaric change, (4.30) reduces to 

2 S V ' 5 ; « / = 0 (4.31) 
a y 

Applying Euler 's theorem, (4.31) becomes (now dropping ail the sub-

scripts related to the number of moles) 

Or, f r o m the so-called reciprocity relation (Prigogine and Defay, 1967, 

p. 70) 
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Eq . (4.32) may be rewri t ten as 

Remark. F r o m the second partial derivat ive of G{T, p, , . . . , n^) and 

f r o m Eq . (4.15) and (3.9), we have 

dT 

DifFerentiating H = U + pV and G = U — TS + pV, we obtain 

h^ = u^ + pv^ (4.37) 

fiy = u^- Ts^ + pvy. (4.38) 

T h e spécifie molar en t ropy dé te rmines the variation of fi^ wi th T, 

while the spécifie molar en tha lpy dé te rmines the variation of fi^j T wi th T. 

Indeed , f r o m (4.37) and (4.38), we find 

fi^ = h^^Ts^, (4.39) 

and thus 

d{tiylT)ldT = - hyjTK (4.40) 

D . C O M P A R I S O N W I T H THE F O R M U L A T I O N OF L E W I S A N D R A N D A L L * 

As we have seen previously, the affinity ^ is a fonct ion of the ins tan-

taneous state of the System given by t h e derivative of the the rmodynamic 

potent ial G wi th respect to | , at cons tan t T and p for each state of the 

mat te r [see Eq . (3.9)] 

A = -{dGldè)Tj,. (4.41) 

N o w , the symbol AG used by Lewis and Randall means 2ifinite variation 

of the fonct ion, e.g., 

AG= Gf inai - Ginit ia i ( two statcs). (4.42) 

I n fact, the fundamen ta l d i f férence be tween A and AG is not related to 

* Lewis and Randall (1923). 
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the existence of two states of matter , because, in A = A{T, p, f ) , the 

extent of reaction | is also related to the initial state of mat ter : 

| = K - V ) K , (4-43) 

where nj' is the number of moles of the components y when ^ = 0. 

T h e différence comes f rom the relation (4.24). For one phase, Eq. (4.24) 

reduces to 

G = 2 " , / " , , (4.44) 
Y 

and thus 

AG = ( s n^[l)l - ( S V/"y' ) in i t ia l . (4-45) 
\ Y ' final y 

Since fi^ does not necessarily have the same value in the initial and in the 

final states, 

AG^Y.lJiy{n^-n;). (4.46) 
V 

F r o m (4.43) and (4.46), we obtain the inequality 

A G , ^ Y . V y l i y , ( 4 . 4 7 ) 

y 

where 

AG^ = AGIi. (4.48) 

According to the Lewis approach, the chemical potentials fi^ are implicitly 

considered as constant, or have a mean value so that, if f = 1, 

AG=^ v / / z ,> . (4.49) 
y 

T h i s hypothesis is quite correct if the initial composition, température, 

and pressure are only weakly modified by the chemical reactions. Strictly 

speaking, for a chemical reaction 

" A A + = vcC + V D D , 

A, for a given well-defined state, is 

A = ''Ci«c + " D / ^ D — VAJMA — " B I M B . (4.50) 

and thus does not simply represent a decrease in free energy or a différence 

between two states. Because the use of a mean value gives rise to some 
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difficulties in the neighborhood of equil ibr ium, where G takes a min imum 

value, it would be better to define zJG as a single operator of the type 

(4.50). For détails about this problem, see the fundamental work of 

Prigogine and Defay (1967, Chapter V). 

E . P A S S A G E F R O M A C L O S E D T O A N O P E N S Y S T E M 

As we already saw, the funct ions A{T,p, f ) and G{T,p, f ) are well 

defîned in closed Systems, wi th the définition (2.1), 

Adè= dQ', 

the relation [Eqs. (3.9)] 

A = ~idGid^)r^, 

and the formula [Eq. (3.4)] 

ÔG= -SÔT+ V ô p - A 6^. 

For an open System, we presumed tha t the function G must also exist 

in the form 

G = GiT,p,n„ ...,n,). (4.51) 

Now, when an open system undergoes a change in which ail the 

remain constant, the change is exactly as it would be in a closed system 

in which f remains constant, so that the two fîrst derivatives of (3.9) 

become 

{dGjdT)^ = - S (4.52) 

{dGldp)rn = V. (4.53) 

T h e last derivative of (3.9) can also be writ ten in the form 

because, in G = G{T,p,^), ^ dépends on n^. Now, the derivative 

dnjd^ means dinjdi, because, in closed Systems, the change dn^ in the 

n u m b e r of moles of y in a t ime interval dt will be only the change arising 

as a resuit of internai (subscript i) chemical reactions, and 

diTiyld^ = Vy. (4.55) 
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On the other hand, from the form (4.51), it results that in the deriva-

tive {dGldny)xp the variations of are of any kind, e.g., resuh from 

transport across the boundaries of the System to or from the surro-

undings. 

Combining (4.54), (4.55), and (4.16), we obtain the well-known 

passage équation from closed to open Systems 

{dGld^)r, = 2 v,/^,. (4.56) 
y 

Inserting Eq. (4.55) and (4.21) in Eq. (3.4) then gives/or open Systems 

ôG=-SôT+Vôp + ^H^Ôn^. (4.15) 
Y 

T h e passage from a closed System (where the function A is well defined) 

to an open one (where the intensive functions fj.^ are locally defined) is 

thus realized without any difficulty. 

V. T h e P h a s e R u l e 

A . G E N E R A L D é M O N S T R A T I O N 

We will now consider the number of phases which can coexist and the 

relationship of the properties of each component to the equilibrium 

behavior of the System. First, let us remember that a phase composed 

of one or several components is a macroscopic homogeneous portion of 

a System. 

Since ail gases are completely miscible, there can never be more than 

one gas phase; however, a number of independent liquid or solid phases 

may be formed. The phase rule, like ail basic thermodynamic relation-

ships, is independent of assumptions pertaining to the particular nature 

of matter; it is not concerned with the quantities of the varions phases, 

but only with intensive variables. The Gibbs phase rule only permits us 

to fix arbitrarily a certain number of intensive variables when the System is 

in equilibrium. 

We consider a System with c components, (j) phases at the same pressure 

and the same température, and r' distinct chemical reactions (omitting 

those which consist solely of the passage reactions). 
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In the Systems considered here,* composed of c constituents and ^ 

phases, the intensive variables are 

T,p,N^\...,N,\ ...,-N^^ (5.1) 

where the mole fractions A ,̂," of y in the phase a are defined by 

i V / = V / S V - (5-2) 

Nevertheless, the (2 + intensive variables are not ail independent, 

and, at equi l ibr ium, gênerai relations bind thèse variables. 

Whatever the state of the System, we have ^ relations of the type 

S i V / = l . (5.3) 
V 

T h e equi l ibr ium conditions are: 

(1) T h e r e are — 1) conditions of transfer equil ibrium of each 

consti tuent among the varions phases 

/ i / = ^ , ^ = . . . (y = l , (5.4) 

(2) T h e r e are r ' conditions of equi l ibr ium for the chemical reactions, 

^ r = - S S v / ^ / = 0 {r=\, ...,r'). (5.5) 

y n 

T h e n u m b e r of relations among the 2 -\- C(f> intensive variables is thus 

^ + c(^ - 1) + r'. (5.6) 

The variance or the number of degrees of freedom, i.e., the number of in-

dependent intensive variables, is thus given by (Gibbs, 1928; De Donder , 

1920; Jouguet , 1921; Bowden, 1938) 

w = 2+{c~r')-<j>. (5.7) 

Remark. If a component is insoluble in the phase a, t he supplementary 

insolubility condit ion 

= 0 (5.8) 

gives rise to a loss of a condition like (5.4). T h u s , the phase rule (5.7) 

remains valid. 

� F o r c h a r g e d S y s t e m s , s e e S a n f e l d ( 1 9 6 8 ) . F o r a n i s o t r o p i c S y s t e m s , s e e S t e i n c h e n 

(1970). 
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B . E X A M P L E S 

1. One-component Systems, c = \ and r' = 0 

For a one-component system, a phase diagram is usually a plot of 

pressure against température . 

a. Water Phase Diagram. T h e behavior of water is shown in a limited 

région in Fig. 1. T h e lines represent the equilibrium between the phases, 

and thus establish the fixed relationship between pressure and tempéra-

ture. W e consider three cases: 

(i) T h e System consists of only one phase (vapor, liquid, or solid): 

<f> = \ and w = 2. T h e system is divariant and the areas between the 

lines representing the equil ibrium between the phases correspond to 

régions in which only a single phase exists and in which T and p may be 

varied independently. 

(iV) T h e System consists of two phases (liquid and vapor, liquid and 

solid, or solid and vapor) : cf) = 2 and w = \. T h e system is monovariant. 

If the pressure is fixed, then the equilibrium température of the coexist-

ing two phases will be a funct ion of the chosen pressure. Equil ibr ium 

between any two phases can exist only if the value of T for a particular p 

falls on the line dividing the areas (see Fig. 1), e.g., liquid and gas. 

At each line grouping the représentative points of two-phase Systems, the 

affinity of passage of the substance f rom one phase to the other is zéro. 

(iii) T h e system consists of three phases (vapor, liquid, and solid): 

<f> = 3 and w = 0. W e cannot fix either T or p arbitrarily and the three 

phases coexist only at the point of intersection of the three equilibrium 

0 ° T ° c 

FIG. 1. Phase diagram for water in the vicinity of the triple point. 
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1 2 , 0 0 0 
atm 

P 

Liquid 

T 

FiG. 2. Phase diagram for water at high pressure. 

Unes. Th i s triple point is invariant. For water, the coexistence of the 

three phases occurs at a température of + 7 . 6 10~^ °C and a pressure of 

4.6 m m of mercury. 

At high pressures, a number of différent crystalline forms (différent 

phases) of ice have been observed. T h e phase diagram (see Fig. 2) is 

not complète because only limited information is available. Four triple 

points corresponding to the coexistence of the three forms of ice (ice II , 

I I I , and IV) are shown. 

More than three independent phases cannot coexist in equilibrium in 

a one-component System. 

b. Sulfur Phase Diagram. T h e four phases, chnorhombic, orthorhombic, 

liquid, and vapor, cannot ail be in simultaneous equilibrium (Fig. 3). 

Any two of thèse are separated by a line along which they can coexist, 

while there are three triple points corresponding to the différent forms of 

sulfur. Along the line AC, there is equil ibrium between orthorombic 

(OR) and chnorhombic (CR) ; along DA, between or thorhombic and 

vapor (V); along AB, between chnorhombic and vapor; along BE, 

between vapor and liquid (L), etc. 

T h e Systems composed of three phases are invariant and their states 

are represented by isolated points or triple points {A, B, and C). At the 

equilibrium, it is impossible to fînd Systems composed of four phases 

because the variance would then be less than zéro. 

2. Binary Systems 

T h e phase diagrams, particularly for binary or ternary Systems, are 

of great practical importance in metallurgy and physical chemistry, and 

much work has been donc on their classifications. 
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Here we have several cases: 

(i) ^ = 1, w = 3. For example, two components in a vapor state 

without chemical reaction. T h e température, the pressure, and the com-

position can be fixed arbitrarily. 

(ii) (f> = 2, w = 2. A mixture of alcohol and water in the présence of 

their vapor (without air). T w o variables (the pressure and the tem-

pérature, or the pressure and the composition in one phase, or the tem-

pérature and the composition in one phase) can be fixed arbitrarily. 

a. Equilibrium between Vapor and Liquid. (1) We consider first the case 

where the tempéra ture has been taken as constant. T h e total pressure 

will be determined by the composition of either phase. Thus , we may 

represent the composition of either phase by the abscissa in a rectangular 

System of coordinates, and the pressures at constant température as 

ordinate (see Fig. 4). 

T h e vaporization curve p{N2) gives the equil ibrium pressure, i.e., 

the vapor pressure of the solution at the considered température T and 

for a given composition of solution, N2'. For the same pressure (for ex-

ample, pj)), the vapor phase ( C " ) is in equil ibrium with the solution 

( C ) . Nevertheless, the composition of the vapor phase N2" is generally 
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différent f r o m that of the hqu id phase. T h e curve ^(A^j") is called 

condensation curve. 

T h e point A s i tuated above curve/)(A'^2') only represents a l iquid phase, 

ahhough the point B s i tuated beh ind curve p{N2") only represents a 

vapor phase. 

Excluding ail the false equil ibria, t h e point D wi thin the area enclosed 

by two curves represents a two-phase system consisting of the liquid 

C and the vapor C " in such propor t ions tha t the overall composi t ion of 

the whole system is N2. If w is the total n u m b e r of moles in the system, 

it is easy to see that 

n^ ^ N2' - A^. _ DC^ ,5 g. 

n N 2 - N2" C"D � ^ ' ' 

T h u s , when D approaches t h e condensat ion curve, more and more of 

the System will be vapor ized , and w h e n D is close to the vaporization 

curve, the sys tem will nearly ail be in the l iquid phase. 

Fractional distillation. L e t u s assume that initially we have a solution 

in the state E. T h e decrease of pressure f r o m pE to pu yields a partial 
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vaporization and results in the formation of two phases C and C". 

T h e proport ion of thèse two phases is given by (5.9). 

T h e mechanism is very simple: (1) F r o m E to F' no vaporization. 

(2) At F', the vaporization begins. T h e state of the vapor phase produced 

is represented by F" {Nf" > N f ) . (3) In the liquid phase, the fraction 

of the component 1 decreases, and thus F' goes down to C along the 

vaporization curve, while the state of the vapor phase sinks along the 

condensation curve f rom F" to C". 

If the pressure decreases f rom pj) to p^,,, ail the liquid phase becomes 

a vapor phase, and, below this pressure, only the vapor phase subsists 

with the same composition as the initial E l iquid phase (point / ) . 

Now, let us assume that we stop the vaporization or the condensation 

when the composition of the two obtained phases is différent. Th i s 

phase is then submit ted to a new partial vaporization or condensation, 

and so on. Th i s process is called fractional distillation. 

F r o m the expérimental point of view, a one-step séparation can occur 

on a plate of a fractionation column (Keeson, 1939; Bosnjakovic, 1935; 

Brown et al., 1955; Ponchon, 1921; Savarit, 1922; Daniels and Alberty, 

1961); the number of plates (séparation steps) required to give the 

desired fractionation dépends on the shape of the phase diagram. T h e 

efïectiveness of a given fractionation column is indicated by the number 

of theoretical plates corresponding to the n u m b e r of séparation steps 

which it performs. 

(2) W e now consider the case where the pressure has been taken as 

constant. T h e independent variables are p and N^'. T h e curve T{N2'), 

boiling point as a funct ion of liquid composition N2', is called the boiling 

curve (Fig. 5). 

A horizontal line cuts the boiling and condensation curves at P' and 

P". T h è s e points, corresponding to the same température, give the 

composition of the liquid, N^, and the vapor, N^', which are in equi-

l ibrium with one another at the tempéra ture T. If we neglect the effect 

of surface tension, a bubble containing vapor and the solution represents 

two phases at the same pressure. 

Azeotropic mixtures. Max imum- or minimum-boi l ing mixtures are 

called azeotropes (Fig. 6). An argument based on the Gibbs-Konovalow 

theorem shows that the composition of the two phases must be identical 

at the point of max imum or min imum. 

In an azeotropic system, one phase may be t ransformed to the other 

at constant température, pressure and composition wi thout afFecting the 
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Vapor 

> Liquid 

1 
| N 2 N, a Nî 

1 »� 

F i G . 5 . V a p o r - l i q u i d p h a s e d i a g r a m a t c o n s t a n t p r e s s u r e . 

equilibrium state (Fig. 6) (see, for example, Wade and Merr iman 

(1911)). 

T h e azeotrope behaves in some respects like a pure substance, since it 

distils at constant température and pressure without change in composi-

tion. If, however, the pressure at which the distillation is carried out is 

altered, the composition is also altered (see Fig. 7), and hence the sub-

stance corresponds to a mixture, and no t a pure one. Azeotropic mixtures 

are not uncommon. 

Water and hydrogen chloride f o r m an azeotropic mixture with a 

max imum boihng point of 108.6°C at 1760 m m Hg pressure, when the 

1 N"̂  

(a) (b) 

FIG. 6 . V a p o r - l i q u i d e q u i l i b r i u m i n a b i n a r y S y s t e m f o r m i n g a n a z e o t r o p e . 
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0 1 N;' 

FiG. 7. Variation of the azeotropic maximum with pressure. 

weight per cent of HCl is 20.222. Ethylalcohol and water form an azeo-

trope with a minimum boiling point of 78.15°C (95.57% ethanol). 

For azeotropic data on a large number of Systems, see Horsley (1952) 

and MacDougall (1926, p. 181). 

Remark. At each min imum in the isobaric curves, there corresponds a 

max imum in the isothermal curves, and conversely. 

h. Equilibrium between Solution and Crystal. (1) Melting-point curves. 

Solid solution. T h e phase diagram is similar in many respects to that foi 

T ' Liquid solution 

Solid solution 

0 1 N 

Ni Cu 

FiG. 8. Solid-liquid equilibrium (/> = const) where solid solutions are formed. 
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the vapor pressure of binary liquids. Examples are the Systems Ni + Cu 

(Fig. 8) and H g B r j + H g l j (Fig. 9). T h e liquidus gives the composition 

of the liquid phase, and the solidus gives the composition of the solid 

solution in equil ibrium with the l iquid solution. An extremum in the 

phase diagram might be expected if t he two components form an inter-

mediate compound. However, the ex t r emum itself is not a proof of the 

existence of such a compound. 

T 

FIG. 9. Azeotropic liquid-solid phase diagram. 

If the composition at which the m a x i m u m occurs is independent of 

the pressure, then it is probably associated with a compound. T h e 

pressure test is useful in the study of vapor-l iquid mixtures. 

For the solid-state problem, an X-ray examination of the crystal struc-

ture provides more reliable évidence. 

(2) Melting-point curves. Eutectics. T h e two phases give a divariant 

System where p and N2 are arbitrary. T h e phase diagram is given in 

Fig. 10. Here, A and B are the melting points of pure components 1 and 2, 

AE is the equil ibrium curve for the solution (composition N^) and the 

crystals of pure component 1, and BE is the equilibrium curve for the 

solution (composition N^) and the crystals of pure component 2. T h e 

point of intersection of thèse two curves is called the eutectic point. 

At this point, the System has the eutectic composition at the eutectic 

tempéra ture and the solution is in equi l ibr ium with pure crystals of 1 

and 2. T h e System is thus univariant, and the coexistence of the three 

phases is governed by the arbitrary choice of the pressure. 
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T 

F i G . 1 0 . F r e e z i n g - p o i n t c u r v e s o f a b i n a r y S y s t e m f o r m i n g a e u t e c t i c ( p = c o n s t ) . 

In the présence of air, the variance is not altered, because air can be 

regarded as a single component , since its composition remains constant 

throughout (aside f rom the vapors derived f rom the solution). 

(3) Fabe binary Systems. If the two components A and B of a binary 

System react together to fo rm an addition component C so that A B 

= C, the variance is not afFected, because c = 3, r' = 1, c — r' = 2. 

Figure 11 shows the appearance of the phase diagram when the two pure 

substances form an addit ion compound. 

c B Apparent 

F i G . 1 1 . E u t e c t i c p h a s e d i a g r a m f o r b i n a r y S y s t e m s f o r m i n g a n a d d i t i o n c o m p o u n d . 
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As abscissa, we plot the apparent molar fraction of component B, 

i.e., the molar fraction given by the experimentator which ignores the 

existence of the addition compound. 

In the absence of solid solutions, we obtain two eutectics Ei and E^. 

At El, there is an equi l ibr ium: solution + crystal A + crystal C ; at 

E2, there is an equilibrium : solution + crystal C + crystal B. 

T h e maximum M represents the melt ing point of a well-defined 

compound, the crystal C. At this max imum, the apparent composition 

remains constant when the pressure is changing. 

One speaks of a congruent melt ing point (Prigogine and Defay, 1967, 

p. 377) when the solid compound melts to form a liquid phase which has 

the same composition as the solid. I n the N a F - M g F j System (Eggers 

et al., 1964, p. 263-265), the intermediate compound has the formula 

NaMgFg . T w o eutectics are observed, N a F - N a M g F j and N a M g F j -

M g F , . 

An eutectic may disappear, and is then replaced by a transition point 

r where there are three phases in equi l ibr ium (Fig. 12). 

One speaks of an incongruent melt ing point for the intermediate 

compound if, when melting occurs, the liquid has a composition différent 

f r o m that of the compound and a new solid phase is also formed. 

According to Counts et al. (1953), (see also Eggers et al. (1964)), the 

compound C a F j - B e F j is unstable above 890°C. During the transition 

in the melting process, we have three différent phases in equilibrium, 

and the System is at an invariant po in t called peritectic one. 

FIG. 12. Eutectic phase diagram with a transition point. 
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3. Ternary Systems 

On account of the great complexity of the phenomena observable in 

the case of three-component Systems, we shall have to be content with a 

brief discussion of some of the simpler cases (Vogel, 1937). T h e com-

position of a ternary mixture is best represented by a point in an equi-

lateral triangle whose vertices 1, 2, and 3 represent the three pure com-

ponents . If the sida of the triangle is taken as unity, then the mole frac-

tions Â î, and in the solution under considération are given by 

the distances, measured along lines parallel to the sides of the triangle, 

of the point P f rom the sides of the triangle remote f rom vertices 1, 2, 

and 3, respectively (Figs. 13 and 14). Th i s représentation ensures auto-

matically that -\- = \ . T h e sides of the triangle represent 

the binary Systems (1 + 2), (2 + 3), (3 + 1), and the vertices represent 

pure components. Now let us consider Systems without chemical reac-

tions. Différent cases are possible: 0 = 1 , w = A (case A) ; <j> = 2, 

w = Z (case B); = 3, = 2 (case C ) ; ^ = 4, = 1 (case D ) ; ^ = 5, 

w = Q (case E). 

Example 1. Case A. A gas mixture with three components. T h e vari-

ables p, T, N2, N3 are given arbitrarily. 

Example 2. Case B. Solidification of a ternary solution without solid 

solution. With two phases, the System is trivariant; we can, for example, 

consider the pressure and composition of the solution N^', N^' and see 

how the equilibrium température changes with thèse variables. If the 

pressure is taken as constant, then we may construct a diagram in which 

the equil ibrium température between l iquid and one of the solid phases 
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is shown as a funct ion of N^' and N^'. W e obtain a surface in three-

dimensional space. 

Example 3. Case E. Ternary eutectic in the présence of vapor of the 

solution without air. An example of a classical ternary system with binary 

and ternary eutectics is the alloy system Bi + Pb + Sn [for détails see 

Prigogine and Defay (1962), p. 185, MacDougal l (1926)]. 

Remarks. (1) T h e diagrams become very complicated if the varions 

components can form solid solutions in one another (Findlay, 1951). 

(2) If the three components are linked by a chemical reaction, the 

variance is reduced by one and the behavior is simplifîed. Example: 

CaCOg (solid) ^ CaO (solid) + C O j (gas). T h e system here is mono-

variant, and, at equilibrium, its state is completely specified when the 

température is fîxed. 

(3) T o cover a complète spécification of the state of a system in terms 

of both intensive and extensive variables, we must calculate how many 

variables must be fîxed to détermine completely the equilibrium state of a 

closed System. T h i s problem, related to the conditions of enclosure (Pri-

gogine and Defay, 1967, p. 186), is treated exhaustively in the work of 

D u h e m (1899, vol. IV). 

VI. T h e Equi l ibr ium Constant 

A . I N T R O D U C T I O N 

In Sections I I and IV, we discussed the conditions of thermodynamic 

equil ibrium in a system subject to varions constraints, and found that 

the conditions could be expressed by saying that chemical affinity is 

zéro when equil ibr ium prevails. Now, the chemical afïinity is determined 

by the température , pressure, and composition of the System, so that, if 

this funct ion is a known function of the variables jus t mentioned, then 

the thermodynamic behavior of the system can be readily predicted. 

Because the afïinity and the chemical potentials are connected by Eq. 

(4.21), in order to obtain spécifie numerical answers for the equilibrium 

composition in a particular system, we mus t know the explicit form of 

the équation of state 

^ = ,x{T,p,N,\ . . . , i V / ) . 



132 A. Sanfeld 

In this section, it will be part of our work to show somewhat more 

explicitly how the state of equiUbrium dépends on the quantities of the 

various substances présent, first, when ail the substances are idéal gases, 

and second, when the System is a dilute solution. 

From a practical point of view, if substances which can react with one 

another are brought together, it will be found that, in gênerai, when ail 

change seems to have ceased, the original substances are still présent, 

although their concentrations may be extremely small. 

We commonly say that the original and final substances are in chemical 

equilibrium. 

Experimenters are especially interested in determining the extent to 

which a given chemical reaction will take place and in finding out how 

the final state of equilibrium dépends, not only on the température and 

the pressure, but on the concentrations of the reacting substances. 

B . T H E S I N G L E - C O M P O N E N T PERFECT G A S 

T h e perfect gas is a fîctitious substance, defined by certain properties 

which are not possessed by any actual substance, but which are supposed 

to be approached by every actual gas as its pressure is indefinitely dimin-

ished. We may state, then, that the perfect gas is a substance which 

fulfills the two following conditions: 

(1) Its internai energy is a function of température alone (Joule's law), 

or, in other words, 

dU{T)ldV = 0. (6.1) 

(2) At constant température, the volume V occupied by a given 

number of moles of gas varies in inverse proportion to the pressure 

(Boyle's law) 

pV = nf{T), (6.2) 

whe re / (7 ' ) is a funct ion independent of the nature of the gas. 

T h e combination of thèse two laws gives the well-known équation of 

state 

pV = nRT, (6.3) 

where R is the gas constant {R = 0.08205 1 atm deg-^ mol - i or 1.987 

cal mol~* deg~'). 
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Now let us assume that no chemical reaction can occur in the gas. 

Any transformation of a System remaining uniform is réversible, and, 

thus, f rom (1.13), (6.3), and (2.18), we have, per mole, 

ds = c^{T) d{\n T) + R d{ln v), (6.4) 

where is the partial molar heat capacity at constant volume. Intégration 

of (6.4) f rom the initial state s^{T\ v') to the final state ^(7", v) gives (for 

an application, see Chapter 8, Section V I I I ) 

s = s*{T) - RTInp, (6.5) 

where 

s*{T) = s'(T>, V') + J^ , - ^ ^ ^ dT - R\nv' + R\n RT. (6.6) 

Combining (6.5), (6.3), and (4.38), we obtain 

^ = lu*{T) + RT In p. (6.7) 

For the free energy F of a perfect gas, Eq. (1.18), (6.5), and (6.1) give 

F = n[f*{T) + RT l n (« /F) ] , (6.8) 

where 

f*(T) = e{T) - Ts*{T) + RT In RT. (6.9) 

C . T H E M U L T I C O M P O N E N T PERFECT G A S 

We first suppose that we have several separate single-component perfect 

gases. If they are mixed together and if the free energy of the mixture 

is equal to the sum of the free énergies that each of the gases would have 

if it alone were to occupy the same volume at the same température, then 

they make a mul t icomponent perfect gas. 

Applying Eq. (6.8), we obtain 

F=i: F^{T, V, n^) = S n^[f*iT) + RTlnin^jV)]. (6.10) 
y y 

T o find the équation of state, we mus t use (3.8) and (6.10): 

(6.11) 
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and t h u s 

pV=nRT, (6.12) 

where n = H^riy. T h e équat ion of state is t hus formal ly identical to the 

cor responding équat ion of state of a s ingle-component perfect gas. 

F r o m (6.10), (3.8), and (3.10), it is t hen easy to show that 

5 = S 5 , (r , F, «,), (6.13) 
y 

U=^U^. (6.14) 
y 

Let us define t he partial pressure of t h e componen t y by 

Py = pNy. (6.15) 

T h i s définit ion is t rue whe ther the gases in the mix tu re are perfect or 

not . I t follows then f r o m (6.15) and (6.11) tha t 

P = i:py, Py= tiyRTIV = C^RT (Dal ton ' s law). (6.16) 
y 

T h e partial pressure of y is t hus equal to t h e pressure which would be 

exerted by moles of pu re y in the same volume, and at the same tem-

péra ture . I t is a purely mathematical const ruct wi th no direct physical 

meaning . 

T h e chemical potent ial of the / componen t in t h e mix ture is most 

convenient ly c o m p u t e d by recalling tha t [see Eq . (4.16)] 

fi^={dFldn^)ryr,^. (6.17) 

Evaluat ing th is derivative f r o m Eqs. (6.10) and (6.17) gives 

f^^ = f i / { T ) + RT In p^. (6.18) 

where 

f ^ / { T ) = f / { T ) +RT+RTlnRT. (6.19) 

T h e chemical potent ia l of a single componen t y in a mix ture of perfect 

gases is equal to the chemical potential tha t c o m p o n e n t would have alone 

if it were at the s ame t empéra tu re and the r educed pressure 
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We now evaluate the chemical affinity by applying (4.21) and (6.18). 

Th i s gives 

A = RT\n[K^{T)ip\\ ....pi^], (6.20) 

where the function Kp{T) is defined by 

K,{T) = exp ^V^i^*{T)\Irt (6.21) 

At the equiHbrium, A = 0 and (6.20) reduces to the well known law 

of Guldberg-Waage 

K^{T) = pv, (6.22) 

T h e quantity Kp{T), called the equil ibrium constant, is characteristic 

of the reaction under considération and is a function only of the tem-

pérature. 

T h e partial pressures used in (6.22) are equilibrium quantities. 

If reactants and products (assumed to be perfect) are mixed under 

nonequilibrium conditions, a spontaneous change is expected until the 

partial pressure quotient reaches the equilibrium value. In certain 

circumstances, it is more convenient to express the equilibrium constant 

as a molar fraction or a concentration quotient. 

Replacing in (6.18) p^ respectively by pNy and C^RT as in Eqs. (6.15) 

and (6.16), we get 

,zy = fiy°{T,p) + RT In Ny 

and 

where 

and 

fiy = fi°°{T) + RTIn Cy, 

,i;'{T,p) = ii*{T) + RT\np 

fi°°{T) = fx*{T) + RT\n RT. 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

A similar treatment as above may be developed by using (4.21) and (6.23) 

or (6.24). We then obtain 

A = RTln[KyiT,p)IN\\ 

A = RTln[K,{T)IC[\ .. 

(6.27) 

(6.28) 
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where the funct ions K/f and are defined by 

= e x p { - [ s r ,y« ,° (r , / . ) ] / « T | (6.29) 

= e x p { - [ 5 : vX°iT)^/RT^- (6.30) 

At the equihbr ium, (6.27) and (6.28) then reduce to 

K^{T,p) = Nl\ ...,Nl' (6.31) 

K,{T) = Cl\ ...,Cl'. (6.32) 

T h e equi l ibr ium constants may be used to evaluate the chemical affinity, 

or, alternatively, the latter may be used to evaluate the equi l ibr ium 

constants . F r o m (6.25), (6.26), (6.29), and (6.30), it is easy to show that 

the three equi l ibr ium constants are related by the formulas 

K^{T,p)=p-'K^{T) (6.33) 

K,{T) = {RT)-'K^{T), (6.34) 

where v is the algebraic sum of the stoichiometric coefficients for the 

reaction and is given by 

V = S V,. (6.35) 
y 

F o r the reaction considered as a mul t i component idéal gas 

4HCl(g) + 0 , (g ) = 2H,0(g) + 2Cl,(g), 

we have 

^ . ( 7 ' ) = / ' W c i . / / ' H C . / ' o , 

K^{T,p) = N\^oNhJN'ncxNo, 

K,{T,p) = Ck^oNhJCkciCo, 

and the three constants are related by 

K^{T,p)=pK,{T) = CK,{T,p) 

where C = C^; thus, K}f{T,p) is here proport ional to pressure. 
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D . D E P E N D E N C E OF THE E Q U I L I B R I U M C O N S T A N T O N T E M P é R A T U R E A N D 

PRESSURE 

1. The Clausius-Kirchhoff Equations 

Let us first show how the thermal coefficients are interrelated. T h u s , 

we will be able to find the dependence of the equi l ibr ium constant on 

tempéra ture and on pressure. 

T h e internai energy U being a func t ion of T, V, and i, we have the 

identities 

_dHJ_ 

dVdT dTdV' dVd^ dV ' dT dT ' 
(6.36) 

T h u s f r o m (2.17)-(2.20) , we obtain 

dT 

d 

dV 

TV '[ dT )y, 

(dU\ ^ I drrv \ 

TV 

-P) 

( Kirchhof ï -CIaus ius ) 

(6.37) 

5 1 TV 

(De Donde r ) 

\ dV 

d{lr,-p) 

dT 
(Clausius). 

(6.38) 

W e may proceed in an analogous m a n n e r in the variables T, p, and f . 

F r o m (1.15) and (2 .4)-(2 .6) , we may write 

{dHldT\, (6.39) 

F + = {dHldp)T( (6.40) 

r^,, = -{dHldi)r^. (6.41) 

T h e enthalpy H be ing a func t ion of T, p, and f , we then have f r o m (2.7) 

d I dH \ I dr^p 

dT 

dH 

dT 

da Pi 
dp 

dH 

\d{hr,+ V)l 

i r [ dT \ 

dp \ dS )rr 

dr Tp_\ ^ 

dp JTI 

dCp( 

dS jTp 

d{hn + V) 

(Kirchhof ï -CIausius) 

(6.42) 

dS 

(Clausius) 

(Clausius). 

(6.43) 

(6.44) 
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Now, since Cp^ is a funct ion of state of the system, we have 

dCrtP \ „ I dCnf \ driy 
(6.45) 

where is the partial molar heat capacity of y at constant pressure, 

defined by 

Cpy= {dCJdn^)Tj,„y (6.46) 

Combining (6.45) and (6.42), we obtain 

(Kirchhoff) . (6.47) 

Th i s équation is of importance since it enables us to calculate the heat 

of a reaction at any température provided that it is known at one tem-

pérature, and that we know the partial molar heat capacities of the 

components taking part in the reaction (see the example in Section 

V I I I ) . 

T h e Claus ius-Kirchhof ï équations are quite gênerai because they do 

not suppose any particular state of matter (perfect or nonperfect gas, 

idéal liquid or nonideal liquid, solid). 

2. Influence of Température on Equilibrium Constants 

T h e influence of température on the equil ibrium constant is now easy 

to establish. Indeed, the entropy being a funct ion of state, we have 

(6.48) 

and then, f rom the first of Eqs. (2.12), combined with (2.13) and (6.41), 

we can write 

djAIT) 

dT 
(6.49) 

T h u s , combining (6.49) and (6.27), we find the well-known équation of 

van't Hof ï 

d[\nK,iT,p)] 

dT RT^' 
(6.50) 
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F r o m (6.50) and (6.33), we also obta in 

dT RT^ ' 
(6.51) 

or, in another f o rm . 

diRXnKAT)y^^^^ (6.52) 
d{\IT) 

If the reaction is accompanied by an absorpt ion of heat (r^p < 0), 

the equiHbrium constant increases wi th t empéra tu re , while, for an exo-

thermic reaction (r^j, > 0), it decreases. 

Example. F o r the dissociation of water vapor, 2H2O = Z H j + O2, 

the reaction is endo the rmic and thus is favored by a high tempéra ture . 

T h è s e équa t ions enable us to calculate the rate at which the equi l ibr ium 

constant is changing wi th the t empéra tu re w h e n r^p is known ; and if we 

know T f f j , as a func t ion of the t empéra tu re , then (6.51), may be in-

tegrated. T h u s , f r o m the equi l ibr ium constant at any tempéra ture , we 

may calculate its value at any other t empéra tu re . 

By intégrat ion of (6.51) between (initial) and T, we get 

In K^{T) - In K^{T^) = - J ^ . ( r ^p /^T^) dT. (6.53) 

F r o m (6.47), it is then possible to know the explicit f o r m of rTj,{T) and 

then to calculate the intégral (6.53). A detailed example is given in Sec-

t ion V I I I . 

Remarks. (1) T h e same équat ions as above may be wri t ten in the 

variables T, V, and f . T o dérive the relat ionship be tween the thermal 

coefficients Cv(, IT(, and ripy wi th T, V, and f as variables, it is most 

convenient to consider first t he total differential dU in the variables 

T, V, and f [see E q . (2.16)] and then to replace dV by the value given 

in t e rms of T, p, and | [see Eq . (2.3)] . 

Employ ing Eqs . (2.2), (2 .4)-(2 .6) , and (2.18)-(2.20) , we can write 

the requi red gênerai relations be tween the thermal coefficients in the 

two sets of variables T, V, f and T, p, ^ (see Chapte r 1, Section X V I I I ) : 

+ lT,{dVidT\, (6.54) 

= lT(idVldp)T( (6.55) 

^Tp = rrv — lT(idVld^)Tp. (6.56) 
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For a perfect gas, (2.19) and (6.55) reduce, respectively, to 

/y^ = p (perfect gas) (6.57) 

= p{àVldp)Ti = - V (perfect gas). (6.58) 

Fur thermore , 

{dVldT\^ = TtRIp (perfect gas) (6.59) 

{dVld^)Tj, = vRTip (perfect gas). (6.60) 

Equat ions (6.54) and (6.56) thus become 

Cj,( — Cy^ = îiR (Mayer ' s fo rmula ) (6.61) 

r^j, — Tj^y = —vRT. (6.62) 

I t is then easy to show that Eqs . (6.49) and (6.51) may be writ ten in 

the f o r m 

dT jy^ RT^ 
(6.63) 

^[In J ^ , ( r ) ] ^ _ rry . . . 

dT RT^ � ^ ^ ^ 

(2) F r o m the expér imental point of view, if r^p is independen t of T, 

then (6.53) may be wri t ten 

In Kj,(T) = (rTpIRT) + const. (6.65) 

A n example of a reaction for which In is a linear func t ion of 1 / 7" 

over a wide t empé ra tu r e range is given in Section V I I I . 

(3) Inf luence of pressure on the equil ibr ium constants . L e t us write 

t he last of Eqs . (3.12) as 

{dAldp)T, = - {dVld^)r, = -ATP, (6.66) 

where A^j, is t he change in the volume of the System p roduced by the 

chemical reactions at constant T and p, 

= S v^v^. (6.67) 
y 

T h e variation of the affinity of reaction with the pressure is seen to be 

appréciable only if t he react ion is accompanied by a considérable change 
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in volume when it takes place at constant température and pressure. 

If a reaction is accompanied by an increase in volume when the pressure 

is kept constant, an increase in pressure will reduce the affinity of the 

reaction. 

Example. For the gas reaction 2H2 + 0 2 = 2H2O, Aj-j, < 0 and the 

affinity of the reaction increases with pressure. From the expérimental 

point of view, according to this, it could be interesting to work at high 

pressure. 

Combining (6.67) and (6.27), we obtain 

d[ln K^{T, p)]ldp = -ArJRT. (6.68) 

An increase in pressure increases the equilibrium constant if the 

reaction is accompanied by a decrease in volume (Aq^j, < 0); and, con-

versely, if Zlyp > 0, the equilibrium constant is decreased (Le Chatelier's 

principle). For a perfect gas mixture, (6.67) and (6.16) give 

Ar, = vRTjp, (6.69) 

so that (6.68) reduces to the formula 

p{d[\nK^.{T,p)]ldp] = -V. (6.70) 

E . I D é A L S Y S T E M S 

In order to discuss the behavior of idéal Systems, we need to express 

the chemical potentials of the components in a form in which the molar 

fractions or the partial pressures appear explicitly. 

One-Phase System 

An idéal System may be defined by the équation 

C{T,p) + RT In N^. (6.71) 

Mixtures of perfect gases and very dilute solutions are referred to as 

idéal Systems. If the solution is idéal for ail values of and for ail y, 

it is then called a perfect solution. 

Pure components are always idéal Systems because 

M^ = ^^{T,p). (6.72) 
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N o w , combin ing (4.21) and (6.71), we obtain 

A = RT\n[Ky{T,p)INl\ .. .,N:q, (6.73) 

where Ks{T,p) is def ined by the équat ion 

RT\n K^{T,p) = - S r ^ ( r , / . ) (6.74) 
y 

At the equiUbrium, 

.4 = 0 and Kt,{T, p) = N[\ .. .,N:' (Gu ldbe rg -Waage ) , (6.75) 

and we obtain again the van ' t HofF expression (6.50) and Eq . (6.68) valid 

here for an idéal sys tem, 

F . MuLTiPHASE SYSTEMS 

W h e n each of the phases is idéal, we have fol lowing the définit ion 

[see (6.71)] 

/ z / = C/iT, p) + RT In N / , (6.78) 

and the mul t iphase sys tem is then called an idéal system. 

Passage Reaction 

If the reaction consists in a t ransfer of a componen t y f r o m one phase 

( ' ) to another ( " ) , we have, f r o m (4.21), (6.78), and (6.73), 

= fi; - f,;' = RTln K^t,{T,p) - RT\n{N^'jN^); (6.79) 

when the equ i l ib r ium of t ransfe r is at tained, (6.79) reduces to t h e well-

known N e r n s t d is t r ibut ion law 

N^'IN; = K,^{T,p). (6.80) 

I t is physically obvious, and also an expérimental fact, tha t , for tr i-

variant Systems (for example , three components and two phases) , the 

composi t ion of y in one phase , N^", at constant t empéra tu re and pressure 
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varies proportionally to the composition of y in the other phase, N^, 

following (6.80). For a divariant System, both the température and pres-

sure can be fixed arbitrarily. For example, we can study a pure liquid 

in the présence of a gaseous phase such as nitrogen. Neglecting the weak 

solubility of nitrogen in the liquid (subscript /), (6.80) becomes 

= Ki^{T,p), 

where V désignâtes the vapor phase. T h e composition of the vapor of 

the liquid in the vapor phase is thus only a funct ion of T and p. 

For a monovariant System—for example, a pure liquid in the présence 

of its own vapor—the Nerns t law Ki^-{T, p) = l shows that the pressure 

dépends only upon the température . T h i s resuit is consistent with the 

phase rule. 

Example. Chemical reactions between two différent phases. For the ther-

mal dissociation of calcium carbonate in air, 

C a C 0 3 ( s ) = C a O ( s ) + C O j ( g ) , 

let us assume tha t each reacting component is présent in one phase and 

that C02(g) + air is a mixture of perfect gas. T h e n it is easy to see that 

A = RT\n[K^{T,p)lNco^ 

For equil ibrium, A^co, = K^{T,p), or Pco, = PKN{T,P), which shows 

that the equi l ibr ium partial pressure of C O j dépends both upon the 

total pressure p and the température . 

In the absence of air (A'̂ co^ = l)i we find Kx{T, p) = \, and the equi-

librium pressure of carbon dioxide dépends only upon the température. 

Remark. If the condensed phases (liquids and solids) in a heter-

ogeneous System are pu re components and the gas is a mixture, it is more 

convenient, f r o m a practical point of view, to express the equilibrium 

constant in t e rms of partial pressures. 

Applying (4.21) and (6.18) to our System, we obtain 

^ = - S VifiiiT, p ) - ^ vjfij*{T) - i î T S vj Inpj, (6.81) 
i 3 j 

where the subscr ipts i and / refer, respectively, to the condensed pure 

consti tuents and to the gaseous components . W e then may write 

A = RT\n{Ksinp]'), (6-82) 
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where 

R T l n K ^ ^ - I . ViiiiT,p) - S v^/^,*(7^). (6.83) 
i j 

As for condensed phases, the chemical potentials fii{T,p) are practically 

independent of pressure (Prigogine and Defay, 1967, p. 163); the con-

stant K varies only wi th the température . 

Example: 
NiO(s) + CO(g) = Ni(s) + COa(g). 

For equi l ibr ium, (6.82) reduces to K^^ = pcojpco ^i^d does not 

dépend u p o n the total pressure. 

VII. S t a n d a r d F u n c t i o n s a n d F u n c t i o n s o f M i x i n g 

A . S T A N D A R D F U N C T I O N S 

In gênerai, every intensive thermodynamic quant i ty 0 in a un i form 

System 6= d{T,p, N^, ...,Nc), can be split u p arbitrarily into the 

sum of two func t ions—for example, a s tandard par t Q^{T,p) which 

dépends only u p o n the tempéra ture and the pressure, and a funct ion of 

mixing d^{T,p,N,, ...,N,): 

e=d^{T,p) + e"^{T,p,N„ ...,N,). (7.1) 

For example, an idéal system characterized by (6.87) gives 

/ ^ / = f , ( ^ , ^ ) (7.2) 

f^/^ = RT In N^. (7.3) 

T h e affinity of such a system is wri t ten 

A = A^ + A"', (7.4) 

where 
A^=-I.v^Cy{T,p) (7.5) 

Y 

A^= -^v^RTlnN^. (7.6) 
Y 

T h e chemical potent ial being the partial molar quant i ty corresponding 
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to the Gibbs free energy G, we have, f r o m (3.9), 

dtiJdT=-s^, (7.7) 

where the partial molar entropy of y is defined by 

5 , = ( 5 5 / ô « > , . (7.8) 

Now, combining (7.2), (7.3), and (7.7), we find 

s^=-{dQdT)-R\xyN^ (7.9) 

and 

V = - 5 C , / ô r (7.10) 

s;^=-R\nN^. (7.11) 

In the same manner , the entropy of reaction can be written as 

-R^v^XnN^. (7.12) 
y 

T h e quanti ty (dSjd^Y'pp is often called the standard entropy of reaction. 

As the partial molar volume for an idéal System is only a fonction of 

T and p, we may write 

= V,; = dfi^-ldp = dCyldp (7.13) 

and 

Ar„ = A% + Zl?;̂  = 2 v^v;. (7.14) 
X 

It is easy to show that, for idéal Systems, 

n2 � 
-y-y ^ 'y-'Y ' ^ -y - \^yl 

y y y 
TTV = 4p = - 2 v A = - 2 yyh;= r 2 d{C,IT)idT (7.15) 

and 

c^^ = dh^ldT = dh/ldT, (7.16) 

where is the partial molar enthalpy of y. 

For perfect solutions, h^^, ij,̂  and v^^ are equal to the molar enthalpy. 

molar entropy, and molar volume of the pure component , respectively. 

On the other hand, the identity 

djCyjT) ^ 1 dÇy C 

dT T dT T 
\ (7.17) 
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enables us to show that 

dS 
= A' 

Tp 

and 

dr Tp 

dT 

From (2.13) and (7.5), 

'Tp + T 
dS 

= A" 
Tp 

T h e foUowing équations are also easily verified 

d{A'IT) 

dT 

dA' 

dp 

dT 

-A Tp-

(7.18) 

(7.19) 

(7.20) 

(7.21) 

(7.22) 

As, in gênerai, every property {dXjd^)jj,, where X is any extensive 

variable, can be added together in the same way as chemical reactions, 

it is immediately clear that this is particularly true for A^, r^p, (55/51)^^ , 

and /l^p- More explicitly, standard affinities, standard heats of reaction, 

standard expansions, and standard entropies of reaction can be added together 

in the same way as the chemical équations for the reactions themselves. 

Now, f rom (6.75) and (7.5), we see that 

K^iT,p) = txp{A^IRT). (7.23) 

This équation enables us to calculate the equilibrium constant of any reac-

tion which can be obtained by a linear combination of known reactions. 

B . S T A N D A R D F U N C T I O N OF F O R M A T I O N 

Many tables give values of the standard affinities and heats of reaction 

at a température of 298.17°K (25 °C) and a pressure of 1 atm (symbols 

A° and r^p). I t is m u c h more convenient to consider s tandard affinities 

of reaction than equil ibrium constants. This is because standard affinities 

can be added and subtracted in just the same way as stoichiometric 

équations, so that the s tandard affinity and the equil ibrium constant of a 

reaction not included in the table is easily calculated. 
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A reaction involving a c o m p o u n d p roduced f r o m its éléments (thèse 

é léments being taken in their no rma l physical state under specified 

condi t ions) , is called a formation reaction. 

I t is also necessary to specify the physical condit ion of the compound 

which is fo rmed , al though this need no t necessarily be the stable state 

u n d e r the condit ions considered. 

At 298 .16°K and 1 a tm pressure , the normal physical state of the 

é léments are the gas state (for example , hydrogen, oxygen, fluorine), 

t he l iquid state (for example, mercu ry , b romine) , the solid state (for 

example, sod ium, rhombic su l fur , iodine) . T h e s tandard values for the 

fo rma t ion of an élément in the s table physical state are, by définition, 

zéro. 

Fo r example, Al^ is equal to zéro for the format ion of solid iodine, 

l2 ( s ) 12 (3 ) , b u t for the format ion of gaseous atomic hydrogen, \ii^{g) 

~* H ( g ) , the s tandard afiinity at 298 .16°K and 1 atm is not zéro, 

because a tomic hydrogen is not s table at this t empéra ture and this 

pressure . 

I n gênerai , t he s tandard affinity of fo rma t ion A^°, the s tandard heat of 

fo rmat ion r^^y, and the s tandard en t ropy change of formation {dS°jd^y)f^ 

are def ined as the s tandard affinity, s t anda rd heat, and standard entropy 

of the fo rma t ion reaction of the c o m p o n e n t y. Equat ion (7.18) then 

becomes 

^ , ° = . J , , + 2 9 8 . 1 6 ( — ) ^ ^ . (7.24) 

I n T a b l e I , values of r^p^ and Ay° a re given for some compounds (Pri-

gogine and Defay, 1967, p. 99). T h e values of {dS°jd^y) are easily 

calculated f r o m (7.24). 

Uns t ab le c o m p o u n d s such as O3, N O , and NO3 have négative s tandard 

affinities of format ion at 218°K and 1 a tm, while for the other inorganic 

c o m p o u n d s they are usually positive. F o r é léments in an unstable physical 

state, A° is négative [S (monochnic) and Cl(g)] . 

N o w , f r o m a practical point of v iew, the s tandard affinity A^ of a 

reaction can be evaluated f r o m the knowledge of the equi l ibr ium constant 

(7.23). T h i s last quant i ty is given by measu r ing the mole fract ions of the 

var ions componen t s at the equ i l ib r ium. Conversely, if the s tandard 

affinity is known, we can evaluate t h e posit ion of equil ibr ium. 

A large positive s tandard affinity of fo rmat ion means that the com-

p o u n d will no t décompose spontaneous ly into its éléments under the 

s t andard condit ions, since the synthes is reaction is practically complète. 
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T A B L E I 

STANDARD THERMODYNAMIC FONCTIONS OF FORMATION AT T = 2 9 8 . 1 6 ° K , /> = 1 ATM 

Substance State 
(kcalmol^') (kcal mol ') (cal mol"! "K"') 

Ca s 0 0 9.95 

CaCOj (calcite) s 288.450 269.780 22.2 

(aragonite) s 288.490 269.530 21.2 

CaO s 152.800 145.360 7.8 

Hg 1 0 0 18.5 

Hg, g -27 .100 — -

Na s 0 0 12.48 

NaCl s 98.232 91.785 17.3 

H , g 0 0 31.211 

H g -52 .089 -48.575 27.393 

F , g 0 0 48.6 

Cl. g 0 0 53.286 

Cl g -29 .012 -25 .192 39.457 

Br, 1 0 0 36.4 

g - 7 . 3 4 0 -0 .751 58.639 

II s 0 0 27.9 

g -14 .876 - 4 . 6 3 0 62.280 

I g - 2 5 . 4 8 2 -16 .766 43.184 

HI g - 6 . 2 0 0 - 0 . 3 1 0 49.314 

o . g 0 0 49.003 

O g -59 .159 -54 .994 38.469 

O, g - 3 4 . 0 0 0 -39 .060 56.8 

H , 0 g + 57.798 54.635 45.106 

1 + 68.317 56.690 16.716 

H.O, aq. (m = 1) 45.680 31.470 -
S (rhombic) s 0 0 7.62 

(monoclinic) s - 0 . 0 7 1 -0 .023 7.78 

N . g 0 0 45.767 

N g -85 .566 -81 .476 36.615 

NO g - 2 1 . 6 0 0 -20 .719 50.339 

N H , g + 11.040 3.976 46.01 

CO g 26.416 32.808 47.301 

c o . g 94.052 94.260 51.061 

CH4 g 17.889 12.140 44.50 

CH.OH g 48.100 38.700 56.8 

1 57.036 39.750 30.3 

CjHjOH g 56.240 40.300 67.4 

1 66.356 41.770 38.4 
CH.COOH 1 116.400 93.800 38.2 
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T h i s does not prove, however, that t h e compound will not décompose 

to f o r m a more stable compound . 

As an example, hydrogen peroxide at 25 °C and 1 a tm will not décom-

pose spontaneously to H j and O j , b u t will completely to H 2 0 ( l ) and 

0 , ( g ) : 

A° = -Ali^o, + ^?,^o + lA°o„_ = 25,220 cal m o l - ' . 

O the r important examples are f o u n d in organic chemistry. 

But the affinity only indicates the tendency of a reaction to proceed 

and says nothing about the kinetics of t he reaction. In organic chemistry, 

we f requent ly find that a n u m b e r of d i f férent substances can be formed 

f r o m the same starting materials, so tha t it is usually necessary to employ 

a spécifie catalyst to accelerate the requi red reaction. An interesting 

example is given by the oxidation of acétone (Prigogine and Defay, 

1967, p. 98). 

Remark. In American tables, we f ind the mean value 

A = -{AGIAè)Tp and = 1. 

Fu r the rmore , in place of AG, the symbol used usually is AF, so that 

in Amer ican tables we find the quant i ty 

/ 1 F = - A . 

C . V A R I A T I O N OF S T A N D A R D A F F I N I T Y W I T H T E M P é R A T U R E A N D PRESSURE 

Let us integrate (7.21) between two tempéra tures T a n d = 298.1°K 

at constant pressure po= \ a tm. W e find 

A\T,p°) A\T°,p°)_ rT 4 , 

T T° ~" Jro ^ ' 

T h e quant i ty A^{T°,p°) can be evaluated with the help of the s tandard 

affinity of format ion and r^j, can be calculated with the help of (7.19). 

N o w , to know the influence of the pressure upon the standard affinity, 

we m u s t integrate (7.22) at constant tempéra ture . T h e molar volumes 

are expérimental quantities. 

Finally, to calculate the affinity, we may use Eqs. (7 .4)-(7.6), 

A = A\T, p ) - RT^ Vy In . 
Y 

(7.26) 
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V n i . N u m e r i c a l E x a m p l e s 

Example 1. W e consider a perfec t gas mixture resulting f r o m the 

reaction 

2CO(g) + O^Cg) = 2CO,(g). 

(1) at 1 a tm is a func t ion of the tempéra ture , following Ki rchhof f ' s 

law (6.47) 

r'Tv=-\l^v^c^ydT-VP, (8.1) 

where /S is the constant of in tégrat ion. 

N o w , the molar heat capacities are usual ly expressed in an empirical 

power séries of the fo rm (Bryant , 1933; Ewell, 1940; Thacker et ah, 

1941; Kelley, 1960; Spencer , 1945) 

c^ = a + bT + cT^+ ��� 

C O : 6.25 + 2.091 X 1 0 - ^ 7 - 0.459 X lO-^T^ 

CO^: 6.85 + 8.533 X lO-^T - 2.475 x lO-^T^ 

O^: 6.26 + 2.746 x l O - ^ r - 0.770 X 1 0 - T ^ 

W e then obta in 

4p = ^ + 5 . 0 6 7 - 5.069 x lO-^T^ + 1.087 x lO-^T». (8.2) 

At 298.16°K, 4p = v^r%^, and , f r o m the Tab l e I , = 135,272 cal. 

P u t t i n g this value in Eq . (8.2) for T = 298.16°K, we get the expression 

for 

r^Tv = 134,185 + 5 .06T - 5.069 x lO-^T^ ^ i .087 X lO-^T^. (8.3) 

(2) W e now calculate the affinity as a func t ion of the t empéra tu re by 

us ing (7.25). F r o m T a b l e I, 

^=(298.16°, 1 a tm) = 2 v^^° = 122,904 cal; 
y 

thus , 

^ . ( 7 - , l a t m ) = i ^ r - r J ^ ^ _ , ^ . r . (8.4) 
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Putting (8.3) in the intégral of (8.4), we find 

A'{T, 1 atm) = 134,185 - 10 .497 - 5 .067 In T + 5.069 X IQ-^T^ 

- 0.543 X 10 -«r^ (8.5) 

(3) T h e equilibrium constants K-f{T, p) and K^{T) can be calculated 

with the help of (7.23) and (6.33). T h e combination of (7.23), (8.5), 

and (6.33) gives 

log ,„ i^ , (T) = \og,,K^{T, 1 a tm) = (29.427/7) - 1.11 log^o 7 

+ 5.069 X 10-372 - 0.543 x 10-''73. (8.6) 

Applying (6.22) to our reaction, we can write 

K^{T)=ploJploPo^, (8.7) 

where Kj,{T) is not a function of the pressure, but only of the tempéra-

ture (Fig. 15). 

FiG. 15. Equilibrium constant as a function of température for the reaction 2C0 
+ Oj = 2CO.. 
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I t foUows immediately f rom (6.15) and (8.7) that 

1 ^ c o , 
^r>iT) = j j ^ ~ - . (8.8) 

Le t us now introduce the degree of dissociation a in such a way that we 

have at equiUbrium a moles of CO, œ/2 moles of O j , and (1 — a ) moles 

of CO2. 

Equat ion (8.8) then becomes 

K^{T) = (1 - ay{2 + a)lpa\ (8.9) 

For any value of a and p, we are thus able to calculate the equilibrium 

température with the help of the Fig. 15. 

Fo r example, at « = 1 0 - » : for ^ = 1 atm, Kj,{T) = 2 x 10» a t m - i and 

r = 1600°K; fo r / ) = 0 . 1 a t m , ; ^ p ( r ) = 2 x l O ^ a t m - i a n d r = 1520°K. 

Example 2. I n the thermal dissociation of calcium carbonate, CaC03(s) 

(aragonite) = CaO(s) + C02(g), each constituent occurs in one phase 

only. 

(1) r^j, at 1 atm as a function of the température. T h e empirical values 

of the molar beat capacities are 

CaCOg: 26.35 (290°K-1030°K) 

C O : 11.78 

CO2: 7 + 7.1 X 1 0 - T - 1.86 X l O - T ^ 

F r o m KirchhofF's law (6.47), we thus obtain 

TTV = ^ + 7.57T - 3.55 x IQ-^T' + 0.62 x lO-'T». (8.10) 

At 298.16°K, f rom Table I, we have r'^^ = - 4 1 , 6 3 8 cal, and (8.10) 

then becomes 

T'TJ, = - 4 3 , 6 0 0 + 7 . 5 7 r - 3.55 x IQ-^T' + 0.62 x 1 0 - T ^ (8.11) 

At 1200°K, r \ = 38,500 cal. 

(2) F rom Table I, we have 

^«(298.16, 1 atm) = S v^^° = - 2 9 , 9 1 0 cal. 



2A. Equilibrium, Stability, and Displacements 153 

Now, f rom (7.21) and (8.11), it results 

A'{T, 1 atm) = - 4 3 , 6 0 0 - 17 .4 r iog io T + 86 .27 + 3.6 X lO-^T^ 

- 0.3 X 1 0 - T 3 . (8.12) 

At 900°K, ^^(900°, 1 a tm) ~ - 9 7 0 0 cal. 

(3) From (7.23), thc equi l ibr ium constant at 900°K and 1 atm is 

then equal to ~ 3.8 X 10"^ 

(4) If the reaction is studied in the présence of air, Ks{T,p) = A^co^ 

and pco, = />A^co,, and thus, at 900°K and 1 atm, iVco^ — 3.8 X 10-^ 

Pco, ^ 3.8 X 10 -3 atm. 

(5) T h e affinity of the reaction can be calculated with the help of 

(7.26). 

At 1 atm and 900 °K and for Nco, = 10-^ 

A = A'RTÏnNco, = - 9 7 0 0 - i ^ T l n 3.8 X 10-^ ~ 2600 cal. (8.13) 

In the absence of air, A''co2 = 1 and p = pco,y and K^{T,p) = 1, 

which shows that the equil ibr ium pressure of carbon dioxide dépends 

only on the température. 

Example 3. Let us now consider the synthesis of ammonia, N j + S H j 

= 2NH3, as a mixture of perfect gases. Using Eq. (6.67), we obtain 

^Tp = 2vt,u, —�Vî,, — = — 2 v j i ^ . (8.14) 

F rom (6.66), we see, then, that the affinity of the reaction increases 

with pressure. 

Combining (6.66) and (8.14), we can write 

dAjdp = 2RTIP, (8.15) 

or 

A{T,p) - A{T, 1 a tm) = 2RT\np; 

at 1 0 ' a t m , A{T,p) — A{T, 1 a tm) ~ 8000 cal. This reaction is exo-

thermic because r^j, > 0; r^^ = 22,800 cal (see Table I). F rom (6.50), 

we see that the synthesis of ammonia is favored by a decrease of tempéra-

ture. 

Example 4. W e may examine the formation of methanol in a mixture 

of gases 

CO(g) + 2Hj(g) = CH,OH(g). ( 8 . 1 6 - 1 ) 
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T h e heats of combustion of , CO, and CH3OH at 298.16°K and 1 atm 
are (see Table I) 

H,(g) + iO,(g) = H,0(1) 41,(11) = 68,317 ca l 

CO(g) + iO,(g) = CO,(g) 4j.(iii) = 67,636 ca l 

CH,OH(g) + fO,(g) = C02(g) + 2H,0(1) 4i,(iV) = 182,586 ca l . 

(8.16-II) 

(8.16-III) 

(8.16-IV) 

T h e heat of reaction of (I) is then equal to 

^Tpa) = ''î'pdii) + ^^Tpiu) — ^Tpav) = 21,684 cal. 

Using Table I, we find the same resuit for the reaction (I), 

^Tpd) — ^rpOEjOH — ''rpco = 21,684 cal. 

T h e standard affinity Afi^ for the reaction (I) is equal to 5892 cal. Using 

(7.18), we can also obtain A°ii: 

^CHjOHcg) = 56.8 cal, jgocg) = 47.3 cal, s^^^^g^ = 31.21 cal, 

A°a> = r^pm +TJ: V^S° = 5908 cal. 
y 

Example 5. Entropy of a gas. We now consider the vaporization of 

methanol 

CH,OH(l) = CHjOHCg). (8 .17) 

W e shall calculate the standard entropy of the vapor of methanol (as-

sumed here to be perfect) s\g, (298.16, 1 atm), knowing the corresponding 

value of the liquid s\) (298.16, 1 atm) and the heat of vaporization of 

CH3OH at 298.16°K and 0.163 atm. 

From (6.5), we find at 0.163 atm and 298.16°K 

4 , (298 .16°K, 1 atm) = 4 , (298.16°K, 0.163 atm) + i? In 0.163. (8.18) 

O n the other hand, 

4 , (298 .16°K, 0.163 atm) = 4 ( 2 9 8 . 1 6 ° K , 0.163 atm) + zl5vap, (8.19) 

where AS^^^ is the entropy of vaporization, equal to the heat of vaporiza-

tion divided by the température. From Table I, we take the values of 

''î'îiCHsOHcg) = 48,100 cal, ''rpcnjOHO) = 57,036 cal. 
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T h e heat of reaction r^j, of (8.16-1) is thus equal to —8936 cal and the 
heat of vaporization to 8936 cal. T h e entropy of vaporization is thus 

We then obtain 

4 , (298.16°K, 0.163 atm) = 4)(298.16°K, 0.163 atm) + 2 9 . 9 8 . (8.20) 

As a first approximation, we neglect the effect of pressure upon the en-

tropy of the liquid. W e thus have, f rom Table I, 

4 (298 .16°K, 0.163 atm) ~ j^„(298.16°K, 1 atm) = 30.3 cal. (8.21) 

Combining (8.18), (8.20), and (8.21), we find 

It is interesting to know the influence of pressure on the entropy of liquid 

methanol. For methanol, the value of the dilatation coefficient is known. 

T h e spécifie mass is about 0.8 g cm"^ and the molar volume is equal to 

40 cm' . It is easy now to calculate the derivative {dsldp)x with the help 

of (3.12). We then obtain 

{dsldp)T = - 0 . 1 1 9 9 X 40 X 10-« = - 4 . 8 x 10-« 1 °K- i . (8.23) 

Integrating (8.23), we find 

j?„(0.163 atm) = 4 ( 1 atm) + 4.02 x 10-« 1 atm °K ~ 30.3 cal 

Thus , the pressure has no influence on the entropy of the liquid. 

^5vap = 8936/298.16 ~ 29.98 cal °K- i . 

5^,)(298.16°K, 1 a tm) = 56.68 cal. 

(8.22) 

IX. R e a l Gases 

A . I N T R O D U C T I O N 

T h e idéal gas law may be derived directly on the basis of simple 

kinetic assumptions in which the translation energy of molecular motion 

is the main considération. 
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Ail gases behave like idéal gases at sufficiently high températures and 

sufficiently high molar volumes. As the molar volume is decreased, 

however, real gases exhibit a more complicated behavior. As a gas is 

compressed, its properties at first deviate only slightly f rom those of an 

idéal gas. Under sufficient compression, however, every real gas undergoes 

a condensation to the liquid or solid state, in which condition it déviâtes 

very far indeed f rom idéal gas behavior. T h e resuit is that ail real gases 

mus t be treated by a more realistic équation of state in such a way as 

to explain such phenomena as condensation, intermolecular collisions, 

and a variety of transport properties, such as diffusion and viscosity. 

T h e modification of the perfect gas model involves the inclusion of at-

tractive and répulsive intermolecular forces. A detailed discussion of 

the intermolecular forces in gases and of the state équations is to be 

found in several fundamental books (Fowler and Guggenheim, 1939; 

Mayer and Mayer, 1940; Hirschfelder et al, 1965). 

Our purpose here consists in the évaluation of the thermodynamic 

funct ions f r o m the virial équation of state, and in the introduction of the 

notion of fugacity. 

B . T H E V I R I A L E Q U A T I O N OF S T A T E 

Kammer l ing-Onnes (1902) suggested that, with decreasing molar 

volume V, the properties of every real gas can be expressed in a power 

séries in Ijv of the form 

T V 

where the coefficients B{T), C{T), ..., are funct ions of the température. 

T h e fo rms of thèse functions dépend on the types of intermolecular 

forces in the gas. T h e function B{T) is called the second virial coefficient, 

C{T) the third virial coefficient, etc. Enough terms are taken to acco-

modate the accuracy of the data available. T h e well-known équation of 

van der Waals may be shown to be correct only in terms to B{T). 

Nevertheless, for a slightly imperfect gas, we need only retain two 

terms of the expression, giving 

, = ,9 .2 , 

T h e virial coefficients are of ten expressed in terms of c m ' mol"^, 

bu t B(T) is not the volume of the mole, because it passes through zéro 
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and becomes négative at low température . I t has a maximum at a high 

température and then déclines with rising T. T h e température corre-

sponding to B{T) = 0 is called the Boyle température. At this tempéra-

ture, the Boyle-Mariotte law pv = const is observed. 

C . FREE E N E R G Y A N D C H E M I C A L P O T E N T I A L 

We now consider a mixture of real gases defined by the variables 

r, F, ni, . . . , 
Knowledge oi F{T, V, n^, ..., n^) immediately gives the state équa-

tion, because 

p= -dF{T,V,n„ ...,n,)jdV. (9.3) 

Conversely, the knowledge of a state équation permits us to calculate 

the thermodynamic funct ions of a gas. Th i s fact is more interesting 

because F is not an expérimental quantity. Furthermore, observable 

properties of a gas are usually summarized in the form of an équation 

of state. 

If the volume tends to infinity, the free energy F tends toward the 

value F* corresponding to a perfect gas, so that, by integrating (9.3), 

we find 

F{T,V,n„ ...,n,)~ lim F*{T,V„n„ .. .,n,) 

= - lim p dV. (9.4) 

For a perfect gas, we may write (9.4) in the form 

F*{T,V,n„ . . . , n , ) - lim F*{T,V„n„ .. .,n,) 

= - lim C p* dV, (9.5) 

where 

p* = nRTjV. (9.6) 

Combining (9.4) and (9.5), we find 

F{T,V,n„ ...,n,)-F*{T,V,n,, ...,n,)= - lim C (p-p*)dV. 

(9.7) 

Substi tuting (9.2) and (9.6), in (9.7), we have 

F = F* + BiRTn^jV) (9.8) 
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and, f rom (4.16), 

H = ti*{T, V) + 2{BRTnlV). (9.9) 

We have, therefore, from (6.7) and (9.9), the value of the chemical 

potential of a real gas 

fi = ix*{T) + RT\n{nRTlV) + l{BRTniV) (9.10) 

D . F U G A C I T Y 

T h e fugacity of a pure real gas is a corrected pressure, defined in such 

a way that the chemical potential n can be expressed in a classical form 

H = fi*(T) + RTXntp. (9.11) 

This intensive quantity gives the effects of intermolecular forces on the 

thermodynamic properties of gases. 

Comparing (9.11) and (9.10), we may write 

\n<p = \n{nRTIV) + 2{BnjV). (9.12) 

For a slightly imperfect gas, IBnjV is small compared with unity and 

(9.12) becomes, as a first approximation, 

^ = ^ ( l + 2 5 ^ V (9.13) 

Comparing this relation with (9.2) yields 

RT 

T~ V 
RT Bn /n 1 A\ 

<p~p = n - ^ (9.14) 

or 
<p = 2p-p*. (9.15) 

Now, in the limit of zéro total pressure, the fugacity (p is identical 

with the pressure. 

Example. At T — 382°K, the saturation vapor pressure of fluoro-

benzene is equal to 1.974 atm and the molar volume v= 15 X 10^ 

cm* mol- i . We then obtain p* = 2.085 atm, <p = 1.86 atm. 

Remark. At the Boyle température, <p = p = p*. 
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E . I N T E R N A L E N E R G Y 

I t is well known that in a Joule expansion a real gas tends to cool. T h i s 

fact is a direct conséquence of t he dependence of the internai energy on 

the volume. Indeed, subs t i tu t ing (9.8) in (3.10), we find 

U= U* - n\RT^lV) dBjdT, (9.16) 

where 

U* = F* — T dF*ldT. (9.17) 

W e thus have 

dU\ „ RT^ dB 

'T 

(dU\ , RT' dB 

T h e derivative dBjdT being positive, t he interval energy increases wi th V. 

As in a Joule expansion, dU = 0, and, because V increases, T mus t 

decrease in order to mainta in U constant . 

F . M I X T U R E OF R E A L G A S E S 

T h e State équation for a m ix tu r e of two slightly imperfect gases is 

P = ""'y"' R T + ^ [B,,n^ + 2B,,n,n, + B,,n,% (9.19) 

where the coefficients B^^, B^^, and related to the interaction, 

respectively, between molécules of type 1, of types 1 and 2, and of 

type 2. 

T h e free energy can thus b e obta ined by substi tuting (9.19) in (9.7): 

F=F*-{- {RTIV)[B,,n,^ + 2B,,n,n, + B,,n,% (9.20) 

and, f r o m (4.16), 

/^i = /^,*{T) + RT In + ^ [B,,n, + B,,n,] 

(9.21) 
= fi,*iT) + RT In + ^ [B,,n, + B,,n,]. 

Now, in order to obtain the fugaci ty in te rms of the virial coefficients, 

let us assume that for real gases (6.15) applies in the same manner , and 

thus 

I.py = Pi:K = p. (9.22) 
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Nevertheless, in this case, the partial pressure of a component is not 

necessarily equal to the pressure of the same component alone occupying 

the same volume at the same température . 

I n a real gas mixture, we may retain the simple form of (6.18) by use 

of the fugacity 

,x, = i,*{T) + RT\Tiq,^, (9.23) 

where /iy*{T) is the same function as for the perfect gases. 

Combining (9.23), (9.21), and (6.18), we obtain 

In 9,, = I n - ^ + 2 ^ 

(9.24) 

V 

O n the other hand, f rom (4.21) and (9.23), the affinity of a reaction 

is readily expressed in terms of fugacities 

^ = - S v , f i / i T ) - R T ^ v ^ In q>^. (9.25) 
y y 

W e then have 

A = RT\n[K^{T)lq,\Yi � � � (9-26) 

where 

\nK^{T)=- r , ^ , * ( T ) ] / i ? r . (9.27) 

T h e equi l ibr ium then gives the extension to real gases of the Gu ldbe rg -

Waage law of mass action 

/ ^ , ( T ) = <pî' � � . 9P^^ (9.28) 

Instead of the fugacities used in the expression of chemical potential, 

it is sometimes advantageous to use a corrected mole fraction called 

the activity of component y. Let us define this activity by 

= exp[Ca, - t^y^Wn (9.29) 

where fi^° is the same funct ion as in perfect gases; i.e., f rom (6.23) and 

(6.25), 

/ . / ( T , p) = ^l*{T) + RT Inp, (9.30) 

bu t hère p is the pressure of the real gas. 
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T h e chemical potential is t h e n 

li, = ^,°{T,p)-^RT\na^. (9.31) 

T h e activity is thus an intensive f u n c t i o n of T, p, Ni, .. ., N^, and 

contains ail the effects arising f r o m t h e interactions. T h i s quant i ty has 

been in t roduced by Lewis and Randal l (1923). 

Usual ly , the chemical potential is expressed in a more explicit m a n n e r : 

/ . , = / . , ° ( T , ^ ) + i î r i n / , i V , (9.32) 

where the coefficient f ^ , called the activity coefficient, is a func t ion of 

T,p, Ni, ..., Nf.. T h i s coefficient m a y t h e n be defined by the relation 

/ . = a,IN^- (9.33) 

I n the limit of zéro total pressure , t h e activity is identical to the 

mole f rac t ion N^, and thus the activity coefficient is equal to unity. 

Accordingly, for a perfect gas mix tu re , ail the activity coefficients are 

un i ty . 

N o w , it is easy to calculate the activity w h e n one knows the fugacity. 

I ndeed , compar ing (9.32) to (9.23) and (9.30), we find 

9y = PfyNy. (9.34) 

F o r a pu re const i tuent y, Ny= \ and 

Vy = P f y (9.35) 

T h e activity coefficient of a pu re gaseous componen t difîers f r o m unity 

because (p ^ p . 

T h e chemical potential of an isolated componen t may then be writ ten, 

fol lowing (9.30) and (9.32), 

f i , = ,i,°{T,p) + RTlnf^ = fM*{T) + RT\np + RT In f.^. (9.36) 

T h e quan t i ty fiy° corresponds to the chemical potential of an isolated 

c o m p o n e n t in a perfect gaseous state at pressure p and t empéra tu re T. 

I t is called the s tandard chemical potent ia l ju.^^, while the quanti ty 

RTlnf^Ny is the func t ion of mix ing fi^"^. 

L e t u s express now the affinity in t e r m s of activity. F r o m (4.21) and 

(9.32), we find 

^ = - S v,^,°{T, p ) - R T ^ I n / / / , (9.37) 
y Y 
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and t h u s 

whe re 

A = RTln[K^{T,p)liNJJ^ � � � { N J J ' ] , 

lnKy{T,p) i:vu°{T,p) RT. 

(9.38) 

(9.39) 

T h e quant i ty —HyV^ij,°{T,p) is called the s tandard affinity A^, and thus 

K^{T,p) = ^xç{A^jRT]. (9.40) 

A t equi l ibr ium, the G u l d b e r g - W a a g e équat ion becomes 

K^{T,p) = { N J J ^ . . . i N J , ) \ (9.41 ) 

As K^(T,p) is the same func t i on as in the perfect gas, we also find 

[see E q . (6.33)] 

K^{T,p)=p-'K,{T). (9.42) 

T h e other s tandard func t ions (superscr ipt s) and mixing func t ions 

(superscr ip t m ) are given as foUows: 

K = 
7̂ 2 9(tiylT) 

dT 
3 A» = 

y 

d{My°IT) 

dT ' 

h;^ = dT 
(9.43) 

dfiy 

dT ' 

dT 

r s _ 
"y 

d/ly° 

dT ' 

c ni — 
"y - R In f ^ N ^ -

dT 
(9.44) 

7' = 
y 

dfly 

dp ' 
V ^ — y dp ' 

^^d{\nfy) 

dp 
(9.45) 

^Tp = — 2 "A, 
y Y 

r™ — 
'Tp — y 

(9.46) 

dS 
2 '^y^y ' 
y 

1 dS 
-)� = 
ITp y 

dS 

- r = 
/Tp 

y 
(9.47) 
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T h e variation of the equiHbrium constant with température and pres-

sure can be calculated in the same manner as for the perfect gases [see 

Eqs. (6.50), (6.68), and (7.21)-(7.23)]: 

d[[nK^{T,p)] 

dT 

d[ln K^{T,p)] 

dp 

Remark. T h e standard entropy of a constituent in a perfect gas mix-

ture is equal to the entropy of the isolated constituent at the same tem-

pérature and pressure. But this is not t rue for real gases. Indeed, Eq. 

(9.44) reduces, for a real isolated gas, to 

= - R I n - RT d{ïn f^)ldT. (9.50) 

T h e entropy of real isolated gases can be evaluated by calorimetric 

measurements. T o obtain the standard entropy s^^ (see Table I) , we 

must subtract the above value of s^"^ f r o m the expérimental value. 

X. Stability of C h e m i c a l S y s t e m s 

I n this section, we shall discuss the stability of equilibrium states and 

présent some conclusions concerning the properties of thermodynamic 

variables in stable equilibrium Systems. 

A . D E D O N D E R ' S M E T H O D 

If , in a closed System P, a reaction may take place, its state is charac-

terized by two physical variables x and y (for example, T and p) and by 

a chemical variable f . We have 

dn^=v^di (y = 1 , 2 , . . . , 4 (10.1) 

Let us assume that, at time t, the system is in an equilibrium state. 

J _ d{A'IT) 

R dT R dT 

'Tp 

RT^ 
(9.48) 

1 dA^ 

RT dp^ 

— Sx VyV/ 

RT 

RT ^ 

'Tp 

d^Cy° 

dp 

RT 
(9.49) 
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T h e rate of reaction Vp is thus zéro, 

vp = 0. (10.2) 

At the same time, let us consider another system P' characterized by 

the same physical variables x and y as the system P but by a différent 

chemical variable f -j- rff. 

T h e System P' is not in gênerai in an equilibrium state and its rate 

of reaction Vp, is then 

Vp, ^ 0. (10.3) 

I n comparison with the system P , the system P' is thus a per turbed 

System. T h e per turbat ion consists here in the virtual displacement f rom 

f to f + with constant values of x and y. 

New, we know that [see Chapter 1, Eq. (20.2)] 

= + v^i. (10.4) 

T h e considered per turbat ion is thus identical to a slight change of ail 

the «j, proportionally to d^, 

ôn^=v^dl (10.5) 

At constant x and y, the system P is said to be stable with respect 

to the perturbations if the rate of reaction of the per turbed system P' 

tends to bring this system to the equilibrium state P (De Donder , 1942; 

Duhem, 1911, Chapter XVI ) . 

Let us now represent the Systems P and P' on the xy^ axes (see Fig. 16) 

and let us assume that the system P is stable. There are two cases : 

(1) (5f > 0 (system P ' ) , Vp, is directed in the direction opposite to 

the i axis; the rate of reaction d^jdt = Vp, is then négative. 

(2) ^1 < 0 (system P " ) , the rate of reaction Vp,, is directed in the 

same direction as the | axis and is positive. 

T h e criterion of stability is thus 

Vp, < 0. (10.6) 

T h e r e are two kinds of per turbat ions : those in which can have only 

one sign (unilatéral per turbat ions) , and those in which can be either 

positive or négative (bilatéral perturbat ions) . An example of a unilatéral 

perturbat ion is the appearance of a vapor bubble in a system which was 
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initially completely liquid, while the reverse reaction is impossible as 

long as there is no vapor phase. 

If a stable System is perturbed, it reverts to the initial equiUbrium; if 

it is unstable, the perturbat ion proceeds to a finite extent. 

FiG. 16. EquiUbrium stability of a System P. 

Remark. A perturbat ion is not necessarily related to any external action 

on the System. Molecular fluctuations lead to small variations of the 

macroscopic quantit ies f rom their equil ibr ium values. The re is, in fact, 

a relation between the probability of a fluctuation and the production of 

entropy which accompanies it. 

B . T H E P R I G O G I N E - D E F A Y M E T H O D 

T h e method adopted by Prigogine (see Prigogine and Defay (1967), 

p. 205) is based upon the direct évaluation of the entropy production 

in the course of a perturbat ion and so permits a discussion of stability 

with respect to any kind of perturbat ion. T h e entropy production cor-

responding to a change f rom a state P{x, y, ip) to a state P'{^p,) is given 

f r o m (2.1) by 

Qpp. = IJ^' A{^) di, (10.7) 

where, for a specified process, the physical variables x and y are functions 

completely determined by | . 
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Developing the affinity in the form of a Taylor séries, (10.7) be-

comes 

where = A{^p) and zlf = I p ' — f p . 

For a small variation zJf, we bave two cases: 

(i) Ap^O and Q;,p, = ^ p 5 f ; (10.9) 

(lï) ^ p = 0 and Q'pp, = i{dAld^)p{Ô^Y. (10.10) 

T h e t ransformations characterized by Eqs. (10.8)-(10.10) are called 

perturbations, where P is an equilibrium state. T h e y are related to the 

infinitésimal change ôi and to the conditions under which they are 

carried out. If , for example, x and y remain constant dur ing the per-

turbations, (10.10) becomes 

Q'pp, = i{dAid$)^p{ô^Y. (10.11) 

New, the State P is said to be stable with respect to the t ransformation 

P -> P ' if the product ion of entropy accompanying it is négative, and thus 

Q'pp, < 0. (10.12) 

On the other hand , for the inverse spontaneous process, P ' ->� P , the 

product ion of ent ropy is positive. 

C . T H E R M O D Y N A M I C C O N D I T I O N S OF S T A B I L I T Y . U N I L A T é R A L 

P E R T U R B A T I O N S 

T h e unilatéral per turbat ion is characterized by the fact that ÔS can 

have only one s ign; for example, let us take ôi > 0. T h u s , for a reaction 

d^ldt > 0, (10.13) 

and, f r o m (2.1), it follows that the System will be in equil ibrium provided 

that 

A<0. (10.14) 
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U Ap^O (10.12) and Eq. (10.9) yield the condition of stability 

Ap < 0, (10.15) 

which is in fact the condition of equil ibrium. 

If Ap = 0, Eq. (10.10) gives the condition of stability 

idAjd^)p < 0, (10.16) 

or, if X and y remain constant, 

{dAjd^^yP < 0 . ( 1 0 . 1 7 ) 

Now, combining (3.6) and (10.15), we find that, if P is a stable equi-

librium State, the internai energy U increases in the perturbations, 

(dUidiUp > 0, (10.18) 

where C/ is a funct ion of f only ( F and 5 are maintained constant). 

On the other hand, we have f rom (10.10), (10.17), and (3.6) 

{dUldi)ysp = 0, {d^Uld^^)ysp > 0. (10.19) 

and the internai energy U has a horizontal tangent at P; it increases 

during a per turbat ion if P is a stable equilibrium state. 

With regard to the stability of phases, the initial System (unper turbed) 

consists of a single phase, while the final system (per turbed) contains, 

in addition to the original phase, a small amount of a new phase whose 

properties (partial molar volume, volume, composition, etc.) difïer only 

infinitesimally f rom those of the original phase, or difïer f rom them by a 

finite, nonzero, amount . Usually, we say that the initial phase is stable 

when it is stable wi th respect to ail other phases whether infinitesimally 

diff^erent f rom them or not. In this case, the phase can never give rise 

spontaneously to a new phase in macroscopic amounts. 

T h e initial phase is called a metastable phase when it is stable with 

respect to phases infinitesimally différent f rom it, but there is at least one 

other phase with respect to which it is not stable. Th i s means that, 

in the absence of nuclei, the System may remain indefinitely in equilibrium 

without the appearance of a new phase (supercooled liquids). 

Finally, the initial phase is called an unstable phase when it is unstable 

with respect to the phases infinitesimally différent f rom it. Practically, this 

means that the phase will disappear and give rise to one or more neigh-
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boring phases (molecular fluctuations) until we arrive at a phase which 

is stable wi th respect to adjacent phases. 

Remark. Ins tead of (10.18), we may write the classical conditions 

{dHid^\s > 0 , ( 10 .2 0 ) 

{dFld^)yT > 0 , ( 10 .2 1 ) 

( 9 G / 9 | ) r p > 0. (10.22) 

If Ap = 0, t h e n we have 

idHld^)^s = 0 , {d'HjdPU > 0 ( 1 0 . 2 3 ) 

{dFld^)yT = 0 , {d'FldP)yT > 0 ( 1 0 . 2 4 ) 

( Ô G / 5 | ) r p = 0, {d'GldP)rj, > 0. (10.25) 

D . STABILITY W I T H RESPECT TO BILATéRAL PERTURBATIONS 

W e have seen earlier (Section I I ) , that false equi l ibr ium may be charac-

terized by v = 0 and A ^ 0 . T h u s , if such a system is per turbed, it 

does not revert to its initial situation. Only t rue equi l ibr ium could be 

stable. T h e first condit ion of stability is t hus Ap = 0 in a state P. 

Fur the rmore , in the per tu rbed state P ' , the System m u s t take a rate 

satisfying the inequali ty (10.6). W e may calculate Ap, 

Ap, = Ap+ ( M / a | ) ^ p <5|. (10.26) 

F r o m the stability condit ion Ap = 0, Eq . (10.26) reduces to 

Ap, = {dAjdè)^p <5f. (10.27) 

Now, f r o m D e D o n d e r ' s inequality (2.14), 

Ap,vp, > 0, (10.28) 

which characterizes a spontaneous process; it follows tha t the sign of 

Vp/ is given by the inequali ty 

{dAld^)^P Ô^Yp, > 0. (10.29) 

T h i s relation is consistent wi th the criterion of stability only if 

{dAidi)^p < 0. (10.30) 
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T h u s , two conditions, Ap = 0 and (10.30), are necessary and sufficient 

to express the stabihty of a System. 

Remark. At constant T and p, t he two conditions are 

A = 0, {dAld^)Tp = 0. (10.31) 

At constant T and V, we have 

A = 0, {dAldi)Tr = 0. (10.32) 

I n Section I I I , we saw tha t 

(10.33) 

T h e conditions of stability A = 0 a n d (10.30) are: 

( 0 idUldi)ys = 0, ( 5 ^ C / / 5 P ) s r > 0 ; (10.34) 

when S and V are maintained cons tant , U is thus min imum in a stable 

equi l ibr ium state (Fig. 17). 

(«) idHldi)sp = 0, {dmidP)sp>0; (10.35) 

in a stable equi l ibr ium state, H is m i n i m u m at constant 5 and p. 

{iii) {dFjd^)Tv = 0, {d^Flde)Tv > 0; (10.36) 

in a stable equi l ibr ium state, F is m i n i m u m at constant T and V. 

(iv) {dGldè)rj, = 0, {d'Gldnrp>0; (10.37) 

in a stable equil ibr ium state, G is m i n i m u m at constant T and p. 

T h e inequality (10.37) may be rewri t ten as 

ÛTj, < 0, (10.38) 

where 

arp = {dAldi)rj, = -{d^GId^Tp- (10.39) 

T h u s , f rom (10.33) and (4.21), 

«Tp = - S 5/^^/5^ = - S S < 0. (10.40) 

y y /9 

where 

= 9 / . , / ôn , . (10.41) 
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FiG. 17. Minimum internai energy for a stable equilibrium state. 

Equation (10.40) can be rewritten in the form 

«7-^=12 2 f^y^n^nl^ - -^X < 0. (10.42) 

This condition is satisfied if [i^^ is négative for ail y ^ ^. 

Prigogine and Defay (1967, Eq. (7.13)) showed that this condition is 

always satisfied by idéal Systems. Thus, ail stable states of an idéal System 

are stable equilibrium states at constant T and p. 

E . E X P L I C I T F O R M S OF THE S T A B I L I T Y C O N D I T I O N S 

For a System at constant energy and volume [see Eq. (3.1)], the stability 

condition gives 

ÔS<Q {E, V constant). (10.43) 

Systems which are maintained at constant energy and volume are by 

définition isolated Systems. For such Systems, entropy is maximum for 

stable equilibrium and 

(equilibrium) (10.44) 

(stability) (10.45) 

(10.46) 

Let us now dérive a relation for the second-order quantity ô^s, where î 

(ôsu = 0 

(<55)e, < 0 

{Ô'S\^ < 0. 
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is the spécifie mass entropy. For a System in equilibrium, the Gibbs 

relation (4.12) may then be written in the classical form 

Tôs = ôu+pôv — YilJ'y àN^, (10.47) 
y 

where u is the spécifie mass internai energy, v the spécifie volume, 

the molar fraction, and fj.y is here the chemical potential per unit 

mass. Let us first calculate à'^s using as independent variables u, v, N^; 

then ÔHi = 0, ô^v = 0, and = 0, and the Gibbs formula (10.47) 

gives us directly 

àh = ÔT-^ ôu + ô{pT-^) ôV-J: à{n^T-^) ÔN^. (10.48) 
y 

Combining (10.47) and (10.48), we obtain 

T ô^s = -ÔT ôs -\- dp ôv ô/j.^ ÔN^. (10.49) 
y 

Let us now express the variation of t h e chemical potentials ôfi^ in the 

variables T, p, N^. We obtain the quadrat ic fo rm [see Chapter 1 (16.11)-

(16.13), (16.17), (18.3), (18.4), (18.18)-(18.20), (18.23), (18.25)], 

T 

where 

(10.50) 

T ( ^ ] (10.52) 

t = 

dT 

f^y0 

T I dv V 

XV \ dT jp̂ y 

"0 ITpNg 

Now, in the System of variables QU, Q^, it is easy to show that 

ô\QS) = Q à% (10.56) 
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QS being the volume ent ropy density; it becomes easy to calculate the 

quanti ty ôh. 

T h e quadratic fo rm has to be positive definite. F r o m the inequality 

(10.46), this leads to the following stability conditions: 

c„ > 0 (thermal stability) (10.57) 

X > 0 (mechanical stability). (10.58) 

Both the spécifie heat (at constant volume) and the isothermal compres-

sibility have to be positive. 

In addition, we also have 

S fi^ff ôNj, ôNis > 0 (stability with respect to diffusion). (10.59) 

Let us consider, for example, a perturbation which consists in the 

appearance of a heterogeneity in the composition of a binary System 

-which is initially un i form. T h e inequality (10.59) guarantees that the 

response of the System will restore the initial homogeneity. 

T h e inequalities (10.57) and (10.58) ensure stability with respect to 

thermal and mechanical disturbances, while (10.59) ensures stability 

in respect to diffusion. 

F . P H A S E S é P A R A T I O N I N B I N A R Y M I X T U R E S 

As a simple illustration of the stabiHty condition (10.59), let us consider 

phase séparations in binary mixtures. T h e stability conditions are then 

/"U > 0, > 0 (10.60) 

> 0 . (10.61) fin i«21 

/ ' l a i"22 

On the other hand, f r o m (4.33) we have 

Mi2 = /"2i (10.62) 

(10.6J) 

T h u s , the déterminant in (10.61) vanishes and we have only to consider 
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the first two inequahties. Moreover , 

= «2V22 (10 .64) 

and this implies that the two inequalit ies in (10.60) are équivalent and 

that 

fii2 = /«21 < 0. (10.65) 

For mixtures of perfect gases and "per fec t solut ions" formed by com-

ponents of similar molécules, the influence of the activity coefficient 

f y may be neglected and the chemical potentials take the f o r m [see 

Eq . (9.32)] 

^^^ = ^L;>{T,p) + RT\nN^, (10.66) 

and it is easy to show tha t the inequalit ies (10.60) and (10.65) are verified. 

However, this is no longer necessarily so for regular solutions (Prigogine, 

1957). Indeed , in th is case, 

fjL, = ^^°{T,p) + RT\n{\ - N,) + «iV,^ (10.67) 

/«2 = /"2°(î^, P) + RT In + a ( l - N , f , (10.68) 

where a is a constant defined by 

« = A^Av^[ei2 - K^i i + £22)], (10 .69) 

with N^^ the Avogadro n u m b e r , z the n u m b e r of nearest neighbors of a 

molécule in the considered méd ium, and e^^ is the interaction energy 

between a molécule y and a molécule /9. Now, 

If 

lalRT > 4, (10.71) 

there exists a range of mole f rac t ions where the stability condit ions are 

not satisfied. W e then obtain phase séparations, and the phase diagram 

is represented schematically in Fig. 18. 

T h e r e exists a critical point N2 = 0.5, = {aj2)R. Above this critical 

point , the two componen t s are mixable in ail proport ions. Below, we 

find two coexisting phases (for example, at T = , we have two phases 

corresponding to = y and = P). Ins ide the région acb, the stability 
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FiG. 18. Phase séparation in a regular solution at constant p. 

condition (10.60-10.61) is violated. Th i s curve is called the spinodal. 

I t séparâtes unstable states f rom metastable states. 

For metastable states, the stability conditions as derived in Section 

X, E are satisfied ; however, the Gibbs free energy (if we work at constant 

p and T) is higher for the homogeneous mixtures than for a system formed 

by two coexisting phases. Metastable Systems are stable with respect 

to small per turbat ions (the second-order stability conditions are satisfied, 

bu t the System is unstable with respect at least to some finite per tur-

bations). 

Remark. T h e limitations of the G i b b s - D u h e m theory, the comparison 

with the kinetic theory of stability, and the important problem of the 

thermodynamic stability conditions for nonequi l ibr ium states are dis-

cussed in détail by GlansdorflF and Prigogine (1970). 

XI. Equi l ibr ium D i s p l a c e m e n t s i n C l o s e d S y s t e m s 

A . G E N E R A L L A W S 

T h e problems encountered when considering equilibrium displace-

ments are similar to those met when studying stability. If the modifica-

tion is due to the variables T and p as well as to f , and if we maintain 

constant the per turbed values p -\- ôp and T + ôT, a stable system may 

tend to re turn to a new equilibrium state différent f rom the initial state. 

Th i s modification is called the displacement of thermodynamic equi-

l ibrium. 
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Let us assume, for example, that only p and T are per turbed, respec-

tively, to p -{- ôp and T + ôT. W e thus pass f rom an initial system in an 

equilibrium state P to a per turbed system P'. T h e n we m a i n t a i n ^ + ôp 

and T-{- ôT constant and the system evolves toward to a new equil ibrium 

State P" (Fig. 19). At each point of the line PP", we have 

A = Q (11.1) 

Generally, a displacement on the surface A = 0 is called an equilibrium 

displacement. Along an equi l ibr ium displacement, 

M = 0 (11.2) 

and thus 

^ r + 4 ^ a ^ + - ^ ô ^ = o. (11.3) 
dT ' dp ' di 

Now each derivative may be rewrit ten. From (2.13) and (3.12), we find 

dAjdT = {A - rT^)IT. (11.4) 

FIG. 19. Equilibrium displacement. 
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F r o m (3.12), 

dAjdp = - S v^v^ = - A (11.5) 
y 

F r o m (10.39), 

dAjdi == flyp. (11.6) 

Combin ing the above six équations, we obtain the gênerai law of the 

equilibrium displacement: 

Equa t ion (11.7) then reduces to the D e D o n d e r formula (see D e 

D o n d e r (1925, 1927), Schottky et al. (1929, p. 492)) 

As the condit ion of stability is given by the inequality (10.38), Eq . 

(11.8) expresses the van't Hoff theorem; if a reaction is exothermic 

i^Tp > 0). then dijdT < 0, and thus an increase in tempéra ture moves 

the equi l ib r ium position of the reaction back {ôi < 0). If the reaction 

is endo the rmic (r^p < 0), a rise in t empéra tu re advances the equil ibr ium 

posi t ion (ôi > 0). 

Fu r the r , D e Donder ' s formula (11.8) makes it possibile for us to cal-

culate the value of the derivative (d^ldT)p. 

Example. T h e reaction IH^ + 0 2 = 2H2O is exothermic. At ordinary 

t empéra tu re , we have a false equi l ibr ium. T r u e equil ibr ium exists at 

h igh t empéra tu res and is stable at given t empéra tu re and pressure. If 

the t empéra tu re increases, | decreases, and t h u s water vapour dissociâtes 

partially into and O j . 

Remark. T h e conclusions obtained here are consistent with the équa-

t ion (6.50) giving the variation of K^{T,p) wi th T. But, f rom a practical 

poin t of view, Eqs . (6.49) and (6.50) are only interest ing in the case of 

per fec t gases, where the chemical potent ials are known. 

2. Isothermal Displacement, ôT — 0 

F r o m (11.7), we then have the D e D o n d e r fo rmula 

(r^JT) ÔT + ôp - aTp ài = 0. (11.7) 

1. Isobaric Displacement, ôp = 0 

(11.8) 

(5f/5/))r = ArplaTp. (11.9) 
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T h e condition of stability (10.38) and Eq. (11.9) express Le Chatelier's 

theorem: if a reaction is accompanied by an increase in volume (/l^p > 0), 

an increase in pressure leads to a réduction of the extent of reaction 

{à^ < 0), and inversely. 

3. Isomassic Displacement, = Q 

We may write 

Equation (11.10) is called the De Donder-Clapeyron-Clausius formula. 

Let us assume that, in a chemical reaction, the composition of each 

constituent remains constant; then we are able to calculate the variation 

of the pressure with the température. 

B . A PARTICULAR C A S E : A = A{T,p) 

Let us consider a pure constituent in two phases (Fig. 20). Here, 

the afiinity is independent of i because 

(11.10) 

A = ^i'{T,p)-fi"{T,p). (11.11) 

Thus , 

A = A{T,p), (11.12) 

and (11.7) reduces to the Clapeyron formula 

ôp 1 
(11.13) 

ÔT A T 

Here, A^^ = v" — v' and — i s the latent beat L. 

Il 

FIG. 20. Matter transfer of a pure constituent between two phases. 
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For example, in vaporization, v' may be neglected with repect to v", 

and, for a perfect gas, 

©" = RT\p. (11.14) 

Combin ing (11.13) and (11.14), we find 

ô{lnp)IÔT= LIRT\ (11.15) 

In tegra t ing (11.15), we obtain 

lnp= -{LjRT) + const. (11.16) 

F o r chloroform (Fig. 21), we find for the latent beat Ly » 7200 cal mo l^ ' 

and for the entropy of vaporization (̂ »S'v)5oommHg — 28 cal mol-^ ° K - ^ 

Remark. F r o m Eq. (2.13) at equi l ibr ium, we may write 

rr, = -T{dSld^)T^ = -T{s" - s'). (11.17) 

Subs t i tu t ing (11.17) in (11.13) gives 

ôplàT = {s" - s')i{v" - v'). (11.18) 

2 . 9 -

I \ I I 
3 3.3 

l / T X lO' 

FIG. 21. Vapor pressure as a function of température for chloroform. 
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C . T H E L E C H A T E L I E R - B R A U N T H E O R E M OF M O D é R A T I O N 

T h e van ' t Hoff and Le Chatelier theorems are characterized by the 

fact that in both cases the reaction occurs in such a way that it exhibits 

modérat ion of the factor per turbed. 

If we increase the température, t he reaction absorbs beat, and this 

tends to moderate the increase of tempéra ture . If we increase the pressure, 

the reaction occurs in such a way tha t the volume decreases and thus 

tends to moderate the increase of pressure. 

But thèse theorems of restraint or of modérat ion cannot be applied 

in the same manner when we use other variables. If we decrease the 

volume of a System, the reaction produced does not tend to moderate 

this decrease. 

T h e problem of modérat ion must be studied by considering the real 

t ransformat ion produced by the System when the system is perturbed. 

An unambiguous answer can be deduced by using the fundamental 

inequality Av > 0. 

X n . Equ i l ibr ium D i s p l a c e m e n t s i n O p e n S y s t e m s 

A . M E T H O D 

In open Systems, the equil ibrium condit ions may be modified by the 

addition of certain consti tuents ; for example, the addition of K O H to 

the mixture HNO3 + K O H . 

In fact, equi l ibr ium displacement in open Systems can be studied by 

noting the propert ies of equil ibrium curves or equil ibrium surfaces. 

Fur the rmore , it is more convenient to use hère the variables T,p, 

Ni, . .., OT T,p, fil, ..., fig. Nevertheless, the fundamenta l problem 

is also related to the two équations 

ÔA = 0, 

A = 0 (12.1) 

(12.2) 

with ÔA a func t ion of the chemical potentials. 

B . T W O - P H A S E S Y S T E M 

W e consider a two-phase System and c const i tuents with only passage 

reactions f r o m one phase to the other (Fig. 22). T h e equilibrium condi-
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tions (12.1) applied to the passages are 

^ , = ^ ; - < = 0 i y = l , . . . , c ) . (12.3) 

T h e equilibrium displacement condition (12.2) then becomes 

ô,,;'= ô,^; = ô/,^ {y=l,...,c), (12.4) 

where ôfiy is the common value of ô/z^' and ôfi^". 

FiG. 22. Matter transfer between two phases. 

Let US now write the G i b b s - D u h e m équation (4.30) for each phase: 

-s' ÔT + v' N; ôfi^ = 0 
Y 

-s" ÔT + v" ô p - T , NJ' ô/i^ = 0 

where 

Because the variance of the system is [see Eq. (5.7)] 

w = 2-{-c — (^ = c, 

(12.5) 

î ' = 5 7 s « ; , v' = v'i^n;, N; = n;i^n;. (12.6) 
Y 

By subtraction, Eq. (12.5) becomes 

-{s" - s') ÔT + (v" - V') d p - Y . {N;' - N;) ô^i^ = 0. (12.7) 

(12.8) 

the two équations (12.5) permit us to calculate the variation of two 

variables of T,p, fi^, ..., [i^ when the variations of the c other variables 

are given. 
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For a pu re cons t i tuent (subscript 1) in each phase, we have TV/ = N^" 

= 1 and (12.7) reduces to 

ôpjôT = {s" - s')l{v" - v'). (12.9) 

W e here again find t h e Clapeyron équat ion (11.18). 

C . T H E G I B B S - K O N O V A L O W T H E O R E M S 

1. Isothermal Equilibrium Displacement 

At constant t empéra tu re , (12.7) gives 

{v" - V') ôp~^ (N;' - N;) ôfi^ = 0. (12.10) 
Y 

If, dur ing the equ i l ib r ium displacement , a state is character ized by 

i V ; = i V ; ' ( y = l , . . . , c ) , (12.11) 

then (12.10) reduces s imply to 

ôp = G; (12.12) 

the pressure m u s t pass t h r o u g h an ex t rême value (max imum, min imum, 

or inflection at hor izontal tangent ) . 

Equa t ion (12.11) means tha t the two phases have the same composi-

t ion. Such a System is called azeotropic (see Section V,B,2a). T h e above 

Gibbs-Konovalow theorem m a y then be stated in the f o r m : If , in an 

isothermal equ i l ib r ium displacement of a two-phase binary system, the 

composit ion of the phases becomes the same, t hen the pressure mus t 

pass t h rough an ex t rême value. 

Example 1. T w o const i tuents , two phases, and only passage reactions. 

T h e System is t h u s bivariant . If T and are the indépendan t variables, 

we t h u s have fi^ = ij,i{T, fi^). At constant t empéra ture , (12.10) can be 

wr i t t en in t h e f o r m 

- ^ = - ^ ^ ' ) ( ^ ) . + -

For N^' = AT/ and A^^" = A^^', we f ind 

ôplô/ii2 = 0 (horizontal tangent) . (12.14) 
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F r o m the curve p = pifi^) at constant t empéra tu re , we thus obtain a 

horizontal tangent . As yUj increases wi th N2, the curves p = p{N2') and 

p = PiN^') at T constant will give an e x t r e m u m of p for the state 

= N^' (see Fig. 6). 

Example 2. T h r e e consti tuents, two phases, and only passage reac-

tions. T h e System is t hus trivariant. W e choose T, and ̂ «3 as inde-

penden t variables. 

If , at constant t empéra ture , /<2 and ^3 vary (Fig. 23), the m a x i m u m 

of the surface cor responds to the state of same composi t ion 

N,' = N,", N^'^N^", N,' = N,". (12.15) 

T h e chemical potent ial of a const i tuent as a func t ion of its composit ion 

is given in Fig. 24. 

FIG. 23. Variation of the chemical potential with pressure. 

2. Isoharic Equilibrium Displacement 

I n this case, (12.7) reduces to 

{s" - s') + S {N^' - N;) ôfi^ = 0. (12.16) 
y 

If the composi t ion of the two phases is the same, 

N^- = N^ ( y = l , . . . , c ) 

and 

ÔT=Q. (12.17) 
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0 
N, 

FiG. 24. Variation of the chemical potential with the composition. 

This second theorem, also called the Gibbs-Konovalow theorem, may 

be expressed in the fo rm: I n an equil ibrium displacement at constant 

pressure of a binary system, the température of coexistence passes 

through an extrême value (maximum, minimum, or inflection with a 

horizontal tangent) if the composition of the two phases is the same 

D . T H E RECIPROCAL OF T H E G I B B S - K O N O V A L O W T H E O R E M S 

1. Isothermal Transformation 

For a binary System, let us give ô^^ 0 at constant température. T h e 

équations (12.5) can be writ ten 

(Fig. 6). 

v' ôp — Ni' ôjUi '2 
(12.18) 

v" ôp — N," Ô/Ll, 

T h u s , 

(12.19) 

If the pressure passes through an extrême value, ôp = Q 2X this point, 

and, f rom (12.19), the phases must be of the same composition {Ni" 

= A^i' and A^^" = N^). 
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2. Isobaric Transformation 

Similarly, it is easy to show that, if the température of coexistence 

passes, at constant pressure, through an ex t remum, then the two phases 

mus t have the same composition. 

X m . T h e r m o d y n a m i c s o f So lut ions 

A . I N T R O D U C T I O N 

A solution is a condensed phase (liquid or solid) composed of several 

components . Molécules of l iquids and solids are strongly interacting, 

bu t the molécules of liquids are randomly distr ibuted, while the molé-

cules in solids are located in a regular array. 

I n the vicinity of the critical température and critical pressure, the 

distinction between gases and liquids vanishes. I n this section, we 

develop the fundamenta l principles of the thermodynamics of solutions. 

I n order to aid in this investigation, it is convenient to distinguish between 

idéal solutions and nonideal solutions. T h e fundamenta l quantity is the 

activity coefficient described in asymmetrical and symmetrical référence 

Systems. T h i s coefficient can be evaluated by différent methods involving 

the knowledge of vapor pressures. Finally, the last subsection is devoted 

to a brief s tudy of the excess funct ions. 

B . I D é A L S O L U T I O N S 

An idéal solution is defined in such a way that the chemical potential 

of each substance composing the solution has a simple functional de-

pendence on a concrète composition variable. Unde r appropriate condi-

tions, the properties of a large class of real substances may be adequately 

represented by the properties of idéal substances. T h i s is often observed 

for dilute solutions. I t is found by exper iment and f rom molecular 

considérations (Prigogine, 1957) that a suitable fo rm of the chemical 

potential of an idéal component y can be wri t ten 

tJi, = li,°{T,p) + RT\nN„ (13.1) 

where /j,y°{T,p) is some référence value of the chemical potential. If 

(13.1) is valid, then the solution is called a perfect solution. F r o m 
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(13.1), we have 

dp dp 

hy 

ÔT 
d{/^y°IT) 

dT 

(13.2) 

(13.3) 

T h u s , at constant T and p, the molar vo lumes and the molar enthalpies 

Aj, are constant over the whole région of ideality. O n the other hand , it 

is easy to show that, for a binary solut ion, 

where 

v = {\ - N^)^! + N^v^, (13.4) 

(13.5) 

As ©1 and are constant at a given t e m p é r a t u r e and pressure, the molar 

volume V is t hus a linear fonct ion of t h e mole fraction. 

For a perfect solution, and are t h e molar volumes of the pure com-

ponents and the mixing process is accompanied by neither expansion 

nor contract ion. In the same way, if t he molar global enthalpy h is 

defined by 

h = Hln=T,NJi^, (13.6) 
y 

the mixing of two components at cons tan t T and p is accompanied by 

nei ther an absorpt ion nor évolution of beat . 

For example (Fig. 25), the mixing of two Systems by passage of com-

ponent 1 f r o m a pure phase ( " ) to a phase ( ' ) (solution of components 

1 and 2) is characterized by the heat of reaction (see Section I I ) 

(13.7) 

FIG. 25. Matter transfer of a pure constituent 1 (") to a solution 1 + 2 ('). 
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Since in a perfect solution is only a func t ion of T and/ ) , (13.7) reduces 

to r^j, = 0. In other words, if, at constant pressure {dp = 0), the mixing 

is carried eu t adiabatically {dQ = 0), no température change occurs. 

Indeed , it is clear f r o m (2.7) that 

dT = TTJ, di. 

As TTJ, = 0, dT= 0. 

C . V A P O R PRESSURE OF PERFECT S O L U T I O N S 

T h e equil ibr ium condit ion between a solution (/) and its vapor (v) 

is given for two components 1 and 2 by 

1^1 = i«r, 1^2 = lUa"- (13.8) 

Let us now assume tha t the solution is perfect and that the vapor is a 

mixture of perfect gases. T h e n , combining (13.8) with (13.1) and (6.18), 

we obtain 

Pi = hN„ p^ = kJSf„ (13.9) 

where 

(13.10) 

At ordinary conditions, and //2° are practically independent of pres-

sure, and thus and are func t ions of T only. 

T h e vapor pressure of each componen t in a perfect solution is t hus 

proport ional to its mole f ract ion. 

For Â î = \, p is the vapor pressure pi° of pure component y, and 

thus ̂ 1 = pi°. T h e so-called Raoul t law is 

Pi=Pi°N„ p, = p,°N, (13.11) 

and the total pressure p of a perfect solution is a linear func t ion of 

t he molar fraction. Indeed , 

P = Pi + p2 = / ' i ° ( l - N,) + p,°N,. (13.12) 
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D . D i L U T E R E A L S O L U T I O N S 

A large class of dilute real solutions may be considered as idéal Systems. 

Equation (13.1) is then verified f rom = 0 to = N^, (2 is the index 

of the soluté). Th i s limit of dépends upon the nature of the system. 

For nonelectrolytes, the range of validity is much larger than for strong 

electrolytes. Equat ion (13.9) holds in the ncighborhood of = 0, 

Â î = 1. At A î = l, ki= pi°, and 

(Pi° - PÔlPi° = N,. (13.13) 

T h e Raoult law (13.11) is valid only for the solvant. I t is interesting to 

note that the relative lowering of the vapor pressure of the solvant is a 

function of the molar fraction of the soluté ; it is indépendant of the nature 

of the dissolved substance. 

For the soluté, (13.9) is of ten called Henry ' s law. 

E . R E A L S O L U T I O N S 

In this section, we consider a real mixture of components for which 

the laws of Raoult and Henry are not satisfîed. 

Th i s fact must be related to the fo rm of the chemical potential. Let us 

arbitrarily choose a s tandard funct ion fi^°{T, p) and let us define a new 

quantity called activity of the component y by the relation 

,^^,,^j^MT,P,N,,...,N^)-,AT,P)]^ (13.14) 

or 
= fiAT,p) + RT In a^. (13.15) 

T h e activity is a funct ion of T, p, Ni, .. ., N^. 

T h e décomposition of fi^ into two funct ions fiy°{T,p) and ay{T,p, 

Ni, ..., N^) is arbi trary; the quantity is than ralated to the choice 

of a référence system based on the limit of the ratio aJNy for particular 

conditions. T h i s ratio is called the activity coefficient f^. Déviations from 

tha laws of perfect solutions may ba exprassad formally by introducing 

the activity coefficients in the expression for the chemical potential 

of a perfect solution. T h e mathod due to Lewis and Randall (1923) 

permits one formally to extend the properties of perfect solutions to 

actual solutions in a most élégant way. T h e chemical potential now 



188 A. Sanfeld 

takes the f o r m 

lu^ = ^^°{T,p) + R T l n f ^ ^ . (13.16) 

I n this case, (13.9) mus t be replaced by 

Pi = K N J „ p, = K N J „ (13.17) 

where ki{T) and k.2,{T) are given by (13.10). 

As the afRnity is given by the classical relation 

^ = - 2 v , A t „ (13.18) 
Y 

we obtain f r o m (13.16) the gênerai expression 

A = RT\n[K,{T,p)j{f,N,)'^ � � � ( / ^ J ^ , (13.19) 

where 

- S v,ix°{T,p) = RT\nK,{T,p). (13.20) 
y 

At equi l ibr ium, = 0 and the G u l d b e r g - W a a g e law may be writ ten 

( /xA^ir � � � {fcNcT = Ka{T, p) (13.21) 

F . A S Y M M E T R I C A L R é F é R E N C E S Y S T E M 

I n the asymmetr ical référence system, the di lute idéal solution is taken 

as référence System for a s tudy of less dilute solutions. As the solution 

becomes more dilute, (13.16) approaches (13.1) wi th the same s tandard 

funct ion . I n this case, the asymmetrical p roper ty 

(13.22) 
A 2̂ - 0, A 1 

means tha t 

/ , ^ 1 for A ^ 2 ^ 0 

while 

/ i ^ l for A ^ i ^ l . 

I n o ther words , (13.17) becomes 

Pi=Pi*fx, P2 = p2%, (13.23) 
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where 

Pi*=Pi°N„ p,* = k,N,. (13.24) 

In Fig. 26, pi* and p2* are represented, respectively, by the Raoult line 

PiOj and Henry line O^Q^. Thèse two Unes are tangential to the real 

expérimental curves pi and p2 � F r o m the curves p^ and p2 and f rom the 

Raoult and Henry laws, it is easy to calculate the activity coefficients. 

Indeed, f rom (13.23), we find 

f i = PilPi*, f2 = p2lp2*. (13.25) 

Unfortunately, f.^ is given by the way of the tangent OiQ^, and this 

line cannot be drawn with good précision. 

FIG. 26. The Raoult and Henry laws, 

F r o m a practical point of view, it is more convenient to use the relation 

between and derived f rom the G i b b s - D u h e m équation. We shall 

use this method in the symmetrical référence system (see Section H 

on Boissonnas' Method) . 

G . S Y M M E T R I C A L R é F é R E N C E S Y S T E M 

Let us now study the properties of a solution in the range ATj = 0 

(pure solvent) to Â â = 1 (pure soluté). In the symmetrical référence 
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System, we define ii°{T,p) by the relation 

fi°{T,p)^(i^{T,p,N^=\), (13.26) 

where /iiy{T, p, N^= 1) is the chemical potential of the pure componen t . 

F r o m (13.26) and (13.16), 

= 1 for = 1, (13.27) 

which means that the activity coefficient of each pure componen t is equal 

to t h e unity. Equat ions (13.17) give 

and t h u s 

where 

thus . 

Pi = Pi*fi, 

Â=PilP.*, 

Pi° = k„ 

p2° — ^2> 

P2 = P*f2, 

p2*=p2°N,; 

f2=p2lp2*-

(13.28) 

(13.29) 

(13.30) 

(13.31) 

T h e " idéa l " pressures p^* and p^* are the Raoult lines PiO^ and O^P^ 

(Fig. 27). 

F r o m the expérimental values of the total pressure p, it becomes easy 

to c a l c u l a t e / i and f^. I ndeed 

p,=pN,^, p, = pN,^. (13.32) 

T h e curves p^ and p2 can be calculated by t i t rat ing the solution {N^'^ 

and iVj^ are then known) . T h e déviat ions f r o m ideality are descr ibed as 

négative or positive. I n the first case, this means that the total p ressure p 

in less than the idéal pressure (line PiP^) or that /y < 1 (example: chloro-

f o r m + ethyl ether solutions). I n t h e second case, f y > l ( example : 

methyla l + carbon disulphide) (Pr igogine and Defay, 1967, pp. 338-339) . 

Remarks. (1) F r o m a molecular po in t of view, we say that the vapor 

pressure is constant wi th respect to the composi t ion if the interact ions 

be tween the molécules 1-1, 1-2, and 2 - 2 are equal. If the a t t ract ions 

1-2 < 1-1, 1-2, the vapor p ressure is raised a n d / y > 1. Alternatively, 

if 1 -2 > 1-1, 1-2, t hen < \ . However , en t ropy effects also m o d i f y 

the activity coefficients (Prigogine, 1957). 
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0 
Chloroform Ether 

FiG. 2 7 . D é v i a t i o n f r o m i d e a l i t y f o r t h e S y s t e m c h l o r o f o r m - e t h e r . 

(2) If déviations f r o m ideality are large enough, the total vapor 

pressure p passes through a max imum or a min imum (azeotropy). 

H . T H E B O I S S O N N A S M E T H O D 

If the composition of the vapor is unknown, and p2 can be still 

calculated. 

From the G i b b s - D u h e m relation [Eq. (4.30)] at constant T and p, 

S A^̂  dn^ = 0, 
y 

and thus, (13.16) leads to 

d{\nf,) 

Tp 
0. 

Tp 

(13.33) 

(13.34) 

In the symmetrical référence System, (13.34) reduces to the well-known 

D u h e m - M a r g u l e s relation 

djlnp,) 1 

dN,, . dN,. 
= 0. (13.35) 
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T h i s équat ion is valid only for an idéal vapor phase. Equat ion (13.35) 

can be t rans formed into 

JP^ - 1 (13.36) 
dN, 1 - (p,lp,){N,IN,) dN, � 

For a very dilute solution, pi = pi°Ni, and t hus 

dp^ = pi° dNi and dp^ = dp + p^° dN^. (13.37) 

Boissonnas (1939) suggested that the composit ion range be divided into 

a n u m b e r of equal intervais AN^ and tha t Eqs . (13.36) and (13.37) 

be used in the approximate forms 

^^� = T ^ ™ W 

with 

Ap^ = Ap+ p° AN^ (for = 0). (13.39) 

F r o m the curves p^ and p2, it is easy to calculate / j and / ; 

Remark. F o r an azeotrope, the two phases have the same composit ion 

at the e x t r e m u m and p^jNi = pijN^. T h e relation (13.36) then becomes 

wrong in the ne ighborhood of the ex t remum. Practically, we apply the 

method of Boissonnas first f r o m N2 = 0 to a point neighboring the 

ex t r emum and then f r o m Ni = 0 unti l the vicinity of the azeotrope. 

If , at the t empéra tu re considered, the vapor pressure p^ (soluté) is small 

in comparison with pi (solvent), we may wri te 

p=Pi. (13.40) 

F r o m the expér imental value of p, it becomes easy to calculate / i , because 

A=PilPi°N,. (13.41) 

O n the other hand , integrating Eq . (13.34), we find the value o f / 2 

I n / , = - {N1IN2) d{lnfi). (13.42) 
^2=1 

An interest ing example of this case (butyl sebacate at 20°C dissolved in 

methanol ) was s tudied by Colmant (1954). 

Analytical fo rms of activity coefficients are given in several publica-

t ions (Prigogine and Defay, 1967, p. 339). 
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1. Fugacity in Solution 

T h e fugacity <p^ of a component y is defined in a solution by the relation 

^i^ = li*{T) + RTXncp^, (13.43) 

where /J,y*{T) is the standard funct ion of a perfect gas. 

W h e n a solution (/) is in equil ibr ium with its vapor (v), we have 

' ' (13.44) 
fi,^ = l^*{T) + RT\n^;', 

where (pj is the fugacity in the solution and (p^ that in the vapor. At equi-

librium, 

ç>; = (13.45) 

Thi s means that, for two phases in equil ibrium, each component has 

the same fugacity in the two phases. 

Now, combining (13.43) and (13.18), we find the affinity of a reaction 

in solution 

A = RT \n\_K^{T)lcp': � � � <p:']. (13.46) 

Nevertheless, as vapor pressures of numerous dissolved substances are 

small, fugacities are not frequently used. 

2. Molar Concentration and Molality 

W e know that the molar concentration of a soluté is given by 

C, = = NJ{N,v, + s A^.z;,). (13.47) 
S 

If the solution is very dilute, Â ^ ~ 1, and 

C,^NJv,°, (13.48) 

where Vi° is the spécifie molar volume of the pure solvent; the chemical 

potential given by (13.16) then reduces to 

= ^lriT,p) + RT\nf,<^C. (13.49) 

where 

^r{T, p) = pi °{T,p) + RT In v,°{T,p). (13.50) 
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For a reaction between dissolved substances, the affinity is given by 

A = RTln[K%T,p)liUC,r � � � i ^ C J ^ , (13.51) 

where 
RT In K°{T, p ) = - S v^firiT, p). (13.52) 

S 

I t follows that 

K°{T,p) = K{T,p){v°)-', (13.53) 

and, at equilibrium, 

iUC,)'^ � � � ifc^CJ' = K°{T, p). (13.54) 

O n the other hand, the molality of a dissolved substance m, is defined by 

m, = 1 0 0 0 n > i M i = lOOONJN^M^. (13.55) 

For a dilute solution, ~ l and 

m,~mONJM,. (13.56) 

T h e chemical potential given by (13.16) then reduces to 

fi, = fi,\T,p)+ RT In f-^m, (13.57) 

where 

fi;{T, p) = fz° + RT ln(Mi /1000). (13.58) 

T h e affinity of a reaction between dissolved substances is given by 

A = RT ln[K\T, p)l{f,-^m,r � � � ifJ^mJ^] (13-59) 

and 

K\T,p) = K{T,p){M,imQ)-\ (13.60) 

At equilibrium, we have 

(Â'^mJ^ � � � {fJ^rn.r = K\T,p). (13.61) 

Remarks. (1) In the three Systems, the molar fractions, the concentra-

tions and molalities, and the activity coefficients {fs,fs'^,f^) have the 

same values in a dilute solution, but the three activities ( / s A f « , / / C , , 

f t ^ i ) are différent. 

(2) T h e standard affinities usually found in the literature are quantities 

related to molalities in dilute solutions. 
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I . EXCESS F U N C T I O N S 

T h e main p rob lem wi th which we shall be concerned in th is section 

is the effect of mixing two or more substances . In other words , we shall 

compare the proper t ies of the mix ture to those of the p u r e substances. 

I n order to separate t h e efFects of mixing f r o m the effects of changes in 

tempéra ture or pressure , we shall always compare the mix tu re to the 

pure componen t s taken at the same pressure and tempéra ture . T h e total 

volume V° of separate componen t s wi th spécifie volumes Vy° is given by 

V°='^n^v^°. (13.62) 
y 

T h e change of the vo lume d u e to mixing Vj^, is then 

F „ = F - F ° = S « , K - 0 , (13.63) 
y 

where V is the real vo lume of the solution. 

Similarly, we have the entha lpy of mixing, the ent ropy of mixing, and 

the G ibbs f ree energy of mix ing: 

(13.64) 

(13.65) 

(13.66) 
y 

where the index ° refers to the pu re componen t s in the same physical 

State as into the solut ion. 

Other impor t an t quant i t ies of the same kind are the molar funct ions 

= S ny{h^ -
y 

V) 

y 
^y°) 

G™ �f^y°\ 

î'm = s N^i-Oy - V ) (13 .67) 
y 

hm = i:N^iK-h^.°) (13.68) 
y 

= S N^isy - s,°) (13.69) 
y 

= 2 iV. (^ . - f^yl- (13.70) 
)� 

T h e enthalpy of mix ing H^^ is the beat absorbed by the System at 
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constant T and p because 

ldQ= l d H ^ H - H , = ^ H ^ . (13.71) 

Now, a solut ion will be described as perfect if t he G i b b s f ree energy of 

mixing takes the following simple f o r m 

gr.^ = RT^N^\nN^. (13.72) 
Y 

T h e cor responding heat of mixing and vo lume of mixing v,^ are 

zéro. Alternatively, thèse propert ies may be used to test the validity of 

the laws of per fec t solut ions for a given mixture . Fo r the ent ropy of 

mixing in a per fec t solut ion, we f ind the positive expression 

=-R1:N^ In > 0. (13.73) 
V 

T h u s , in a per fec t solut ion, ail t he rmodynamic f u n c t i o n s of mixing except 

those conta in ing the en t ropy are zéro. 

T h e en t ropy of mix ing (13.73) has a s imple mean ing . T o obtain its 

in terpré ta t ion, we m u s t make use of the Bol tzmann fo rmula relating the 

n u m b e r of accessible configurat ions of the System to the entropy. T h i s 

p roblem is developed by Prigogine (1957). 

F r o m the expér imenta l point of view, the discrepancies between real 

and perfec t Systems are bet ter i l lustrated by the excess funct ions . T h e 

diflFerence be tween the the rmodynamic func t ions of mix ing and the value 

cor responding to a perfec t solution (superscr ipt ^ ) at the same T and p 

and composi t ion will be called the t h e r m o d y n a m i c excess funct ion 

(denoted by subscr ip t e). T h u s , 

Z-e = î'm, K = K , = - V " , ge = gm — gm^- (13.74) 

T h e G i b b s f ree energy of mixing may be represented by the following 

expressions [cf. (13.16) and (13.70)] 

gr. = RT^N^lnf^N^, (13.75) 
Y 

where is def ined in t h e symmetr ical référence System. O n the o ther 

hand , s ince 

i ^ - î , _ ^ - _ ç dj/^YlT) hy 
dp dT " >" dT ~ T^' ( . iJ . /o ; 
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we obtain 

v^ = RT-ZN^d{\nf;)(dp 
Y 

Y 

= -RT^ 2 d{ln f^)ldT (13.77) 
Y 

Y y 

the excess thermodynamic quant i t ies then become 

v, = RT^N^dilnf^)ldp (13.78) 

h, = -RT' S K ^(In fy)ldT (13.79) 

y 

s,= - R ^ N ^ l n f ^ - RTj:N^d{\nf^)ldT (13.80) 

Y y 

where the excess ent ropy is defined by 

Ts, = K ^ g , . (13.81) 

T h e excess volume is f ound by measur ing the mixing volume, by 

the mixing heat, and g^. by vapor-pressure curves. T h e relation (13.81) 

then gives the value of the excess entropy. T h e orders of magni tude of 

the excess f ree energy, excess enthalpy, and excess entropy for mixtures 

of saturated hydrocarbons are shown in Figs. 28-31 for four Systems 

studied by différent au thors .* 

W e observe that the cont r ibut ion of the excess enthalpy and of the 

excess entropy (multiplied by T) to t he excess f ree energy are of com-

parable magni tude. 

In the case n-heptane + M-hexadecane (Fig. 28), is négative (ac-

tivity coefficients smaller than 1) and we have négative déviations f r o m 

Raoult ' s law, since, when the activity coefficients are smaller than one, 

the partial vapor pressures are smaller than those of perfect solutions. 

However , for the other Systems, we have positive déviations f rom Raoult ' s 

law and the partial vapor pressures are higher than those of a perfect 

* For the System n-heptane + n-hexadecane at 20°C, see Brônsted and Koefeld 
(1946), Van der Waals and Hermans (1949). For the Systems A-hexane + cyclohexane 
at 20°C and «-octane + tetraethylmethane at 50°C, see Prigogine and Mathot (1950a,b). 
For the System 2,2,4-trimethylpentane + hexadecane at 24.9°C, see Van der Waals 
(1950). 



FiG. 29. Excess functions for the System (1) «-hexane + (2) cyclohexane at 20°C. 
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F i G . 3 1 . E x c e s s f u n c t i o n s f o r t h e S y s t e m ( l ) n - o c t a n e + ( 2 ) t e t r a e t h y l m e t h a n e at 

5 0 ° C . 
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solution. Generally, the excess functions have a simple parabolic form, but 

for some Systems (like Systems containing alcohol or water), they may 

be more complicated. The discrepancies to ideality are due to energy 

and entropy effects [différence of interactions (h^) 1-1, 2-2, 1-2; entropy 

effects (ie) related to the différences in molecular size]. 

In the System 2,2,4-trimethylpentane + hexadecane (Fig. 30), the 

entropy effect partially compensâtes the energy effect in such a way 

that^e — 0 (perfect solutions at 24.9°C). In the System w-octane + tetra-

ethylmethane (Fig. 31), the excess entropy is négative, and this means 

that the mixing entropy is smaller than its value corresponding to a 

perfect solution. The orientation disorder is larger in the pure substance 

than in the mixture. 

An interesting case is the System water + triethylamine (Fig. 32) 

(Haase and Rehage, 1955). The excess entropy is négative and larger 

in absolute value than s^; the mixing real entropy is then négative. 

Nevertheless, the mixing exists because of the effect of the mixing en-

2 I 1 1 1 1 1 

- 4 I I I I 1 I 
0 0 .2 0.4 0 .6 0.8 1 

FIG. 3 2 . E x c e s s e n t r o p y f o r t h e S y s t e m t r i e t h y l a m i n e + w a t e r . 
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thalpy h,n. T h e condition of stabiUty of miscibiHty is given by g,^ < 0, 

and thus — Ts,^ < 0, which means that, if is négative, h,„ is also 

négative and large in absolute value. T h e mixture is exothermic. 

Now, it is interesting to consider two limit cases for which the discrep-

ancies are only related, on one hand, to the energetic effects, and on 

the other hand, to the entropy efïects. First , f rom the above relations, it 

is easy to show that 

dG,ldT=S,, (13.82) 

where 

G, = i ? r 2 « ^ l n / , (13.83) y 
y 

dG,ldn^ = RT In (13.84) 

H, = -RT^ S d{lnQjdT (13.85) 
y 

dHJdn^ = -RT^ d{\n fy)ldT. (13.86) 

1. Regular Solutions 

T h e term "regular solutions" was introduced by Hildebrand* to 

describe mixtures whose excess entropy was found experimentally to be 

zéro. Déviations from ideality arise entirely from the energetic term: 

\h,\^T\s,\, g , ^ h , , s,^0. (13.87) 

For a binary system, we obtain 

and 

so that 

dSJdrii = 0, dS^jdn^ = 0 (13.88) 

d^GJdT dn^ = 0, d^GJdT dn^ = 0, (13.89) 

d{RT\nf,)ldT = 0, d{RT In f.,)ldT = 0, (13.90) 

I n / i o c l / r , I n / ^ o c l / r . (13.91) 

T h e activity coefficients for regular solutions are thus inversely propor-

tional to the absolute température. 

* See Fowler and Guggenheim (1939), Hildebrand (1929), Guggenheim (1935), 
Prigogine (1957). 
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2. Athermal Solutions 

Here, the déviations f rom ideality arise entirely f rom the entropy term, 

the mixing beat being zéro (this is the origin of the te rm athermal) : 

T \ s , \ ^ \ K \ , g , ^ - T s , , K^O. (13.92) 

For a binary system, 

dHJdn^ = 0, dHJdn^ = 0, (13.93) 

so that 

a ( l n / , ) / 5 T = 0, d{\nf,)ldT = 0. (13.94) 

T h e activity coefficients of a thermal solutions are independent of t em-

pérature. 

XIV. O s m o t i c Pres sure 

Measurements of osmotic pressure are frequently used to détermine 

activity coefficients and solution molecular weights. T h e measurements 

are particularly useful in the détermination of the properties of polymer 

solutions. T h e system under considération consists of a liquid solution 

of components (phase ') separated f r o m pure liquid (phase " ) by a non-

deformable heat-conducting membrane perméable to component 1 alone 

(Fig. 33). T h e température is assumed to be uniform in the system. 

T h e affinity of passage of component 1 f rom the phase " to the 

phase ' is 

A = fi," - ^ i ' = ^i,°{T,p") - ix,°{T,p') - RTInf,'N,', (14.1) 

y / / } } / / / / y / Â / / / / . 
II 

Solvent 

1 

1 

Solution 

1 + 2 + 3 . . 

FIG. 33. Osmotic phenomena. 
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where (1^° is the same func t ion in the two phases. Le t us assume now 

that p" =p'. Equa t ion (14.1) reduces to 

{A),„^,,= -RT In f,'N,'. (14.2) 

T h i s affinity cannot be equal to zéro unless N^' = 1, which means that 

the solvent is pu re in each phase. I n o the r words, when substances are 

dissolved in the solution, we have N^' < 1 and the affinity {A)j,,,^j,, is 

positive; the solvent t e n d s to pass f r o m the pure solvent ( " ) to the solu-

tion ( ' ) and increases in this solution phase. Hence, equi l ib r ium cannot 

be established unless p" ^ p ' . T h e dif férence 

n = p ' - p " (14.3) 

is called osmotic pressure . 

At equi l ibr ium, (14.1) reduces to 

ti,°{T,p") - fi,°{T,p') = RTÏnf.'N,'. (14.4) 

For a displacement along an equi l ib r ium line at T constant , we have 

ôp" - 4 ^ àp' = ET (3(ln/i ' iV,'). (14.5) 
dp" ^ dp 

with 

^f^'^ - v,%T,p"), ^ = v,\T,p'), (14.6) 
dp" - i v ' . ^ /. Qp, 

where the quan t i ty v^^ is the s tandard molar volume. 

Neglect ing the compress ib ih ty of c o m p o n e n t 1, (14.5) and (14.3) give 

d n = - {RTM ô{ln f,'N,'), (14.7) 

where Vi° is t h e molar vo lume of the solvent extrapolated to zéro pressure. 

In tegra t ing (14.7) f r o m iV/ = 1 (77 = 0) to iV/ = N^', we obtain 

77 = -{RTIv,°) I n / i W j ' . (14.8) 

For a sucrose solut ion of 0.88 mol 1~^, the experimental ly observed 

(Eucken, 1934) osmot ic pressure is abou t 27 a tm. 

Ins tead of character iz ing déviations f r o m ideality of the solvent by 

its activity coe f f i c i en t / ] , it is o f ten advantageous to in t roduce the osmotic 

coefficient 7^ of B j e r r u m and G u g g e n h e i m defined by the equality 

r i n iVi = In / iA^i . (14.9) 
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Comparing this with (14.8), we sec that 

77 = -r{RTIv^°) In AT/. (14.10) 

For very dilute solutions, (14.10) reduces to 

n = rRTY,c,'. (14.11) 

For an idéal dilute solution ( C / < 10"" mol 1"^), we find the classical 

van't HoflF équation 

n=RT^C,', (14.12) 
s 

which shows that the osmotic pressure is independent of the nature of 

the solvent. 

For a weak electrolyte AB ^ A- -\- S+, Eq. (14.11) may be rewritten 

n=rRT{\+a)Cl^, (14.13) 

where a is the dissociation degree and C^^ the total concentration of AB. 

The coefficient F may be calculated if we know the expérimental values 

of 77and a (known, for instance, by electrical conductivity measurements). 

Remark. Comparing (14.2) to (14.8), it follows that the affinity for 

p" = is given by 

{A\.^^.. = v°n. (14.14) 

XV. Equi l ibr ium Curves b e t w e e n T w o P h a s e s 

A . G E N E R A L I Z A T I O N OF T H E N E R N S T D I S T R I B U T I O N L A W 

We know that the affinity A.^ of transfer of component y f rom one phase 

(') to the other ( " ) is given by 

A^ = - = ; . ; ° ( T , p ) - f ^ ' ; % T , p ) + RTin(/;A^;//;'iv;')- ( i s . i ) 

At equilibrium, 

f;'N;'lf;N^' = K^{T,p), (15.2) 

where we have put 

RT\nK,{T,p) = f^;{T,p) - / ^ ; ' ( r , /> ) . (15.3) 
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F o r idéal phases, (15.2) reduces to t h e classical Nerns t dis tr ibut ion law 

(see 6.80) 

N;'INy' = K N { T , P ) . (15.4) 

T h e quant i ty is called the d is t r ibu t ion or parti t ion coefficient. At 

T and p constant, the equi l ib r ium cons tan t is independent of mole 

fract ions. 

Remark. T h e dis t r ibut ion law of ma t t e r in an electric field was estab-

l ished a few years ago by Sanfeld and co-workers (1968c). 

B . V A N L A A R R E L A T I O N 

For a gênerai displacement along an equ i l ib r ium line, (15.2) becomes 

In 
fy"Ny" 

f'N ' 

... djln Ky)ôp , d{\nKy)ÔT 
ô[ln K^{T, p)] = h . (15.5) 

dp 

W e thus find f rom (9.48) and (9.49) t ha t 

In 
fy"Ny" 

f'N ' 
Jy y 

RT^ 
ÔT 

RT 
ôp (15.6) 

T h i s is the well-known van Laa r équat ion , which we now apply to dif-

fé ren t cases: 

1. Binary Systems Forming a Eutectic 

Let us consider first the equ i l ib r ium between the solution ( ' ) and one 

p u r e solid phase ( " ) and the t ransfe r of componen t 1 f r o m the solution 

to the solid phase ( " ) : 

iV," = 1, iV," = 0, = 1. 

Apply ing the van Laar relation (15.6) for a displacement at constant p, 

we obtain 

ô{\nf,'N,') = ^ ^ , (15.7) 

where 

Lu = r%^{l) (15.8) 

is the latent beat of fus ion at the p ressure considered. 
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For a pure System, A^/ = 1 and N^" = 1, the variance is equal to 

uni ty and we called TJQ the fusion t empéra tu re of component 1 at the 

pressure considered. 

In tegra t ing (15.7) f rom a point iV/ = 1 ( / / = 1 , 7 = 7 ^ ) to the 

required value of A'̂ i', we obtain the equi l ibr ium curve of a solution with 

crystals 1 : 

l n / / i V / = '/i 1 J _ 

T 

( 1 5 . 9 ) 

If we assume the solution phase to be perfect , this simplifies to 

In Ni' = 
1 J _ 

T 
( 1 5 . 1 0 ) 

where T < T^Q. 

T h i s approximate équation is that of the line of coexistence at a given 

pressure given in Fig. 34. 

1 ! 

FIG. 34. Shape of freezing-point curve. 

W e define the dépression d of the f reezing point of the solution by 

e = - T. 

F o r very dilute solutions, d T a n d l / T ~ e/Tfo; thus , (15.9) reduces to 

( 1 5 . 1 1 ) 

where the osmotic coefficient F is defined by (14.9). 
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T h e lowering of the freezing point is then given by 

207 

(15.12) 

If a solution is both very dilute and idéal, JT = 1, and we have, in terms 

of molalities. 

RTfo M, 

1000 2 mj = Oc S m; ; (15.13) 

the quanti ty 6^ is called the cryoscopic or freezing-point constant. I t 

dépends only on the nature of the solvent. For water, 6^ = 1.86, while 

for benzène, 6^ = 5.08. 

For a substance 2, the coexistence line BE (Fig. 35) is represented by 

the équation 

In f^'N,' 
R 

1 J _ 

T 
(15.14) 

At the eutectic point, crystals of bo th 1 and 2 and the solution coexist 

in equil ibrium and the two équations (15.9) and (15.14) are simultane-

ously satisfied. 

If the solution is perfect, N^^ and (values at the eutectic point) 

can be calculated f rom 

ln(l - NU) 

r 1 1 

R . ^20 T 

Ln r 1 1 

R T 
^ e 

(15.15) 

FIG. 35. Crystallization or freezing-point curves at constant pressure, with eutectic point. 
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FiG. 36. Freezing point curves for o + p-chloronitrobenzene. 

An example (Hol lman, 1900; K o h m a n , 1925; T i m m e r m a n s , 1936, 

p . 54) is given in Fig. 36. 

Remarks. (1) I n the case of saturated sait solutions (excluding the 

format ion of mixed crystals) —for example, H2O + N a C l — t h e line AE 

is called the f reezing curve, while the line EB is called the solubility 

curve of e.g., NaCl . A bet ter définition is "crystal l izat ion" curves. 

T h e solubility is ob ta ined by solving Eq . (15.14); it increases wi th the 

t empéra ture (line ED). 

T h e beat of fus ion of ice in the présence of aqueous solut ions of N a C l 

and C a C l j � 6H2O has been calculated by Defay and Sanfeld (1959). 

(2) T h e equi l ib r ium between a crystalline substance i and its ions 

in solution is governed by the équat ion 

(15.16) 

where /a f is the chemical potent ial of the solid. For example , for the system 

NaCl = Na+ + Cl~, the equi l ib r ium condit ion is 

/«NaCI = /"Na+ + /«Cl- = I^N^+{T, p) + /"ci C^. P) + -^^ ln/^a+CNa+ 

X /cVCci-) (15.17) 

or 

r- f n — i"NaCl — /"Na+ — y"Cl-
/Na+^Na+/ci-^Cl- — cXp< 

RT 
(15.18) 
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At a given tempéra tu re and pressure, the product of activities is thus a 

constant called the solubility p roduc t K^. For very dilute solutions, 

(15.18) reduces to 

^Na+Cci- = Ks{T,p). (15.19) 

Since the equi l ibr ium Nerns t tension of a cell dépends on ion concentra-

tions, it is clear that the solubility p roduc t can be de termined by 

electromotive-force measurements (Petré et al., 1969). 

2. Mixed Crystak 

Let us nowr consider the same components in a l iquid and a solid 

phase. At constant pressure, Nî' and can be calculated with the aid 

of the van Laar équat ions (15.6): 

In 

In 

/ i " i V i " ÔT 

ÔT. 

(15.20) 

Détails of calculations are given by Prigogine and Defay (1967, Chapter 

X X I I I ) . For the System Cu + Ni , the theoretical and expérimental 

curves (Seltz, 1934) are in good agreement , showing that this system is 

nearly idéal (Fig. 37). 

u 
o 

1 5 0 0 

1 4 0 0 -

1 3 0 0 -

1 2 0 0 

I 100 :a 

1 0 0 0 

FIG. 37. Phase d i a g r a m of S y s t e m Cu + N i ( ) o b s e r v e d ; ( ) i d é a l . 
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On the other hand, treating the two phases as regular solutions, Scat-

chard and Hamer (1935) have calculated the l iquidas and sohdus curves. 

T h e results for the Systems Ag + Pd and Au + P t (Scatchard and 

Hamer , 1935; Doerinckel, 1907; Grigorjew, 1929) are shown in Figs. 

38 and 39. 

1 6 0 0 

1 5 0 0 

1 4 0 0 

1 3 0 0 
o 
o 

1 2 0 0 

I 100 

1 0 0 0 

9 0 0 

0 0 .2 0.4 0 .6 0.8 I 

Npd 

FiG. 38. Freezing-point diagram for the System Ag + Pd. 

Remarks. (1) T h e Systems M n - C u , Fe -V, N i - P d form azeotropes 

(see Section V). 

(2) Transi t ion f rom mixed crystals to addition compounds and eu-

tectics with the phenomenon of miscibility gaps has been observed for 

many Systems (Timmermans , 1936, p. 76). 

3. Boiling-Point Law 

W h e n a soluté species 2 may be regarded as nonvolatile, the vapor 

phase ( " ) contains only the component 1 (Fig. 40). We then have N^' = 1 

a n d / i " = 1, and, ztp constant, (15.6) reduces to 

ô { \ n f , ' N ^ ) = ' y ^ ô T , (15.21) 
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where r^piT) has a négative value (to permit vaporization, the system 

must absorb an amount of heat), and thus 

rl,p{l) = - L , ( l ) , (15.22) 

where Ly{l) is the heat of vaporization of pure component 1, boiling at 

the considered température. 

Integrating (15.21), we find the équation of the boiling curve 

For a perfect solution, 

In N^' = 

M l ) 
R 

M l ) 
R 

_1_ 

T 

T 

1 
(15.23) 

(15.24) 

and thus T > T^Q, which means an élévation of boiling température 

resulting f rom the addition of a nonvolatile soluté. 

Equat ion (15.23) may be rewrit ten in molalities (see Eqs. 15.11), 

(15.12), and (15.13) 

0 = r e e S < , (15.25) 

where the boiling point or ebullioscopic constant d^. is defined in dilute 

solutions by 

(15.26) 
Ly{l) 1000' 

I n a perfect binary solution, the élévation of boiling point is proportional 

to the molality of the dissolved substance. T h e coefficient 6^ is only a 

funct ion of the solvent. For water, 6^ = 0 .51°C; for benzène, 6^ = 2.53°C. 

4. Boiling Curves for Immiscible Liquids 

For immiscible liquids (for example, hydrocarbon + water), we ob-

serve a eutectic-point vapor-I iquid (Fig. 41). T h e only différence between 

this System and the l iquid-solid System is that here the condensed phase 

is the liquid state. T w o immiscible liquid components boil at the vapor -

Iiquid eutectic-point. 

Example. T h e boiling point of cooking fat is about 170°C. An addition 

of water decreases this tempéra ture to under 100°C. Neglecting the small 

effect of surface tension, the pressure inside the bubble is identical to 
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that in the liquid. If the bubble fo rms at the boundary of two liquids 

(1 and 2), the pressure in the bubble is equal to the pressure p in the 

liquid, but p = pi -\- p2, where p^ and p^ are the partial vapor pressures 

of components 1 and 2. At atmospheric pressure, p = pa. and the boiling 

point occurs at a température lower than that which should give p^ = p^, 

and p2 = pu- Th i s phenomenon has an industrial application : steam 

distillation. Let us now calculate the boiling température of two liquids 

in contact. T h e evaporation of immiscible liquids at constant température 

is given in Fig. 42. 
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Applying the van Laar relation at T constant, we obtain for the vapor 

phase ( " ) 

6 { \ n N ^ ' ) = - - ^ ! ^ 6 p , (15.27) 

where ^ r p C l ) is the dilatation related to the transfer of component 1 

f rom the liquid to the vapor. As a first approximation, let us assume that 

A\,{\)c^RTlp. (15.28) 

Putt ing (15.28) in (15.27) and integrating f rom i V / ' = 1 to N^", we get 

l n i V / ' = ln(/.W/>) (15.29) 

curve AE: iV / ' = p^ajp 

cuTve BE: N^" = p2olP-

At the eutectic point, we have 

Ni'e = pjpe, iV^; = p2olPe ; (15.30) 

thus, 

N[^INi:, = p,olp2o (15.31) 

Pe=Pio + p2o- (15.32) 

T h e ratio of the molar fractions of the two components in the eutectic 

vapor phase is equal to the ratio of the vapor pressures of the pure 

substances. T h e eutectic vapor-l iquid pressure at a given température 

is equal to the sum of the vapor pressures of the pure substances at this 

température (Gay-Lussac ' s law). 

Remark. Vapor- l iquid equilibria of partially miscible Systems can also 

be found (Prigogine and Defay, 1967, p. 356). 
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