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We review some recent highlights from the applications of statistical-thermal models to different
experimental measurements and lattice QCD thermodynamics, that have been made during the
last decade. We start with a short review of the historical milestones on the path of constructing
statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948
an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this
statistical approach, in which he started with a general cross-section formula and inserted into it
simplifying assumptions about the matrix element of the interaction process that likely reflects many
features of the high-energy reactions dominated by density in the phase space of final states. In 1964,
Hagedorn systematically analysed the high-energy phenomena using all tools of statistical physics
and introduced the concept of limiting temperature based on the statistical bootstrap model. It
turns to be quite often that many-particle systems can be studied with the help of statistical-thermal
methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence
for the chemical equilibrium in the final state. The strange particles might be an exception, as they
are suppressed at lower beam energies. However, their relative yields fulfil statistical equilibrium,
as well. We review the equilibrium statistical-thermal models for particle production, fluctuations
and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD
thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions
have been suggested to describe the universal behavior of the chemical freeze out parameters. The
higher order moments of multiplicity have been discussed. They offer deep insights about particle
production and to critical fluctuations. Therefore, we use them to describe the freeze out parameters
and suggest the location of the QCD critical endpoint. Various extensions have been proposed in
order to take into consideration the possible deviations of the ideal hadron gas. We highlight
various types of interactions, dissipative properties and location-dependences (spacial rapidity).
Furthermore, we review three models combining hadronic with partonic phases; quasi-particle model,
linear σ-model with Polyakov-loop potentials and compressible bag model.
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I. INTRODUCTION

Enormous multiplicity and large transverse energy are likely generated in ultra high-energy nuclear
collisions. We study the nuclear collisions for a much more fundamental reason. It intends to understand
the extent that the high-energy collision does in order to generate matter in local equilibrium, which can
be characterized by thermodynamic parameters, like temperature, pressure, energy density. The level of
equilibrium in produced particles can be tested by analysing the particle abundances or their momen-
tum spectra. The earlier is established through the chemical composition of the system, while the latter
extracts additional information about the dynamical evolution and collective flow. The hadron multi-
plicities and their correlations are observables which can provide information about nature, composition,
and size of the medium from which they are originating.
Furthermore, establishing thermalization is an essential condition in order to raise detailed questions

about the equation of state, the underlying dynamics and the change in the effective degrees of freedom.
For example, the extent to which the components of produced mater interact with each others, and finally
chemically and thermally freeze out, is an ultimate goal of the high-energy experiments. The proper-
ties of strongly interacting matter under extreme conditions of high energy density represent another
fundamental goal of the physics program with the ultra-relativistic heavy–ion collisions.
With the huge progress in operating high-energy experiments, it turns to construct suitable canonical

ensembles to incorporate exactly the charge conservation for a given dynamical system as a key tool in the
high-energy collisions. In context of quantum statistical mechanics, one implicitly wanted to build Fock
spaces of states which are characterized by defined symmetry properties of prescribed charges. In SU(2)
symmetry, the energy and total spin dependence of the single–particle density of states in the nuclear
Fermi-gas mode has been calculated. About six decades ago, micro–canonical calculations taking into
consideration four-momentum conservation have been presented. A general approach to calculate the
phase volume was implemented in order to study the consequences of including momentum conservation
in the relativistic collisions.
The statistical description of particle production in high–energy nuclear interactions dates back to 1948,

when Heinz Koppe published his paper entitled: ”Die Mesonenausbeute beim Beschuss von leichten
Kernen mit Alpha–Teilchen [German]” or ”Meson Yields from Bombarding Light Nuclei with Alpha
Particles [English]” in Zeitschrift für Naturforschung. Koppe introduced an almost complete recipe for
statistical-thermal models. Particle production (mesons or lightest Goldtone modes), formation and
decay of resonances, temporal and thermal evolution of the interacting system, approaches applying either
Fermi-Dirac or Bose-Einstein or Stefan-Boltzmann statistics in thermal medium and under equilibrium
condition in the final state of the nuclear interaction were implemented. Furthermore, Koppe estimated
the equilibrium concentrations of each type of the produced particles
In 1950, Fermi introduced a statistical theory based on the assumption that in multiple processes

occurring in high-energy collisions there is a localization of the energy in a small spatial volume which
then decays into various possible final states. The decay is conjectured to be compatible with the constant
motion relative a priori probabilities proportional to their statistical weights. Thus, the Fermi model is
preferably applicable in energy range compared with that of the cosmic rays. At the lower end of this
energy range, the model becomes unreliable, because only a few final states are accessible and their
details are important at the higher end. Because of insufficient consideration of peripheral interactions,
deviations likely occur at low energy. This should be restricted due to conservation laws. Conservation
of the charges, baryon number and strangeness was studied within the thermodynamical model of high-
energy hadronic collisions.
As dictated in Koppe model, the particle production in Fermi model is treated by means of statistical

tools, here weights. Furthermore, Fermi model gives a generalization of the ”statistical model”, in which
one starts with a general cross-section formula and inserts into it a simplifying assumption about the
matrix element of the process, which reflects that many features of the high-energy reactions dominated
by the density in phase space of the final states. The final states are accessible from the given initial state
under the consideration of all conservation laws. Therefore, the formulation of Fermi model is sufficiently
general to allow an application to many different processes such as nucleon-antinucleon annihilation,
and the production of pions and strange particles in meson-nucleon and nucleon-nucleon (elementary)
collisions.
A general description for the quantum statistics in high-energy collisions with a variable number of ideal

(non-interacting) particles was introduced by Magalinski and Terletskii. The generalization extends to
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an aggregate of oppositely charged particles, for which the conservation laws are fulfilled. Expressions for
total number of particles and for the total energy are deduced. They are distinguishable from the ordinary
quantum statistics. In almost all implications of the statistical-thermal methods, charge conservation,
the underlying symmetry corresponds to one or several unrelated U(1) groups should be respected. This
apparently means that in order to obtain the total charge of a many-particle state, the charges of the
constituents can be simply added. There is an increasing interest in gauge theories based on various
non-Abelian internal symmetries, which was introduced by Yang and Mills.
The phase transition of strongly interacting matter has been intensively studied for many years. Already

in fifties of last century, long before the discovery of the Quantum Chromodynamics (QCD), there have
been first speculations about a possible new phase of strongly interacting matter, based on studies of
the thermodynamics of a hadron resonance gas. Pomeranchuk came up with an assumption that a finite
hadron size would imply a critical density above which the hadronic matter cannot be in the compound
state, known as hadrons. In 1964, Hagedorn introduced the mass spectrum in order to characterize
the abundant formation of hadron resonances with increasing masses and rotational degrees of freedom.
Accordingly, the mass spectrum formulated the concept of limiting temperature based on the statistical
bootstrap model.
In 2003, the statistical-thermal model has been confronted to the lattice QCD simulations. Details

about the critical conditions near deconfinement were possible. The lattice QCD calculations suggest that
this transition should be a true transition only in small quark mass intervals. In a broad intermediate
quark masses regime the transition is not related to any singular behavior of the QCD partition function.
Nonetheless, it still is well localized and characterized by rapid changes of thermodynamic quantities
in a narrow temperature interval. The transition temperature thus is well defined and determined in
the lattice QCD calculations through the location of maxima in response functions such as the chiral
susceptibility.
At critical temperature, the additional degrees of freedom carried by the quark-gluon plasma, the new

state of matter, are to be released resulting in an increase in the thermodynamic quantities like energy
and pressure densities. This was physical picture before 2003. The success of statistical-thermal model
in reproducing lattice QCD results at various quark flavors and masses (below Tc) changed this picture
drastically. Instead of releasing additional degrees of freedom at T > Tc, the hadronic system increases
its effective degrees of freedom, namely at T < Tc. In other words, the hadron resonance gas (HRG) has
much more degrees of freedom than QGP.
Since the pioneering work of 2003, a wide spectrum of applications has absolved the statistical-thermal

models. In this review, we will discuss recent progress in constructing statistical-thermal models and
their applications to phenomenological descriptions of particle production, correlations and higher order
moments of multiplicity in nucleus-nucleus collisions. The importance of conservation laws and their
different implementations in the statistical-thermal approach is emphasized.
The present review is organized as follows. In section II, a short history of the statistical-thermal models

shall be outlined. The historical milestones on the path of constructing statistical-thermal models for
the heavy-ion collisions are shortly summarized. The early birth of statistical description dates back
to early days of atomic physics. Thomas-Fermi statistical theory, section IIA, is one of the earliest
tractable schemes for solving the many-body problem. The theory was suggested to describe atoms
as uniformly distributed electrons (negatively charged clouds) around nuclei in a six-dimensional phase
space (momentum and coordinates). Apparently, this is an oversimplification of the actual many-body
problem.
Koppe introduced an almost complete recipe for statistical-thermal models, section II B, including

particle production, formation and decay of resonances, temporal and thermal evolution of the interacting
system under equilibrium condition in the final state of the nuclear interaction.
Fermi model, section II C, implements statistical weights and gives a generalization of the ”statistical

model”. One starts with a general cross-section formula and inserts into it a simplifying assumption about
the matrix element of the process (high-energy reactions dominated by the density in phase space). From
the given initial state under all conservation laws, the final states are accessible.
In section IID, a general approach to calculate the phase volume shall be introduced. This method was

suggested to study the consequences of including momentum conservation in the relativistic collisions. A
general description for the quantum statistics with a variable number of ideal (non-interacting) particles
was presented. Another general feature of statistical description in high-energy collisions is to determine
the phase space or Fock space. This should be restricted due to conservation laws. Conservation of the
charges, baryon number and strangeness was studied within the thermodynamical model of high-energy



6

hadronic collisions.
The Hagedorn approach shall be outlined in section II E. The abundant formation of resonances of

increasing mass and rotational degrees of freedom was one of the most striking features of strong interac-
tion physics, which has attracted intense theoretical attention for about six decades. Hagedorn utilized
all tools of statistical physics. He assumed that higher and higher resonances of strongly interacting
particle occur and take part in the thermodynamics as if they were particles and introduced the concept
of the limiting temperature based on the statistical bootstrap model. That was the origin of multiphase
structure of hadronic matter. The limiting temperature arose as a consequence of the mass spectrum
which relates the number of hadronic resonances to their masses as an exponential.
In order to use the resonance gas model for further comparison with lattice QCD results, Karsch,

Redlich and Tawfik suggested to rescale the masses of hadron resonances, section II F. The dependence of
critical temperature as estimated in the statistical-thermal model with varying masses according to the
quark mass and number of flavors in lattice QCD simulations can be deduced. The dependence of the
critical energy density on the quark mass and number of flavors shall be studied. The resulting hadronic
states with changing the masses of the lightest Goldstone mesons shall be elaborated. These three topics
characterize the resulting statistical-thermal model and its matching with the lattice QCD simulations
The statistical-thermal models in non-ideal hadron gas shall be discussed in section III. Three cate-

gories of hadronic interactions shall be discussed in section IIIA. We start with van der Waals repulsive
interactions, section IIIA 1, then we introduce the Uhlenbeck and Gropper statistical interactions, section
III A 2 and general S-matrix and strong interactions III A 3.
The dissipative properties shall be studied in section III B. This shall be divided into a single-component

fluid, section III B 1, and multiple-component fluid, section III B 2. Chapman-Enskog and Relaxation time
approximation shall be utilized. Topics like, K-matrix parametrization of hadronic cross-sections, relation
of T -matrix to K-matrix and the relaxation time shall be discussed.
Section III C shall be devoted to the statistical-thermal models in rapidity space. The goal is the

study of the dependence of thermal parameters on the location, in particular on the spatial rapidity.
A single freeze-out temperature model shall be given in section III C 1. The rapidity dependence of
thermal parameters shall be discussed in section III C 2. An approximation of beam rapidity dependency
of particle ratios can be derived in the Regge model. Accordingly, the baryon-pair production at very
high energy is governed by Pomeron exchange, section III C 3. The asymmetry between baryons and anti-
baryons can be expressed by the string-junction transport and by an exchange with negative C-parity.
The proton ratios versus Kaon ratios shall be reviewed in section III C 4.
Section IV is devoted to the equilibrium statistical-thermal models in high-energy physics. The con-

servation laws shall be presented in section IVA. The extensive comparison with heavy-ion collisions
shall be reviewed in section IVB. The particle multiplicity shall be outlined in section IVB1. First,
we shortly introduce Bjorken model, in which early thermalization, vanishing baryon chemical potential
in the fluid and one-dimensional expansion besides boost symmetry of the initial conditions, the initial
independence on rapidity and the isotropic (homogenises) rapidity over the spacetime are the main as-
sumptions. Second, the experimental results shall be confronted to the statistical-thermal models. The
particle abundances at Alternating Gradient Synchrotron (AGS), Super Proton Synchrotron (SPS) and
RHIC, and recently at LHC energies are found consistent with equilibrium populations. This makes it
possible to extract both freeze-out parameters over a wide range of Nucleus-Nucleus center-of-mass ener-
gies

√
sNN from fits of measured particle ratios with the thermal models. The event generators PYTHIA

6.4.21 and Heavy-Ion Jet INteraction Generator (HIJING) shall be shortly introduced. The dynamical
fluctuations of particle ratios shall be the other feature to compare with, section IVB2.
Section IVC shall be devoted to the chemical freeze-out. In order to deduce a universal relation

between chemical freeze-out parameters, T and µb and nucleus-nucleus center-of-mass energy,
√
sNN , a

common method used is to fit the experimental hadron ratios. Starting with a certain value of baryon
chemical potential µb, temperature T is increased very slowly. At this value of µb and at each raise in
T , the strangeness chemical potential µS is determined under the condition that the strange quantum
numbers should remain conserved in heavy-ion collisions. Having three values of µb, T and µS , then all
thermodynamic quantities including the number density n of each spices are calculated. When the ratio of
two particles reaches the experimental, then the temperature T and chemical potential µb are registered.
This procedure is repeated for all particle ratios measured in different high-energy experiments.
Six universal conditions are supposed to describe the freeze-out diagram:

• Cleymans and Redlich: constant energy per particle, section IVC1,
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• Braun-Munzinger and Stachel: constant-total baryon density, section IVC2,

• Magas and Satz: percolation theory in heavy-ion collisions, section IVC3,

• Tawfik: constant-normalized entropy, s/T 3, section IVC4,

• Tawfik: vanishing product of kurtosis and susceptibility, κ σ2, section IVC5, and

• Tawfik: constant-trace anomaly, (ǫ − 3p)/T 4, section IVC6.

The comparison with the lattice QCD calculations shall be introduced in section IVD. The lattice QCD
simulations turn to be compatible with experiments. About ten years ago, the challenge of confronting
HRG with the lattice QCD results was risen. It intended to learn about the critical conditions near
deconfinement and the underlying degrees of freedom. The comparison shall be divided into thermody-
namics at vanishing chemical potential, section IVD1, thermodynamics at vanishing chemical potential,
section IVD2, chiral phase transition, section IVD3, and confinement-deconfinement phase diagram,
section IVD4.
The higher order moments of charged-particle multiplicity distribution were predicted four decades ago.

The empirical relevance to the experimental measurements is now clear. Section V shall be devoted to
the higher order moments of particle multiplicities. The measurement of the correlation length ξ seems
to be very much crucial. It has been pointed out that the contribution of the critical fluctuations to
higher order moments of multiplicities is proportional to a positive power of ξ. The latter is conjectured
to diverge at QCD critical endpoint and such an assumption is valid in the thermodynamic limit.
The topic is divided into non-normalized, section VA, normalized higher order moments, section VB,

and products of higher order moments, section VC. The comparison with the experimental results shall
be discussed in section VD. The comparison with the lattice QCD results shall be discussed in section
VE.
Three models combining hadronic (< Tc) with partonic (> Tc) phases shall be presented in section

VI. They are examples about other models for thermodynamics of hadronic matter. Their analogy to
the statistical-thermal models is obvious, i.e. possessing comparable effective mass and coupling. The
effective degrees of freedom is remarkably reduced and therefore the ideal gas behavior of lattice QCD at
high temperatures can not be explained. The hadronic and partonic models as:

• quasi-particle model, section VIA,

• linear σ-model with Polyakov-loop potentials, section VI B, and

• compressible bag model, section VIC.

II. A SHORT HISTORY

One of the earliest reviews [1] on statistical-thermal methods in high-energy physics [2] assumed that
the dispersion relations was the first approach for a general description of the interaction of π-mesons
and nuclei. With increasing energies, especially when the reactions with three or more particles are taken
into consideration, the complexity of the mathematical formalism seems to grow rapidly.
Based on Gibbs condition, the equilibrium behavior of thermodynamical observables is to be evaluated

as an average over statistical ensembles. This is essentially different than the time average for a particular
state, which in turn would be essential when dealing with out-of-equilibrium processes [3–5]. Therefore,
the equilibrium distribution could be an average over the accessible phase space. The statistical ensemble
corresponding to the thermodynamic equilibrium is the one in which the phase space density should be
uniform over the whole accessible phase space. The level of equilibrium is determined by the level of
uniform occupying the accessible phase space. The agreement between observables and predictions using
the statistical operator likely imply equilibrium [6].
A short review of the historical milestones on the path of constructing statistical-thermal models for the

heavy-ion physics is outlined in undermentioned sections. Recently, a brief history of strong interaction
thermodynamics in quark matter and nuclear collisions was presented by Satz [7].
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A. (1927-1928) Thomas-Fermi: a statistical approach for atomic physics

The Thomas-Fermi statistical theory is one of the earliest tractable schemes for solving the many-body
problem. The theory was suggested to describe atoms as uniformly distributed electrons (negatively
charged clouds) around nuclei in a six-dimensional phase space (momentum and coordinates). Obviously,
this is an oversimplification of the actual many-body problem.
Shortly after Schrödinger introduced his quantum mechanical wave equation, the Thomas-Fermi sta-

tistical theory was invented by L.H. Thomas in January 1927 [8] and independently by E. Fermi a year
later [9, 10]. The basic idea is a follows. Based on the Pauli exclusion principle, the degenerate gas of
fermions will be enforced to occupy the phase space with two particles (two fermions) per volume h̄3 of
this space [11]. The fermions move in an effective potential field which is determined by nuclear charge
and by assumed uniform distribution of the particles. For a large number of atoms or molecules, i.e.
large N of electrons, this theory approximately describes the electron density, ρ(x), where x ∈ R3 and
ground state entropy, E(N).
Although, Schrödinger equation gives the exact density and energy, it cannot be easily worked out for

large N . The particle density ρ(x) is the central variable rather than the wavefunction and the total
energy of a system is given as a function of the particle (fermion) density. As pointed out by Lieb in
an unpublished work [12], the ordinary matter like atoms and molecules are in their ground state most
of the time. This would highlight the importance of Thomas-Fermi model in providing a framework to
estimate the properties of matter in its ground. In other words, the statistical Thomas-Fermi model is to
be applied to a comprehensive survey for macroscopic nuclear properties. The statistical approximation
enters the game, when dealing with nuclei. Various improvements have been applied to the phase space in
the atomic models, mainly coming up with density-gradient corrections and other improvements [13–15].
The widely used one is based on a formal expansion in powers of h̄ [16].
The functional energy is the starting point for the theory. For example, for a molecule with k positively

charged atoms, i.e. nuclei with zi > 0 at fixed locations Ri ∈ R3, where i runs over k, the functional
energy is to be divided into four contributions as given below, Eqs. (1) and (2). The total energy of a
nucleus is given by integral over all space of an energy density, which mainly consists of Thomas-Fermi
kinetic energy and Coulomb and nuclear interaction. The nuclear interaction E can be divided into
repulsive and attractive interactions [11],

Enn or pp =
1

2

∫

d3r1

∫

d3r2

∫

n or p

d3p1

∫

n or p

d3p2

(

2

h̄3

)2

u
(rep)
12 , (1)

Enp =
1

2

∫

d3r1

∫

d3r2

∫

n

d3p1

∫

p

d3p2

(

2

h̄3

)2

u
(attr)
12 . (2)

The proton or neutron density is 2/h̄3, which apparently assumed 2 degenerate particles. In this case
fermions occupy an element h̄3 of the available phase space. For i-th particle, the phase space is charac-
terized by coordinates ~ri and ~pi.
The effective interaction energy has been worked out in literature [11, 12],

Eρ = Ak

∫

ρ(x)5/2 dx+

∫

ρ(x)u(x) dx+
1

2

∫ ∫

ρ(x) ρ(x′)

|x− x′| dx dx′. (3)

The first term gives the Thomas-Fermi kinetic energy, which is associated with a system of non-
interacting particles in a homogeneous gas. This functional equation could be applied to electrons in
atoms encountering the most important idea of the modern density functional theory and local density
approximation. This is obtained by integrating the kinetic energy density of a homogeneous gas,

∫

t0[ρ(x] dx =

∫ (

2

(2π)3

∫

k2

2
ρk d k

)

dx =

∫

(

1

2π2

∫ kF

0

k4 d k

)

dx, (4)

which in turn is obtained by summing all of the free-particle energy states k2/2 up to the Fermi wavevector,
kF = (3 π2 ρ(x))1/3. The coefficient Ak is given as (3/10)(3 π2)2/3.
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The second term in Eq. (3) is the classical electrostatic energy of attraction and repulsion between
the nuclei and the electrons, where u is the static Coulomb potential energy arising from the nuclei

u(x)) = −
N
∑

j=1

zj
|r−Rj |

. (5)

The third term in Eq. (3) represents the repulsive interactions of the system, concretely, the classical
Coulomb repulsion or Hartree energy, which is a physical constant (two times the binding energy of the
electron on the ground state of the hydrogen atom).
It is worthwhile to mention that the ground state density and energy of a system can be obtained, when

Eq. (4) is minimized, under the condition of charge conservation. This type of constrained minimization
problem, which occurs frequently within many-body methods can be performed using the technique of
Lagrange multipliers.
The Thomas-Fermi theory has been before to study potential fields and charge density in metals and the

equation of states of elements [17]. However, this method suffers from many deficiencies [18]. Probably,
the most serious defect is that the theory does not predict bonding between atoms [18–20]. Therefore,
molecules and solids are not allowed to be formed in this theory. The large approximation in the kinetic
energy is the main reason. The kinetic energy represents a substantial portion of the total energy of a
system and so even small errors prove disastrous. Another shortcoming is the over-simplified description of
the particle interactions, which are treated classically and so do not take account of quantum phenomenon
such as the exchange interaction.
In view of modern density functional theory, Thomas-Fermi theory can be considered as an approxi-

mation to the more accurate theory. Nevertheless, Thomas-Fermi theory remains a great milestone on
the path of construction methods to deal with many-body problem, especially in six-dimensional phase
space.

B. (1948) Heinz Koppe: statistical methods for particle production

Heinz Koppe formulated the abstract of his pioneer paper [21, 22] as follows.
German: [Mittels des neuen Berkely-Betatrons ist es mglich gewesen, durch Beschu von leichten Kernen
(insbesondere C) mit α-Teilchen von etwa 380 MeV Mesonen zu erzeugen. Im folgenden soll eine einfache
Methode angegeben werden, nach der sich die dabei zu erwartende Ausbeute abschätzen läßt.]
English: [By means of the new Berkely-Betatrons, it turns to be possible through bombarding light nuclei
(especially C) with α-particle of about 380 MeV, mesons will be produced. We present a simple method
that can be used to determine the produced particle.]
Apparently, Koppe formulated an almost complete recipe for statistical-thermal models. The Koppe’s

method includes particle production (mesons or lightest Goldtone modes), formation and decay of res-
onances, temporal and thermal evolution of the interacting system, approaches applying either Fermi-
Dirac, or Bose-Einstein or Stefan-Boltzmann statistics in thermal medium and equilibrium condition in
the final state of the nuclear interaction. Utilizing statistical methods, Koppe made estimation for the
equilibrium concentrations of each type of the produced particles [21, 22].

1. Particle production in thermal medium

Starting with the excitation energy per nucleon

U =
m2

(m1 +m2)2
E, (6)

where m1(m2) and E are the mass of projectile (target) nucleus and the kinetic energy, respectively. The

temperature of excited daughter nucleus T0 is related to U ; T0 = 3.8
√
N , where N refers to the number

of excited nuclei (resonances). In Berkely-Betatrons, T0 was measured as ∼ 10 MeV. At such very high
temperature, the projectile (α-particle) can not remain stable [21, 22]. Under these circumstances, pair
production is likely [23]. The meson production is apparently not possible. ”Vacuum dissociation” [24] or
”pair-degeneracy” [23] were mainly investigated from electron-positron pair production. Koppe assumed
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that the same considerations make it possible to apply this in the production of meson pairs [21, 22]. The
thermal production of a particle begins once the temperature approaches the order of the rest-energy
of the particle of interest. Because the rest-energy of mesons is about 150 MeV, Koppe expected a
very small number of mesons and in this case the equations of low temperatures [23] can be utilized.
For electrons with a rest-energy of 0.5 MeV, a situation is formed, in which pair-degeneracy apparently
becomes dominant.
Koppe assumed that the electron gas can be treated as cavity radiation with energy density

u =
7

4

π2

15 c3 h̄3
T 4. (7)

The radiation loss is simply related to the cross-section of the excited daughter nuclei σ. The time
dependence of temperature loss reads

T (t) =
(

T−2
0 + 2B t

)−1/2
, (8)

where B = O(σ/(m1+m2)). Equation (8) gives the effects of the radiation loss and the expansion of the
interacting system. Both control the temperature loss, which apparently continues till no more mesons
is produced.

2. Statistical methods

For determining the possibility of available mesons, statistical tools come into play as follows [23].
Because the speed of electrons shall have almost the same order of c, then the energy flux, which is
caused by the electrons, relative to light quantum radiation will be increased by the same factor (7/8)
so that one can relate both to each other and calculate using the Stefan-Boltzmann law with the factor
(1+7/4) = 11/4 (the factor 7/8 stands for the difference between Bose-Einstein and Fermi-Dirac statistic).

n(ǫ) =
(2mb)

3/2

π2 h̄3
ǫ1/2

[

1 + e
mb c2+ǫ

T

]−1

, (9)

where mb and ǫ are meson mass and density of the kinetic energy, respectively. The rate of produced
particle (number of meson per unit time) is

ν(T (t)) =
mb σ

π2 h̄3
T (t)2 e−

mb c2

T(t) . (10)

Then, the integration results in

n = a(m1 +m2)T0 e
−mb c2

T0 , (11)

where a = 0.031. Substituting with given values, then the number of mesons which will be produced in
α−A collisions at 380 MeV per unit time is ∼ 1.7× 10−4.

C. (1950) Enrico Fermi: statistical weights for particle production

As dictated in Koppe model [21, 22], the particle production in Fermi model [25–29] is treated by
means of statistical tools, here weights. Furthermore, Fermi model [25–29] gives a generalization of
the ”statistical model”, in which one starts with a general cross-section formula and inserts into it a
simplifying assumption about the matrix element of the process, which likely reflects many features of
the high-energy reactions dominated by the density in phase space of the final states. The final states
are accessible from the given initial state under the consideration of all conservation laws. Therefore,
the formulation of Fermi model [25–29] is sufficiently general to allow applications to many different
processes such as nucleon-antinucleon annihilation, and the production of pions and strange particles in
meson-nucleon and nucleon-nucleon (elementary) collisions.
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Fermi model is based on the assumption that in multiple processes occurring in high-energy collisions,
there is a localization of the energy in a small spatial volume which then decays into various possible
final states. The decay is conjectured to be compatible with the constant of motion with relative a priori
probabilities proportional to their statistical weights. Thus, the Fermi model is preferably applicable in
energy range compared with that of the cosmic rays [2]. At lower end of this energy range, the model
becomes unreliable, because only a few final states are accessible and their details are important at higher
end. Because of insufficient consideration of peripheral interactions, deviations likely occur at low energy.

1. Cross-section in general scattering theory

From S-matrix theory in natural units and for initial i and final f state describing a collision of
two (fundamental) particles with masses m′

k, where k = 1, 2 and four-momenta p′k = (ω′
k, p

′
k), where

ω′
k2 = m′

k2 + p′k2 , the cross-section of that reaction which leads to any state out of Φ, is given as

σΦ =
(2π)2 ω′

1 ω
′
2

√

(p′1 p
′
2)

2 −m′2
1m

′2
2

∑

f∈Φ

δ4(Pf − p′1 − p′2) |Mfi|2 , (12)

where Pf is the total four-momentum in the final state f . The matrix element Mfi can rigorously be
related to the scattering matrix S

Sfi = Ifi + i . δ4(Pf − p′1 − p′2)Mfi, (13)

where Ifi is a unitary operator. The problem of determining the matrix element Mfi still unsolved. This
is one of the basic problems of quantum field theory. The invariance of Mfi under certain groups of
transformations like translation, Lorentz transformation and rotation in isotropic spin space, is essential.
The strong interactions, which are simply sufficiently isolated, obey the local conservation laws of

total four-momentum P , total angular momentum J , total isotropic spin T , total baryon number N ,
total strangeness S, and total electric charge. The total electric charge is the conservation of the three-
component T3.

Mfi = δNf Ni δSf Si δT1f N1i ×
∑

α, J, T

∑

α′, J′, T ′

〈f |J, T, α〉 δJJ′δTT ′ M(α, α′, J, T )〈J ′, T ′, α′|i〉. (14)

The unknown matrix elementM(α, α′, J, T ) contains all dynamical effects. Some remarks in dealing with
M(α, α′, J, T ) are elaborated in Ref. [2].

2. Statistical aspects of particle production in final state

Any assumption for the dependence of M(α, α′, J, T ) on conserved quantities like mass, momenta and
quantum numbers can be checked for usefulness by the statistical theory. Ignoring spins, charges and all
conservations except the total four-momentum, then σΦ is unity, i.e. Lorentz invariant and

Mfi =

(

m′
1.m

′
2.m1.m2 · · ·mn

ω′
1.ω

′
2.ω1.ω2 · · ·ωn

)1/2

.M ′
fi, (15)

where mi and ωi are masses and energies of i-th state. It is obvious that M ′
fi depends on the Lorentz-

invariant and Mfi =M ′
fi in the non-relativistic limit.

The matrix element can be given as [25, 26]

∣

∣M ′
fi

∣

∣

2 ∝ (2π)−3(n−1) Ωn−1, (16)

where Ω does not depend on momentum of the particle in the final state and has the volume dimension.
Furthermore, Ω might depend on the total center-of-mass energy E. Concretely, Ω is assumed to be the
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volume of the larger out of the two Lorentz-contracted spheres. Therefore, Eq. (12) can be simplified as
follows.

σ(E;m1, · · · ,mn) ∝ P (E;m1, · · · ,mn)

=

(

Ω

V

)n−1 (
V

8 π3

)n−1

ρ(E, 0;m1, · · · ,mn), (17)

where V is the volume. Expressions (16) and (17) can be interpreted as follows. In point-of-view of an
observer in the center-of-mass system, each of the two incoming particles appears as a Lorentz-contracted
sphere. Then, the interacting spheres penetrate each other. The total energy E will be concentrated in a
small space region of the volume Ω. Because of the strong interactions, a rapid succession of transitions
likely sets in. Particles of various kinds will be created and annihilated. With increasing the center-
of-mass energy, the number of produced particles rapidly increases. Such a circumstance apparently
suggests that some sort of statistical equilibrium will be attained. Therefore, each accessible state will
finally be excited to its average statistical strength. In other words, the system reaches a state, in
which the particles can be considered as a gas of a free constituents confined to the large normalization
volume V . The cross-section of each final state is proportional to (Ω/V )n−1. There is another indirect
proportionality to the number of produced particles n. The latter is likely proportional to the volume.
Furthermore, the cross-section of each final state is proportional to the density of the final state. It is
apparent that this approach is likely the extreme opposite of the perturbation theory [25].
The phase space integral [30, 31] reads

ρS(E, 0;m1, · · · ,mn) =

∫

dp1 · · ·
∫

dpn
m′

1.m
′
2.m1.m2 · · ·mn

ω′
1.ω

′
2.ω1.ω2 · · ·ωn

δ

(

E −
n
∑

i=1

εi

)

δ3

(

E −
n
∑

i=1

pi

)

,(18)

where the dispersion relation εi =
√

m2
i + p2i . There is another theory [32] assuming the replacement of

(ω1 · ω2 · · ·ωn)
−1 by (ω1 · ω2 · · ·ωn)

−3/2, then

ρF (E,P ;m1, · · · ,mn) =

∫

dp1 · · ·
∫

dpn δ

(

E −
n
∑

i=1

εi

)

δ3

(

E −
n
∑

i=1

pi

)

. (19)

As pointed out in Ref. [2], a systematic comparison between Eq. (18) and (19) is not possible. Because
the Lorentz invariance in Eq. (18) apparently permits the use of simple recurrence formulas, a numerical
evaluation is comparatively easy. The property of Lorentz invariance in Eq. (16) likely does not necessarily
guarantee a better agreement with the experiment.
The statistical model of Fermi [25] was successfully applied to large angle elastic and exchange scat-

tering [33–35]. For non-invariant statistical model and probabilities Pj for all channels j on the reaction
p+ p→ j′, then in natural units,

(

P0
∑

j Pj

)

pp

= eO(E), (20)

where P0 is the probability in the elastic channel. The asymptotic behavior out of the sums over phase
space integrals [36, 37] of out-of-thermodynamic methods [38, 39],

(

P0
∑

j Pj

)

pp

= e−aEα

, (21)

where a and α are constants. To keep the energy per particle and consequently the temperature constant,
increasing E is followed by increasing the number of possible kinds of particles [39]. This is the heart of
Hagedorn model, section II E.

D. (1954-1957) Lepore, Stuart, Magalinski and Terletskii: statistics of charge-conserving
systems

With the huge progress in conducting high-energy experiments, it turns to construct suitable canonical
ensembles in order to exactly incorporate the charge conservation for a given dynamical system as a key
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tool in the high-energy collisions. In context of quantum statistical mechanics, one implicitly wanted to
build Fock spaces of states which are characterized by defined symmetry properties or prescribed charges
[40]. In SU(2) symmetry, the energy and total spin dependence of the single-particle density of states
in the nuclear Fermi-gas mode has been calculated [43–45]. About six decades ago, micro-canonical
calculations taking into consideration four-momentum conservation have been presented [32, 46, 47].

1. Phase space volume and momentum conservation

Lepore and Stuart [32] introduced a general approach to calculate the phase volume. This method is
used to study the consequences of including momentum conservation in the relativistic collisions. The
statistical weight of a state that leads to n particles with masses m1,m2, · · · ,mn has to fulfil the rule

Sn = R Ωn−1

(2π)3(n−1)

∫ n
∏

i=1

d3 pi, (22)

where Ω is the configurational space volume, Ω = (2m/E)Ω0 = (2m/E)(4π/3)/r3, with energy E, mass
m and proper coordinate r. The ratio R = S/G stands for weight factor S due to conservation of spin
and isotopic spin and G which converts the specific phase space volume into a generic one appropriate to
indistinguishable particles.
The requirements of momentum and energy conservation is to be imposed on the statistical weight,

Sn = R Ωn−1

(2π)3(n−1)

d

d(iE)

∫ ∞−iǫ

−∞−iǫ

dα

α

∫ ∞

−∞
d3 λ

∏

i

d3 pi exp

{

i

[

λ ·
∑

i

pi + α

(

E −
∑

i

εi

)]}

, (23)

where εi is the dispersion relation of i-th particle, while ǫ has a infinitesimal positive value.
Each of the momentum integral can be written as [32]

I =

∫

d3 p exp [i (λ · p− α ε)] . (24)

With the variable change p = m sinh θ,

I = −2πm

λ

d

dλ

∫ ∞

−∞
dθ cosh θ exp [im (λ sinh θ − α cosh θ)] , (25)

which can reduced to the standard forms, if α > λ > 0 is valid

I = −2πm

λ

d

dλ

∫ ∞

−∞
dθ cosh θ exp

[

im
(

α2 − λ2
)1/2

cosh (θ − φ1)
]

. (26)

With another variable change θ′ = (θ − φ1), then, the integrals can be expressed in Hankel functions

I =
2π2m2α

α2 − λ2
H

(2)
2

(

m(α2 − λ2)1/2
)

. (27)

In relativistic limit, the density of state reads

Sn = R Ωn−1

(2π)2(n−1)

(4n− 3)!E3n−4

24(n−1) (2n− 1)! (2n− 2)!(3n− 4)!
. (28)

Comparing this expression with the one given in Ref. [48] (page 576, Eq. (13)), it can be found that R
is absent. As discussed above, R counts for momentum conservation. For large n,

Sn = R Ωn−1

π2n

E3n−4

(3n− 4)!

(

2π2

n

)1/2

, (29)

where Stirling’s approximation is applied.
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2. Quantum statistics with a variable number of idea particles

Magalinski and Terletskii introduced [46, 47] a general description for the quantum statistics in systems
(like high-energy collisions) with a variable number of ideal (non-interacting) particles. The generalization
extends to an aggregate of oppositely charged particles, for which the conservation laws are fulfilled.
Expressions for total number of particles and the total energy are deduced. They are distinguishable
from the ordinary quantum statistics.
A general feature of statistical description in high-energy studies is to determine the phase space or

Fock space. Both should be restricted due to conservation laws. Conservation of the charges, baryon
number and strangeness was studied within the thermodynamical model of high-energy hadronic collisions
[49, 50]. Finite-size effects were found.
In almost all applications of statistical-thermal methods applied to study systems with charge conserva-

tion, the underlying symmetry corresponds to one or several unrelated U(1) groups [40]. This apparently
means that in order to obtain the total charge of a many-particle state, the charges of the constituents
can be simply added. There is an increasing interest in gauge theories based on various non-Abelian
internal symmetries [41]. This has been introduced by Yang and Mills [42].

E. (1964) Hagedorn: statistical-thermodynamical approach to strong interactions

The abundant formation of resonances of increasing mass and rotational degrees of freedom is one of the
most striking features of strong interaction physics, which has attracted intense theoretical attention for
about six decades [51, 52]. Hagedorn was the first who systematically analysed high-energy phenomena
using all tools of statistical physics. It is assumed that higher and higher resonances of strongly interacting
particle occur and take part in the thermodynamics as if they were particles. Hagedorn introduced the
concept of limiting temperature based on the statistical bootstrap model. This was the origin of the
multiphase structure of the hadronic matter. The limiting temperature arose as a consequence of the
mass spectrum ρ(m) [51, 52], which relates the number of hadronic resonances to their masses as an
exponential. The density of states is given as [51, 52]

σ(E, V ) =

∞
∑

n=1

V n
0

n!

∫

δ

(

m−
n
∑

i=1

Ei

)

n
∏

i=1

ρ(mi)dmid
3pi, (30)

In general, all thermodynamical quantities are sensitive to ρ(m). For up-to-date undermined resonance
states, a parametrization for total spectral weight has been introduced [53]

ρ(m) = f(m) em/T0 , (31)

where f(m) strongly depends on the hadron resonances. Hegedorn [51, 52] estimated its asymptotic
behavior as follows.

ρ(m) = const. m−5/2. (32)

The Hagedorn model assumes that a certain volume V0, which is a thermodynamical equilibrium, is
established. The latter is also described ”by statistical thermodynamics of an unlimited and undetermined
number of more or less excited hadrons”. Then, these hadronic states should leave the region of interaction
and strongly decay through ”a number of steps” into stable hadrons. The Hagedorn model defines the
excited hadrons as a highly excited hadron. In other words, the highly excited hadron is nothing but a
fireball consists of undistinguished resonances. The thermodynamical system is the fireball itself.
The number of excited hadrons with masses between m and m + dm is given by the mass spectrum

ρ(m). In thermodynamical language, ρ(E) denotes the number of states between E and E + dE. The
partition function corresponding to ρ(m) is conjectured to diverge for T → T0. In the present review, we
only include known resonance states with mass ≤ 2 GeV instead of the Hagedorn mass spectrum [51, 52].
In the Hagedorn model [51, 52], it is assumed that the excluded-volume correction should be pro-

portional to the pointlike energy density. Furthermore, it is assumed that the density of states of the
finite-size particles in total volume V can be taken as precisely the same as that of pointlike particles in

the available volume V −∑i V
(i)
0 , where V

(i)
0 is the eigenvalue of the i-th particle in hadron resonance

ensemble.
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1. Hagedorn model: quantum statistics

The hadron resonances treated as a free gas [54–58] are conjectured to add to the thermodynamical
pressure in the hadronic phase (below Tc). This statement is valid for free as well as for interacting
resonances. It has been shown that the thermodynamics of strongly interacting system can also be
approximated to an ideal gas composed of hadron resonances with masses ≤ 2 GeV [58, 59]. Therefore,
the confined phase of QCD, the hadronic phase, was modelled as a non-interacting gas of resonances
[54–58]. The grand canonical partition function reads

Z(T, µ, V ) = Tr
[

exp
µN−H

T

]

, (33)

where H is the Hamiltonian of the system and T (µ) being temperature (chemical potential). The
Hamiltonian is given by sum of the kinetic energies of the relativistic Fermi and Bose particles. The main
motivation of using this Hamiltonian is that

• it contains all relevant degrees of freedom of confined and strongly interacting matter.

• It implicitly includes the interactions that result in formation of resonances.

• In addition, it has been shown that this model can offer a quite satisfactory description of the
particle production in the heavy-ion collisions, section IVB.

With the above assumptions, dynamics of the partition function can be calculated exactly and apparently
expressed as a sum over single-particle partition functions Z1

i of all hadrons and their resonances.

lnZ(T, µi, V ) =
∑

i

lnZ1
i (T, V ) =

∑

i

±V gi
2π2

∫ ∞

0

k2dk ln {1± exp[(µi − εi)/T ]} , (34)

where εi(k) = (k2 +m2
i )

1/2 is the i−th particle dispersion relation, gi is spin-isospin degeneracy factor
and ± stands for bosons and fermions, respectively.
Before the discovery of QCD, a probable phase transition of a massless pion gas to a new phase of

matter was speculated [60]. Based on statistical models like Hagedorn [61, 62] and Bootstrap model
[63, 64], the thermodynamics of such an ideal pion gas has been studied, extensively. After the QCD, the
new phase of matter is now known as the quark gluon plasma (QGP).
The physical picture was that at Tc the additional degrees of freedom carried by QGP are to be released

resulting in an increase in the thermodynamical quantities like energy and pressure densities. The success
of HRG model in reproducing lattice QCD results at various quark flavors and masses (below Tc) changed
this physical picture drastically. Instead of releasing additional degrees of freedom at T > Tc, the hadronic
system increases its effective degrees of freedom, namely at T < Tc. In other words, the hadron gas has
much more degrees of freedom than QGP.
At finite temperature T and baryon chemical potential µi, the pressure of the i-th hadron or resonance

species reads

p(T, µi) = ± gi
2π2

T

∫ ∞

0

k2dk ln {1± exp[(µi − εi)/T ]} . (35)

As no phase transition is conjectured in the HRG model, summing over all hadron resonances results in
the final thermodynamic pressure (of the hadronic phase).
The switching between hadron and quark chemistry is given by the relations between the hadronic

chemical potentials and the quark constituents; µi = 3nb µq+ns µS , where nb(ns) being baryon (strange)
quantum number. The chemical potential assigned to the light quarks is given as µq = (µu + µd)/2 and
the one assigned to strange quark reads µS = µq − µs. It is worthwhile to notice that the strangeness
chemical potential µS should be calculated as a function of T and µi. In doing this, it is assumed that
the overall strange quantum number has to remain conserved in the heavy-ion collisions [58].
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2. Hagedorn model: Boltzmann statistics

The relativistic momentum integrals can be replaced by summation over modified Bessel functions [64],

K2

(m

T

)

=

√
π

Γ(5/2)

1

4

(m

T

)2
∫ ∞

0

p4dp
exp(−ε/T )

ε
, (36)

=

√
π

Γ(5/2)

1

4

(m

T

)2
∫ ∞

1

exp(−2m/T ) (t2 − 1)3/2 dt, (37)

where Γ(5/3) = (3/2)Γ(3/2) = (3/2)
√
π/2. In non-relativistic limit,

K2

(m

T

)

=

√

πT

2m
exp(−m/T )

[

1 +
4m2/T 2 − 1

8m/T
+ · · ·

]

. (38)

In relativistic limit,

K2

(m

T

)

=
2T 2

m2
− 1

2
−
[

ln
( m

2T

)

+ γ − 3

4

]

m2

8T 2
+ · · · , (39)

where γ ≃ 0.577 is Euler constant.
Then, the partition function reads

ln zcl(T, µ, V ) =
V

2 π2
T 3

N
∑

i=1

exp
(µi

T

) (mi

T

)2

K2

(mi

T

)

. (40)

The logarithm can be expressed as a series. Each term comprises contributions from all contributing
bosons and fermions. Then, from Eqs. (35) and (34), we get

lnZqs(T, µ, V ) =
T 3 V

2 π2

∞
∑

n=1

gn
n4

exp
(

n
µ

T

)(

n
m

T

)2

K2

(

n
m

T

)

, (41)

which is restricted to m− µ < 0 and the fermionic factor (−)n+1 should be combined in the degeneracy
factor.

3. Mass spectrum: statistical bootstrap and dual resonance model

The statistical bootstrap method introduced in 1979 by Bradley Efron [65] measures the accuracy in a
sample. This was inspired by earlier work on the jackknife [66, 67]. A Bayesian extension was developed
in 1981 [68].
But, in early sixties of last century, the statistical bootstrap model was suggested by Hagedorn to

describe hadron production [69, 70]. This approach was refined as the understanding of hadronic structure
advanced, and ultimately it has been modified to allow for the possibility that individual, confined hadron-
gas particles dissolve into quark-gluon plasma (QGP).
For multi-hadron system, as in strong interactions, the statistical bootstrap and dual resonance model

estimate an asymptotic density of the states

σ(m2) = c m2 eb m, (42)

where a, b and c are constants and m is the center-of-mass energy. Obviously, the constant b gets the
interpretation as the inverse temperature. Adding up new resonance masses leads to an increase in the
density of states rather in the kinetic energy.
The resonance excitation spectrum is given as [71]

ρ(p2) = δ(p2 − µ2) +
1

B

[

σ(p2)− δ(ν)(p)−Bρ(p2)
]

, (43)
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where ν − 1 plays the role of d, the dimensionality B is a (ν − 2)-D space volume, B = 2µV , and µ is
the mass of the basic hadron, the pion mass. In non-relativistic limit, B is responsible for the connection
to a 3D coordinate space volume. It is worthwhile to mention that

p2 ≡ p20 −
ν−1
∑

i=1

p2i . (44)

The quantity which carries dynamical information in the bootstrap scheme is the mass spectrum ρ(m)
of the fireballs. In a generic form, ρ(m) satisfies an integral equation so that [72]

ρ(m) = δ(m−m0) +

∞
∑

n=2

1

n!
δ

(

m−
n
∑

n=1

mi

)

n
∏

i=1

ρ(mi) dmi, (45)

where m0 is the mass of hadron resonance and mi, i = 1, 2, · · · ,∞ stands for the fireball masses in
an ascending order of complexity. ρ(m) determines the number of hadron resonances or fireballs with
rest-frame volume V . This volume should reside inside the momentum region d3p around ~p, so that

V

h̄3
d3p

∫

ρ(m) dm → 2
V µ pµ
2π3

∫

δp(p
2 −m2)d4p · τ(m2) dm2, (46)

where the four-volume V µ is adjusted parallel to the four-momentum pµ so that

ρ(m) dm = τ(m2) dm2, (47)

V µ =
V

m
pµ. (48)

The similarity between the two models is due to similar underlying partition features. The level density
of one-dimensional dual resonance model is the number of root systems of the equation

N
∑

r=1

r λr = N, (49)

where r and λ are positive and N = m2. The asymptotic solution reads [73]

Z1(x) =

∞
∑

r=1

σ1(N) xN =

∞
∏

k=1

(1− xk)−1, (50)

which can lead to Eq. (42).
The dimensionality d is related to a [73]

a = −1

2
(d− 1). (51)

The inverse temperature parameter is related to the slope α′ of the Regge trajectories [74]

b = 2 π

(

α′ d

6

)1/2

, (52)

For d = 4 and α′ = 1 GeV−2, the resulting critical temperature reads ∼ 174 MeV.

F. (2003) Karsch, Redlich and Tawfik: scaling of resonance masses for lattice simulations

In order to use the resonance gas model for further comparison with lattice QCD results we should take
into account that the lattice QCD calculations are generally performed with quark masses heavier than
those realized in nature [54]. This was the case 10 years ago. In fact, we should take advantage of this
by comparing lattice results obtained for different quark masses with resonance gas model calculations



18

based on a modified resonance spectrum depending on the quark masses. Rather than converting the
bare quark masses used in lattice QCD calculation into a renormalized mass, it is much more convenient
to use directly the pion mass (mπ ∼ √

mq), i.e. the mass of the lightest Goldstone particle, as a control
parameter for the quark mass dependence of the hadron spectrum.
To leading order, the quark mass dependence of all other hadron masses may then be parametrized

as mH ∼ mH,0 + cH
√
mπ, while in the heavy quark mass limit the relation is determined by the parton

model, mH = nmπ, with n = 2 and 3 for mesons and baryons, respectively.
For thermodynamic considerations, we want to extract information on features of the quark mass

dependence of a large set of resonances [54–56]. In order to study the quark mass dependence of hadron
masses in the intermediate region between the chiral and heavy quark mass limits, an approach is adopted
which is based on the Hamiltonian of the MIT bag-model [75]. MIT stands for Massachusetts Institute
of Technology.

1. MIT bag model

Although, the original Hamiltonian breaks explicitly chiral symmetry and implies non-conservation of
the axial-vector current, it still provides a satisfactory description of the hadron mass spectrum that can
be used for our thermodynamic considerations. In the limit of a static, spherical cavity the energy of the
bag of radius R is given by

E = EV + E0 + EK + EM + EE . (53)

The first two terms are due to quantum fluctuations and are assumed to depend only on the bag radius.
The volume and the zero-point energy terms have a generic form

EV =
4

3
πBR3, (54)

E0 = −Z0

R
, (55)

where B is the bag constant and Z0 is a phenomenological parameter attributed to the surface energy.
The quarks inside the bag contribute with their kinetic and rest energy. Assuming N quarks of mass

mi, the quark kinetic energy is determined from

EK =
1

R

N
∑

i=1

[x2i + (miR)
2]1/2, (56)

where xi(mi, R) enters the expression on the frequency ω = [x2 +(mR)2]1/2/R of the lowest quark mode
and is obtained [75] as the smallest positive root of the following equation

tan(xi) =
xi

1−miR−
√

x2i + (miR)2
. (57)

The last two terms in Eq. (53) represent the color–magnetic and electric interaction of quarks. It is
described by the exchange of a single gluon between two quarks inside the bag. The color electric energy
was found very small [75] and will be neglected in our further discussion. The color magnetic exchange
term is given by

EM = 8kαc

∑

i<j

M(miR,mjR)

R
(~σi · ~σj). (58)

Here αc is the strong coupling constant and k = 1 for baryons and 2 for mesons. For a given spin
configuration of the bag, the scalar spin product in Eq. (58) can easily be calculated. The function
M(x, y) depends on the quark modes magnetic moment and is described in detail in Ref. [75].
The dependence of the energy on the bag radius can be eliminated by the condition that the quark

and gluon field pressure balance the external vacuum pressure. For a static spherical bag this condition
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Figure 1: Dependence of different hadron masses mh on the pion mass mπ. Both mh and mπ are expressed in
units of the string tension

√
σ ≃ 420 MeV. Curves are the MIT bag model results. The filled circles represent the

PC-PACS lattice results [76]. The filled diamonds are nf = 3 whereas the open-diamonds are nf = 2 quark flavor
results [77]. The filled-boxes are quenched QCD results [79]. All other points are from Ref. [78]. Both lattice
data and bag model results are shifted in mh-direction by a constant factors (indicated). The graph taken from
Ref. [54].

is equivalent to minimizing E with respect to R. The true radius R0 of the bag is determined from the
condition ∂E/∂R = 0 and the hadron bag mass is then obtained from Eq. (53) with R = R0.
To extract the physical mass spectrum from the MIT bag model one still needs to fix a set of five

parameters that determine the bag energy [54]. Following the original fit to experimental data made in
Ref. [75], the parameters have been fixed

B1/4 = 0.145 GeV

Z0 = 1.84,

αc = 0.55, (59)

mu = md = 0, and

ms = 0.279 GeV.

This provides a quite satisfactory description of hadron masses belonging to the octet and decuplet of
baryons and the octet of vector mesons.
The MIT bag model provides an explicit dependence of hadron masses on the constituent quark mass

[54]. This dependence is entirely determined by the kinetic and magnetic energy of the quarks. To
compare bag model calculations with lattice calculations, which do not provide values for constituent
quark masses, it is best to express the quark mass dependence in terms of the pion mass, which is most
sensitive to changes of the quark masses. In Fig. 1, the resulting dependence of different hadron masses
on the pion mass is presented with the bag parameters described above but with varying mu. The masses
are expressed in units of the square root of the string tension for which we use

√
σ = 420 MeV. We also

keep the strange and light quark masses to be indistinguishable. The model predictions are compared
with recent lattice data on hadron masses calculated for different current quark masses [76–79].
For large quark masses the bag model description of hadron masses reproduces the naive parton model

picture and consequently all hadron masses are almost linearly increasing with the pion mass as seen
in Fig. 1 . This is to be expected as in this case the energy of the bag is entirely determined by the
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quark rest mass. As seen in Fig. 1 the slope increases with the number of non–strange constituent quarks
inside the bag. Consequently, the slops of (Ξ∗,Ξ) and (K,K∗) or (Σ∗,Λ) and ρ coincide at large mπ.
A phenomenological parametrization of the quark mass dependence of resonances, expressed in terms of
the pion mass [54]

M(x)√
σ

≃ Nua1x+
m0

1 + a2x+ a3x2 + a4x3 + a5x4
, (60)

which provides a good description of the MIT bag model result for non-strange hadron masses calculated
for different values of mπ. Here x ≡ mπ/

√
σ, m0 ≡ mhadron/

√
σ, Nu is the number of light quarks inside

the hadron; Nu = 2 for mesons Nu = 3 for baryons.

Parametrization of the non–strange hadron masses from Eq. (12)

a1 a2 a3 a4 a5

0.51± 0.1 a1
Nu
m0

0.115± 0.02 -0.0223± 0.008 0.0028± 0.0015

Table I: Parameters entering the interpolation formula for non-strange hadron masses [54].

The fitting parameters, Eq. (60), are summarized in Tab. I. Accordingly, Eq. (60) reproduces the quark
mass dependence of all non-strange hadron masses obtained from the bag model within a relative error
of ≤6%.

mh(mπ)|ns=0 = 0.5nqmπ +
m0

h

1 + 0.16m2
π − 0.0517m3

π + 0.008m4
π

(61)

mh(mπ)|ns=±1 = 0.55nqmπ +
m0

h

0.468 + 0.058mπ − 0.001m2
π

(62)

where nq is the number of light quarks.
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Figure 2: The transition temperature in 2 (filled squares) and 3 (circles) flavor QCD versus mPS/
√
σ using

an improved staggered fermion action (p4-action). Also shown are results for 2-flavor QCD obtained with the
standard staggered fermion action (open squares). The dashed band indicates the uncertainty on Tc/

√
σ in the

quenched limit. Graph taken from Ref. [54].

Section II F 2 is devoted to the dependence of critical temperature as estimated in the statistical-thermal
model with varying masses on the quark mass and number of flavors. The dependence of the critical
energy density on the quark mass and number of flavors shall be studied in section II F 3. The resulting
hadronic states with changing the masses of the lightest Goldstone mesons shall be elaborated in section
II F 4. These three topics characterize the resulting statistical-thermal model and its matching with the
lattice QCD simulations [54–56].
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2. Dependence of critical temperature on quark mass and flavor

A collection of transition temperatures obtained in calculations with 2 and 3 quark flavors with de-
generate masses is shown in Fig. 2. The main feature of the numerical results is that the transition
temperature varies rather slowly with the quark mass. The linear behavior has been described by the fit
[80], Fig. 2,

(

Tc√
σ

)

mPS/
√
σ

=

(

Tc√
σ

)

0

0.4 + 0.04(1)

(

mPS√
σ

)

. (63)

For pion masses mPS ∼ (6− 7)
√
σ ≃ 2.5 GeV, the transition temperature reaches the pure gauge value,

Tc/
√
σ ≃ 0.632(2) [81].

We use Tc = 175 (15) MeV for 2-flavor QCD and Tc = 155 (15) MeV for 3-flavor QCD, respectively.
For the energy densities at the transition point we then find

(

ǫ

T 4

)

T=Tc

≃ 4.5± 1.5, 2− flavor,

7.5± 2, 3− flavor.
(64)

In Fig. 3, results from HRG at constant energy density are compared to Tc obtained in lattice calcu-
lations. As can be seen the agreement is quite good up to masses, mPS ≃ 3

√
σ or mPS ≃ 1.2 GeV. The

reason for the deviations at larger values of the quark mass, of course, is due to the fact that the glueball
sector is not taken into consideration. We use gb as an abbreviation for glueball(s).
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Figure 3: The transition temperature vs. pion mass obtained in lattice calculations. A comparison of constant
energy density lines at 1.2 (upper), 0.8 (middle) and 0.4 (lower) GeV/fm3 with lattice results for 2-flavor QCD
obtained with improved staggered [80] as well as improved Wilson [82–84] fermion formulations. Tc as well as
mPS are expressed in terms of the corresponding vector meson mass. The graph and references therein taken
from Ref. [80].

When the lightest hadron mass becomes comparable to typical glueball masses, also the glueball sector
will start to contribute a significant fraction to the energy density. Using a set of 15 different glueball
states was identified in lattice calculations [85, 86], we have calculated their contribution to the total
energy density. At mPS/

√
σ ≃ 6.5, they contribute as much as the entire hadronic sector [54]. However,

the contribution of these 15 states only leads to a small shift in the lines of constant energy density,
Fig. 4. Further support for this comes from a calculation of the energy density of the 15 known glueball
states at the transition temperature of the pure gauge theory, T = 0.63

√
σ [54]. For this we obtain

ǫ(T = 0.63
√
σ) ≃ 0.06 GeV/fm3 or equivalently ǫ/T 4

c ≃ 0.1, which is about 20% of the overall energy
density at Tc. The situation is similar to that in the chiral limit if one neglects the contribution of heavy
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Figure 4: The results for 2 and 3 flavor QCD compared to lines of constant energy density of ∼ 0.8 GeV/fm3

with varying pion-masses mπ. Here Tc and the lightest pseudo-scalar mass mπ are expressed in units of
√
σ. The

different curves are related to different constituents of HRG.

resonances and includes only a few low-lying hadronic states. The contribution of the 15 glueball states
thus does not seem to be sufficient. In fact, the transition temperature in d-dimensional SU(Nc) gauge

theories is well understood in terms of the critical temperature of string models, Tc/
√
σ =

√

3/π(d− 2),
which also is due to an exponentially rising mass spectrum for string excitations [87].
For even larger mπ the contribution of the hadron mass spectrum to the QCD equation of state is

negligible since it is suppressed by the Boltzmann factor. Here, thermodynamics is entirely determined
by glueball states. To compare the model prediction with lattice data in the broad mπ-range one still
needs to implement these important degrees of freedom in the partition function. We have included 15
different glueball states [85, 86]. The corresponding lines of constant energy density are compared to the
transition temperatures in 3-flavor QCD in Fig. 4.
It is conceivable that extending the glueball mass spectrum to all higher excited states will improve the

results shown in Fig. 4. On the other hand, one also should stress that the glueball states were obtained
in quenched QCD and at zero temperature [85, 86]. There are indications from lattice calculations that
glueball masses could be modified substantially in the presence of dynamical quarks [88] as well as at
finite temperature [89]. The analysis of glueball states at high temperature [89] suggests that their masses
can drop by ∼ (20− 40)%. As all glueballs are heavy on the temperature scale of interest, shifts in their
masses influence the thermodynamics much more strongly than in the light quark mass regime, where
the lowest state has already a mass which is of the order of the transition temperature. In fact, we
find that taking into account a possible decrease of the glueball masses close to Tc seems to be more
important than adding further heavy states to the spectrum. We thus have included a possible reduction
of glueball masses in the equation of state. The resulting Tc with this modification is also shown in Fig. 4.
Decreasing the glueball masses increases the thermal phase space available for particles. Consequently,
the temperature required to get ǫ = 0.8 GeV/fm3 is decreasing [54]. As can be seen in Fig. 4, a reduction
of glueball masses by 40% is sufficient to reproduce lattice results in the whole mπ range. However, to
make this comparison more precise, it clearly is important to get a more detailed understanding of the
glueball sector in the future.

3. Dependence of critical energy density on quark mass and flavor

The dependence of energy density on the mass of the lightest pseudo-scalar meson (both in physical
units) is presented in Fig. 5. The lattice calculations for 2 and 3-flavors are given as solid rectangles and
circles, respectively. The lattice results for 3 flavors indicate that the critical energy density seems to
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Figure 5: The dependence of critical energy density on the mass of the lightest pseudo-scaler boson is given in
physics units for 2 and 3-flavors. HRG with pions or 15 states of glueballs with and without scaled masses are
not able to reproduce the lattice results. Only HRG in which strange and non-strange fermion and bosons in
additional to the 15 states of glueballs are included describes very well the lattice results.

remain constant, while the mass of pseudo-scalar meson gets at large as ∼ 1 GeV. With further increasing
mass, the critical energy density almost exponentially decreases. The available results for 2 flavors are
not as broaden as that for 3 flavors. The first region (0.3 < mπ < 1.2 GeV) seems to confirm constant
critical energy density.
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Figure 6: Nucleon mass is given in dependence on the mass of the lightest pseudo-scaler boson (both in physics
units) for 3-flavors. HRG in which strange and non-strange fermion and bosons in additional to the 15 states of
glueballs are included describes very well the lattice results. The lattice results are taken from [90] (rectangle),
[91] (circle), [79] (triangle), [92] (quadrilateral) and [93] (pentacle).

It is obvious that the HRG model reproduces very well the lattice results, especially for 3 flavors. In
order to analysis the effects on different degrees of freedom, different components are included in the
HRG model. It is obvious that the pions alone are not able to reproduce the critical energy density. Also
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the 15 states of glueballs with and without scaled masses are not able, as well. In both cases, raising
the mass of lightest pseudo-scalar boson leads an increase in the resulting critical energy density, so that
very heavy pseudo-scalar boson would results in critical energy density comparable to the one measured
in lattice gauge theory.
Using the results presented in Fig. 4 that Tc dependence on mPS , the corresponding energy density

is calculated and drawn as astride, open rectangle and stars for pions, glueballs without and with scaled
masses, respectively. The three curves represent the calculations for critical energy density in dependence
on the mass of the lightest pseudo-scalar boson, where the input critical temperatures have been taken
from lattice QCD calculations [54]. The agreement is obviously excellent.
The open circles represent the HRG results, in which both strange and non-strange fermion and bosons

in additional to the 15 states of glueballs are included. The resulting critical energy density remains
constant (∼ 0.93 ± 0.05 GeV/fm−3) for mPS < 1.2 GeV. A further raise in mPS decreases the critical
energy density. There is a minimum value atmPS ≃ 2.0 GeV [54]. Afterwards, the critical energy density
increases till it retrains back the value it started with.

4. Dependence of hadron masses on quark mass and flavor
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Figure 7: The dependence of the masses of different hadronic states on the lightest pseudo-scaler boson (in physics
units) for 3-flavors. HRG in which strange and non-strange fermion and bosons in additional to the 15 states of
glueballs are included describes very well the lattice results, which are taken from [91] (solid up and down triangle
and empty square and circle), [92] (solid circle) and [310] (astride).

The nucleon masses calculated in different lattice QCD simulations in dependence on the mass of the
lightest pseudo-scaler boson, mPS are compared with each others. Both quantities are given in

√
σ units.

HRG model, in which strange and non-strange fermion and bosons in additional to the 15 states of
glueballs are included describes very well the lattice results. As shown in Fig. 6, the dependence reads

nN = 2.6 + 0.4m2
PS − 0.035m3

PS. (65)

It is obvious that the agreement between lattice QCD and HRG calculations is excellent.
In units of ρ-meson, the masses of N , ∆ and π are given in dependence on the mass of the lightest

pseudo-scalar boson, Fig. 7. Different lattice calculations are used, [91] (solid up and down triangle and
empty square and circle), [92] (solid circle) and [310] (astride). Open symbols represent m∆/mρ. Solid
symbols stand for mN/mρ, compare with Fig. 7. The astride gives mπ/mρ. The HRG with strange and
non-strange fermion and bosons in additional to the 15 states of glueballs is apparently able to reproduce
the correct dependence on the three masses.
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III. STATISTICAL-THERMAL MODELS IN NON-IDEAL HADRON GAS

Since, analytic or perturbative solutions in low-energy QCD are hard or even impossible due to the
highly nonlinear nature of the strong force in this limit, the formulation of QCD in discrete rather than
continuous spacetime was suggested four decades ago [105]. The discritization naturally introduces a
momentum cut-off at the order a−1, where a is the lattice spacing. With the lattice QCD, it turns to
be possible to have a first-principle framework for the investigation of non-perturbative phenomena, like
thermodynamics of hadronic and partonic matter and confinement-deconfinement phase transition, which
are intractable in analytic field theories. Lattice QCD benefits from the huge progress in soft and hard
ware facilities. Furthermore, lattice QCD has made successful contact to many experiments, for instant,
in estimating the mass of the proton. There is a deviation of less than 2% [106].
Various types of interactions shall be introduced in section III A. We start with van der Waals repulsive

interactions, section IIIA 1, then we introduce the Uhlenbeck and Gropper statistical interactions, section
III A 2 and general S-matrix and strong interactions III A 3.
The dissipative properties shall be studied in section III B. This shall be divided into a single-component

fluid, section III B 1, and multiple-component fluid, section III B 2. Chapman-Enskog and Relaxation time
approximation shall be utilized. Topics like, K-matrix parametrization of hadronic cross-sections, relation
of T -matrix to K-matrix and the relaxation time shall be discussed.
Section III C shall be devoted to the statistical-thermal models in rapidity space. The goal is the

study of the dependence of thermal parameters on the location, in particular on the spatial rapidity.
A single freeze-out temperature model shall be given in section III C 1. The rapidity dependence of
thermal parameters shall be discussed in section III C 2. An approximation of beam rapidity dependency
of particle ratios can be derived in the Regge model. Accordingly, the baryon-pair production at very
high energy is governed by Pomeron exchange, section III C 3. The asymmetry between baryons and anti-
baryons can be expressed by the string-junction transport and by an exchange with negative C-parity.
The proton ratios versus Kaon ratios shall be reviewed in section III C 4.

A. Interactions in hadron gas

In literature, there are at least three types of interactions to be implemented to the hadron gas:

• The van der Waals repulsive interactions shall be studied in section IIIA 1.

• The Uhlenbeck and Gropper statistical interactions shall be introduced in section IIIA 2.

• Section IIIA 3 is devoted to strong interactions represented by the generic S-matrix.

1. Approaches for excluded volume: van der Waals repulsive interactions

The repulsive interactions between hadrons are considered as a phenomenological extension, which
would be exclusively based on van der Waals excluded volume [108–111]. Accordingly, considerable
modifications in thermodynamics of hadron gas including energy, entropy and number densities are
likely. There are intensive theoretical works devoted to estimate the excluded volume and its effects on
the particle production and fluctuations [112], for instance. It is conjectured that the hard-core radius
of hadron nuclei can be related to the multiplicity fluctuations [113]. Assuming that hadrons are spheres
and all have the same radius, we compare between different radii in Fig. 8. On the other hand, the
assumption that the radii would depend on the hadron masses and sizes could come up with a very small
improvement.
The first principle lattice QCD simulations for various thermodynamic quantities offer an essential

framework to check the ability of extended ideal hadron gas, in which the excluded volume is taken into
consideration [114], to describe the hadronic matter in thermal and dense medium. Figure 8 compares
normalized energy density and trace anomaly as calculated in lattice QCD and HRG model. The symbols
with error bars represent the lattice QCD simulations for 2 + 1 quark flavors with physical quark masses
in continuum limit, i.e. vanishing lattice spacing [115]. The curves are the HRG calculations at different
hard-core radii of hadron resonances, r. We note that increasing the hard-core radius reduces the ability to
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reproduce the lattice QCD results. Two remarks are now in order. At 0 ≤ r < 0.2 fm, the ability of HRG
model to reproduce the lattice energy density or trace anomaly is apparently very high. Furthermore, we
note that varying r in this region makes almost no effect, i.e. the three radii, r = [0.0, 0.1, 0.2] fm, have
almost the same results. At r > 0.2 fm, the disagreement becomes obvious and increases with increasing
r. At higher temperatures, the resulting thermodynamic quantities, for instance energy density and trace
anomaly become non-physical. For example, the energy density and trance anomaly nearly tends toward
vanishing.
So far, we conclude that the excluded volume is practically irrelevant. It comes up with a negligible

effect, at r ≤ 0.2 fm. On the other hand, a remarkable deviation from the lattice QCD calculations
appears, especially when relative large values are assigned to r. With this regard, it has to be taken into
consideration that the excluded volume itself is conjectured to assure the thermodynamic consistency in
the HRG model [108–113].
It is obvious that the thermodynamic quantities calculated in HRG model are likely to diverge at Tc

[51, 52, 61, 62]. It is a remarkable finding that despite the mass cut-off at 2 GeV, the energy density
remains finite even when T exceeds Tc. Apparently, this is the main reason why the trace anomaly
gets negative values. The correction to pressure is tiny or negligible [108–113]. Nevertheless, the finite
hard-core should not be believed to reproduce the lattice QCD simulations at T > Tc. The validity of
HRG model is strictly limited to T < Tc.
The excluded-volume approach [125], section IIIA 1, assumes that the energy normalized by 4B equals

the excluded-volume and the intensive quantity Tpt in the point-type particle approach and the other
thermodynamic quantities [126], respectively, have to be corrected as follows.

T =
Tpt

1− Ppt(Tpt)
4B

, (66)

p(T ) =
ppt(Tpt)

1− Ppt(Tpt)
4B

, (67)

where B1/4 = 0.34GeV stands for the MIT bag constant.

2. Uhlenbeck and Gropper statistical interactions

The second type of extensions has been introduced by Uhlenbeck and Gropper [116]. This is mainly
a statistical interaction. The non-ideal (correlated) hadron statistics is given by the classical integral if
the Boltzmann factor exp(−φij/T ) is corrected as follows.

exp

(

−φij
T

)

[

1± e−mT r2ij

]

, (68)

where rij is the average correlation distance between i-th and j-th particle. φij is the interaction potential
between i-th and j-th particle pairs. It is not an exception to apply this to any type of interactions. But,
the potential must be such that the Boltzmann factor precisely equals to the pair correlation function
[117]. Apparently, the summation over all pairs gives the total potential energy. This kind of modifications
takes into account correlations and also the non-ideality of the hadron gas. The latter would among others
refer to the discreteness of the energy levels. Uhlenbeck and Gropper introduced an additional correction
but concluded that it is only valid at very low temperatures [116]. It should be noticed that the correction,
expression (68), is belonging to generic types of correlation interactions.
The quantum correction introduced by statistics can appear as an attractive potential for Bose-Einstein

statistics and as a repulsive potential for Fermi-Dirac statistics. Pathria [117] developed a mathematical
expression for the effective interaction between fermions or bosons. There are several examples of the
statistical interactions. The virial correction to the pressure of an ideal gas is most likely the origin of
this idea about the effective interaction. Applications as in physics of white dwarf stars (classic example
of Fermi repulsion) and of triplet atomic hydrogen atom (effective repulsion between like-spin electrons
due to the Paul principle) are well-known [118]. The diatomic hydrogen atom is bound in electron singlet
state, while the triplet is not. Another example can be found in a system of rare gas atoms. When one
gas approaches another, there is an exponential repulsion between the atoms, which often is explained by
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Figure 8: Top panel: normalized energy density is given in dependence on the temperature at vanishing chemical
potential. The symbols represent the lattice QCD simulations [115]. The curves are the HRG calculations at
different hard-core radii of the hadron. Bottom panel presents the same but for the normalized trace anomaly.
The results at T > Tc are out of scope of the HRG model.

the electron statistical repulsion. Similarly, the trapped bosons condense, like boson stars, which likely
collapse to a smaller region in the center of the trap, gives the impression of an effective boson statistical
attraction [118].

3. S-matrix and strong interactions

As introduced in Ref. [58], the third type of interactions to be implemented in the ideal hadron
gas is the attraction. The Hagedorn states are considered as the framework to study the physics of
strongly interacting matter for temperatures below Tc. The Hagedorn interaction finds its description
in the hadron mass spectrum, ρ(m), Eq. (185). Using the hadrons and resonances which are verified
experimentally, the limits of the exponential ρ(m) can be determined. For instance, the mass cut-off
may vary from strange to non-strange states [53], for strange 1.5 GeV and for non-strange 2.0 GeV or
from bosons to fermions, etc. According to the Bootstrap model [63, 64], the fireballs are treated as
hadronic massive states possessing all conventional hadronic properties. It is apparent that the fireball
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mass is determined by the mass spectrum. Furthermore, fireballs are consisting of further fireballs. This
is only valid at the statistical equilibrium of an ensemble consisting of an undetermined number of states
(fireballs).
On one hand, the whole spectrum of possible interactions can be represented by S-matrix, which can

re-write the partition function, Eq. (34), as an expansion of the fugacity term [58]

lnZ(int)(V, T, µ) = lnZ(id)(V, T, µ) +

∞
∑

ν=2

aν(T ) exp(µν/T ). (69)

The S-matrix describes the scattering processes in the thermodynamical system [119]. aν(T ) are the
so-called virial coefficients and the subscript ν refers to the order of the multiple-particle interactions

aν(T ) =
gr
2π3

∫ ∞

Mν

dw e−εr(w)/T
∑

l

(2l + 1)
∂

∂w
δl(w). (70)

The sum runs over the spatial waves. The phase shift δl(w) of two-body inelastic interactions, for instance,
depends on the resonance half-width Γr, spin and mass of produced resonances,

lnZ(int)(V, T, µ) = lnZ(id)(V, T, µ) +
gr
2π3

∫ ∞

Mν

dw
Γr e

(−εr(w)+µr)/T

(Mr − w)2 +
(

Γr

2

)2 . (71)

For narrow width and/or at low T , the virial term reduces, so that we will get the non-
relativistic ideal partition function of the hadron resonances with effective masses Mν . In
other words, the resonance contributions to the partition function are the same as that of free particles
with effective masses. At temperatures comparable to Γr, the effective mass approaches the physical
one. Thus, at high temperatures, the strong interactions are taken into consideration via including heavy
resonances, Eq. (69). We therefore suggest to use the canonical partition function Eq. (71) without any
corrections.
In such a way, the S-matrix would give the plausible scattering processes taking place in the system

of interest. The strong interactions are taken into consideration via heavy resonances. These conclusions
suggest that the grand canonical partition function is able to simulate various types of interactions,
when hadron resonances with masses up to 2 GeV are included. As discussed, this sets the limits of
Hagerdorn mass spectrum, Eq. (185). The predefined mass cut-off is supposed to avoid Hagedorn’s
singularity. A conclusive convincing proof has been presented through confronting HRG to lattice QCD
results [54–58]. Fig. 8 illustrates the excellent agreement between HRG with r = 0 fm and the lat-
tice QCD calculations. It should be noticed that the results at T > Tc are out of scope of the HRG model.

We conclude that the attraction interaction is very sufficient to overcome the hard-core repulsion inter-
action. In light of this, we comment on the conclusion of Ref. [114]. In framework of interacting hadron
resonance gas, a thermal evaluation of thermodynamic quantities has been proposed. The interactions to
be implemented in the HRG model are mainly van der Waals repulsion which are included through cor-
rection for the finite size of hadrons. Different values for the hadron radii can be assigned to the baryons
and mesons. The authors studied the sensitivity of the modified HRG model calculations to the hadron
radii. The results on different thermodynamic quantities were confronted with predictions from lattice
QCD simulations. Therefore, the conclusion would be understood, as hadron resonances with masses
up to 3 GeV are taken into consideration. At this mass cut-off, the exponential description of the mass
spectrum would be no longer valid. Furthermore, it is straightforward to deduce that heavier masses
are connected with lower thermodynamical quantities. It is correctly emphasized [120] that including
all known hadrons up to 2.5 or even 3.0 GeV would increase the number of hadron resonances by a few
states with masses > 2 GeV. An attempt to improve the HRG model by including an exponential mass
spectrum for these very heavy resonances has been proposed [53]. In Refs. [114, 120] only known states
and not the mass spectrum are taken into account. For this reason, the authors of Ref. [114] concluded
that the HRG model with small or even vanishing radii gives thermodynamic quantities which apparently
are less steeply than in case of a ideal HRG.
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B. Dissipative properties of hadron gas: viscous coefficients

The dissipative properties in hadronic matter can approximately be studied under a simplification that
the hadron gas has only one component. The Relaxation time and Chapman-Enskog approximation shall
be applied [121] in section III B 1. Section III B 2 is devoted to the case of multiple components. K-matrix
parametrization of hadronic cross-sections, T -matrix and its relation to K-matrix and relaxation time
shall be elaborated.

1. Dissipative quantities in a single-component fluid

a. Chapman-Enskog approximation
The dependence of bulk viscosity on the speed of sound, the thermodynamic properties of the system

and the interaction cross-sections between the constituents of a hadronic system was studied [121, 122].
An approximation to bulk viscosity in physical units gives

ην = k T
α2
2

2w
(2)
0

, (72)

where the parameters read

α2 =
3

2

[

z h̃

(

γ − 5

3

)

+ γ

]

, (73)

z =
mc2

k T
, (74)

h̃ =
K3(z)

K2(z)
, (75)

γ is the ratio of specific heats at constant pressure and volume, respectively, cp/cv, and Ki is the modified

Bessel function of i−th order. The omega integral, w
(2)
0 , gives information about the cross-section of

scattering particles,

w
(2)
i =

2 π c z3

K2(z)2

∫ ∞

0

dψ sinh7(ψ) coshi(φ)Kj(2 z cosh(ψ))

∫ π

0

dΘ sin(Θ)σ(ψ,Θ)
(

1− cos2(Θ)
)

,(76)

where the order j = 5/3+ (−1)i/2 and σ(ψ,Θ) is the differential cross section. The hyperbolic functions
read

sinh(ψ) =
p1 − p2
2mc

, (77)

cosh(ψ) =

√−pα pα
2mc

. (78)

The ratio of specific heats can be related to the adiabatic speed of sound, cs =
√

∂(−pα pα)1/2/∂ǫ|S at
constant entropy S,

γ = 1 +
∂(−pα pα)1/2

∂ǫ

∣

∣

∣

∣

S

= 1 + c2s. (79)

Also, the parameter α2, Eq. (73), can be expressed in terms of the speed of sound,

α2 =
3

2

[

−
(

z h̃+ 1
)

(

1

3
− c2s

)

− 1

3
z h̃+

4

3

]

. (80)

Then, the bulk viscosity reads

ην = k T
a2
(

1
3 − c2s

)2
+ 2 a b

(

1
3 − c2s

)

+ b2

2w
(2)
0

, (81)

where a = −3(z h̃+ 1)/2 and b = −(z h̃− 4)/2.
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Figure 9: Shear viscosity coefficients of pion gas as calculated from Chapman-Enskog (bottom curve) and relax-
ation time (top curve) approximations as function of temperature. Both quantities are given in physical units.
Graph taken from Ref. [122].

b. Relaxation time approximation
We start with energy-stress tensor [121–123],

T i j = T i j
0 +

1

(2 π)3

∫

d3 p
pi

p0
vjp δ fp, (82)

δ fp = −τ
(

∂ f0
p

∂ t
+ vp · ∇ f0

p

)

, (83)

where f0
p is the equilibrium distribution function and vp is the velocity of a particle with momentum p

and energy p0 = ǫp. The dissipative part of the energy-stress tensor reads

T i j
diss = −η

(

∂ ui

∂ xj
+
∂ uj

∂ xj

)

−
(

ην − 2

3

)

∇ · u δi j , (84)

where u is the fluid velocity field. Comparing Eq. (83) with Eq. (84), the bulk viscosity can be deduced
from

ην =
τ

9T

1

(2 π)3

∫

d3 p
f0

p0

[

(

1− 3
h

cs T

)

p2 −
(

m
p

ǫp

)2
]

, (85)

=
τ

9T

1

(2 π)3

∫

d3 p
f0

p0

[

(

1− 3c2s
)

ǫp −
m2

ǫp

]2

, (86)

where τ is a momentum-independent relaxation time. The bulk viscosity would require an energy-
dependent relaxation time

ην =
1

9T

1

(2 π)3

∑

i

∫

d3 p
τi(ǫi)

ǫ2i

[(

1− 3c2s
)

ǫ2i −m2
]2
f0
i , (87)
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As concluded in Ref. [121], two extreme limits apparently leads to vanishing bulk viscosity:

• m→ 0 and c2s → 1/3 and

• m ∼ ǫp and c2s → 2/3.

It was concluded that the intermediate mass particles are the ones contributing the most to the bulk
viscosity. To derive expressions for the shear viscosity, almost the same procedure was applied [122]. Fig.
9 presents the shear viscosity coefficients of a pion gas calculated using Chapman-Enskog (bottom curve)
and relaxation time (top curve) approximations. In both approximations, increasing T leads to a rapid
increase in the shear viscosity.

2. Dissipative quantities in a multiple-component fluid

a. Relaxation time approximation
The relativistic kinetic theory gives the transport equations for classic and colored particles in a non-

Abelian external field. The transport coefficients for confined QCD matter composed of known particles
and resonances are studied at vanishing chemical potential. The relaxation time approximation of Boltz-
mann equation is applied. The hadronic density states in confined QCD are taken into consideration.
The transport equations describe the evolution of the phase space distribution function of the particles
of interest. The transport properties are defined as the coefficients of spatial component of the differ-
ence between the energy-momentum tensors out of and at equilibrium corresponding to the Lagrangian
density.
The Hagedorn fluid of QCD confined phases can be modelled as a non-interacting gas composed hadron

resonances [155]. The main motivation of doing this was discussed in previous sections. This refers to
all relevant degrees of freedom of the confined strongly interacting matter and implicitly including the
interactions that likely result in resonance formation [51, 52], i.e. the strong interaction.
In spherical polar coordinates, the energy-momentum tensor of a single particle with p- and T -

independent mass m is defined as

T µν
1 =

g

2π2
ρ(m)

∫

p2 dp
pµpν

ε
n(p, T ), (88)

where pµ = (ε, ~p) is momentum four-vector and g is degeneracy factor of the hadron resonances. The
single particle energy is given by the dispersion relation ε = (~p 2 +m2)1/2. The Hagedorn mass spectrum
ρ(m), section II E, implies growth of the hadron mass spectrum with increasing the resonance masses.

ρ(m) = c
(

m2
0 +m2

)k/4
exp(m/TH), (89)

with k = −5, c = 0.5GeV3/2, m0 = 0.5GeV and TH = 0.195GeV.
With the above assumptions on Hagedorn viscous fluid, the overall energy-momentum tensor can be

calculated as a sum over energy-momentum tensors T µν
1 of all hadrons resonances,

T µν =
∑

i

T µν
i . (90)

This reflects the algebraic properties, here the addition, of the energy-momentum tensor. In momentum
phase space and assuming that the system is in a state with vanishing chemical potential but near
equilibrium, the distribution function n(p, T ) reads

n(p, T ) =
1

exp
(

ε−~p·~u
T

)

± 1
, (91)

where ± stands for fermion and boson statistics, respectively. The local flow velocity ~u is compatible
with the Eckart fluid [127], implying that T µνuµuν = ε. It is obvious that n(p, T ) satisfies the kinetic
theory [128, 129] and second law of thermodynamics. The solution of kinetic equation is obtainable by
deviating the distribution function from its local equilibrium.
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Figure 10: Bulk viscosity coefficients of Hagedorn fluid are depicted as function of the heat bath temperature.
The effects of excluded-volume approach are illustrated (dashed lines).
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Figure 11: Shear viscosity coefficients of Hagedorn fluid are depicted as function of the heat bath temperature.
The effects of excluded-volume approach are illustrated (dashed lines).

The deviation of energy-momentum tensor from its local equilibrium is corresponding to the difference
between the distribution function near and at equilibrium, δn = n − n0. The latter can be determined
by relaxation time approximation with vanishing external and self-consistent forces [128–130]

δn(p, T ) = −τ pµ

~p · ~u ∂µn0(p, T ). (92)

Then, the difference between near and equilibrium energy-momentum tensor reads

δT µν
1 = − g

2π2
ρ(m)

∫ ∞

0

p2 dp
pµpν

ε2
τ pα∂α n0(p, T ). (93)

Using the symmetric projection tensor hαβ [132], the components of the derivative ∂α can split to parallel
and orthogonal to uµ. hαβ generates a 3-matric and projects each point into the instantaneous rest space
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of the fluid.

∂µ = Duµ +∇µ, (94)

where D = uα∂α = (∂t, 0) gives the temporal derivative and ∇µ = ∂µ − uµD = (0, ∂i) are spacial
derivative [128, 129]. Such a splitting has to guarantee the conservation of equilibrium energy-momentum
tensor; ∂µT

µν = 0 and fulfil the laws of thermodynamics at equilibrium [128, 129, 132]. In ref [131], the
non-equilibrium n(p, T ) has been decomposed using the relaxation time approach n = n0 + τn1 + · · · .
Alternatively, as n(p, T ) embeds the 1st-rank tensor u, δT µν

1 can be decomposed into u [128, 129] in order
to deduce its spatial components

∂ku
l =

1

2

(

∂ku
l + ∂lu

k − 2

3
δkl∂iu

i

)

+
1

3
δkl∂iu

i ≡ 1

2
Wkl +

1

3
δkl∂iu

i. (95)

Applying the equation of hydrodynamics, then the deviation from equilibrium

δT µν
1 =

g

2π2
ρ(m)τ

∫ ∞

0

pµpν

T
n0(1 + n0)

[

~p · ~uc2s∇αu
α + pα

(∇αp

ǫ+ p
− ∇αT

T

)

+
pαpβ

~p · ~u ∇αuβ

]

p2dp, (96)

can be re-written as

δT ij
1 =

g

2π2

τ

T
ρ(m)

∫ ∞

0

pipjn0(1 + n0)

[(

εc2s −
~p 2

3ε

)

∂iu
i − pkpl

2ε
Wkl

]

p2dp, (97)

where c2s = ∂p/∂ǫ is the speed of sound in this viscous fluid. The bulk ξ and shear η viscosity can be
deduced from Eq. (97) by comparing it with

δT ij
1 = −ξδij∂kuk − ηWij . (98)

To find shear viscosity η, we put i 6= j in Eqs. (95) and (98). To find bulk viscosity ξ, we substitute i
with j and T µν

0 with 3P . The subscript 0 (as in the distribution function n) refers to the equilibrium
state. Although we keep the gradients of velocity, we put ~u = 0 in the final expressions. The intensive
quantities η and ξ of Hagedorn fluid [404] in comoving frame, respectively, read

ξ(T ) =
g

2π2

τ

T

∑

i

ρ(mi)

∫ ∞

0

n0(1 + n0)

(

c2sε
2
i −

1

3
~p 2

)2

p2dp, (99)

η(T ) =
g

30π2

τ

T

∑

i

ρ(mi)

∫ ∞

0

n0(1 + n0)
~p 4

ε2i
p2dp. (100)

The T –dependence of dimensionless ratios ξT 4/τ and ηT 4/τ is depicted in Figs. 10 and 11, respectively.
With increasing T , bulk and shear viscosities increase, significantly. We note that ξ seems to be about
one order of magnitude larger than η. Right panel of Fig. 14 illustrates such a comparison. At low T , η
starts with larger values than ξ’s. But with increasing T , ξ gets larger [123, 124].
The ratio ξ/η can be related to the speed of sound c2s in a gas of massless pions. Apparently,

there are essential differences between this system and the one of Hagedorn fluid. According to Refs.
[123, 124, 133, 134], the ratio of ξ/η in N = 2∗ plasma is conjectured to remain finite across the
second–order phase transition. This behavior seems to be illustrated in Figs. 10 and 11. In the Hagedorn
fluid, the system is assumed to be drifted away from equilibrium and it should relax after a characteristic
time τ . Should we implement a phase transition in the Hagedorn fluid, then τ ∝ ξz , where z is the
critical exponents, likely diverges near Tc.

b. K-matrix parametrization of hadronic cross-sections
The shear viscosity and entropy density of HRG are calculated using the Chapman-Enskog and virial

expansion methods [135]. The latter is known as K-matrix parametrization of hadronic cross-sections
which preserves the unitarity of the T -matrix. The magnitude of shear viscosity is strongly determined
by the strength of interactions between the constituent particles in a system. For example, the shear
viscosity is inversely proportional to the differential cross-section of the interacting particles. In light of



34

Figure 12: Using K-Matrix formalism, the shear viscosity is given as function of temperature. The dashed curve
shows results when only ρ-resonance was considered. The results from all hadron resonances, the ones that formed
through π − π interactions, are shown by the solid curve. The graph taken from Ref. [135].
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Figure 13: Using K-Matrix formalism, the ratio of shear viscosity to entropy density is given as function of
temperature. The dashed curve shows results when only ρ-resonance was considered. The results from all hadron
resonances, the ones that formed through π − π interactions, are shown by the solid curve. For reference, the
AdS/CFT lower bound is given by the red dashed-line [136]. The graph taken from Ref. [135].

this, it is likely that large cross-sections, which apparently a characteristic feature of strongly interacting
systems, lead to small viscosities.
Resonant interactions, including the widths of the various resonances, are incorporated consistently in

calculations of both the shear viscosity and the entropy density. The K-matrix parametrization of the
hadronic cross-sections [137–139] are employed. This accommodates multiple resonances and preserves
the unitarity of the T -matrix in all channels. The various types of interactions, that would take place in
the hadronic matter, have been discussed in section IIIA. Furthermore, the interaction or T -matrix for
hadronic interaction through a single resonance, a+ b→ R → a+ b can be parametrized in Breit-Wigner
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equation [140]

T =
mR ΓR→a b(

√
s)

(m2
R − s)− imR Γtot

R (
√
s)
, (101)

where mR is the mass of the resonance, the total width Γtot
R (

√
s) =

∑

c,d ΓR→cd and the partial width
ΓR→cd is the one for the channel R → cd of the resonance R. The differential cross-section for such an
interaction at center-of-mass energy

√
s reads

σ(
√
s, θ) =

C(I, l)

q2ab

m2
R Γ2

R→a b(
√
s)

(m2
R − s)2 +m2

R (Γtot
R )

2
(
√
s)
Pl(cos(θ)), (102)

where C(I, l) is the symmetry factor including the spin-isospin multiplicities for the corresponding reso-
nance, θ is the polar angle, I denotes the isospin and I3 is the third component of the isospin. l is the
orbital angular momentum of the exit channel or decay channel and Pl(cos(θ)) are Legendre polynomials,
which account for the angular momentum dependence of the exit channel. The center-of-mass momentum
of the incoming particle reads

qab(
√
s) =

1

2
√
s)

√

(s− (ma +mb)2) (s− (ma −mb)2). (103)

By integrating over the polar angle and summing over all resonances, the total cross-section for the
reaction a+ b→ c+ d can be obtained

σ(
√
s)a+b→c+d =

∑

R

2SR + 1

(2Sa + 1)(2Sb + 1)

π

qab

ΓR→ab ΓR→cd

(mR −√
s)2 + (Γtot

R )
2
(
√
s)/4

, (104)

where S is the spin for hadrons and their resonances.
The energy dependence on the partial width of the channel R → ab of resonance R

ΓR→cd(
√
s) = Γ0

R→ab

mR√
s

(

qab(
√
s)

qab(mR)

)2l+1
1.2

1 + 0.2
(

qab(
√
s)

qab(mR)

)2l
, (105)

where Γ0
R→ab is the width for the channel R → ab at the pole. The last fraction is related to the Blatt-

Weisskopf B−factor [141], which will be defined later on. The differential cross-section for the process
ab → cd, Eq. (102), can be given in terms of the invariant amplitude M or the scattering amplitude
f(
√
s, θ) [139]

σ(
√
s, θ) =

1

(8π)2 s

(

qab
qcd

)

|M|2 =
∣

∣f
(√
s, θ
)∣

∣

2
, (106)

∣

∣f
(√
s, θ
)∣

∣

2
=

1

qab

∑

l

(2 l+ 1)T d(s)Pl(cos(θ)), (107)

where qab(qcd) is the breakup momentum in the initial (final) state and T d(s) is the interaction term.
Using K-Matrix formalism, the thermal evolution of shear viscosity is given in Fig. 13. The dashed

curve shows results when only ρ-resonance was considered. The results from all hadron resonances, the
ones that formed through π− π interactions, are shown by the solid curve. The temperature dependence
of shear viscosity normalized to the entropy density is presented in Fig. 13. For reference, the AdS/CFT
lower bound is given by the red dashed-line [136].

c. T -matrix and its relation to K-matrix
The overlap matrix between the initial and final state of the collision can be used to define the T -matrix,

Sa b→c d = 〈c d|S|a b〉. (108)

The scattering operator (matrix) is in turn defined

S = I + 2 i T, (109)
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where I (T ) is the identity operators related to collision-free case, S S† = S† S = I. Then, we get
(T−1 + i I)† = T−1 + i I. Accordingly, the Hermitian of K-matrix can be given as

K−1 = T−1 + i I, (110)

K = K†. (111)

To prove that K-matrix is indeed symmetric, one can study the time reversal symmetry of both S- and
T -matrix. Then, real and imaginary parts of T -matrix can be expressed in K-matrix

Re T = (I +K2)−1K = K (I +K2)−1, (112)

ImT = (I +K2)−1K2 = K2 (I +K2)−1. (113)

The hadron resonances with masses mR can be represented as a sum of poles in K-matrix

Ka b→c d =
∑

R

gR→ab(
√
s) gR→cd(

√
s)

(
√
s)m2

R − s
, (114)

where the decay coupling is given as

g2R→ab(
√
s) = mR ΓR→ab(

√
s) = Γ0

R→ab(
√
s)
m2

R√
s

qab
qab0

[

Bl(qab, qab0)
]2
, (115)

and qab0 being the breakup momentum at energy
√
s = mR. The Blatt-Weisskopf barrier factors can be

given as

Bl(qab, qab0) =
Fl(qab)

Fl(qab0)
, (116)

where for 0 ≤ l ≤ 4 and z = (q/qR)
2 with qR = 0.1973 GeV/c [135]

F0(q) = 1, (117)

F1(q) =

√

2 z

z + 1
, (118)

F2(q) =

√

13 z2

(z − 3)2 + 9z
, (119)

F3(q) =

√

277 z3

z (z − 5)2 + 9 (2z − 5)
, (120)

F4(q) =

√

12746 z4

(z2 − 45z + 105)2 + 25z(2z − 21)2
. (121)

d. The relaxation time
The relaxation time depends on the relative cross-section as

τ(T ) =
1

nf (T )〈v(T )σ(T )〉
, (122)

where v(T ) is the relative velocity of two particles in a binary collision and nf (T ) is the density of each
of the two species. The thermal-averaged transport rate or cross-section is 〈v(T )σ(T )〉. The transport
equation of single-particle distribution function in momentum space, n(r, p, t) [142],

∂

∂t
n+ ~v · ~∇r − ~∇rU · ~∇pn = −

∫

d3p2d
3p′1, d

3 p′2
(2π)6

σv ×

[nn2(1 − n′
1)(1− n′

2)− n′
1n

′
2(1− n)(1 − n2)]× (123)

δ4(p+ p2 − p′1 − p′2).
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First line in r.h.s. of Eq. (123) gives the Boltzmann collision term. The second line adds the Uehling-
Uhlenbeck factors [143, 144]. The third line accounts for the Pauli-blocking of the final states. The
total derivative of n is given by the collision integral. To solve Eq. (123), several gradients must be
take into account. Real and imaginary parts of the G-Matrix [16] are taken to describe the potential of
nuclear interactions and the cross-section of the binary interaction, respectively. The in-medium effects
in final (Pauli blocking) and also in intermediate states have to be taken into consideration. The kinetic
Boltzmann-Uehling-Uhlenbeck equations [143] for pure nucleon system have been analysed [145]. The
relaxation time in non-relativistic approximation has been deduced as

τ(T ) ≈ 850

T 2

(

n

n0

)1/3 [

1 + 0.04T
n

n0

]

+
38√

T (1 + 160
T 2 )

n0

n
, (124)

where n is the baryon density and n0 is the nuclear saturation density n0 ≈ 0.145 fm−3.
When fitting the decay widths Γi of i-th hadron resonance, then the decay relaxation time τi in GeV−1

reads τi ≡ Γ−1
i = (0.151mi − 0.058)

−1
[126, 146, 147]. As the resonance mass m is conjectured to remain

constant in thermal and dense medium, this linear fit apparently implies that τ remains unchanged, as
well. In the Hagedorn fluid, where the inter-particle collisions as in Eq. (124) are minimized, we are
left with specific processes to estimate τ (decay and repulsion for instance). Formation from free space
vacuum and decay to stable resonances; P1 + P2 ↔ P3 [148] are examples.
In rest frame of particle P3 boosting from the laboratory frame, the kinetic equation for the time

evolution of the number density n3(T ) reads

d

dt
n3(T ) =

d

dV dt
(W12→3 −W3→12) . (125)

The backward (inverse) direction is also valid. Note that n(T ), Eq. (125), and n(p, T ), Eq. (91), are
related to each other via n(T ) = N(T )/V = g/(2π2)

∑

i ρ(mi)
∫

p2dp ni(p, T ). Therefore, n(p, T ) is a
Lorentz scalar, whereas n(T ) not. The thermal decay and production rate dW/dV dt have been discussed
[148]. In Boltzmann limit and assuming that the repulsive interaction does not contribute meaningfully
to the overall relaxation time, the decay time in rest frame is given in textbooks

τ =
8πm2

3g3I

p
∑

spin |〈~p,−~p|M|m3〉|2
〈

ε3
m3

〉

, (126)

where p is the pressure. I is a step functions for particle distinguishability; I = 2 for indistinguishable
and I = 1 for distinguishable particles. M is the hadronic reaction matrix.
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Figure 14: Left panel: The thermal change of the relaxation time in Hagedorn fluid. The point-type and excluded-
volume approaches are compared. Dashed-dotted line gives the speed of sound.. Right panel: The ratio η/ξ is
given in dependence on temperature T . The point-type and excluded-volume approaches are compared. Dashed-
dotted line gives the speed of sound.

In left panel of Fig. 14, the relaxation time given in fm-units, Eq. (126), is given as function of T in
GeV. We note that increasing the temperature T leads to reducing the relaxation time τ . It might mean
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Figure 15: Baryon and strange chemical potentials are plotted as functions of y||. Parameters of Eq. (133) are
obtained from the fit to the BRAHMS data [163, 164]. The points represent a naive calculation based of Eqs.
(137)-(139). The graph taken from Ref. [160].

that the decay processes get faster when T increases. Near Tc, the effect of excluded-volume approach is
considerable.
As an application of these results, we mention the cosmological viscous models [149–154], which require

a complete set of thermo- [5, 54–56, 58, 95, 174] and hydro-dynamic equations of state in order to solve
the evolution equation in early Universe and study the nucleosynthesis.

C. Statistical-thermal models in rapidity space

About three decades ago, it was found that the ratios of particles to antiparticles depend on the
longitudinal momentum in pp and pA collisions [156]. This has been confirmed in many collisions [157].
At least since 2006, we have models for the rapidity representation of the statistical-thermal models [158–
161]. The analysis of rapidity distributions of identified particles has been suggested by Stiles and Murray
[158]. The proposal to analyse the freeze-out parameters on dependence of rapidity was motivated by
RHIC data at 200 GeV [162–164]. The BRAHMS data [162–164] shows that the antiparticle to particle
ratios have a maximum at mid-rapidity and slowly decrease as increasing rapidity. It has been suggested
that the particle ratios at RHIC energies at large rapidity are consistent with those measured at the SPS
energies [166]. The earlier are related to mid-rapidity for approximately boost-invariant systems, while
the latter are related to 4 π studies.
The ultimate goal is studying the dependence of thermal parameters on the location, in particular on

the spatial rapidity. Based on a single freeze-out temperature, approaches of the rapidity dependence of
particle ratios have been suggested [159, 160], section III C 1. Based on rapidity dependence of the thermal
parameters, a systematic behavior towards an increase in chemical potential with increasing rapidity
has been observed [167], section III C2. Implementing Regge phenomenological approach [168, 179], a
parametrization relating the baryon ratios with the rapidity was suggested [157], section III C 3.

1. A single freeze-out temperature model

A single-freeze-out model with thermal and geometric parameters dependent on the position within
the fireball was proposed [159, 160]. This was used to describe the rapidity and transverse-momentum
spectra of pions, kaons, protons and antiprotons measured at RHIC energy [163, 164]. The extension



39

to boost-non-invariant systems consists of two elements: the choice of the freeze-out hypersurface (and
collective flow) and the incorporation of the dependence of thermal parameters on the location [159, 160].

• The freeze-out hypersurface can be parametrized as

xµ = τ
(

cosh(y⊥) cosh(y||), sinh(y⊥) cos(φ), sinh(y⊥) sin(φ), cosh(y⊥) sinh(y||)
)

, (127)

where y⊥ is related to the transverse radius and y|| is the spacial rapidity. The parameter τ stands
for the proper time at freeze-out. The four momentum of the particle can be given in terms of the
transverse mass m⊥ and rapidity y

pµ = (m⊥ cosh(y), p⊥ cos(ψ), p⊥ sin(ψ),m⊥ sinh(y)) . (128)

Then,

d3
∑

·p = τ3 dy|| dφ sinh(y⊥) dy⊥ p · u, (129)

where

p · u = m⊥ cosh(y⊥) cosh(y|| − y)− p⊥ sinh(y⊥) cos(φ− ψ), (130)

and d3
∑

is the volume element of the hypersurface. The Cooper-Frye formula for the momentum
density of a given species [159, 160, 169] was used

d2N

2π pT dpT dy
= τ3

∫ ∞

−∞
d y||

∫ ymax
⊥ (y||)

0

dy⊥

∫ 2π

0

dφ p · u f
(

p · u− µ(y||)

T

)

, (131)

where f is Bose-Einstein or Fermi-Dirac distribution function. The chemical potential counts for
all charges

µ(y||) = B µb(y||) + S µs(y||) + I3 µI3(y||) + · · · , (132)

where B, S and I3 are baryon and strangeness quantum numbers and the third component of
isospin, respectively. Then, the rapidity dependence of the chemical potential is obvious. The
thermal dependence can be deduced from the various universal conditions that will be elaborated
in section IVC.

• The functional form of the chemical potentials given in Eq. (132), can be parametrized as follows
[159, 160].

µi(y||) = µi(0)
(

1 +Ai y
2.4
||

)

, (133)

where Ai is a fitting parameter for the given charge and µi(0) is the i-th charge chemical potential
at mid-rapidity (the most central collisions).

The baryon and strange chemical potentials as functions of y|| are plotted in Fig. 15. The parameters
of Eq. (133) are obtained from the fit to the BRAHMS data [163, 164] and given in Ref. [160].
We may replace Bose-Einstein or Fermi-Dirac distribution functions by Boltzmann one. According,

y|| ≃ y and the ratios of particle to antiparticle can be directly related to the chemical potential, for
instance,

p

p̄
≃ exp

(

2
µb

T

)

, (134)

K+

K− ≃ exp
(

2
µs

T

)

, (135)

π+

π− ≃ exp
(

2
µI3

T

)

, (136)
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or

µb(y) ≃
1

2
T log

(

p

p̄

)

, (137)

µs(y) ≃
1

2
T log

(

K+

K−

)

, (138)

µI3(y) ≃
1

2
T log

(

π+

π−

)

. (139)

The symbols in Fig. 15 represent a naive calculation based of Eqs. (137)-(139).

2. Rapidity dependence of thermal parameters

Assuming that the rapidity axis is populated with fireballs following a Gaussian distribution function
given by ρ(yFB), where yFB is the rapidity of the fireball [161]

ρ(yFB) =
exp

(

− y2
FB

2σ2

)

√
2π σ

, (140)

and the width of the distribution σ which can be estimated from the experimental data [162]. This
distribution of fireballs can be used to calculate the momentum distribution of i-th particle and the
distribution of particles emitted from a single fireball Ei d

3N i
1/d

3 p. Along the rapidity axis

Ei
d3Ni

d3 p
=

∫ ∞

−∞
ρ(yFB)Ei

d3N i
1

d3 p
(y − yFB) d yFB. (141)

The rapidity distribution of particles with masses m0 emitted from a single fireball is given as

dN i
1

d y
= 2 π gi exp

(µi

T

)

T

[

m2
0 +

2m0 T

cosh(y)
+

2T 2

cosh2(y)

]

exp

(

−m0 cosh(y)

T

)

. (142)

The freeze-out parameters, T and µ, vary with changing the rapidity. The idea of Ref. [161] is that T
and µ are always related to each other. The universal conditions describing the freeze-out curve have
been suggested by many authors [170–176]. In order words, changing rapidity changes T , which is turn
change µ and vice versa. The relation between µ and the fireball rapidity can be given as

µ =











0.0245 + 0.011 y2FB RHIC

0.237 + 0.011 y2FB SPS

. (143)

3. Rapidity dependence of baryon ratios

An approximation for ybeam− and y−dependencies of particle ratios can be derived in Regge model
[178]. Accordingly, the baryon-pair production at very high energy is governed by Pomeron exchange.
The asymmetry between baryons and anti-baryons can be expressed by the string-junction transport
and by an exchange with negative C-parity, e.g. ω exchange. A parametrization for particle ratio was
suggested [157, 168, 179]

R(ybeam, y) =
1 + C1 exp(αj − αp) ybeam cosh(αj − αp) y

1 + C2 exp(αj − αp) ybeam cosh(αj − αp) y
, (144)

where the Pomeron intercept αp = 1.2 [180, 181] and the string-junction intercept αj = 0.5 [182]. It is
assumed to equal the intercept of the secondary Reggions.
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Figure 16: Ratios of p̄/p and Λ̄/Λ as functions of rapidity y at
√
s = 0.9 TeV (top panel) and 7 TeV (bottom

panel). The graphs taken from Ref. [157] combining ALICE and LHCb results.

If C1 = 0, then the given parametrization, Eq. (144), counts only the contribution of string-junction
and/or for the case when in anti-proton spectrum the secondary Reggeons with positive C-parity (e.g.
f exchange) should have the same contributions as the secondary Reggeons with negative C-parity [157]
have. The parameters C2 = C1 = 3.9 give the curves in Fig. 16. A Reggeon with negative C-parity
and αj = 0.5 is sufficient to describe the experimental data, especially ALICE data. Any significant
contribution to the ratio of anti-baryon to baryon at mid-rapidity is likely due to an exchange, which is
not suppressed with increasing rapidity interval would be disfavoured [157].

4. Proton ratios versus Kaon ratios

The ratios of antiprotons-to-protons and that of K−-to-K+ are very significant observables measuring
the hadron-antihadron asymmetry in central AA-collisions [193]. Obviously, the proton ratios in the final
state carry essential information about the production of baryons and antibaryons, while the Kaon ratio
K−/K+ likely cancels the effect of strangeness production and therefore reflects the asymmetry between
charged mesons and their antiparticles [193]. As given in Fig. 17, the experimental measurements
seem to follow a kind of a universal curve [184]. The comparison with the event generators, A Multiphase
Transport Model (AMPT) [194] and the Ultra-Relativistic Quantum Molecular Dynamics (UrQMD) [195]
allows the conclusion that the hadronization with String fragmentation would not explain such a universal
phenomenon [184]. The symbols refer to the RHIC results (BRAHMS and STAR measurements) [163,
165, 184–186]. The lower energy results are deduced from Refs. [187–191], while the LHC measurements
at

√
s = 2.76 TeV from Ref. [192]. AMPT 1.11 and UrQMD 2.3 were presented in Ref. [184].

In the quark combination model [196, 197], the fraction of two ratios can be parametrized with the
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Figure 17: The p̄/p ratio is given in dependence on K+/K−. Both are measured in central nucleus-nucleus
collisions. The experimental results are compared with lattice QCD and even-generator calculations. The graph
taken from Ref. [193].

global production of baryons, antibaryons and mesons [193]

R(z) =
B̄(x, z)

B(x, z)
=

B(−z)
B(z) = 1− z

3B(z) , (145)

where B(z) is defined in Ref. [193]. x gives the total number of quarks and antiquarks. This should
characterize the bulk property of the system related to size or energy of the system. z stands for the
asymmetry between quarks and antiquarks, |z| ≤ 1. Apparently, this plays the role of measuring the
baryon number density,

x = Nq +Nq̄, (146)

z =
Nq −Nq̄

Nq +Nq̄
. (147)

In Fig. 17, the baryons, the antibaryons and the mesons are studied as function of the numbers of
constituent quarks and antiquarks before hadronization. They should follow a universal correlation, for
instance the relation between p̄/p and K−/K+ ratios, Eq. (145). It is obvious that this dependence can
be well explained in the framework of quark combination model [196, 197].

z =
1− K+

K−

1 +
(

1 + 0.14 1+RVP

RV P

)

K+

K−

, (148)

where RV P = 0.45. As pointed out in Ref. [193], understanding the low pT hadron production in the
relativistic heavy-ion collisions is an essential framework to describe the particle production.

IV. STATISTICAL-THERMAL MODELS IN HIGH-ENERGY PHYSICS

As outlined in section II, the implication of statistical-thermal model to high-energy collisions dates
back to about six decades [23]. In 1951, Pomeranchuk [94] came up with the conjecture that a finite
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The graph taken from Ref. [58].

hadron size would imply a critical density above which the hadronic matter cannot be in the compound
state, known as hadrons. In 1964, Hagedorn introduced the mass spectrum to describe the abundant
formation of resonances with increasing masses and rotational degrees of freedom [51, 52] which relate
the number of hadronic resonances to their masses as an exponential. Accordingly, Hagedorn formulated
the concept of limiting temperature based on the statistical bootstrap model.
The ultimate goal of the physics program of high-energy collisions is the study of the properties of

strongly interacting matter under extreme conditions of temperature and/or compression [3–5, 95–99].
The particle multiplicities and their fluctuations and correlations are experimental tools to analyse the
nature, composition, and size of the medium from which they are originating. Of particular interest
is the extent to which the measured particle yields are showing equilibration. Based on analysing the
particle abundances [100, 101] or momentum spectra [101–104]. The degree of equilibrium of the produced
particles can be estimated. The particle abundances can help to establish the chemical composition of
the system. The momentum spectra can give additional information on the dynamical evolution and the
collective flow. Based on Gibbs approach, the equilibrium behavior of thermodynamical observables can
be evaluated as an average over statistical ensembles rather than as a time average for a particular state.
The latter would be essential when dealing with out-of-equilibrium processes [3–5].
In this review, we discuss the implications of statistical-thermal model on deducing a phenomenological

description for the particles production and their fluctuations and correlations. The statistical-thermal
approach provides a very satisfactory description for the experimental results covering a wide range of
center-of-mass energies. The conservation laws shall be introduced in section IVA. A detailed comparison
with the heavy-ion collisions shall be given in section IVB. Section IVC will be devoted to the chemical
freeze-out. We list out argumentation for several unified descriptions for the chemical freeze-out of the
produced particles. In section IVD, we compare between lattice QCD thermodynamics and the statistical-
thermal model. The accuracy of lattice QCD simulation in thermal and dense medium makes it possible
to estimate essential quantities, like higher order moments and chemical freeze-out.

A. Conservation laws

The hadron-based chemical potentials µB and µS are related to the quark-based ones, µq and µs

µB = 3µq, (149)

µS = µq − µs, (150)
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Assuming that the isospin and charge chemical potentials are vanishing, we use the following combination
for the hadron resonances

µ = 3bµq + sµs, (151)

where b and s are the baryon and strange quantum numbers, respectively.
The initial conditions in heavy-ion collisions apparently include zero net strangeness. This is expected

to remain the case during the whole interaction unless an asymmetry in the production of strange particles
happens during the hadronization. As we are interested in the hadron thermodynamics and location of
QCD phase transition, we suppose that the net strangeness is entirely vanishing. The average strange
particle number reads

< ns > =
1

N

N
∑

i

λ(i)s

∂ lnZ(i)(V, T, µ)

∂λ
(i)
s

. (152)

lnZ is given in Eq. (69) and µS is given in Eq. (150). λs = exp(µS/T ) is the fugacity factor of s quark.
The procedure used to calculate the quark-based µs is the following: For given T and µq (or µB), we
iteratively increase µs and in each iteration, we calculate the difference < ns > − < ns̄ >, Eq. (152).
The value of µs which disposes zero net-strangeness is the one we read out and shall use in calculating
the thermodynamic quantities. As in Eq. (150), the relation between µs and µS is given by taking into
consideration the baryonic property of s quark. The resulting µs for different µq (or µB) and T are
depicted in Fig. 18. From this numerical method, we can fit µs as a function of T and µB,

µs ≈ 0.138 ϑ θ3

1− 2.4 θ2 + 2.7 θ3
, (153)

where ϑ ≡ µq/T and θ ≡ T/Tc. Re-scaled resonance masses can be implemented [54, 55], section II F.
In order to guarantee vanishing net strange particle numbers, it is not enough to simply set µs = 0

and consequently, µS = µq = µB/3 in Eq. (152). However, there are publications in which the authors
have assigned µs to zero in hadron matter and afterwards applied the Gibbs condition for the first order
phase transition to QGP. Aside the baryons, the strange mesons with different contents of s quarks play
determining roles at different temperatures and therefore, affect the final results, Eq. (150). Setting
µs = 0, leads to violating the strange quantum numbers. Nevertheless, we will show here calculations in
which we set µs = 0. We do this in order to extensively compare with lattice results [107].
For completeness, we recall the situation in the plasma regime. For conserving strangeness at T > Tc,

we have to suppose that µS = 0. µS consists of one baryonic part µB/3 and another part coming from
the strangeness quantum number −µs. From Eq. (150), we then get

µs = µq = µB/3. (154)

This result is numerically confirmed in Fig. 18. For µq = 0 (or µB = 0), we find that µs = 0 for all
temperatures. µs increases with increasing both µq and T . At Tc, we find that µq ≈ µs. Therefore, we
can suggest to set µq = µs for all temperatures above Tc.
We summarize that µS in the hadronic matter has to be calculated in dependence on µB and T under

the assumption that the net strangeness is vanishing. In the QGP phase, one might fulfil this assumption
by setting µs = µB/3.

1. Strangeness chemical potential in lattice QCD

In the Euclidian path integral formulation, the partition function of lattice QCD at finite T and µ
reads

Z(T, µ) = Tr e−(H−µN)/T =

∫

Dψ Dψ̄ DA eSf (V,T,µ)+Sg(V,T), (155)

where (ψ, ψ̄) and A are the fermion and gauge fields, respectively. The chemical potential µ is
given in Eq. (151). By Legendre transformation of Hamiltonian H , we get the Euclidian action
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S =
∫ 1/T

0
dt
∫

V
d3xL. The fermionic action is given as

Sf = a3
∑

x

[

maψ̄xψx +
1

2

4
∑

k=1

(

ψ̄xγkψx+k̂ − ψ̄x+k̂γkψx

)

+ µaψ̄xγ4ψx

]

, (156)

where a is the lattice spacing. As given in Eq. (152), the number density of quarks with flavor number
x is obtained by the derivation with respect to µx,

nx =
∂

∂µx
lnZ(T, µx). (157)

For checking the dependence of µs on µq and consequently on µB, it is enough to approximate the
fermionic part of lattice QCD Lagrangian for three quark flavors as

L ≈ µq





∑

x∈{u,d}
ψ̄xγ4ψx



+ µsψ̄sγ4ψs ≈ µqnu + µqnd + µsns. (158)

To taken into account the conservation of the baryon and strange quantum numbers, the summation in
last expression has to run over s quarks, too. By doing this, last term turns to be (µq − µs)ns. Then
we expect that the strangeness on lattice vanishes at µs = µq. But from Eq. (158), which reflects the
situation in current lattice simulations, we find that ns = 0 for µs = 0.
As discussed in previous section, the strangeness in QGP is conserved at µs = µq = µB/3. In the

hadronic regime, especially at large µB, µs (or µS) has to be calculated as a function of T and µB, Fig. 18.
In spite of these considerations, the reliable lattice QCD simulations are still limited to µB ≈ 3Tc. At
this small value, there is practically no big difference between µs = 0 and µs = f(T, µB).

B. Comparing with heavy-ion collisions

1. Particle abundances and their ratios

Understanding the dynamical properties of hot and dense hadronic matter is one of the main
motivations of heavy-ion experiments, which in turn offer unique possibilities to study hadronic matter
under extreme conditions [200, 201, 203–205] and to compare with the lattice QCD simulations [206].
RHIC has shown that the bulk matter created in such collisions can be quantitatively described by
hydrodynamic models [205]. The created hot and dense partonic matter, QGP or colored quarks and
gluons, where quarks and gluons can move freely over large volumes comparing to the typical size of a
hadron, rapidly expands and cools down. Over this path, it likely undergoes phase transition(s) back to
the hadronic matter. Different thermal models can very well reproduce the particle abundances, which
are governed in chemical equilibrium by two parameters, the chemical freeze-out temperature Tch and
the baryon chemical potential µb, where the latter reflects the net baryon content of the system, directly,
and the center-of-mass energy, indirectly, section IVC. A schematic description of the successive stages
of a heavy-ion collision is given by the Bjorken model [199].

a. Bjorken model
The Bojorken model [199] is illustrated in Fig. 19. Early thermalization, vanishing baryon chemical

potential in the fluid and one-dimensional expansion besides boost symmetry of the initial conditions,
the initial independence on rapidity and the isotropic (homogenises) rapidity over the spacetime are the
main assumptions of this model. A schematic representation of the various stages of a heavy-ion collision
is given as a function of time t and the longitudinal coordinate z (the collision axis) in Fig 19. The time

variable is related to the proper time τ ≡
√
t2 − z2, which has a Lorentz-invariant meaning. This should

remain constant along the hyperbolic curves separating various stages [207], Fig. 19.
Accordingly, the boost-invariant four-velocity is defined as

uµ =
X̃µ

τ
=
t

τ

(

1, 0, 0,
z

t

)

=
(t, 0, 0, z)√
t2 − z2

. (159)
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Figure 19: Various stages of a heavy-ion collision are given in plane of the proper time t and the longitudinal
coordinate z. The stages (green) are related to the underlying physics (red). Graph taken from Ref. [207].

Due to Lorentz symmetry and the initial conditions for energy density, pressure and temperature, respec-
tively

ǫ = ǫ(τ, y) → ǫ(τ), (160)

P = P (τ, y) → P (τ), (161)

T = T (τ, y) → T (τ), (162)

then the equation of motion reads

dǫ

dτ
= − ǫ+ Ps

τ

(

1− 4

3 τ T

η

s
− 1

τ T

ξ

s

)

, (163)

where s is the entropy and η (ξ) being bulk (shear) viscosity coefficient. Reliable EoS of hadronic matter
has been elaborated in Ref. [149].
In the simplest case, i.e. η = ξ = 0 and P = ǫ/3, the energy change per unit rapidity, y, is given as

dE

dy
=

d3V

dy
ǫ(τf ) = π R2 τf ǫ0 τ0

(

τ0
τf

)γ

. (164)

Assuming that no expansion takes place at τ > τt, then

ǫ0 =
1

π R2 τ0

dE

dy
=
< mt >

πR2

dE

dy

∣

∣

∣

∣

z=0

dNch

dy
. (165)

Eq. (165) allows to estimate the initial energy density, which apparently is related to experimental
quantities, like dE/dy and dNch/dy. The dependence on other quantities is also possible [208, 209].
A recent estimation for the quantity ǫ0 τ at various center-of-mass energies is given in right panel
of Fig. IVB 1 a. The pseudo-rapidity η is related y. At very high energy, η = y. An extensive
comparison between the particle multiplicity dNch/dη per participating nucleon at mid-rapidity in
central heavy-ion collisions [183, 210–219] and the corresponding results from p+p(p̄) [185, 220–228]
and p(d)+A collisions [210, 229, 230] is presented in left panel of Fig. IVB1 a.

b. Experimental particle abundances and their ratios
The particle abundances at Alternating Gradient Synchrotron (AGS), Super Proton Synchrotron (SPS)

and RHIC, and recently at LHC energies are consistent with equilibrium populations [232, 233] (compare
with left panel of Fig. IVB1 a). This makes it possible to extract both freeze-out parameters over a wide
range of Nucleus-Nucleus center-of-mass energies

√
sNN from fits of measured particle ratios with the

thermal models. The various types of hadrons interactions in the final state can - in the best cases - partly
taken into account. Details on how to extract the freeze-out parameters are elaborated in section IVC.
Nevertheless, the formation of resonances themselves can only be materialized through strong interactions,
since the resonances (fireballs) are composed of further resonances (fireballs), which in turn consist of
resonances (fireballs) and so on [69, 233]. Taking into consideration all kinds of resonance interactions by
means of the S-matrix, which describes the scattering processes in the thermodynamical system, reduces
the resulting virial term, so that the partition function turns to be reduced to the non-relativistic limit,
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Right panel: the product of Bjorken energy density, ǫBj [199], and the formation time τ in central heavy-ion
collisions at mid-rapidity is drawn in dependence on the center-of-mass energy. The quantities are given in
physical units. Graphs taken from Ref. [231].

especially at narrow width and/or low temperature T [58]. All possible interactions modifying the relative
abundances are found negligible in the hadronic phase [58, 234], especially at low chemical potentials or
high energies [54–57]. Details on all types of interactions in the hadronic phase are given in section III A.
This discussion serves as an introduction on how the experimental particle abundances are related to
statistical-thermal models.
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sNN=200 GeV are compared with the results from

the statistical-thermal models. Graph taken from Ref. [235].

The statistical operator of HRG formulated in grand canonical ensemble in central heavy-ion collisions
from top AGS up to RHIC [235], Fig. 21, gives an good description for the particle yields. For example, at√
sNN = 200 GeV, the ratios of identified hadron yields are compared with the best fits using statistical-

thermal models. With identical ratios, we mean particle-antiparticle ratios. The yields of π±, K±, p,
and p̄ are measured in PHENIX [236], STAR [237], and BRAHMS [238] experiments. The comparison
with statistical-thermal models using two sets of T and µ parameters is quite good. The comparison for
available yields of φ [239, 240], K(892)∗ [203], d and d̄ [236] is also illustrated. The measured hadron
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ratios with corresponding uncertainties are also included [203, 239, 240]. In case of missing measurements,
the ratios are calculated from the available - published - yields [235]. In additional, the ratios of strange
hyperons [241], ∆++/p [242], p̄/π−, Λ̄/π−, Ξ/π−, Ω/π−, and Λ∗/Λ[243] are also illustrated.
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In Fig. 22, the ratios π−/π+, K−/K+ and p̄/p in Au-Au collisions at RHIC [185, 244, 245] and Pb-Pb
collisions at LHC [246] energies (symbols with error bars) are compared with each others. The HRG
(thick horizontal lines) and event generators PYTHIA 6.4.21 and HIJING (symbols with horizontal lines)
results are confronted to the experimental data (symbols) [233], Fig. 23.
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The PYTHIA 6.4.21 simulations are performed for pp collisions, while the HIJING simulations
are performed for Pb-Pb collisions in the rapidity range |y| <= 0.5 with centrality (0 − 5%) and
4.5 > pt > 0.1 GeV. As introduced, the difference between the particle production in pp and AA col-
lisions almost disappears at very high energy [3, 4]. Thus, pp and AA results are conjectured to be
non-distinguishable. It is obvious, that the experimental measurements for homogeneous particles to
antiparticles ratios, i.e. same particle species, are well reproduced by means of the HRG model and both
event generators. At

√
sNN = 200 GeV, it is found that Tch = 171 MeV, and µb = 8.4 MeV. The corre-

sponding strange chemical potential reads µS = 5.9 MeV. At LHC energy
√
sNN = 2760 GeV, it is found

that Tch = 172 MeV, µb = 6.3 MeV and µS = 4.6 MeV. Comparing to HIJING, PYTHIA 6.4.21 describes



49

very well the ALICE experiments. We note that PYTHIA 6.4.21 overestimates the RHIC results for p̄/p.
This might be originated to the initial conditions related to the pp collisions. In comparison with both
event generators, the HRG model reproduces very well the experimental results at both energies.
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Fig. 24 shows the energy dependence of the ratios K∗/K− and φ/K− as measured in different systems
and compared with the HRG results. The experimental data includes, e+e− [247–251], pp [200, 201,
203, 252–255] and ALICE pp [256], Central AA including STAR [203, 252, 254, 255, 255] and ALICE
[257] besides HADES [258, 259] results. Left panel includes data from NA49 [189, 260] and E917 [261]
collaborations. It is obvious that the statistical-thermal model reproduces well both ratios. The deviation
at low energies (very large chemical potential) may refer to the hadron interactions, especially van der
Waals repulsion, section III A.
An extensive comparison between the measurements of yields at the mid-rapidity for abundant particle

species in central collisions is shown in Fig. IVB 1b. The energy regimes for the different accelerators
are sketched. For the SPS energies, two independent measurements are available for the Λ hyperona. At
lower energies (AGS at

√
sNN ≤ 5 GeV), it is conjectured that the fireball is dominated by the incoming

nucleons, while the produced pion yields have a strong energy dependence, especially in the energy regime
[235]. Furthermore, the importance of the isospin is apparent in the different yields of π+ and π−. It
was observed that the decreasing yield of protons should be related to an increasing transparency of the
incoming nuclei as a function of the incident energy. At energies larger than

√
sNN ≃100 GeV, it seems

that the produced protons are dominant. Detailed discussion about the results can be found in Ref. [235].

c. PYTHIA 6.4.21
Although the experimental data which can be compared with statistical-thermal models is taken from

heavy-ion collisions, the comparison with PYTHIA 6.4.21, which is designed to generate multi-particle
production in collisions between elementary particles, e+e−, pp and ep, turns to be possible at very high
energies. As discussed, the measured particle production is conjectured as an indicator for the formation
of QGP, especially in heavy-ion collisions. In pp-collisions, the spatial and time evolution of the system is
too short to assure initial conditions required to drive hadronic matter into partonic QGP. The potential
difference between pp- and AA-collisions is supposed to disappear at LHC energies [3, 4]. We use PYTHIA
6.4.21 [262, 263] with the Perugia-0 tune [264] in the framework of AliRoot [265]. The bulk of PYTHIA
multiplicities is formed in jets, i.e. in collimated bunches of hadrons or resonances decaying into further
hadrons produced by the hadronization of partons [262, 263]. The relative proportion of strange particles
is as expected small comparing with non-strange hadrons [266]. PYTHIA is capable of simulating for
different processes including hard and soft interactions, parton distributions, initial/final-state parton
showers, multiple interactions, fragmentation and decay.
In Refs. [3, 4], we have noticed that the collective flow of strongly interacting matter in heavy-ion

collisions makes the HRG model underestimating the particle ratios measured in pp-collisions, especially
at low energies. It was found that the differences between the particle ratios in pp- and AA-collisions
almost disappear at the LHC energies. In light of this, the comparison with PYTHIA remains an
enlightening feature. Although, it gives comparable high-energy results as the ones from the heavy-ion
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collisions, its initial conditions would be reflected in the collective properties in the final state. This would
include - among others - strangeness suppression, as the mass of strange quark is heavier than that of up
and down quarks. Therefore, the production of strange hadrons should be generally suppressed relative
to hadrons containing up and down quarks only.
The data sample presented in present work consists of 500 thousands minimum bias events for

pp-collisions at 200 GeV and 2.76 TeV with 0.1 MeV < pt < 4.5 MeV and |y| <= 0.5.

d. Heavy-Ion Jet INteraction Generator (HIJING)
Taking into consideration the role of minijets in pp, pA and AA interactions, the HIJING Monte Carlo

model was developed in early 1990’s [267, 268]. It combines a QCD-inspired model for jet production using
Lund model for jet fragmentation [269, 270]. It is expected that hard or semi-hard parton scatterings
with transverse momenta of a few GeV dominate the high-energy heavy-ion collisions. In light of this,
HIJING provides a qualitative understanding of the interplay between soft string dynamics and hard
QCD interactions. In particular, HIJING reproduces many inclusive spectra, two-particle correlations,
as well as the observed flavour and multiplicity dependence of the average transverse momentum. The
nuclear shadowing and jet quenching are two important features of HIJING event generator.

• The shadowing describes the modification of the free nucleon parton density. The parton shadowing
is taken into account using a parametrization of the modification. It has been observed that at low-
momentum fractions, the nuclear shadowing results in a decrease in the multiplicity.

• With jet quenching it is meant the energy of partons in nuclear matter responsible for an increase
of the particle multiplicity at central rapidity. Jet quenching is taken into account by an expected
energy loss of partons traversing dense matter.

A simple color configuration is assumed for the multi-jet system and the Lund fragmentation model is
used for the hadronization. It is worthwhile to mention that HIJING does not consider the secondary
interactions.
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The HIJING event generator uses some PYTHIA subroutines of tune 5.3 in order to generate the
kinetic variables for hard scattering and associated radiations. Also, it implies JETSET 7.2 for jet
fragmentation [269, 270]. The data sample presented in this work has the same characteristics as the
ones of PYTHIA 6.4. 500 thousands minimum bias events for Pb-Pb collisions at 200 GeV and 2.76 TeV
with 0.1 MeV < pt < 4.5 MeV and |y| <= 0.5 are analysed.
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The energy dependence of particle ratios may depend on the quark occupation parameters [271]. For
finite isospin fugacity λI3 , we get

nK+

nπ+

≡ K+

π+
∝ λ−1

s

(

λq
λI3

)

γq
γs
, (166)

nK−

nπ−

≡ K−

π− ∝ λs

(

λI3
λq

)

γs
γq
, (167)

nΛ

nπ+

≡ Λ

π+
∝ λs

(

λq
λ2I3

)2

γ2qγs. (168)

The particle numbers at zero chemical potential, nj(T ) ≃ T m2
jK2(mj/T ), represent the proportional

factors in these expressions. nj(T ) is a smooth function of T . The fugacity λ is also a smooth function
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of T . Correspondingly, a monotonic increase in the particle ratios is expected with energy.
The statistical parameter γ appearing in the front of Boltzmann exponential, exp(−ε/T ) gives the

averaged occupancy of the phase space relative to equilibrium limit. Therefore, in the equilibrium limit
γ = 1. Assuming the time evolution of the system, we can describe γi as the ratio between the change in
particle number before and after the chemical freeze-out, i.e. γi = ni(t)/ni(∞). The chemical freeze-out
is defined as a time scale, at which there is no longer particle production and the collisions become entirely
elastic. In case of phase transition, γi is expected to be larger than one, because of the large degrees of
freedom, weak coupling and expanding phase space at temperatures larger than the critical temperature,
i.e. QGP.

2. Dynamical fluctuations of particle ratios

The particle number density is given by the derivative of partition function with respect to the chemical
potential of interest. The fluctuations in the particle number are given by the susceptibility density, which
is the second derivative with respect to the chemical potential µ [95]

〈n〉 =
∑

i

gi
2π2

∫

dkk2
e(µi−εi)/T

1± e(µi−εi)/T
, (169)

〈(∆n)2〉 =
∑

i

gi
2π2

∫

dkk2
e(εi−µi)/T

(

e(εi−µi)/T ± 1
)2 . (170)

When the system absolved the chemical freeze-out process, the hadron resonances are conjectured to
decay either to stable particles or to other resonances. The particle number and fluctuation densities in
final state have to take into account this chemical process

〈nfinal
i 〉 = 〈ndirect

i 〉+
∑

j 6=i

bj→i〈nj〉, (171)

〈(∆nj→i)
2〉 = bj→i(1− bj→i)〈nj〉+ b2j→i〈(∆nj)

2〉, (172)

where bj→i being branching ratio for the decay of j-th resonance to i-th particle. To characterize when
the chemical freeze-out takes place, we assumed that ratio s/T 3, where s is the entropy density, get
a constant value [57, 173, 174]. Other conditions describing the freeze-out curve have been reported
[176, 272, 273], section IVC.
The fluctuations in the particle ratio n1/n2 are [274]

σ2
n1/n2

=
〈(∆n1)

2〉
〈n1〉2

+
〈(∆n2)

2〉
〈n2〉2

− 2
〈∆n1 ∆n2〉
〈n1〉 〈n2〉

, (173)
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which include dynamical as well as statistical fluctuations. The third term of Eq. (173) counts for the
fluctuations from the hadron resonances which decay into particle 1 and particle 2, simultaneously. In such
a mixing channel, all correlations including quantum statistics ones are taken into account. Obviously,
this decay channel results in strongly correlated particles. To extract statistical fluctuation, we apply
Poisson scaling in the mixed decay channels,

(σ2
n1/n2

)stat =
1

〈n1〉
+

1

〈n2〉
. (174)

Subtracting Eq. (174) from Eq. (173), we get dynamical fluctuations of particle ratio n1/n2.

(σ2
n1/n2

)dyn =
〈n2

1〉
〈n1〉2

+
〈n2

2〉
〈n2〉2

− 〈n1〉+ 〈n2〉+ 2〈n1n2〉
〈n1〉〈n2〉

. (175)

The values of dynamical fluctuations of strangeness particle ratios are greater than that of non-
strangeness ones. Their dependence on

√
s is also non-monotonic. While fluctuations from K−/π−

exponentially decrease with increasing
√
s, fluctuations from Λ/π and Ξ+/π have minimum values at√

s ∼ 10 GeV [98].
Comparing strangeness with non-strangeness fluctuations, we find that replacing pion by its anti-

particle has almost no influence on strangeness dynamical fluctuations. Non-strangeness dynamical fluc-
tuations are dramatically changed, when pion in denominator assuming that the particle ratios can
mathematically be seen as fractions. has been replaced by its anti-particle. For instance, for p/π ratio
[98]

〈
(

∆np/π+

)2〉 → 〈(∆nu)
2〉+ 2〈(∆nd)

2〉, (176)

〈
(

∆np/π−

)2〉 → 3〈(∆nu)
2〉. (177)

As in right panel in Fig. 29, while fluctuations of first ratio move from negative to positive values, second
ratio remains negative at all energies. In hadronic phase, i.e. particle ratios, quarks are strongly confined
into hadronic states. It is believed that quarks in the unconfined phase may be strongly correlated [98].
It would be interesting to verify above expressions. In doing this, we have to take into consideration
volume fluctuations on lattice. Resonance gas model can not be applied at temperatures higher than
critical one.

The responsibility of non-equilibrium quark occupancy of phase space is utilized for particle production
[271]. We want clarify the physical reason behind the non-monotonic behavior. The dependence of single-
particle entropy on the collision energy is related to the averaged phase space density. In Boltzmann limit
and for one particle

s

n
=

ε

T
+ 1− µ

T
, (178)
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where ε is the single-particle energy. In this expression, s/n is related to ε. Apparently, s/n becomes
maximum when the chemical potential gets as large as the single-particle energy ε [272]. As we assumed
Boltzmann limit, the maximum is unity in this case. Depending on the chemical potential µ, we can
insert particles into the phase space. The maximum occupation is reached at µ = ε. This is an upper
limit. Then, it becomes prohibited to insert more particles. On the other hand, we can expect - at least
theoretically - occupation values larger than this classical upper limit, only if the phase space itself is
changed. This situation is most likely provoked by the phase transition. From this discussion we can
apparently realize that s/n might play the same role as the statistical parameter γ does.
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Figure 30: The entropy per particle s/n as function of
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and γs there is a singularity in s/n ratio. It is important to notice that the singularity is located at almost the
same energy as the peaks of particle ratios. Graph taken from Ref. [272].

The results on s/n vs.
√
sNN are depicted in Fig. 30. Again we use here many hadron resonances

and full grand-canonical statistical set of the thermodynamic parameters. In this case, the complete
dependence of s/n on T and µ and consequently on

√
sNN , can straightforwardly be obtained. For

γq = γs = 1, we find that s/n increases as the energy raises from AGS to low SPS (
√
sNN ≤ 10 GeV).

As shown in Figs. 26-28, a mild maximum in K+/π+ is located at the same value of
√
sNN . For higher

energies, s/n remains constant.
For the non-equilibrium case, i.e. variable γq and γs, we find almost the same behavior up to

√
sNN ≃

6.5 GeV. At this energy, there is a singularity in s/n. The singularity might be related to a certain critical
phenomenon. For the rest of SPS energies, s/n rapidly decreases. Although the energy is increased and
consequently the produced particles, the single-particle entropy decreases. This can only be understood,
by assuming that the phase space shrinks. At RHIC, s/n decreases slowly with the energy. The shrinking
in phase space becomes slow. If this model would give the correct description, we now might have for
the first time a theoretical explanation for the dependence of phase space on energy. The phase space
at SPS energy is apparently larger than the phase space at RHIC and LHC. The consequences are that
the quark-gluon plasma might be produced at SPS. And detecting its signatures at RHIC might be
non-trivial.

C. Chemical freeze-out

Reducing the temperature, the partonic matter [198] shall hadronize. At some temperature Tch, the
produced hadrons entirely freeze out. Both freeze-out parameters, µB and Tch, can be determined in
statistical-thermal models by combining various ratios of integrated particle yields [275, 276]. Such a
way, we obtain a window in the Tch − µB phase-diagram compatible to the experimental values. µB and
T are free parameters in these fits.
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The statistical-thermal models provide a systematic study of many important properties of hot and
dense hadron gas, especially at the chemical freeze-out. In order to deduce a universal relation between
chemical freeze-out parameters, T and µb and nucleus-nucleus center-of-mass energy,

√
sNN , a common

method is used to fit the experimental hadron ratios as follows. Starting with a certain value of baryon
chemical potential µb, for instance, the temperature T is increased very slowly. At this value of µb and at
each raise in T , the strangeness chemical potential µS is determined under the condition that the strange
quantum numbers should remain conserved in the heavy-ion collisions. Having the three values of µb, T
and µS , then all thermodynamic quantities including the number density n of each spices are calculated.
When the ratio of two particles, like π+/π− reaches the experimental values, then the temperature T
and chemical potential µb are registered. This procedure is repeated for all particle ratios measured in
different high-energy experiments. Details on this procedure are reviewed in Ref. [235, 277].
In the evolution of the hadronic system, the chemical freeze-out point is the stage, in which the inelastic

collisions cease and the relative particle ratios become fixed. The search for common properties of the
freeze-out parameters in heavy-ion collisions has a long tradition [100, 278]. After chemical freeze-out,
the particle composition inside the fireball should be fixed. On the other hand, the elastic collisions
still keep the system together until thermal freeze-out. At this stage, the momentum distributions of
particles no longer changes. Therefore, the transverse momentum spectra determine the thermal freeze-
out parameters.
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Fig. 31 illustrates the variation of the extracted chemical freeze-out parameters using the Grand-
Canonical Ensemble (GCE) approach for different energies and centralities [235]. It is obvious that at
lower energies, Tch shows a variation with µB as a function of centrality [287]. When moving from central
to peripheral collisions, both Tch and µB values decreas. It is noted that use of Strangeness Canonical
Ensemble (SCE) has an opposite trend, i.e. the Tch values seem to increase when moving from central to
peripheral collisions. However, it is found that the χ2/NDF is high in SCE of peripheral collisions [235].
The two curves as results from statistical-thermal models using two different conditions for the freeze-

out, section IVC1 and IVC2, respectively.
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1. Cleymans and Redlich: constant energy per particle

A criterion of constant energy per particle was proposed as a universal curve unifying freeze-out results
obtained at SIS, top AGS and SPS [170, 278]. This criterion is frequently cited literature and used to
make predictions [292] for freeze-out parameters at SPS energies of 40 and 80 AGeV for PbPb collisions
long before the data were taken. Since then, the criterion has proven its validity also at RHIC [288, 289]
and even at the lower SPS energies [290–292]. These predictions turned out to be in agreement with the
statistical model analysis of recent experimental data obtained at these collision energies [291].
In a non-relativistic system, constant energy per particle would be expressed as the summation of

average thermal mass of the fireball plus some function of freeze-out temperature T [293]. At SIS, the
thermal mass is of the order of the nucleon mass, whereas the freeze-out temperature T ≃ 50 MeV.
At SPS and RHIC, the leading particles in the final state are pions. However, at chemical freeze-out
most of the pions are still hidden in the mesonic and baryonic resonances. Thus, here the average
thermal mass corresponds approximately to the ρ-meson mass. Consequently, with T ≃ 160− 170 MeV
a comparable value of energy per particle is obtained at SPS and RHIC as in a much lower energy at SIS
[278, 289, 294, 295].
In UrQMD, the correlation between 1 GeV energy per particle and inelasticity was investigated in

central PbPb collisions at SPS energy [296]. It was shown that there is a clear correlation between the
chemical break-up in terms of inelastic scattering rates and the rapid decrease in energy per particle. If
the value of energy per particle → 1 GeV, the inelastic scattering likely rates drop. Further evolution
of the system is then due to the elastic collisions that substantially preserve the chemical composition
of the collision in the fireball. The results from RHIC seems to favor a higher value for the energy per
particle than that at SPS and lower energies [297]. This can be interpreted as a change in the baryonic
composition of a two-component thermal source.

2. Braun-Munzinger and Stachel: constant-total baryon density
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from various pp experiments (labeled). The solid symbols give the heavy-ion results from AGS, SPS and
RHIC, respectively. The fitting of pp results according to Regge model is given by the dashed curve [179].
The solid curve is the HRG results. Extending it to the LHC energy obviously shows that the ratio itself
is very much close to unity. Contrary to the dashed curve, the solid line is not a fitting to experimental
data. The graph taken from Ref. [3].

The net baryon density, i.e. the difference between the density of baryons nb and anti-baryons nb̄ is
conjectured to characterize the contributions of baryons to thermodynamics [3]. In Fig. 32, the results
of p/p̄ calculated in HRG are represented by solid line, which seems to be a kind of a universal curve.
In heavy-ion collisions, the antiproton-to-proton ratio varies strongly with the collision energy. HRG
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describes very well the heavy-ion results. Also, ALICE pp results are reproduced by means of HRG
model. The ratios from pp- and AA-collisions runs very close to unity implying almost vanishing matter-
antimatter asymmetry. On the other hand, it can also be concluded that the statistical-thermal models
including HRG seem to perfectly describe the hadronization at very large energies and the condition
deriving the chemical freeze-out at the final state of hadronization, the constant degrees of freedom or
S(

√
s, T ) = 7(4/π2)V T 3, seems to be valid at all center-of-mass-energies spanning between AGS and

LHC.
On the other hand, the conservation of baryon number, which is mainly given by the number of

participants Apart and the variation of net baryon number nb − nb̄, which is related to the density
number of participants (Apart/V ) both are conjectured to reflect the corresponding change in the volume
of the fireball.
Comparing total yields of different particle species in the heavy-ion collisions with the calculations in

the statistical-thermal model has shown that the volume has a minimum between AGS and the lowest
SPS energy [298, 299] and exhibits a dependence on the center-of-mass energy opposite to that of nb. In
Fig. IVC2, the energy dependence of volume of the fireball as extracted from pion Hanbury Brown-Twiss
(HBT) correlations [300] is given in dependence on the center-of-mass energy. The behavior at the lowest
energies is different than that at top AGS and above, for which a log(

√
sNN ) dependence describe well

the measurements [301]. This non-monotonic behavior can be understood quantitatively as the result of
an universal pion freeze-out at a critical mean free path λf ≃1 fm, independent of energy [302].
Despite this large variation, it was first noticed [171] that the sum of baryon and anti-baryon densities

remains remarkably constant. Thus, it was proposed [171] that the chemical freeze-out curve can be
obtained from the condition of fixed density of total number of baryons and anti-baryons

nb + nb̄ ≃ 0.12 fm−3. (179)

At low energy, the production of anti-baryons is suppressed in high-ion collisions. Therefore, the net
baryon number density would be even equivalent to the total density of baryons. At high energy, the
condition, Eq. (179), gives a phenomenological explanation for the enhancement of the low mass dilepton
yield observed by the CERES Collaboration [298, 302].

3. Magas and Satz: percolation theory in heavy-ion collisions

The percolation theory successfully gives a description for the critical properties of QCD matter [303,
304]. In particular, color deconfinement in pure gauge theory can be treated as a percolation phenomenon
[305, 306]. Furthermore, models based on percolation theory are used to provide a qualitative description



58

for charmonium production and even the possible suppressions of various particle yields in heavy-ion
collisions [307, 308].
Based on geometric estimates using percolation theory, a self-consistent equation for the densities is

suggested to reproduce the freeze-out parameters [172]. The percolation theory was used to formulate and
quantify the chemical freeze-out conditions in the heavy-ion collisions. It is assumed that at vanishing
baryon density, the hadronic matter is conjectured to freeze out by vacuum percolation. At finite baryon
density, the freeze-out takes place according to baryon percolation. The condition that describes the
freeze-out line in heavy-ion collisions was formulated as [172]

n(T, µ) =
1.24

Vh

[

1− nb(T, µ)

n(T, µ)

]

+
0.34

Vh

[

1− nb(T, µ)

n(T, µ)

]

, (180)

where Vh is the hadronic volume corresponding to an average radius rh ≃ 0.8 fm, the numbers 1.24 and
0.34 have been calculation in the percolation theory [309]. When the size of the largest cluster falls below
the size of the overall spatial volume, the number 0.34 appears. The disappearance of any large-scale
vacuum and strongly interacting medium become the one that spans the entire space, both are related
1.24.
Equation (180) has a unique solution at T = T (µ). This is characterized by combining the total density

of all hadrons n(T, µb) and baryon number density nb(T, µb) from the statistical-thermal model of HRG,
for instance.

4. Tawfik: constant-normalized entropy, s/T 3
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Figure 34: Lattice QCD results on the entropy density normalized to T 3 for nf = 2 (full circles) and nf = 2 + 1
(full squares) quark flavors at µB = 0 [55, 310] on the top of the results from the HRG model (curves). The
thick curves represent the results from HRG with rescaled masses. We find a well agreement with the lattice
QCD simulations. The HRG calculations with the physical resonance masses are given by the thin curves. The
horizontal lines indicate to s/T 3-values for the physical resonance masses at the different quark flavors and critical
temperature Tc. The graph taken from Ref. [58].

For vanishing free energy, i.e. at the chemical freeze-out, the equilibrium entropy gives the amount of
energy which can’t be used to produce additional work. We can in this context define the entropy as
the degree of sharing and spreading the energy inside the equilibrium system. Furthermore, we find that
the strangeness degrees of freedom are essential at low collision energies, where the strangeness chemical
potential µS is as large as µB . According to the strangeness conservation in the heavy-ion collisions, we
find that the higher is the collision energy, the smaller is µS [58].
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We plot in Fig. 34, the lattice results on s/T 3 vs. T/Tc at µB = 0 for different quark flavors nf [55, 310].
The quark masses used in the lattice calculations are heavier than their physical masses in vacuum. For
a reliable comparison with the lattice QCD, the hadron resonance masses included in HRG have to be
re-scaled to values heavier than the physical ones [54, 55], section II F. As shown in Fig. 34, HRG can very
well reproduce the lattice results for the different quark flavors under this re-scaling condition, section
II F. In the same figure, we draw the results for physical resonance masses as thin curves, i.e. the case
if lattice QCD simulations were done for physical quark masses. The two horizontal lines point at the
values of s/T 3 at the critical temperature Tc. As mentioned above, the critical Tc and the freeze-out
temperature Tch are assumed to be the same at small µB. We find that s/T 3 = 5 for nf = 2 and s/T 3 = 7
for nf = 2+ 1. These two values will be used in order to describe the freeze-out parameters for different
quark flavors. The normalization with respect to T 3 should not be connected with massless particles.
Either the resonances in HRG or the quarks on lattice are massive.
In HRG, temperature Tch was calculated at different µB according to constant s/T 3. µB can be related

to the collision energy. On the other hand, µS , the strangeness chemical potential, has been calculated
in dependence on µB and T . The resulting T and µB are plotted in Fig. 35 on the top of the freeze-out
parameters (Tch and µB) which, as mentioned above, have been estimated by thermal fits of various
ratios of the particle yields produced in different heavy-ion collisions. The dotted curve represents our
results for nf = 2. In this case, only the non-strange hadron resonances are included in the partition
function. The entropy is given by ∂T lnZ(T, µB, µS)/∂T . The condition applied in this case is s/T 3 = 5.
The solid curve gives 2 + 1 results (two light quarks plus one heavy strange quark). Here all resonances
are included in the partition function and the condition reads s/T 3 = 7. We find that both conditions
can satisfactory describe the freeze-out parameters at high collision energy. We notice that the nf = 2
curve does not go through the SIS data points. Therefore, we can conclude that the non-strange degrees
of freedom alone might be non-sufficient at the SIS energy.
It is worthwhile to notice that both entropy density s and the corresponding temperature Tch decrease

with increasing µB. The entropy density is much faster than T , so that the ratio s/T 3 becomes greater
than 7 at very large µB. In this limit, thermal entropy density s is expected to vanish, since it becomes
proportional to T . The quantum entropy [334–339] is entirely disregarded in these calculations.
In rest frame of produced particle, the hadronic matter can be determined by constant degrees of

freedom, for instance, s/T 3(4/π2) = const [173, 174]. The quantity const is assigned to 5 and 7 for
two and three quark flavors, respectively. The chemical freeze-out is related to the particle creation.
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Therefore, the abundances of different particle species are controlled by the chemical potential, which
obviously depends on T . With the beam energy, T is increasing, while the baryon densities at mid-rapidity
decreases. The estimation of the macroscopic parameters of the chemical freeze-out can be extracted from
particle ratio. These parameters collected over the last three decades seem to fellow regular patterns as the
beam energy increases [173, 174, 277]. In section IVC5, the higher order moments have been suggested
to control the chemical freeze-out, so that several conditions have been proposed [280, 285, 364, 365].

5. Tawfik: vanishing product of kurtosis and susceptibility, κ σ2

In section V, the higher order moments of multiplicity shall be studied. The normalization is done with
respect to the standard deviation σ, which is related to the susceptibility χ and correlation length ξ [176].
Therefore, the normalization provides with a tool to relate moments to experimental measurements. The
normalization of 4−th order moment known as heteroskedacity or kurtosis κ means varying volatility
or more accurately, varying variance. Actually, the kurtosis is given by normalized 4−th order moment
minus 3. The subtraction of 3, which arises from the Gaussian distribution will be elaborated in section
IVC5.
To scale the correlation functions, there are several techniques, for instance, the survey system’s optional

statistics module including product moment correlation. This module includes the so-called partial
correlation which seems to be useful when the relationship between two variables is to be highlighted,
while effect of one or two other variables can be removed [176]. That certain products can be directly
connected to the corresponding susceptibilities in Lattice QCD simulation and related to long range
correlations, we utilize product moment, section VC.
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As will be shown in Fig. 53, the thermal evolution of κσ2 slowly decreases. It vanishes and even
changes its sign. This result seems to update previous studies [280, 281, 283], where κσ2 was assumed
to remain finite and positive with increasing µ. In the present work, we find that the sign of κσ2 is
flipped at high T [285]. Furthermore, we find that the T and µ parameters, at which the sign is flipped
are amazingly coincide with the ones of the chemical freeze-out. Vanishing κσ2 for boson and fermion,
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respective, reads

∫ ∞

0

{

cosh

[

εi − µi

T

]

+ 2

}

csch

[

εi − µi

2T

]4

k2 dk =
3 gi
π2

1

T 3

[

∫ ∞

0

(

1− cosh

[

εi − µi

T

])−1

k2 dk

]2

, (181)

∫ ∞

0

{

cosh

[

εi − µi

T

]

− 2

}

sech

[

εi − µi

2T

]4

k2 dk =
3 gi
π2

1

T 3

[

∫ ∞

0

(

cosh

[

εi − µi

T

]

+ 1

)−1

k2 dk

]2

. (182)

The rhs and lhs in both expressions can be re-written as

16
π2

gi
T 3m4(T, µ) = 48

π2

gi
T 3 χ2(T, µ), (183)

which is valid for both bosons and fermions. Then, the chemical freeze-out is defined, if the condition

m4(T, µ) = 3χ2(T, µ), (184)

is fulfilled. At the chemical freeze-out curve, a naive estimation leads to ξ ∼ 31/3 fm. In doing this, it
is assumed that the proportionality coefficients of κ ∼ ξ7 and χ ∼ ξ2, are equal. An estimation for ξ in
the heavy-ion collisions has been reported [286]. Near a critical point, the experimental value ∼ 2− 3 fm
(only factor 3 larger) agrees well with our estimation.
At the chemical freeze-out curve, the intensive parameters T and µ which are related to the extensive

properties entropy and particle number, respectively, have to be determined over a wide range of beam
energies. Fig. 59 collects a large experimental data set. For a recent review, we refer to [277] (filled
squares) and the references therein. The filled circles are taken from Ref. [235]. The upwards and down-
wards triangle represent HADES [279] and FOPI [314] results, respectively. The solid curve represents
a set of T and µ, at which κσ2 vanishes as calculated in HRG [175, 176]. It is obvious that this curve
reproduces very well the experimental data. As given above, at this curve the normalized fourth order
moment κ is equal to three times the squared susceptibility χ. This new condition seems to guarantee
the condition introduced in [173, 174]; s/T 3 = const. over the range 0 < µ < 0.8 GeV.

6. Tawfik: constant-trace anomaly, (ǫ− 3p)/T 4

The QCD trace anomaly (ǫ − 3p)/T 4 also known as the interaction measure can be derived from the
trace of the energy-momentum tensor, T ν

µ = ǫ − 3p and apparently is conjectured to be sensitive to the
presence of massive hadronic state. For instance, for non-interacting hadron gas at vanishing chemical
potential [273]

ǫ− 3p

T 4
=

∫ ∞

0

dmρ(m)

∫

d3p

(2π)3
E2 − p2

E
exp(−E/T ) ≃ 1

2π2

∫ ∞

0

(m

T

)3

ρ(m)K1

(m

T

)

dm, (185)

where ρ(m) is the mass spectrum [51, 52]. In the classical limit, the trace anomaly at finite chemical
potential µ reads

ǫ− 3p

T 4
∼ g

2π2
eµ/T

(m

T

)2 [m

T
K1

(m

T

)]

. (186)

The QCD equation of state can be deduced from the energy-momentum tensor, for instance, the
normalized pressure can be obtained for the integral of (ǫ − 3p)/T 5. For completeness, we mention
that the trace anomaly gets related the QCD coupling constant so that I(T )/T 4 ∝ T 4 α2

s [311], where
I(T ) = ǫ(T ) − 3p(T ). In light of this, essential information about weakly coupled systems would be
provided through trace anomaly.
A universal parametrization for the QCD trace anomaly at µ = 0 was proposed [312]

I(T, µb = 0)

T 4
= e−

h1
t −h2

t2

{

h0 +
f0 [tanh(f1t+ f2)] + 1

1 + g1t+ g2t2

}

, (187)
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where t = T/200. The fitting parameters are listed in Ref. [312]. This gives the thermal evolution of
I(T ). A parametrization at finite µ was suggested [313]

I(T, µb)

T 4
=

I(T, µb = 0)

T 4
+

1

2

µ2
b

T

∂χ2(T, µb)

∂T
, (188)

where the susceptibility χ2(T, µb) is given by the second derivative of the partition function,

χ2(T, µb) =
1

T

∂2 lnZ(T, µb)

∂2µb
. (189)

In the classical limit, the derivative of χ2(T, µb) with respect to temperature reads

∂χ2(T, µb)

∂T

∣

∣

∣

∣

µb=0

=
χ2(T, µb)

T 2
− g

4π2
eµb/T T

(m

T

)3 [

K1

(m

T

)

+K3

(m

T

)]

. (190)

When implementing the result in Eq. (188), we get [273]

I(T, µb)

T 4
=

I(T )

T 4
− χ2(T, µb)

T 2

µ3
b

2T
+

g

8π2
eµb/T µ2

b

(m

T

)3 [

K1

(m

T

)

+K3

(m

T

)]

. (191)
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In grand canonical ensemble at T < Tc

I(T, µb)

T 4
=

I(T )

T 4
± 1

2

(µb

T

)2 χ2(T, µb)

T 2
+

1

2

(µb

T

)2 g

2π2

1

T 4

∫ ∞

0

eµb/T [ε− µb]
F (T, µb)

(

eµb/T ± eε/T
)3 p

2dp, (192)

where

F (T, µb) =











2e2µb/T + e(ε+µb)/T + e2ε/T for bosons

3e(ε+µb)/T − 4e2µb/T − e2ε/T for fermions

.

The coefficient of (µb/T )
2 seems to play a crucial role in estimating the chemical parameters, T and µb.

The second term of Eq. (192) can be decomposed into bosonic and fermionic parts

± 1

2

(µb

T

)2 χ2(T, µb)

T 2
=

1

2

(µb

T

)2
[

χ
(B)
2 (T )

T 2
− χ

(F )
2 (T, µb)

T 2

]

, (193)
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Figure 38: The trace anomaly vanishing and finite light quark chemical potential µL as functions of T . Graph
taken from Ref. [312].

revealing that the fermionic susceptibility is to a large extend responsible for the T − µb curvature.
In Fig. 37, the freeze-out parameters calculated in the HRG model are plotted in a log-log graph (solid

curve) [273]. The symbols with error bars represent the phenomenologically estimated parameters known
as experimental data [235, 277]. They cover a center-of-mass energy ranging from couple GeV in the
SchwerIonen Synchrotron (SIS) to several TeV, in the LHC. The HADES [279] and FOPI [314] results
are also illustrated.
Fig. 37 presents the freeze-out diagram relating T to µb (symbols with error bars). It is assumed that

constant-trace anomaly is able to reproduce the freeze-out diagram, T versus µb. The condition that
I(T, µ)/T 4 = 7/2, Fig. 38 is motivated by recent lattice QCD calculations [312].

D. Comparing with lattice QCD simulations

As introduced on top of this section IV, the lattice QCD simulations turn to be compatible with
experiments. About ten years ago, the challenge of confronting HRG, section II E 1, with the lattice
QCD results was raised. It intended to learn about the critical conditions near deconfinement. Lattice
calculations suggest that this transition is a true phase transition only in small quark mass intervals in the
light and heavy quark mass regime, respectively. But, in a broad intermediate regime, the transition is not
related to any singular behavior of the QCD partition function. Nonetheless, the transition temperature
is well defined through the location of maxima in response functions such as the chiral susceptibility. A
collection of transition temperatures obtained in calculations with 2 and 3 quark flavors with degenerate
masses is shown in Fig. 2.
In order to use HRG for a further comparison with lattice results, we should take into account that

lattice calculations were generally performed with quark masses heavier than those realized in nature [54–
56]. Rather than converting the bare quark masses used in lattice calculation into a renormalized mass,
it is much more convenient to use directly the pion mass (mπ ∼ √

mq), i.e. the mass of the Goldstone
particle, as a control parameter for the quark mass dependence of the hadron spectrum. In section II F,
the quark mass dependence of the hadron spectrum on the lattice was examined.

1. Thermodynamics at vanishing chemical potential

Long time ago, the thermodynamics of strongly interacting matter at vanishing baryon number density
or chemical potential has been studied in lattice QCD calculations [315, 316]. As discussed in section
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the T/Tc ratio. The vertical lines indicate the position of the critical temperature. The full-lines are the results
of the hadron resonance gas model that accounts for all mesonic and baryonic resonances. The graph taken from
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Figure 40: The interaction measure (ǫ− 3P )/T 4 in units of T 4 calculated on the lattice with (2+1) quark flavors
as a function of the T/Tc ratio. The full-lines are the results of the hadron resonance gas model that accounts for
all mesonic and baryonic resonances. The graph taken from Ref. [54].

II E 1, the basic quantity required to verify thermodynamic properties of QCD is the partition function.
At vanishing chemical potential and charge neutral systems, the grand canonical partition function can
be given as [54]

Z(T, V ) = Tr[e−βH ] , (194)

where H is the Hamiltonian of the system and β = 1/T is the inverse temperature. The confined phase of
QCD is to be modelled as a non-interacting gas of resonances. To do so, we use as Hamiltonian the sum
of kinetic energies of relativistic Fermi and Bose particles of mass mi, which contains the contributions
from all resonances with masses below ≃ 2 GeV. Summing up in Eqs. (205), (197) and (198) for instance,
the contributions from experimentally known hadronic states, constitutes the resonance gas model for
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the thermodynamics of the low temperature phase of QCD

lnZ(T, V ) =
∑

i

lnZ1
i (T, V ). (195)

For particles of mass mi and spin-isospin degeneracy factor gi the one-particle partition function Z1
i is

given by [54]

lnZ1
i (T, V ) =

V gi
2π2

∫ ∞

0

dpp2η ln(1 + ηe−βEi), (196)

where Ei =
√

p2 +m2
i is the dispersion relation and η = −1 for bosons and +1 for fermions. The energy

density and pressure, respectively, reads

ǫ =
∑

i

ǫ1i , (197)

P =
∑

i

P 1
i . (198)

They are also to be summed over single particle contributions ǫ1i and P 1
i , respectively,

ǫ1i
T 4

=
gi
2π2

∞
∑

k=1

(−η)k+1 (βmi)
3

k

[

3 K2(kβmi)

kβm
+ K1(kβmi)

]

(199)

∆1
i ≡ ǫ1i − 3P 1

i

T 4
=

gi
2π2

∞
∑

k=1

(−η)k+1 (βmi)
3

k
K1(k βmi) (200)

where K1 and K2 are modified Bessel functions.
The energy density obtained in this way starts rising rapidly at a temperature of about 160 MeV. In

Figs. 39 and 40, the temperature dependence of the energy density ǫ/T 4, Eq. (199), and the interaction
measure ∆/T 4 ≡ (ǫ − 3p)/T 4 , Eq. (200), respectively, is compared with the lattice QCD calculations
[80] for (2+1) quark flavors. The HRG model and the lattice data agree quite well. This indicates that
for T ≤ Tc hadronic resonances are indeed the most important degrees of freedom in the confined phase.
The energy density in the resonance gas reaches a value of 0.3 GeV/fm3 at T ≃ 155 MeV and 1 GeV/fm3

already at T ≃ 180 MeV. This is in good agreement with lattice calculations, which find a critical energy
density of about 0.7 GeV/fm3 at Tc ≃ 170 MeV [80]. For comparison, we note that a simple pion gas
would only lead to an energy density of about 0.1 GeV/fm3 at this temperature. This suggests that
a more quantitative comparison between numerical results obtained from lattice calculations and the
resonance gas model might indeed be meaningful.

2. Thermodynamics at finite chemical potential

Since about ten years, the first investigations of the equation of state at non-vanishing quark chemical
potential, µq, have started [317–319]. These studies of bulk thermodynamics have been performed with
different lattice actions and also have used different methods; exact matrix inversion [317] or Taylor
expansion [318, 319], to extend previous calculations performed at µq = 0 into the region of µq > 0.
Nonetheless, they led to qualitatively and even quantitatively similar results.
The discussion of the thermodynamics of the hadronic phase of QCD is limited in the regime of low

baryon number density, µq/T ≤ 1, but high temperature, T ∼ Tc(µq = 0) [55]. It intends to compare
lattice QCD calculations at finite chemical potential with the predictions of HRG calculations. In lattice
QCD calculations, the Taylor expansion for small µq/T was utilized [319]. Unlike the approach based on
an exact inversion of the fermion determinant [317], the Taylor expansion, obviously, has the disadvantage
of being approximate. There is, however, good reason to expect, that at least at high temperature, the
contribution of terms that are beyond O((µq/T )

4) order is small. The expansion coefficients themselves
provide useful information on the relevant degrees of freedom controlling the density dependence of
thermodynamic quantities. It was argued that baryons and their resonances are these relevant degrees
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of freedom that govern thermodynamics in the confined phase at finite density [55]. Tor T ≤ Tc, it was
shown that EoS at non-zero chemical potential which has been obtained in lattice calculations can be
well described by a baryonic HRG when using the same set of approximations as used in current lattice
studies [55]. The importance of truncation effects in the Taylor expansion was examined and the influence
of non-physically large quark mass values on thermodynamic observables and the critical conditions for
deconfinement was discussed.
The distortion of the hadron mass spectrum due to non-physically large quark masses, mq has to be

deduced from lattice calculations at zero temperature [55]. A generic feature of such studies is that the
deviation from the physical mass value due to non-physically large values of the quark mass becomes
smaller for heavier hadronic states [76]. Moreover, it was found [79, 320] that the quark mass dependence
is well parametrized through Eq. (201). The masses of only a few baryonic states constructed from
(u, d)-quarks have been studied in more detail on the lattice [76, 79, 320].
A quadratic parametrization of the quark mass dependence of baryon masses

(mHa)
2 = (mHa)

2
phys + b(mπa)

2, (201)

where (mHa)phys denotes the physical mass value of a hadron expressed in lattice units and (mHa) is
the value calculated on the lattice for a certain value of the quark mass or equivalently a certain value
of the pion mass, m2

π ∼ mq [55], shows at least for nucleon, delta and their parity partners only a weak
dependence on the hadron mass. We thus take this as a general ansatz for the parametrization of the
dependence of baryon masses on the pion mass [55]

m(mπ)

mH
≃ 1 +A

m2
π

m2
H

, (202)

where m(mπ) is the distorted hadron mass at fixed mπ and mH is its corresponding physical value. This
parametrization is consistent with the previous analysis [54], where the MIT bag model was used in order
to determine the mπ-dependence of hadron masses.
The pressure may be expanded in a power series,

p(T, µq)

T 4
=

∞
∑

n=0

c2n(T )
(µq

T

)2n

. (203)

This series has been analysed up to O((µq/T )
4) and in addition to the density dependent change of the

pressure, ∆p, quantities like the quark number density, nq, and quark number susceptibility, χq, have
been calculated. The latter are obtained from Eq. (203) through appropriate derivatives with respect to
the quark chemical potential,

∆p

T 4
=

p(T, µq)− p(T, 0)

T 4
≃ c2(T )

(µq

T

)2

+ c4(T )
(µq

T

)4

,

nq

T 3
=

∂ p(T, µq)

∂ µq
≃ 2 c2(T )

(µq

T

)

+ 4 c4(T )
(µq

T

)3

, (204)

χq

T 2
=

∂2 p(T, µq)

∂ µ2
q

≃ 2 c2(T ) + 12 c4(T )
(µq

T

)2

.

In the asymptotically high temperature limit, the expansion coefficients are then given by c2(∞) = nf/2
and c4(∞)/c2(∞) = 1/2π2 respectively [55]. The high temperature expansion of O(g2) terminates also
at O(µq/T )

4. This, however, changes in the resumed O(g3) contribution. The complete expansion up
to O(g6 ln g) has been presented [321]. Thus, the ratio c4/c2 should remain small. Consequently, the
leading order term dominates in the Taylor expansion for a wide range of values for µq/T . The lattice
QCD results for the expansion coefficients for 2 quark flavors are shown in Figs. (41) and (42). It can be
seen that at T ≃ 1.5T0 the numerical results for c2(T ) still deviate by about 20% from the ideal gas value
while the ratio c4/c2 is already close to the corresponding result expected in the infinite temperature
limit.
The partition function of a resonance gas can be specified through the mass spectra for the mesonic and

baryonic sectors of QCD, respectively. In a non-interacting resonance gas the partition function reads,

lnZ(T, µB, V ) =
∑

i ∈ mesons

lnZB
mi

(T, V ) +
∑

i ∈ baryons

lnZF
mi

(T, µB, V ) , (205)
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Figure 41: The temperature dependence of the second order expansion coefficients c2. The temperature scale is
given in units of the transition temperature at µq = 0, which for the quark masses used in the QCD calculation
[80] is T0 ≃ 200 MeV. The dashed-dotted curves show results of a resonance gas model calculation for A =
0.9, 1.0, 1.1, 1.2 (from top to bottom). The graph taken from Ref. [55].

Figure 42: The same as in Fig. 41, but here for the temperature dependence of the ratio c4(T )/c2(T ). The graph
taken from Ref. [55].

where ZB
mi

(ZF
mi

) denote single particle partition functions for bosons and fermions with mass mi and
µB = 3µq is the baryon chemical potential. Here the fermion partition function contains the contribution
from a particle and its anti-particle. The total pressure of the resonance gas is built up as a sum of
contributions from particles of mass mi. The dependence of the pressure on the chemical potential at a
fixed temperature is thus entirely due to the baryonic sector. The contribution, pm, of baryons of mass
m to the total pressure is given by

pm
T

=
d

2π2

∫ ∞

0

dk k2 ln
[

(1 + z exp{−ε(k)/T })(1 + z−1 exp{−ε(k)/T })
]

(206)
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Figure 43: The ratio of pressure and quark number susceptibility versus temperature for fixed values of µq/T .
The horizontal lines are the results of HRG model. The points are the lattice calculations [319]. While the
dashed-dotted curves represent the complete expression, the dashed curves give the result of a Taylor expansion
to the same order as that used in the lattice calculations. The graph taken from Ref. [55].

where z ≡ exp{µB/T } is the baryonic fugacity with µB = 3µq, d is the spin–isospin degeneracy factor

and ε(k) =
√
k2 +m2 is the relativistic single particle energy. The pressure may be expressed in terms

of a fugacity expansion as

pm
T 4

=
d

π2

(m

T

)2 ∞
∑

ℓ=1

(−1)ℓ+1 ℓ−2K2(ℓm/T ) cosh(ℓµB/T ) , (207)

where K2 is the Bessel function.
The results for the change in pressure, the quark number density and quark number susceptibility

are given in Eq. (208). In order to compare the predictions of the HRG model with lattice results one
needs to perform the Taylor expansion up to the same order as given in Eq. 204. In the Boltzmann
approximation, we have

∆p

T 4
= F (T )[cosh

µB

T
− 1] ≃ F (T )

(

c̃2

(µq

T

)2

+ c̃4

(µq

T

)4
)

,

nq

T 3
= 3F (T ) sinh

µB

T
≃ F (T )

(

2c̃2

(µq

T

)

+ 4c̃4

(µq

T

)3
)

, (208)

χq

T 2
= 9F (T ) cosh

µB

T
≃ F (T )

(

2c̃2 + 12c̃4

(µq

T

)2
)

,

with c̃2 = 9/2 and c̃4 = 27/8. In HRG model the expansion coefficients introduced in Eq. 204 are given
by c2n = c̃2nF (T ). We note that ratios of these quantities indeed are independent of the resonance mass
spectrum and only depend on the chemical potential. For fixed µq/T we thus expect to find that any
ratio of two of the above quantities is temperature independent in the hadronic phase. Using the same
order of the Taylor expansion as used in the lattice calculations such ratios only depend on c̃4/c̃2 = 3/4,
i.e. the HRG model yields a temperature independent ratio c4/c2. As can be seen in Fig. 42 this is
indeed in good agreement with the lattice results. We note that this result is independent of details of
the hadron mass spectrum. It thus should also be insensitive to the change in the quark mass used in the
lattice calculation. In Fig. 43, we show the ratio ∆p/T 2χq for two values of the chemical potential. The
good agreement between lattice calculations and the hadronic gas results merely reflects the agreement
found already for the ratio c4/c2. In the HRG model we can, however, provide also the complete result
for this ratio,
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The corresponding result for the quark number susceptibility at different values of the quark chemical
potential is shown in Fig. 44 for the choice A = 1. The agreement of HRG model and results obtained
from lattice calculations is indeed quite satisfactory. This indicates that the thermodynamics of the
confined phase of QCD at finite density is to large extent governed by the baryonic resonances. The
uncertainty in the parametrization of the baryonic mass spectrum, Eq. 202, may result in 20% error on
the values of physical observables, i.e. c2(T ), at T = T0, Fig. 42.
Fig. 44 compares with lattice results [319] for quark number susceptibility calculated in next-to-

leading order Taylor expansion for different values of the quark chemical potential. The curves are
results obtained from the HRG model using a distorted baryon spectrum, Eq. (202), treated within the
same approximation as in the lattice study.

Figure 44: The temperature dependence of the quark number susceptibility in 2-flavour QCD calculated in next-
to-leading order Taylor expansion for different values of the quark chemical potential [319]. The lines are results
from the HRG model using a distorted baryon spectrum, Eq. (202) with A = 1, and treated within the same
approximation as in the lattice study. The graph taken from Ref. [55].

3. Chiral phase transition

As introduced in section II F, the contribution to the pressure in a free gas system due to a particle of
mass mh, baryon charge B, isospin I3, strangeness S, and degeneracy g is given by

∆p =
gm2

h T
2

2π2

∞
∑

n=1

(−η)n+1

n2
exp

(

n
BµB − I3µI − SµS

T

)

K2

(

n
mh

T

)

. (209)

In the hadronic phase, the isospin is an almost exact symmetry [322]. The quark-antiquark condensates
are given by the derivative of pressure with respect to the constituent quark masses [107]

< q̄q > = < q̄q >0 +
∑

h

∂mh

∂mq

∂∆p

∂mh
,

< s̄s > = < s̄s >0 +
∑

h

∂mh

∂ms

∂∆p

∂mh
, (210)

where < q̄q >=< ūu >=< d̄d > represents the light quark-antiquark condensate. < q̄q >0 and < s̄s >0

indicate the value of the light and strange quark-antiquark condensates in the vacuum, respectively.
The computation of the quark-antiquark condensates in Eq. (210) requires a modelling for two quan-

tities [107]:
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• The first one is the strange quark-antiquark condensate at zero temperature and zero chemical
potential, < s̄s >0. Using the QCD sum rules, the ratio of strange to light quark-antiquark
condensates in vacuum is given by 0.8± 0.3 [325] (another estimation gives 0.75± 0.12 [326]). The
Gell-Mann-Oakes-Renner relation connects the quark-antiquark condensates at zero temperature
and zero chemical potential to the meson masses and to their decay constants. We use the next-to-
leading order result obtained in chiral perturbation theory [327]:

F 2
Km

2
K

(

1− κ
m2

K

F 2
π

)

=
1

2
(mq +ms)(< q̄q >0 + < s̄s >0), (211)

F 2
πm

2
π

(

1− κ
m2

π

F 2
π

)

= (mu +md) < qq >0, (212)

where mq stands for the light quark mass (mu = md). The coefficient κ = 0.021 ± 0.008 has
been obtained from the low-energy coupling constants of chiral perturbation theory [325, 327]. The
coefficient κ does not contain any chiral logarithm. The kaon decay constant FK has to be known.
Recently, PDG (http://pdg.lbl.gov/) published estimation for FK− = 156.1± 0.2± 0.8± 0.2 MeV.
In framework of lattice QCD, the ratio of heavy to light meson decay constants is found to be given
by FK/Fπ = 1.16±0.04 [323, 324]. Also, PDG measured FK−/Fπ− = 1.197±0.002±0.0076±0.001.

• The second quantity is the quark mass dependence of the hadron masses. Results from lattice
simulations [54, 55] indicate that

∂mh

∂(m2
π)

=
A

mh
, (213)

where A ∼ 0.9− 1.2.

Using these results together with the Gell-Mann-Oakes-Renner relation, Eq. (211), one finds that [322]

∂mh

∂mq
≡ ∂(m2

π)

∂mq

∂mh

∂(m2
π)

=
A < q̄q >0

(

1 + 2κ
m2

π

F 2
π

)

F 2
π mh

. (214)

∂mh

∂ms
≡ ∂(m2

K)

∂ms

∂(m2
π)

∂(m2
K)

∂mh

∂(m2
π)

=
A < q̄q >0

(

1 + 2κ
m2

π

F 2
π

)

F 2
π mh

. (215)

Relation (215) is not valid for the pion mass, since pions are almost independent of ms in chiral perturba-
tion theory [327]. However, Eqs. (214) and (215) work reasonably well for the nucleon [328], for instance.
The masses of a few hadrons have been shown to follow Eq. (214) and Eq. (215) over a sizeable range
of quark masses [54, 55]. Thus, the contribution of one hadron of mass mh to the light quark-antiquark
condensates is given by

∆ < q̄q >

< q̄q >0
= − g

2π2
T mh

A(1 + 2κ
m2

π

F 2
π
)

F 2
π

∞
∑

n=1

(−η)n+1

n
exp

(

n
BµB − I3µI − SµS

T

)

K1

(

n
mh

T

)

, (216)

whereas its contribution to the strange quark-antiquark condensate is given as

∆ < s̄s >

< s̄s >0
= − g

2π2
T mh

A(1 + 2κ
m2

π

F 2
π
)

F 2
π

< q̄q >0

< s̄s >0
×

∞
∑

n=1

(−η)n+1

n
exp

(

n
BµB − I3µI − SµS

T

)

K1

(

n
mh

T

)

. (217)

The quark-antiquark condensates are calculated as a function of temperature T for various values of
baryon, isospin, and strangeness chemical potentials. The results are shown in Fig. 45 and Fig. 46, at
vanishing and finite potential, respectively. At zero chemical potential, we find that the strange quark-
antiquark condensate remains large at temperatures where the light quark-antiquark condensates become

http://pdg.lbl.gov/
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Figure 45: The quark-antiquark condensates as a function of temperature T at zero baryon, isospin, and
strangeness chemical potentials. The light quark-antiquark condensate < q̄q > / < q̄q >0 is given in dark
gray and solid curve. The strange quark-antiquark condensate < s̄s > / < s̄s >0 is illustrated in light gray and
dashed curve. The graph taken from Ref. [107].
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Figure 46: The same as in Fig. 45 at baryon µB = 300 MeV and strangeness chemical potentials µS = 100 MeV.
Although the chemical potentials have been set to finite values, the critical temperature of light quark condensate
is still smaller than that of the strange quark one. The graph taken from Ref. [107].

small: < s̄s > / < s̄s >0= 0.4 ± 0.2 where < q̄q > vanishes. As can be seen in Fig. 46, an increase
in µB tends to reduce the difference between < q̄q > and < s̄s >. On the other hand, we find that all
condensates are equally sensitive to µB.
We conclude that the strange quark-antiquark condensate can be relatively large at temperatures where

the light quark-antiquark condensate is very small. The uncertainty of the value of the strange quark-
antiquark condensate at critical temperature is however rather large. This is due to the uncertainty in
the values of the condensates at high temperatures which we have calculated by the HRG model. This
uncertainty could be reduced for the most part, if the factor A in Eq. (213) were more precisely known.
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4. Confinement-deconfinement phase diagram

At finite chemical potential, the fermion determinant gets complex and therefore the conventional
MC techniques are no longer applicable, the lattice configurations can no longer be generated with the
probability of the Boltzmann weight. However, considerable progress has been made to overcome these
problems [329–332]. The need for effective algorithms that would overcome the sign-problem still big. The
numerical studies for the equation of state at finite µB provides a valuable framework for understanding
the experimental signatures for the phase transition from confined hadrons to QGP [58, 333].
It is known from effective models such as bootstrap and Nambu-Jona-Lasinio model that the structure

of the phase diagram is complex. The freeze-out curve takes a much different behavior at large chemical
potential [57, 173]. Nevertheless, one might think that for small chemical potential, µq ≈ Tc, the curvature
of Tc-dependence upon µq can be fitted as a parabola, where µq is the quark baryon chemical potential.
The situation at very large chemical potentials is not clear. One might need to take into account other
effects, such as quantum effects at low temperatures [334–339], which might be able to describe the change
in the correlations from confined hadrons to coupled quark-pairs.
In the present review, we assume that the confinement-deconfinement phase transition is driven by a

constant energy density [57, 173]. We show that the degrees of freedom rapidly increase at ǫc(Tc, µB = 0)
[54, 55] and ǫc(Tc, 0) = ǫc(Tc, µB) [56, 107]. Concretely, we propose that the existence of different
transitions does not affect the assumption that ǫc is constant for all µB-values. The nature of the degrees
of freedom in this region is very different from that of the nearly non-interacting QGP at high T and low
µB . The condition driving the QCD phase transition at finite T and µB [54–56] is the energy density.
Its value is not affected by the conjecture of existing of different transitions along the whole µB-axis.
The HRG model has been used to determine Tc corresponding to a wide range of quark (pion) masses

at µB = 0 [56], section II F 2. The masses range from the chiral to pure gauge limits. The condition of
constant energy density can excellently reproduce the critical temperature Tc as a function of mq and
nf , section II F 3. In lattice QCD Lagrangian, the strangeness chemical potential µs can have the same
value of µB/3.
In the HRG model, the energy density at finite chemical potential can be divided into two parts: one

from the meson sector and another one from the baryon sector. For the first part, we can completely
drop out the fugacity term. For symmetric numbers of light quarks, the baryon chemical potential of
mesons is vanishing. But for strange mesons the strangeness chemical potential assigned to their strange
quarks should be taken into account. For the baryon sector, the chemical potential is given by Eq. (151).
The value of critical energy density is taken from lattice QCD simulations at µB = 0 [310]. In lattice

units, the dimensionless energy densities for nf = 2 and 2 + 1 are ε/T 4|Tc
∼= 4.5± 2 and ∼= 6.5 ± 2,

respectively. We take an average value and express it in physical units. Thus, ǫc = 600± 300 MeV/fm3.
It is assumed [331] that this value remains constant along the phase transition line; µB-axis. The
existence of different phase transitions (cross-over and first-order) and the critical endpoint, at which the
transition is second-order, is assumed not to affect this assumption. For the consequences of constant
ǫc(µB) disregarding the uncertainty, we first recall the second law of thermodynamics

∂ǫ = T ∂s− p+ µB ∂nB, (218)

where s, p and nB are the entropy, the pressure and the baryon number density, respectively. If the
critical energy density ǫc were a decreasing function of µB, this means that low incident energies are
much more suitable to produce the phase transition from confined hadrons to deconfined QGP than
the high incident energies! But the low limit should be given by the freeze-out curve [173], i.e. the
hadronization phase diagram. We know from phenomenological observations that both freeze-out curve
and phase transition line are coincident at low µB (high incident energy). For large µB, the two lines are
separated. The freeze-out curve [173] is given by s/T 3 = 7, i.e. entropy- or degrees-of-freedom-driven.
Then, along freeze-out curve it is expected that ǫ slightly increase with µB. This means the assumption
that ǫc decreases with increasing µB will give a phase transition which has Tc much smaller than the
freeze-out temperature.
In the other case, that ǫc increases with increasing µB, we expect the ǫc required for the phase transition

gets larger with decreasing the incident energy! According to Eq. (218), the phase diagram is given by
Tc = ∂ǫ/∂s at constant nB and µB = ∂ǫ/∂nB at constant T . Then, for increasing ǫc(µB), the critical
temperature is expected to increase or at least remain constant. This result has the consequences that
the phase transition at large µB will be difficult to materialize in heavy-ion collisions or impossible. Also
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Figure 47: The T − µb phase diagram for 2 and 2+ 1 quark flavors is depicted. The vertical lines give the lattice
results [331]. Results from 2 [330] and 2 + 1 [329] quark flavors are given as curves on top of the vertical lines.
The HRG results are presented by astride.

the phases of coupled quark-pairs (color superconductivity) will be expected for very large µB or not
allowed at all.
From the canonical partition function, the energy density at finite chemical potential µ 6= 0 can be

deduced

ǫ(T, µ) = T
∂T lnZ(T, µ)

∂T
− T lnZ(T, µ) + µ

∂T lnZ(T, µ)

∂µ
=

g

2π2

∫ ∞

0

k2 dk
ε(k)

e[ε(k)−µ]/T ± 1
. (219)

It is obvious that the trigonometric function included in last expression are not truncated. To calculate
this quantity in the HRG model, we sum up over all resonances we take into account.
In Fig. 47, the T −µB phase diagram for 2 and 2+1 quark flavors is drawn. The vertical lines give the

lattice results [331] for 2 quark flavors. Furthermore, results from 2 [330] and 2 + 1 [329] quark flavors
are given as curves on top of the vertical lines. The three lattice results are marked with authors. The
lattice QCD simulations are performed for large quark mass. The corresponding Goldstone pion gets a
mass of 770 MeV. The solid circles give our results with heavy quark masses. The HRG results given by
astride agree well with the lattice calculations. The transition temperature Tc from hadronic matter to
QGP has been determined according to a condition of constant energy density. Furthermore, we compare
the transition diagram with the freeze-out one. We use the condition of constant energy per particle
[278], section IVC1 to determine the freeze-out curve. Apparently, the two curves are separable at large
chemical potential, while they are very close to each other at low chemical potential.
The influence of strange quark chemical potential µs on Tc was studied [57]. For including µs, we

applied two models. In the first one, we explicitly calculated µs in dependence on T and µB under the
condition that the net strangeness vanishes. In the second one, we assign, as the case in lattice QCD
simulations, zero to µs for all T and µB. The first case, µs = f(T, µB), is of great interest for heavy-ion
collisions. The strange quantum number is entirely conserved. The current lattice results are very well
reproducible. On the other hand, one can apply the second model for ultra-relativistic collisions. At
RHIC and LHC energies, for instance, µB (and consequently µs) should be very small. We have shown
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that the proper condition that guarantees vanishing strangeness in QGP is to set µs = µq. We did not
check this explicitly. But it is obvious that Tc(µB , µs = 0) quantitatively is not very much different from
Tc(µb, µs(T, µB)) at small µB.

V. HIGHER ORDER MOMENTS IN STATISTICAL-THERMAL MODELS

The higher order moments can be studied in different physical quantities. For example, that of charged-
particle multiplicity distribution have been predicted four decades ago [340]. The empirical relevance
to the experimental measurements of the higher order moments has been proposed [341]. From the
experimental point-of-view, we have so-far STAR measurements [342–346] and lattice QCD calculations
[282–284]. It is worthwhile to mention that the measurement of the correlation length seems to be very
much crucial. On the other hand, the experimental sensitivity for the suggested signatures [342–346],
which are based on singular behavior of thermodynamical functions, should be evaluated. For the time
being, we just want to mention that the experimental measurements apparently take place at the final
state of the collision, which means that the signals have to survive the extreme conditions in such high
energy collisions. It has been pointed out that the contribution of the critical fluctuations to the higher
order moments is proportional to a positive power of ξ. The latter is conjectured to diverge at the QCD
critical endpoint. Such an assumption is valid in the thermodynamical limit.

A. Non-normalized higher order moments

For the i-th particle, the ”first” order moment is given by the derivative of p = −T∂ lnZ(T, V, µi)/∂V
with respect to the dimensionless quantity µi/T . When taking into account the antiparticles, we add a
negative sign to the chemical potential. The first derivative describes the multiplicity distribution or an
expectation operator, which is utilized to estimate the number or multiplicity density

m1(T, µi) = ± gi
2π2

T

∫ ∞

0

e
µi−εi

T k2 dk

1± e
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. (220)

The ”second” order moment is known as the variance. It gives the susceptibility of the measurements.
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The ”third” order moment measures of the lopsidedness of the distribution. As given in section VB,
the normalization of third order moment is known as skewness or the asymmetry in the distribution.
Skewness tells us about the direction of variation of the data set.
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In general, the normalization of r−th order moment is obtained by dividing it by σr, where σ is the
standard deviation. The normalization is assumed to remove the brightness dependence.
The ”fourth” order moment compares the tallness and skinny or shortness and squatness, i.e. shape,

of a certain measurement to its normal distribution. It is defined as the uncertainty is an uncertainty or
”the location- and scale-free movement of probability mass from the shoulders of a distribution into its
center and tails and to recognize that it can be formalized in many ways” [347]

m4(T, µi) = ± gi
2π2

T

∫ ∞

0

e
µi−εi

T k2 dk

1± e
µi−εi

T

− gi
2π2

7T

∫ ∞

0

e2
µi−εi

T k2 dk
(

1± e
µi−εi

T

)2

± gi
2π2

12T

∫ ∞

0

e3
µi−εi

T k2 dk
(

1± e
µi−εi

T

)3 − gi
2π2

6T

∫ ∞

0

e4
µi−εi

T k2 dk
(

1± e
µi−εi

T

)4 . (223)



75

The ”fifth” order moment measures the asymmetry sensitivity of the ”fourth” order moment
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The ”sixth” order moment is generally associated with compound options
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Thus, from Eqs. (220)-(225), a general expression for the r-th order moment can be deduced [175]

mr(T, µi) =
gi
2π2

T
r
∑

l=1

ar,l

∫ ∞

0

el
µi−εi
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)l
k2 dk. (226)

The coefficients read

ar,l = (±1)l(−1)l+1 [l ar−1,l + (l − 1) ar−1,l−1] , (227)

where l ≤ r and ar,l vanishes ∀ r < 1.
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Figure 48: The dimensionless non-normalized moments is given in dependence on the temperature. The evolution
of the so-called correlation parts (the integrals appearing in Eqs. (228)-(233)) are drawn with the temperature.
The graph taken from Ref. [175].
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As given in Eq. (226), the dependence of first six non-normalized moments on lower ones can explicitly
be deduced as follows.
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m2 = m1 −
gi
2π2

T

∫ ∞

0

e2
µi−εi

T k2 dk
(

1± e
µi−εi

T

)2 , (229)
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m6 = 120m1 − 274m2 + 225m3 − 85m4 + 15m5 − 120
gi
2π2

T

∫ ∞

0

e6
−ǫi+µi

T k2 dk
(

1± e
−ǫi+µi

T

)6 . (233)

Naively spoken, we conclude that raising lower order moments to higher ones is achievable through a
series of all lower order moments and an additional term reflecting the correlations, themselves [340].
From Eqs. (228)-(233), the additional terms are proportional to 〈N〉r. Apparently, they are essential in
order to judge whether going from lower to higher order moments would make the signatures of dynamical
fluctuations clearer than when excluding them. The first and second terms can be generalized. Then, a
general expression would read

mr = (−)r−1(r − 1)cr−1
m1

m1 −
[

(r − 1)cr−1
m2

+ (r − 2)!
]

m2 +O(m>2), (234)

where cmr is the coefficient of the r-th moment. The last term in Eq. (234) can be elaborated when
higher order moments are calculated. The latter are essential in order to find out a clear pattern.
It is obvious that the coefficients, Eq. (227), of a certain moment are to be determined from a long

chain of all previous ones. Such a conclusion could be originated to about four decades [340], where it has
been shown that the coefficients are related to high order correlation functions. Should this assumption is
proven to be valid, then expression (227) gets a novel interpretation. It seems to sum up the correlation
functions up to the r-th order. According to Ref. [340] and when neglecting the two-particle correlations
C2, then the higher order moments read

m2 = 〈(δN)2〉 ≈ 2〈N〉, (235)

m3 = 〈(δN)3〉 ≈ 4〈N〉+ C3, (236)

m4 ≃ 〈(δN)4〉 = 6m3 + 3m2
2 − 8m2 + 8C4, (237)

where δN = N − 〈N〉 [343],

C3(p1, p2, p3) =
∑

p1

〈p1p1p1〉+ 3
∑

p1<p2

〈p1p2p2〉+ 6
∑

p1<p2<p3

〈p1p2p3〉, (238)

C4(p1, p2, p3, p4) =
∑

p1<p2

〈p1p2p2p2〉+
∑

p1<p2<p3

〈p1p2p3p3〉+ 8
∑

p1<p2<p3<p4

〈p1p2p3p4〉, (239)

and pi is the i−th particle. To the second order moment m2 we have to add the effects of the two particle
correlation function, 2

∑

C2. The third order moment m3 gets approximately three times this amount.
The three and four particle correlations, Eqs. (238) and (239), appear first in third and fourth moment,
Eq. (237) and (238), respectively.
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We restrict the discussion to two particle correlations, only. It is of great interest, as it is accessible
experimentally and achievable, numerically. The two particle correlations are suggested as a probe for the
bulk QCD medium, energy loss, medium response, jet properties and intensity interferometry [300, 350–
356]. In addition to this list of literature, the comprehensive review [357, 358] can be recommended.
Taking into account the particle multiplicities, then expressions (235), (236) and (237) can be re-written

as follows [175].

m2 = 〈(δN)2〉 ≃ 〈N2〉 − 〈N〉2, (240)

m3 = 〈(δN)3〉 ≃ 〈N3〉 − 〈N2〉〈N〉+ 2〈N3〉3, (241)

m4 = 〈(δN)4〉 − 3〈(δN)2〉2 ≃ 〈〈N〉4〉 − 2〈〈N2〉2〉 − 5〈〈N2〉〉2 + 6〈〈N〉2〉 〈〈N2〉〉. (242)

It is obvious, section VA, that expressions (228)-(233) lead to the conclusion that all moments are entirely
depending on the previous ones, Fig. 48. Thus, the r-th order moment has contributions coming from
all moments with orders lower than r.
Fig. 48 presents the results of the higher order moments calculated in HRG model. Raising the orders

of multiplicity moments results in new coefficients and new integrals. The earlier are partly characterized
in Eq. (234). The integrals can be compared with the correlation functions [340]. We find that these
integrals are related to 〈N〉r, where r is the order of the moment. It is obvious that successive moments
have a difference of about one order of magnitude. Therefore, the higher order 〈N〉r can be disregarded
with reference to their vanishing contributions.

B. Normalized higher order moments

The normalization of higher order moments provides with a tool to relate moments with various orders
to the experimental measurement. The susceptibility of the distribution give a measure for σ. It has
been shown that the susceptibility is related to ∼ ξ2 [341]. The results of σ in hadronic resonances are
calculated at different µ and given in Fig. 49. As per the standard model, conservation of strange quantum
number is one of the global symmetries in strong interactions. The procedure of keeping strange degrees
of freedom conserved in HRG was introduced [58]. This is the origin of the µ-dependence. Although,
baryon chemical potential µ vanishes per definition, the chemical potential associated with strange quark
µS remains finite. Another feature in these calculations is the assumption that the freeze-out boundary
is determined by constant s/T 3, where s is the entropy density [174].
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Figure 49: Results for σ in hadronic resonances are given in dependence on T for various baryon chemical potentials
(given in MeV). The graph taken from Ref. [175].

For standard Gaussian distribution, the skewness (”third” order moment normalized to σ3) is obviously
vanishing. Therefore, the skewness is an ideal quantity probing the non-Gaussian fluctuation feature as
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expected near Tc. The QCD critical endpoint is conjectured to be sensitive to skewness. Experimentally,
it has been shown that the skewness S is related to ∼ ξ4.5 [362]. The skewness for bosonic and fermionic
resonance gas, respectively, reads

Sb = −1
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At different chemical potentials, S is calculated in dependence on T and given in Fig. 50.
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Figure 50: At various baryon chemical potentials (given in MeV), the skewness S for hadronic resonance gas is
given as function of T . The graph taken from Ref. [175].

The normalization of 4−th order moment (kurtosis) means varying volatility or more accurately, varying
variance. The subtraction of 3, which arises from the Gaussian distribution, is frequently omitted [347–
349]. Therefore, the kurtosis is an ideal quantity for probing the non-Gaussian fluctuation feature as
expected near Tc and critical endpoint. A sign change of skewness or kurtosis is conjectured to indicate
that the system crosses the phase boundary [359–361]. As HRG is valid below Tc, the sign change is not
accessible. It has been shown that kurtosis κ is related to ∼ ξ7 [362]
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C. Products of higher order moments

There are several techniques to scale the correlation functions. The survey system’s optional statistics
module represents the most common technique, i.e. Pearson or product moment correlation [175]. This
module includes the so-called partial correlation which seems to be useful when the relationship between
two variables is to be highlighted, while effect of one or two other variables can be removed. We study
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the products of higher order moments of the distributions of conserved quantities. The justification of
this step is that certain products can be directly connected to the corresponding susceptibilities in lattice
QCD simulation and related to long range correlations [359, 363, 364].
The fluctuations of conserved quantities are assumed to be sensitive to the structure of hadronic system

in its final state. As mentioned above, crossing the phase boundary or passing through critical endpoint
is associated with large fluctuations. Most proposed fluctuations of observables are variations of second
order moments of the distribution, such as the dynamical fluctuation of particle ratios [5, 95, 96, 99, 176]
and charged dynamical measurement [366]. Then, the fluctuations are approximately related to ξ2 [367].
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Figure 51: The ratio σ2/〈N〉 is given in dependence on T at different chemical potentials µ for hadronic (left),
bosonic (middle) and fermionic (right) resonance gas. The graph taken from Ref. [175].

The ratio of standard deviation σ2 and the mean multiplicity 〈N〉 for fermions and bosons reads
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The results are given in Fig. 51.
The multiplication of skewness S by the standard deviation σ is directly related to the thermodynamics

of the number susceptibility of the lattice QCD. In HRG, the bosonic and fermionic products read
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(S σ)f = 4
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The results are given in Fig. 52. It is obvious that S σ ≃ 1 for either bosons or fermions. Then, for
hadrons, S σ ≃ 2. Nevertheless, the fine structure seems to reveal interesting features.
The dependence of σ and σ2/〈N〉 on T is illustrated in Figs. 49 and 51, respectively. It is obvious that

both quantities have a monotonic behavior. As given in Fig. 52, the product S σ has a characteristic
dependence on T . The hadronic product makes an amazing bundle in the middle (at a characteristic
T ). So far, we conclude that starting from the third normalized moment, a non-monotonic behavior
appears. Thus, the kurtosis and its products should be expected to highlight such a non-monotonic
behavior [359, 363].
The multiplication of kurtosis by σ2 called κeff [368] is apparently equivalent to the ratio of 3-rd order

moment to 2-nd order moment, Eq. (234). In lattice QCD and QCD-like models, κeff is found to diverge
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Figure 52: The product Sσ is given in dependence on T at different µb values (given in MeV). The graph taken
from Ref. [175].

near the critical endpoint [359, 363]. In HRG, the bosonic and fermionic products read
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When ignoring the constant term in Eqs. (245) and (246), then the second terms in the previous expres-
sions entirely disappear. The results are given in Fig. 53. The thermal evolution of κσ2 is illustrated. We
notice that increasing T is accompanied with a drastic declination in κσ2. The product κσ2 calculated
at the freeze-out boundary leads to some interesting findings.

• First, κσ2 almost vanishes or even flips its sign.

• Second, the T and µ corresponding to vanishing κσ2 are coincident with the phenomenologically
measured freeze-out parameters.

• Third, the freeze-out boundaries of bosons and fermions are crossing at a point located very near
to the one assumed by the lattice QCD calculations to be the QCD critical endpoint [176].

D. Experimental higher order moments of particle yields

In Fig. 54, the first four moments of net-proton multiplicity are plotted as function of < Npart > from
STAR beam energy scan I [376]. The mean and standard deviation increase, while going from peripheral
to central collisions for the given seven colliding energies, whereas S and κ decrease with the increase in
the collision centrality. The evolution of these higher order moments of net-proton has been reproduced
by the central limit theorem (CLT) [369], which explains the < Npart > dependence of these moments.
In order to confront STAR results, Fig. 54, to the statistical-thermal models, the moments measured

at the highest < Npart > are extracted, as they are related to the most-central collisions. In Figs. 55
and 56, the first four moments of net-proton multiplicity are plotted with the baryon chemical potential
µb, which is related to the nucleon-nucleon center-of-mass energy

√
sNN [277]

µb =
1.308± 0.028[GeV]

1 + (0.273± 0.008[GeV−1])
√
sNN

. (252)
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Figure 53: The product κσ2 is given as a function of T at various µ-values for hadronic resonance gas (right).

Figure 54: The higher order moments mean (a), standard deviation (c), skewness (b) and kurtosis (d) of the
net-proton multiplicity are plotted with respect to < Npart > for Au+Au collisions at various center-of-mass
energies

√
sNN . The dotted lines represent the expectation form the central limit theorem (CLT) [369]. Graph

taken from Ref. [370].

We notice thatM and S increase with increasing µb, while the standard deviation decreases and κ remains
almost constant.
Fig. 57 shows the energy dependence of the moment products S σ and κσ2 of net-proton distributions

for various collisions centralities (0−5%, 5−10%, 30−40% and 70−80%) in Au+Au collisions measured
by the STAR experiment. The bottom panel shows the product S σ normalized to the corresponding
Poisson expectations. The values of κσ2 and normalized S σ are close to the Poisson expectations for
Au+Au collisions at

√
sNN = 39 , 62.4 and 200 GeV. There is a deviation from Poisson expectations for

the 0 − 5% central Au+Au collisions below
√
sNN = 39 GeV. The UrQMD model [375] results are also

presented for 0 − 5% centrality to understand the non-CP effects, such as baryon number conservation
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Figure 55: Mean (left panel) and standard deviation (left panel) are plotted with respect to the baryon chemical
potential. The experimental data (symbols) taken from Ref. [370].
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Figure 56: Skewness (left panel) and Kurtosis (left panel) are plotted with respect to the baryon chemical potential.
The experimental data (symbols) taken from Ref. [370].

and hadronic scattering. The UrQMD calculations show a monotonic decrease with decreasing beam
energy.

E. Comparing with lattice QCD results

Fig. 58 shows the moment products Sσ and κσ2 of the net-proton distributions measured in the most
central Au+Au collisions (0 − 5%, 19.6 GeV: 0 − 10%, 130 GeV: 0 − 6%) in dependence on the center-
of-mass energy. The STAR measurements are compared with the lattice QCD [372] and HRG model
calculations [343]. The lattice QCD results are obtained at temporal extension Nτ = 6. The critical
temperature at µB=0 was estimated as Tc = 175 MeV. The dashed lines refer to the HRG calculations
in upper panel and lower panels. They are evaluated as Sσ = tanh(µB/T ) and κσ

2 = 1, respectively. At
the chemical freeze-out, the µB/T is parametrized as a function of the center-of-mass energy [277]. At√
sNN , the corresponding µB, is illustrated in the upper band of Fig. 58.
It is obvious that the moment products κσ2 and Sσ in the Au+Au collisions at

√
sNN = 200, 130,

62.4 GeV are consistent with the lattice QCD and the HRG model calculations, while the ones at
√
sNN =

39 GeV seems to deviates. Surprisingly, the moment product κσ2 from the lattice QCD calculations at√
sNN = 19.6 GeV show a negative value [372]. However, due to the limited statistics, the uncertainty

of the experimental measurements at 19.6 GeV are not negligible. Such a deviation could be connected
with the chiral phase-transition [373]. The possible existence of the QCD critical point might play a role,
as well [374].
Recent linear σ-model calculations demonstrate that the forth order cumulant of the fluctuations for

the σ field will be universally negative, when the QCD critical point is approached from the cross-over
side [374]. This will cause the measured κσ2 as well as kurtosis κ of the net-proton distributions to be
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Figure 57: The energy dependence of the moment products S σ and κσ2 for net-proton distributions for different
collision centralities (0− 5%, 5− 10%, 30 − 40% and 70− 80%) measured in the STAR experiment. The results
are compared to UrQMD model calculations and pp collisions at

√
sNN = 62.4 and 200 GeV. The lines in top

panel are the Poisson expectations and in the bottom panel shows the moment product S σ normalized to the
corresponding Poisson expectations. Graph taken from Ref. [371].

smaller than their Poisson expectations.

F. Higher order moments of multiplicity and QCD critical endpoint

In right panel of Fig. 59, it is interesting to notice that both fermionic and bosonic curves intersect at
the hadronic curve at one point. Furthermore, based on non-perturbative convergence radius, the critical
endpoint as calculated in lattice QCD [383, 384] given by solid square is located very near to the crossing
point. It is clear that the HRG model does not contain any information on criticality related with the
chiral dynamics and singularity in physical observables required to locate the critical endpoint. The HRG
partition function is an approximation to a non-singular part of the free energy of QCD in the hadronic
phase. It can be used only as the reference for lattice QCD calculations or heavy-ion collisions to verify
the critical behavior, but it can not be used as an origin to search for the chiral critical structure in QCD
medium. This is the motivation of Fig. 60.
In Fig. 60, the skewness and kurtosis of bosons and fermions calculated at the freeze-out curve are given

in dependence on µ (left panel) and center-of-mass energy
√
s (right panel). It seems that the evolution

of fermionic and bosonic skewness and kurtosis coincide at one point, marked with the vertical band.
This fact would reflect the nature of the phase transition. It would be the critical endpoint connecting
cross-over with the first order deconfinement phase transitions. At the QCD critical endpoint, the phase
transition is conjectured to be of second order. It is worthwhile to mention the crossing point is amazingly
coincident with the QCD critical endpoint measured in lattice QCD [383, 384], Fig. 59, regardless its
uncertainties [175].
From Eqs. (243)-(244) and (245)-(246), following expressions have to be solved in µ, individually
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and/or dependently, in order to determine µ of the crossing point [175]:

−
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∫∞
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Due to the mathematical difficulties in dealing with these expressions, the integral over phase space has
to be simplified. A suitable simplification is given as

p(T, µq, µs)

T 4
= ± 1

2π2 T 3

∞
∑

i=1

gim
2
i

∞
∑

n=1

(±)n+1

n2
K2

(

n
mi

T

)

exp

[

n
(3nb + ns)µq − nsµs

T

]

, (255)

where nb and ns being baryon (strange) quantum number and µq (µs) is the baryon (strange) chemical
potential of light and strange quarks, respectively. The quarks chemistry is introduced in section II E 1.
Accordingly, the difference between baryons and fermions is originated in the exponential function. For
simplicity, we consider one fermion and one boson particle. Then, the baryon chemical potential µ at the
chemical freeze-out curve, at which the fermionic and bosonic skewness (or kurtosis) curves of these two
particles cross with each other can be given as [175]

µb = 3nbµq = T ln

[

gbm
2
b K2

(

mb

T

)

gf m2
f K2

(mf

T

)

]

. (256)

In the relativistic limit, K2(m/T ) ≈ 2T 2/m2 − 1/2 while in the non-relativistic limit K2(m/T ) ≈
√

πT/2m exp(−m/T )(1 + 15T/8m). It is obvious that the bosonic and fermionic degrees of freedom
play an essential role in determining Eq. (256). Furthermore, it seems that the chemical potential of
strange quark has no effect at the crossing point.
The dependence of µS on µb as calculated in HRG is given in Fig. 61. As mentioned above, µS is

calculated to guarantee strange number conservation in heavy-ion collisions. At small µb, µS has a linear
dependence, µS = 0.25µb (Hooke’s limit). At large µb, the dependence is no longer linear.
As discussed in Ref. [175], the critical behavior and the existence of QCD critical endpoint can be

identified by means of signatures sensitive to singular parts of the free energy, especially the ones reflecting
dynamical fluctuations of conserved charges, such as baryon number and charge density [177]. The reason
that the fermionic and bosonic higher order moments are crossing on a point very near the QCD critical
endpoint should be analysed, systematically [176].

VI. MODELS COMBINING HADRONIC (< Tc) AND PARTONIC (> Tc) PHASES

We introduce three effective approaches. They are examples about other models for thermodynamics
of the hadronic matter. Their analogy to the statistical-thermal models is obvious. The three models
reproduce very well the lattice QCD thermodynamics below Tc, i.e. the effective mass and coupling seem
to match that of the hadronic matter. The quasi-particle model is applicable in hadronic as well as in
partonic phases, section VIA. The linear σ-models with Polyakov-loop potentials shall be introduced in
section VIB. Finally, we devote section VIC to the compressible bag model, in which the typical particle
density at the transition requires that the size of hadrons needs to be taken into account as it leads



86

 0

 0.05

 0.1

 0.15

 0  0.25  0.5  0.75

µ s
 [
G

e
V

]

µb [GeV]

Hooke’s Limit

Figure 61: The strangeness chemical potential µS as a function of the baryonic one µb in HRG (dotted curve).
The linear fitting is given by solid curve. The graph is taken from Ref. [175].

to a considerable suppression of the available phase-space and furthermore the volume of the hadrons
should be allowed to vary under the effect of the pressure generated by their own thermal motion in a
self-consistent way.
In all these approaches, the effective degrees of freedom is remarkably reduced. This suppression

alone, however, does not explain the ideal gas behavior of lattice QCD at high temperatures, above Tc.
Additional assumptions, should be added. For example, one can explicitly introduce a deconfined phase
and then match the the two different phases. This was adopted that the same partition function should
describe both confined and deconfined phases. Appropriate dynamics in order to model the cross-over
observed on the lattice should be introduced.

A. Hadronic and partonic phases in quasi-particle model

The quasi-particle model [377] is constructed to reproduce the lattice QCD calculations at T > Tc.
The free parameters are fixed for this purpose. Accordingly, the pressure at finite T and µ is given as

p =
∑

i=q,g

pi −B(T, µ), (257)

pi =
gi
6 π2

∫ ∞

0

dk
k4

Ei(k)

[

f+
i (k) + f−

i (k)
]

, (258)

where the distribution function reads

f±
i (k) =

1

exp
[

Ei(k)∓µ
T

]

± 1
. (259)

We will see that this model is also able to reproduce the thermodynamical quantities even in the hadronic
phase. The quasi-particle dispersion relation can be approximated by the asymptotic mass shell expression
near the light cone [377–379],

E2
i (k) = k2 +m2

i (T, µ) = k2 +Πi(k;T, µ) + (xi T )
2, (260)

where Πi(k;T, µ) is the self-energy at finite T and µ and x2i is a factor taking into account the mass
scaling as using in lattice QCD simulations, section II F. A suitable parametrization of Πi(k;T, µ) is
given by the hard thermal loop self-energies [377, 380]. But, the running coupling in Πi(k;T, µ) should
then be replaced by an effective one, G2(k;T, µ), which can be adjusted to reproduce the lattice QCD
calculations [381] and reflect the non-perturbative effects.
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The function B(T, µ) is there to assure thermodynamical self-consistency [380] that n = ∂p/∂µ, s =
∂p/∂T and ∂p/∂m2

i = 0 [382]. Then, the net quark number and entropy, respectively, are given as

n =
∑

i=q,g

gi
2 π2

∫ ∞

0

k2 dk
[

f+
i (k)− f−

i (k)
]

, (261)
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[

f+
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− µ
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i (k)
]

}

. (262)

The lattice QCD simulations at finite T and µ prefer the use of [319, 383],

p(T, µ) = p(T, µ = 0) + ∆p(T, µ) = p(T, µ = 0) + T 4
∞
∑

j=2

cj

( µ

T

)j

. (263)

Then, the coefficients of Eq. (263) are given by the derivative at the point of vanishing chemical potential
cj = (T j−4/j!)∂jp/∂µj [377]
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, (264)
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where the following parameters are defined at the point of vanishing chemical potential µ
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3
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In deriving the previous expressions, flow equation [380] was utilized

aµ
∂ G2

∂µ
+ aT

∂ G2

∂T
= aµT , (270)

where the functions aµ, aT and aµT can be determined [377, 385], if aT (T, µ = 0) = aT (T, µ = 0) should
vanish.
Then, the derivatives of coupling G at µ = 0 are given as
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Accordingly, the thermal evolution of coupling G at µ = 0 reads

G2(T ) =











G2
2loop(T ), T ≥ Tc,

G2
2loop(T ) + b

(

1− T
Tc

)

, T < Tc.

, (273)

The two-loop effective coupling is given as

G2
2loop(T ) =

16 π2

β0 log(ξ2)

[

1− 2
β1
β2
0

log(log(ξ2))

log(ξ2)

]

, (274)

where [377]

ξ = λ
T − Ts
Tc

, (275)

and Ts is a regulator at Tc. The parameter λ is used to adjust the scale as found in lattice QCD
simulations. The β function [386] depends on the coupling g,

β =
∂ g

∂ log(∆µ)
, (276)

where ∆µ is the energy scale. The two-loop perturpation estimation for β functions give

β0 =
1

3
(11nc − 2nf) , (277)

β1 =
1

6

(

34n2
c − 13nf nc + 3

nf

nc

)

. (278)

1. Thermodynamics

The quasi-particle model has different free parameters, G, Ts, λ, xi, etc. The procedure of fixing these
parameters is elaborated in Ref. [377], for instance. Fig. 62 presents the excess pressure ∆p(T, µ)/T 4

above and even slightly below Tc at small chemical potential. The individual expansion coefficients agree
well with the data and turn out to depend on each other. In particular, also p(T, µ = 0) follows, once
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G2(T ) is adjusted. The normalized net quark number density is given in Fig. 63. For lattice QCD
calculations (symbols), the quasi-particle model results (solid curves) are based on the the expansion
coefficients cj. For comparison, the full quasi-particle model results (dashed curves) are exhibited.
The quasi-particle model is constructed to reproduce the lattice QCD calculations at T > Tc. Almost

all parameters are fixed for this purpose. The figures show an excellent agreement in this region. On the
other hand, the model is also able to simulate the results at T < Tc. Within a narrow region below Tc,
the quasi-particle and statistical-thermal models agree, compare with section IVD.

B. Linear σ-models with Polyakov-loop potentials

The hiral symmetry breaking restoration (above Tc) can be linked with aspects of the confine-
ment/deconfinement transition through the linear σ-model, in which Polyakov-loop potential for three
quark flavors is included [388–390]. The two-quark-flavor model [391] is combined with the chiral linear
σ-model [60] and the Polyakov-loop potential Φ(~x). In temporal direction, the thermal expectation values
for the color traced Wilson-loop reads [388–390]

Φ(~x) =
1

Nc
〈TrcP(x̃)〉, (279)

where A0 is the temporal vector field, which as given above is contained in the so-called Polyakov loop
operator P(~x) in SU(Nc) gauge group [388],

P(~x) = P exp

(

i

∫ β

0

dτA0(~x, τ)

)

, (280)

where P is the path ordering and β is the inverse temperature 1/T [392]. It is obvious that the Polyakov
loop potential is a classical variable. Details about the implementation of Eq. (280) are in order now.
The Lagrangian apparently consists of [388]:

• a quark-meson contribution and

• a Polyakov-loop potential U(Φ[A], Φ̄[A]), which depends on the Polyakov-loop variable Φ and its
hermitian conjugate Φ̄ = 〈TrcP†〉/Nc, where Nc gives the number of colors.

In the quark-meson contribution, the standard derivative ∂µ is replaced by a covariant derivative,

Dµ = ∂µ − iAµ, (281)

Aµ = δµ0A
0. (282)

The Aµ = gsA
a
µλ

a/2 includes the SU(Nc) gauge coupling gs. The usual Gell-Mann matrices are λa with

a = 1, . . . , N2
c − 1.

Then, the Lagrangian can be constructed as

LPQM = q̄ (iD/− gφ5) q + Lm − U(Φ[A], Φ̄[A]), (283)

where q = (u, d, s) is the quark field for Nf = 3 flavors and Nc = 3 colors. For three quark flavors,
the interaction between quarks and meson is achieved by the flavor-blind Yukawa coupling g. The
meson matrix φ5 = Ta (σa + iγ5 πa), where Ta = λa/2, a = 0, . . . , 8 are nine generators of the U(3)

symmetry with λ0 =
√

2/3 1. The generators Ta are normalized to Tr(Ta Tb) = δab/2 and should
obey the U(3) algebra [Ta, Tb] = i fabc Tc and {Ta, Tb} = dabcTc, respectively, with the corresponding
standard symmetric dabc and antisymmetric fabc structure constants of SU(3) group and fab0 = 0 and

dab0 =
√

2/3δab. The nine scalar (JP = 0+) mesons are labelled by the σa fields and accordingly the
nine pseudoscalar (JP = 0−) mesons by the πa fields.
The purely mesonic contribution to the Lagrangian reads

Lm = Tr
(

∂µφ
†∂µφ

)

−m2Tr(φ†φ) − λ1
[

Tr(φ†φ)
]2

− λ2Tr
(

φ†φ
)2

+ c
(

det(φ) + det(φ†)
)

(284)

+ Tr
[

H(φ+ φ†)
]

,
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where φ = Taφa = Ta (σa + iπa) is a complex (3× 3)-matrix for Nf = 3 has been implemented. The last
term in Eq. (284) assures that chiral symmetry is broken, explicitly, with H = Ta ha is (3 × 3)-matrix
with nine external parameters ha. The U(1)A-symmetry is explicitly broken by the ’t Hooft determinant
term with a constant strength c. Further details concerning the three-flavor quark-meson part of the
Polyakov-Quark-Meson (PQM) model can be found in [393].
The final effective gluon field potential U in Eq. (283) is given as function of the Polyakov-loop fields

Φ and Φ̄. The pure Yang-Mills symmetry is guaranteed [394, 395]. The Polyakov-loop potential is
motivated by the underlying QCD symmetries in pure gauge limit [388]. Therefore, different ansaetze for
the Polyakov-loop potential have been suggested [388]:

• The first one is based on Ginzburg-Landau theory [391, 396], where Z(3) center symmetry is
spontaneously broken in the pure Yang-Mills.

Upoly

T 4
= −b2

4

(

|Φ|2 + |Φ̄|2
)

− b3
6
(Φ3 + Φ̄3) +

b4
16

(

|Φ|2 + |Φ̄|2
)2
, (285)

with

b2(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2

+ a3

(

T0
T

)3

,

are temperature-dependent coefficients. The pure gauge lattice results (like thermodynamics, EoS,
etc.) should be reproduced. Accordingly, the potential parameters are determined. The Polyakov-
loop expectation values are reproduced [396]: a0 = 6.75, a1 = −1.95, a2 = 2.625, a3 = −7.44,
b3 = 0.7, b4 = 7.5. The parameter T0 = 270 MeV corresponds to the critical temperature. Extension
Eq (285) to finite chemical potential was discussed [391]. At vanishing chemical potential, we find
that Φ̄ = Φ† and the polynomial expansion in Φ and Φ̄ includes the term ΦΦ̄ [394, 397].

• The second ansatz was introduced in Ref. [398]

Ulog

T 4
= −1

2
a(T )Φ̄Φ + b(T ) ln

[

1− 6Φ̄Φ + 4
(

Φ3 + Φ̄3
)

− 3
(

Φ̄Φ
)2
]

, (286)

where

a(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2

,

b(T ) = b3

(

T0
T

)3

,

with a0 = 3.51, a1 = −2.47, a2 = 15.2 and b3 = −1.75.

• A third ansatz is inspired by a strong-coupling analysis [399]

UFuku

T 4
= − b

T 3

[

54e−a/TΦΦ̄ + ln
(

1− 6ΦΦ̄− 3(ΦΦ̄)2 + 4(Φ3 + Φ̄3)
)

]

. (287)

We want to highlight that:

– the first term represents reminiscent of the nearest-neighbor interaction,

– the second term (logarithm) stands for the Haar measure, Eq. (286),

– the parameter a determines the deconfinement phase-transition, and,

– the parameter b controls the mixing of chiral and deconfinement phase-transitions.

Both parameters can be fixed in the pure gauge sector, a = 664 MeV and b = 196.23 MeV3. In the
Polyakov-Nambo-Jena-Lasino (PNJL) model at vanishing chemical potential [399], a coincidence of
chiral and deconfinement phase-transitions was observed at Tc ∼ 200 MeV.
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1. Thermodynamics

In the n isospin-symmetry, the masses of light quarks are degenerated, i.e. ml ≡ mu = md and the
thermodynamical potential depends only on µl = (µu + µd)/2 and µs. The thermodynamical potential
should be evaluated in the mean-field approximation [391, 393] in order to investigate the phase structure
of this model [388–390]. Meson U (σx, σy), quark/antiquark Ωq̄q and Polyakov-loop fields likely contribute
to the thermodynamical potential

Ω = U (σx, σy) + Ωq̄q

(

σx, σy ,Φ, Φ̄
)

+ U
(

Φ, Φ̄
)

. (288)

The mesonic contribution reads [388–390]

U(σx, σy) =
m2

2

(

σ2
x + σ2

y

)

− hxσx − hyσy −
c

2
√
2
σ2
xσy

+
λ1
2
σ2
xσ

2
y +

1

8
(2λ1 + λ2)σ

4
x +

1

8
(2λ1 + 2λ2)σ

4
y . (289)

The six parametersm2, c, λ1, λ2, hx, hy are fitted to well-known pseudoscalar meson massesmπ,mK ,m
2
η+

m2
η′ and two weak-decay constants fπ, fK [388]. The mass of scalar σ meson, mσ, is used to complete

the fit. As proposed in Ref. [393], mσ varies from 500 MeV to 800 MeV. This is based on the fact that
the experimental measurement is not accurate,
To the fermionic part, the Polyakov loop fields are coupled [388–390]

Ωq̄q(σx, σy ,Φ, Φ̄) = −2T
∑

f=u,d,s

∫

d3p

(2π)3

{

ln
[

1 + 3(Φ + Φ̄e−(Eq,f−µf )/T )e−(Eq,f−µf )/T + e−3(Eq,f−µf )/T
]

+

ln
[

1 + 3(Φ̄ + Φe−(Eq,f+µf )/T )e−(Eq,f+µf )/T + e−3(Eq,f+µf )/T
]}

, (290)

where the flavor-dependent single-particle energies are Eq,f =
√

k2 +m2
f and the light and strange quark

masses are related to the chiral condensates σx and σy , respectively

ml = gσx/2, (291)

ms = gσy/
√
2. (292)

The Yukawa coupling g is fixed to reproduce the light quark mass mq ≈ 300 MeV. The corresponding
strange quark mass is ms ≈ 433 MeV. From Eq. (290), one recognizes the suppressions of single-quark
contributions, where Φ̄,Φ ∼ 0 (in the hadron phase). The baryon-like objects composed of Nc = 3
quarks contribute to the potential, as well. Therefore, some confinement properties can be deduced.
For Φ̄,Φ ∼ 1, the Polyakov-loop fields decoupled from the fermionic part, Eq. (290) are similar to the
quark/antiquark contributions of pure Quark-Meson (QM) model [393].
By using minimization conditions, the dependence of four order parameters in Eq. (293) for chiral and

deconfinement phase-transition on the temperature and the quark chemical potential are determined as
solutions of the corresponding equations of motion [388–390]. These can be obtained by minimizing the
grand potential, Eq. (288), with respect to 〈σ〉x, 〈σ〉y, 〈Φ〉 and

〈

Φ̄
〉

:

∂Ω

∂σx
=

∂Ω

∂σy
=
∂Ω

∂Φ
=
∂Ω

∂Φ̄

∣

∣

∣

∣

min

= 0, (293)

where the subscript min stands for σx = 〈σx〉 , σy = 〈σy〉 ,Φ = 〈Φ〉 , Φ̄ =
〈

Φ̄
〉

and refers a global minimum.
As an example on thermodynamic quantities, we start with the pressure, which can be obtained directly

from the grand potential

p(T, µq) = −Ω (T, µq) , (294)
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from Ref. [388].

Other thermodynamic quantities can be obtained from it by differentiation. In left-hand panel of Fig.
64, the pressure for PQM and QM models, normalized to the Stefan-Boltzmann limit (SB) of the PQM
model compared to lattice QCD calculations is given as functions of the temperature.
It is obvious that the QM model fails in describing the lattice QCD data at all temperatures, while

PQM model agrees well with the lattice calculations. The best agreement is found around Tχ. The
Fukushima potential achieves this good agreement but it fails at temperatures higher than 1.5Tχ. In the
HotQCD lattice results, the critical temperature is as high as Tχ ≈ 185− 195 MeV. The physical meson
masses reduce the pressure in particular around Tχ.
Fig. 65 illustrated the entropy (left-hand panel) and interaction measure (right-hand panel). Again, we

note that the QM fails to reproduce the lattice results. The logarithmic PQM describes well the entropy,
while the interaction measure is well generated in the Fukushima potential for the PQM.

C. Compressible bag model

As a simple model for a gas of extended hadrons at zero chemical potential, an approach based on
inspiration from the compressible bag model was proposed. The main assumptions are:

• at the critical temperature, the typical particle density requires that volume for each hadron should
be taken into consideration. This leads to a considerable suppression (reduction) of the available
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phase-space and

• under the effect of the pressure generated by the hadrons’ thermal motion, the volumes of the
hadrons are allowed to vary, but in a self-consistent way.

As a result, it is likely that the number of the effective degrees of freedom is reduced [401]. For complete-
ness, we refer to the phenomenon, in which the phase-space should be a subject of modification [4, 5].
This suppression or reduction seems not be able to explain the lattice QCD results at high temperatures.
Therefore, additional assumptions should be added, for example [401]:

• one can explicitly adopt [401] that the same partition function describes both confined and decon-
fined phases and

• an appropriate dynamics should be introduced to allow observing cross-over as the case in lattice
QCD.

As introduced in section II F 1, the MIT bag model [75] for hadrons is well suited for the purposes
outlined in this section.

• The MIT bag model embodies both confined and deconfined phases. Therefore, the hadrons and
QGP can be described, simultaneously, as extended bags of each other.

• Furthermore, the MIT bag model assumed an infinite mass spectrum of the Hagedorn type [401].

• Elastic interactions (an additional dynamics) between hadrons were proposed to describe the phase
transition. The elastic interactions is related to the kinetic pressure. The latter in turn squeezes
the bags. Other types of interactions have been discussed in section IIIA.

The basic features of the MIT bag model [75] have been introduced in section II F 1. When T approaches
T0, the average masses and volume of the hadron bags rapidly increase [401]. Thus, the hadrons continue
occupying the whole available space. They eventually overlap with reach others. In order to avoid multiple
counting of the phase space, it was proposed to exclude from the partition function the configurations
with overlapping bags. For a a system with finite volume V , this can be achieved with an excluded

volume correction, where V shall be replaced by (V −∑N
i=1 Vi)

N , the available volume, where Vi is the

volume of the i-th particle. The constrains that total volume of all bags
∑N

i=1 Vi should not exceed V is
obvious. Accordingly, the modified phase-space integral reads [402],

[

N
∏

i=1

V

(2π)3

∫

d3p

]

→
[

N
∏

i=1

1

(2π)3

∫

d3p

](

V −
N
∑

i=1

Vi

)N

Θ

(

V −
N
∑

i=1

Vi

)

. (295)

Accordingly, the partition function reads

Z(V, T ) =

∞
∑

N=0

(

T

2π

)3N/2
cN0
N !

[

N
∏

i=1

∫ ∞

0

dmi m
3/2−α
i

]

×

exp

[

∑N
i=1mi

T0
−
∑N

i=1mi

T

](

V −
N
∑

i=1

Vi

)N

Θ

(

V −
N
∑

i=1

Vi

)

. (296)

The system is supposed to pick up more energy as the temperature is increased. To allow for this,
an additional dynamics should be implemented. This is the idea behind the compressibility of hadron
bags [403]. In other words, the hadron volume is allowed to vary under the effect of the pressure, which
is generated by the thermal motion. Consequently, as T and hence pressure increase, the bags will be
compressed. Therefore, they acquire higher internal mass/energy density [401]. This is the self-consistent
dynamics added to the hadrons.
It is apparent that at T ≪ T0, the system is dilute. This means that V ≫

∑

i=1 Vi and the system
behaved as a non-interacting gas with point-like constituents. When T increases, the average mass and
the volume of the hadrons increases, as well. When T → T0, the critical temperature, we can apply
the he dilute-gas approximation [401]. Furthermore, the pressure that other particles exert increases and
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therefore its effect on the hadrons properties becomes considerable. In other words, in addition to the bag
pressure B, every hadron feels an additional thermal/kinetic pressure pk. The latter is generated by the
thermal motion of other hadrons [401]. It is obvious that the stability condition needed by the system,
pr ≡ B should be modified. The kinetic pressure pk should be taken into account. It is worthwhile to
highlight pk can be interpreted as an elastic interaction consequence. This is accounted by the infinite
mass spectrum of the hadrons. The number of particles N would not play any essential role.. Accordingly,
when neglecting the surface effect, a simple generalization of the stability condition reads

pr = B + pk(V, T ). (297)

Dependences of the volume and the mass of i-th hadron on pr are given as

Vi =
Ui

3 pr
, (298)

mi = Ui +B Vi = Ui

(

1 +
B

3 pr

)

. (299)

Then, the entropy reads

Si =
4

3

Ui

k (pr)1/4
. (300)

This leads to the substitution that exp
(

mi

T0

)

→ exp
(

4
3

Ui

k (pr)1/4

)

, where exp(mi/T0) is exponential mass

spectrum.
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1. Thermodynamics

Based on Eq. (296), the modified grand-canonical partition function can be written [401]

Z(V, T ) =

∞
∑

N=0

(

4

3

)N (
T

2π

)3N/2
cN0
N !

×
[

N
∏

i=1

∫

dUi

(

Ui +B
Ui

3pr

)3/2−α
]

exp

{[

4

3kp
1/4
r

− 1

T

(

1 +
B

3pr

)

]

N
∑

i=1

Ui

}

×

(

V −
N
∑

i=1

Ui

3pr

)N

Θ

(

V −
N
∑

i=1

Ui

3pr

)

. (301)

With the substitution, Ui → ηi =
4
3 Ui, then, the partition function reads

Z(V, T ) =
∞
∑

N=0

(

T

2π

)3N/2
cN0
N !

[

N
∏

i=1

∫

dηi

(

3

4
ηi +B

ηi
4pr

)3/2−α
]

×

exp

{[

1

kp
1/4
r

− 1

T

(

3

4
+

B

4pr

)

]

N
∑

i=1

ηi

}(

V −
N
∑

i=1

ηi
4pr

)N

Θ

(

V −
N
∑

i=1

ηi
4pr

)

. (302)

It is obvious that in the dilute gas limit, pk → 0 and ηi → mi.
Fig. 66 illustrates the dependence of the interaction measure (ε− 3pk)/T

4 (left panel) and s/T 3 (right
panel) on T at different values of the isobaric parameter α. We observe that only at α = 0 and α = 0.5,
the curves do not converge to a constant value at high T . This is obvious in s/T 3 vs. T . Other values of
α behave normally with T . The largest α-values of very close to the SB limit.
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[142] H. Stöcker and W. Greiner, Phys. Rep. 137, 277 (1986).
[143] E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552 (1933).
[144] H. Kruse, B. V, Jacak, J. J. Molitoris, G. D. Westwall and H. Stocker, Phys. Rev. C 31, 1770 (19845).
[145] M. Prakash, M Prakash, R. Venugopalan and G. Welke, Phys. Reps., 227, 321 (1993).
[146] J. Noronha-Hostler, J. Noronha and C. Greiner, Phys. Rev. Lett. 103, 172302 (2009).
[147] I. Senda, Phys. Lett. B 263, 270 (1991).
[148] I. Kuznetsova and J. Rafelski, Phys. Rev. C 82, 035203 (2010), 1002.0375[hep-th].
[149] A. Tawfik and T. Harko, Phys. Rev. D 85, 084032 (2012), 1108.5697[astro-ph.CO].
[150] A. Tawfik, Annalen Phys. 523, 423-434 (2011), 1102.2626[gr-qc].
[151] A. Tawfik, M. Wahba, H. Mansour and T. Harko, Annalen Phys. 522, 912-923 (2010), 1008.0971[gr-qc].
[152] A. Tawfik, Can. J. Phys. 88, 825-831 (2010), [invited talk at 2nd Symposium: Solar Wind Space Environment

Interaction, December 4th-8th, Cairo University Press, page 75-87, Egypt, (2009)], 1002.0296[gr-qc].
[153] A. Tawfik, M. Wahba, H. Mansour and T. Harko, Annalen Phys. 523, 194-207 (2011), 1001.2814[gr-qc].
[154] A. Tawfik, T. Harko, H. Mansour and M. Wahba Uzbek J. Phys. 12, 316-321 (2010), [invited talk at 7th

International Conference on Modern Problems of Nuclear Physics, 22-25 Sep 2009. Tashkent, Uzbekistan],
0911.4105[gr-qc].

[155] A. Tawfik and M. Wahba, Annalen Phys. 522, 849-856 (2010), 1005.3946[hep-ph].
[156] W. Greiner, P. Koch and J. Rafelski, Phys. Lett. 145B, 142 (1984).
[157] E. Abbas, et al., [ALICE Collaboration], Eur. Phys. J. C 73, 2496 (2013), 1305.1562[nucl-ex].
[158] L.A. Stiles and M. Murray, nucl-ex/0601039.
[159] B. Biedron and W. Broniowski, Phys. Rev. C 75, 054905 (2007).
[160] W, Broniowski and B. Biedron,J. Phys. G 35, 044018 (2008), [talk given at the International Conference

on Strangeness in Quark Matter (SQM 2007), 24-29 June 2007, Levoca, Slovakia], 0709.0126[nucl-th].
[161] F. Becattini, J. Cleymans and J. Strumpfer, PoS CPOD07, 012 (2007), [talk given at the 4th International

Workshop on Critical Point and Onset of Deconfinement (CPOD 2007), 9-13 Jul 2007, Darmstadt, Germany],
0709.2599[hep-ph].

[162] I. G. Bearden [BRAHMS collaboration], J. Phys. G 34, S207 (2007).
[163] I. G. Bearden, et al. [BRAHMS collaboration], Phys. Rev. Lett. 90, 102301 (2003).
[164] I. G. Bearden, et al. [BRAHMS collaboration], Phys. Rev. Lett. 94, 162301 (2005).
[165] I. G. Bearden et al. [BRAHMS Collaboration], Phys. Rev. Lett. 87, 112305 (2001).
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