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Abstract. We prove that at zero external field and for any temperature below the
critical temperature, all translationally invariant equilibrium states for the two-dimensional
Ising ferromagnet, are a convex combination of only two extremal states.

I. Introduction

A number of recent works deal with general properties of the equi-
librium states of the Ising model. In particular, the following facts have
been established. First, the Ising ferromagnet with an external field
h#0 has always a unique equilibrium state, as was proved by Ruelle [1]
and Lebowitz and Martin-Lof [2]. It was also shown in [2] that there
is only one equilibrium state at 4 =0 and above the critical temperature
T =2 T,; T, being defined as the temperature above which there is no
spontaneous magnetization. For 4 = 0 and at sufficiently low temperature
T<Ty,<T, Gallavotti and Miracle-Sole [3] have shown that every
translationally invariant equilibrium state is a convex linear combination
of only two extremal states. This results hold in any dimension v =2.
Moreover, in the two-dimensional case Lebowitz [4] has proved that
the above defined value of T, coincides with the Onsager value of the
critical temperature.

It is the aim of this paper to show that in the two-dimensional case,
for h=0 and for all values of the temperature below the critical value
T, every translationally invariant equilibrium state is a convex linear
combination of only two extremal equilibrium states. The description
of the translationally invariant equilibrium states of the two-dimensional
Ising ferromagnet is then complete. This model has two pure phases
coexisting when h=0 and T< T, and only one pure phase is present
for all other values of h and T.

We recall that, following Dobrushin [5] and Lanford and Ruelle [6],
an equilibrium state of the infinite system may be defined as a family
of correlation functions <{a,,...0, > for the finite sets {o,,...,0,} of
spins of the lattice, obtained as the limit of correlation functions for a
sequence of finite boxes with some boundary conditions. The state is
translationally invariant if (o, ;,...0, +,> =<0, ...0, ) for all a of the
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lattice. Let us denote by <o,,...0,>" and (o, ...0, > the infinite
volume correlation functions when all spins of the boundary are fixed
to be +1 and —1 respectively. Our statement can be precised in the
following form.

Theorem. If h=0 and T<T, any translationally invariant equi-
librium state {0, ...0, 0 1 of the two-dimensional Ising ferromagnet
(with nearest neighbour interaction), is such that

<O-al Gan>0,T = a<o-a1 o-an>3—,T + (1 - a) <aa1 O-an>(;,T

for some 0<Sa < 1.

The states {o,,...0, " and (g, ...0, >~ which can be called the
up-magnetized and down-magnetized phases, have very special physical
properties [7], justifying their character of pure phases. They are trans-
lationally invariant, verify a cluster property, and are extremal in the
set of all equilibrium states at given h and T.

These two states are related simply by

04 Og p = (—1)"<0,,...0, )" .

They are different in the region covered by the theorem, as follows from
the equality

mT = <Ga>g,T

where m; is the Onsager-Yang value of the spontaneous magnetization,
and the fact that m; is strictly positive when T < T,. This last equality
has been proved by Benettin, Gallavotti, Jona-Lasinio, and Stella [8],
but it is itself a consequence of the theorem. The two states coincide
when h+0 or when T > T, since, as we have already mentioned, the
equilibrium state is then unique.

Let us point-out for completeness certain known facts about the
behaviour of the pure phases. First (see [1]), in the region h+0 the
correlation functions <{a,, ..., », r are analytic functions of 4 and T, and

<aa1 e O-a,.>(J)*-,T = hlj.%]t <o'a1 e Gan>h,T

Secondly, when h=0, the correlation functions <o, ...0, s + and
{0, ...0, 0.1 are known to be infinitely differentiable with respect to
T, as was proved by Gallavotti and Lebowitz [9].

Finally, it has been conjectured that the two-dimensional Ising
ferromagnet has no non-translationally invariant equilibrium states,
even in the region h=0, T < T,; while in the case of three or more di-
mensions one knows from Dobrushin [10], that such states exist at
low temperature. We, unfortunately, will not be able to illuminate this
problem.
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The idea of our proof is to use, as in [8], the duality transformation,
and to apply then some known results about the low activity expansions.
We introduce a small even perturbation, such as AX,0, 4,...0,, 4, I
the hamiltonian. Because the equilibrium state is unique above the
critical temperature T, it will follow that the perturbed thermodynamic
pressure has a derivative with respect to A at A=0. The same fact can
be proved below T, by constructing the dual perturbed pressure. This
will allow us to conclude at the unicity of the even correlation functions.
This statement, as we will see, is equivalent to the theorem. We can
finally remark that the exact calculations, existing in the literature (see
for instance [11]), of the even correlation functions at h=0 are then
justified to be independent on the boundary condition.

II. Formulation of the Problem

We consider a two-dimensional square lattice .#. We call a geometric
figure built with a certain number of bonds of the lattice a closed polygon
if at every lattice point only an even number (zero, two or four) of bonds
occurs. It is clear that to every configuration of +1 and —1 spins in the
middle of the squares of the lattice can be associated a closed polygon
in the following way. A bond belongs to the polygon if it separates dif-
ferent spins and does not belong to the polygon if it separates equal
spins. The same closed polygon is associated to two symmetric configu-
rations, in which the + 1 and —1 spins are interchanged.

Let us fix a finite square region A of the lattice. It is well known
that the partition function of the two-dimensional Ising model (with
only nearest neighbour interactions) at zero magnetic field can easily

be written as

—2J
Tn

Z,T)= Y, C(A)e *
nz0
where C,(A) is the number of n-sided closed polygons that can be drawn
inside A. The thermodynamic free energy, or the pressure in the language
of lattice gases, is given by
1
T)= lim —logZ, (T
p(T)= lim —7-log Z4(T)
where |A] is the number of points of A, and it is known to be independent
on the boundary conditions.
It will be useful to write the partition function in the following way

Zoz)= Y C(X)z¥

xco

J
7{7—,), Q represents the set of bonds of the lattice
inside A, X is a subset of this set (we will call it a configuration of bonds),
|X| the number of elements of X, and C(X)=1 if X is a closed polygon
and C(X)=0 otherwise. We remark that the factor C(X) appears as

where z= exp (—
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coming from a four-body potential of a hard-core interaction between
bonds obliging them to occur in an even number at every vertex.

Consider now the set of correlation functions associated to the equi-
librium states. We shall restrict ourselves to the even correlation func-
tions {a,,...0,, ». It is clear that all of them will be well determined if
we know the expectation values {0, ...0, > of the products of spin
variables associated -with the bonds: ¢,(X)= —1 if xe X, 0, (X)= +1if
x ¢ X. Consider for instance the two spin correlation function <, d,,
If I' is an arbitrary path connecting the two sites a, and a,, and
X1, X5, ..., X, are the bonds cut by this path, one has the path inde-
pendent relation

04,04, =X0y, ... 0., -

The above relation can be generalized to any correlation function
containing an even number of points, 2n, by dividing them into n pairs
and by considering paths connecting the two points of each pair.
In order to study these correlation functions we introduce the fol-
lowing perturbed pressure
. 1
p(z, )= }1}30 mlog Zo(z, A)

where
-4 3 omex®

Zyz, )= Y, C(X)z¥le x=
xco

and M is a fixed finite set of bonds. We have denoted by M + x the
translated of M by the vector characterizing the bond x, by Q, the set
of x € Q such that M + x C Q, and by o4(X) the product

o5(X) = [ 0.(X)=(~1)*"5..
xeS

The correlation functions <o) for a finite volume depend on the
boundary condition we choose. It is known, however, (see for instance
[1]), that the translationally invariant correlation functions for the
infinite system will be unique, if and only if the perturbed pressure
p(z, 4) has a derivative at the point A =0, for any set M of bonds. This
is the point we are going to consider in the following.

II1. Duality Applied to the Perturbed Pressure

Next we will apply the duality transformation to the perturbed
pressure. We first recall the following relations among the bond spin
variables

ox(Y)=ay(X)
ox(Y, Z)=04(Y)ox(Z) where Y,Z=YUZ\YNZ
Y oy(X)o,(X)=0 if Y+2Z; =29 if Y=Z; Y,ZcQ.

XcQ
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These relations are easily established and they are well known in the
formalism of classical spin systems. We remark that

(—1)12nXl 44 0o, (X)+1
cCxX)= 1] = I1 Q_z_
ac¥ ac¥

where the product extends to all vertex of the lattice and Q, denotes
the set of the four bonds coming to the vertex a. This expression follows
from the definition of a closed polygon. We have then
CX)=271'% 6xX)
AC Y
where to every A C & we associate the set A=1I1,_,Q,.

Let us represent the bonds of the lattice by their middle points and
remember that C(X)= 1 means that X is a closed polygon of the lattice.
It is easily seen that the set 4 is in fact a closed polygon in the dual
lattice represented in the figure by the dotted lines cf. the figure. We shall
write then C'(4)= 1, and in general C'(Y)=1 to say that Y is a closed
polygon in the dual lattice. This allows us to write

CX)=27"1'% C(Y)oy(X).
Yco
From this we deduce that

Y C(X)Z¥=271% N C(Y) oy(X) 2

XcQ XcQycQ
=2 1ZI+el(f 4 7yl Z C(Y) z*IYl
hwere z* is given by ree
S5 1—z
1+z

and corresponds to the dual temperature. The same calculation shows
that

Y CX) M op(X)=27 114101 4 77100 3 C/(y) 4TI
xceo YcQ

= 2"|$1+IQI(1 + Z)—IQI z C(Y) Z*IYI(Z*)yezTay
YcQ
This formulae lead to the known expressions [8] for the dual unperturbed
pressure and the dual correlation functions. As we see in the figure the
original lattice corresponds to the closed boundary condition (all spins
equal to +1 or —1 in the boundary), while the dual lattice corresponds
to the free boundary condition (all spins free in the boundary).

For the perturbed partition function we find
4 ¥ om+x(X)
Zoz, )= Y C(X)Mle =
XcQ
=(ch)2!l 3 C(X) X [T (1 + 10y 4 (X))
XcQ xeQy
=(chp)'2! Y c(X) Y Slgy 6 (X)

XcQ ScQ:

(Y)
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where 7=thA and M(S)=1I1,.s(M + x). And by using the precedent

formulae
ZQ(Z, )=2" |3’|+IQI(1 + Z)-fQI (Chi)lQll Zb(z*’ )
with
x U'y(X)
Zp(z*, =Y C(X) XY lSl(zHpems
XcQ ScQ

We arrive then, at the following expression
p(z, )= Co+py(z*,7)

where p;(z*, 1) is the thermodynamic pressure Vrresponding to the
2chi

partition function Zj(z*, 1). The term ¢, =2 1og—T+—Z—— will be unim-

portant in the following.

IV. Derivability of the Perturbed Pressure

We first consider the expression
Tz oy(X)
z Tlsl(z*)yeM(S) — Z ISl g~ Ux(S)
s S5CQ
appearing at the end of the preceding section. We have written
Ux(S)= —(logz*) } a,(X)
yeM (S)
to indicate that Uy(S), for a fixed X, can be regarded as a potential
energy for the configuration S. In fact
U(S)= ). ®x(R)
RCX
where
Px(R)= —(logz) 2R (— SR 5 5 (X)

yen(M+x)
xeR

and we see that Uy(S) comes from a non-translationally invariant
many-body potential, which has the important property of having a
finite range. That is, ®x(R)=0 if the diameter of the set R is larger
than a fixed distance, corresponding to the fact that then the intersec-
tion of all the sets M + x is empty. This fixed distance is independent
of X. Moreover the following norm
@] = sup Y. [Px(R)]
X  Rax
can be majorized by a number which is independent on X.
The expression that we are considering can be written as

z t|S||S|e—Ux(S)

T dt

Z 181 Ux(S}___exp {fT SCQ }
0

IS , = Ux(S)
ScQ SZQ t*le *
O

T dt
=CXP{ Z j“[—QX,Ql,r(x}

XEQl 0
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where we have used the notation

Y fiSleUx®
_ xeScCQy

0x,0,,4 (%)= Y {1575~ Ux(®
SCQ

to indicate that gy o, .(x) is the density at the point x of a certain system
in a box Q,, with interaction energy Ux(S) and activity .

We collect now a certain number of results concerning this density
at small activity. We refer for them to [12] and we remark that the results
there remain valid for non-translationally invariant potentials, provided
that the norm |@y| of the interaction is finite. We denote by | A |
the norm of the kernel that appears in [12] and we guarantee by taking
an r, >0 small enough that |4y || < B <1 when [t| <r,. Because ||Pxl||
can be uniformly bounded, r, and B can be chosen independently of X.
The results we shall use are the following

8) lox,0, (N1t (1 = | H oy )" S 1ol (1 = B),

b) the following limits

Qlli_lflw 2x,0 ,t(x) = Qx,t(x)

exist, and
lox,0,,:(X) = 0x. ()| < f(5)

where f(6) is a function of the distance é from X to the boundary of
Q, which is such that f(6)— 0 when d — co.

¢) Py .(x)is an analytic function of ¢ in the circle [t| <7,.

Let us denote by Q a square of side equal to L. We shall first prove that

dt
—0x,0 ,t(x)}

ot , .
P49 fim rlog © 00z Mawp ¥ (4

xeQ

{ °dt
lim —5log Y C(X)z*¥lexpi ¥ j———QX!,(x)}.
L- o L XcQ €Q 0 t
In fact, the difference between the two expressions, before taking the
limit, can be bounded by

—;‘7 {4L(logL)|t|(1 —B) '+ L? f(logL)}.

The first term comes from the estimate (a) and takes into account the
contribution of the points x which are at a distance of the boundary of
Q, less than log L. The second term comes from the estimate (b) and
takes into account the difference between the two densities at the other
points of Q,. By taking the limit when L— oo one gets the result.

The second step will consist in introducing a new pressure

Y oy(X)
e 9= Jim 7 T COX)exple T @y
Xc xe
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and proving that

limlpl(z*, T)_pl(Z*’ 0) _ p2(2*7 T)—p2(2*9 0){ =0.
-0 T T

In order to prove this result, we first remark that

dQX’t(x) _ (Z*)y65+xdy(x)

dt =0
as follows from a direct calculation. Because we know by (c), that gy ,(x)
is an analytic function of ¢ for |t| <r,, we can write

X ay(X)
0x,(x) = t(z*p=rr+= + R, ().

Taking (a) into account we bound the remainder R,(t) of the Taylor
series by
lt]> ro(1—B)~' rq

<
- IR0 < =
: de 2l (1 - B)
* - * < — — <
P D= pa(t oS 7 | B T Rz(r)‘ = 20T

and this second result follows.
Remembering now the duality relation between p and p; we conclude
at the following statement.

Lemma. The perturbed pressure p(z, A) has a derivative with respect
to A at the point A=0, if and only if, the same is true for p,(z*, 2).

In fact the two derivatives coincide, since A and 7= th4 differ only
by a term of second order in A. This gives the following dual relation
between the translationally invariant correlation functions

(o= 2y ™")...

This relation could be deduced from Section III for particular boundary
conditions.

V. Proof of the Theorem

We have already mentioned that the existence of the derivative of
the perturbed pressure p(z, 1) with respect to A at =0 is equivalent
to the unicity of the translationally invariant even correlation functions
for the infinite system. Now, it is well known that z=z* at the critical
temperature T,, i.e. when z=z,. On the other hand, when z varies in the
interval [0, z.], z* varies in the interval [z, 1]. We know also from
Lebowitz [4], that the equilibrium state is unique in the interval [z, 1],
corresponding to T = T,. Therefore, p,(z*, A), which is also a perturbed
pressure for the Ising model, has a derivative with respect to 4 at A =0
for z, <z < 1. By applying the lemma of the preceding section we deduce
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that also p(z, 1) has such a derivative, for z in the interval [0, z.], ie.
for T between 0 and T,. Hence the translationally invariant even correla-
tion functions are also unique in this interval. It remains only to show
that this last statement is equivalent to the main theorem that we have
formulated in the Introduction, to conclude our proof.

This equivalence follows from a known argument! based one the
fact that the translationally invariant equilibrium states form a Choquet
simplex. Let us suppose that {g,, ...q, > is an extremal invariant equi-
librium state. Then 3<o,, ...0, > +3(—1)"<o,, ...0, > is also an invariant
equilibrium state. It coincides with 3<a,, ..., >* + %<0, ...0, >, be-
cause the two are equal by hypothesis when n is even, and are zero
when n is odd. But the decomposition of this state in extremal states
has to be unique in a Choquet simplex. Therefore, only the two states
{04 ...0,y" and <o, ...0, > are extremal in the set of the invariant
equilibrium states, and the theorem is proved.

I I |
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