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| ABSTRACT

The angd]ar momentnm effects in deep ine]astic proCesses and”fiesion
have been stddied in the limit of statistical equi]tbrium.v The mode]
eonsists of two}touching 1iquid drop spheres. Angular momentum fraction-
ation has beenvfound to occur along the mass aéymmetry coordinate. if
neutron competition‘is included (i.e., in compound nucleus formation and
fissidn) the fractionation oceurs only toﬁa s]ight degree, Whi1e'
extensive fract1onat1on is pred1cted if no neutron competition occurs
(i.e., in "fus1on f1ss1on ‘without compound nucleus formation). Thermal |
f]uctuations‘in'the angu]ar'momentum are prediéted to occur due to |
degrees of freedom nhich can bear angular momentum, 1ike wriggling,
tilting, bending, and twisting. The coupling of re]at1ve motion to one’
of the wr1gg]1ng modes leading to f]uctuat1ons betweenorb1ta1 and 1ntr1ns1c
angular momentum is considered f1rst Next the effect of the exc1tat1on
of a]] the collective modes on the fragment spin is treated Genera]
‘express1ons for the f1rst and second moments of the fragment spins are
derived as a funCtion of total angular momentum and the Timiting behavior
at 1arge and ama11 total angular momentum is examined | Furthermore,:the
effect of co]]ect1ve mode exc1tat1on on the fragment sp1n a11gnment is
exp]ored and s d1scussed in 11ght of recent experiments. The re]evancé
of the'preSent study to'the measured first and second moments ofvthe |
yéra}fmh1tip1icities as well as to sequential fission angular distributidns
is illustrated by app1y1ng the results of the theory to a well stud1ed

heavy ion reaction.



1. Introduction

Slowly, but unerringly, the study of heavy’ion reactions has brought
problems involving angular momentum to the forefront of 1nvestigatjon.
The untangling of the complex time evolution problems assooiatediwtth
heavy ion reactions requires a good understanding of the relevant
degrees of freedom and, to the extent to which angular momentum is
involved, of the amount of angular momentum these degrees of freedom can
carry. The importance of angu]artmomentum in recent studies is illustrated
by the work on gamma-ray mu]tip1ic1ties]'8 gamma-ray angu]ar.distributions,9
and a]pha]Oandsequent1a1 fission probabilities and angular d1str1but1onsH -13
A1l of these topics have as a major theme the angular momentum and its
partttioning among several, though not necessarily yet'identified,
degrees of freedom.

' Transport equat1ons have been advocated for the description of the
.t1me evo]ut1on of the intermediate complex formed in heavy-ion c0111s1ons
and have even been applied with moderate success to the angu]ar momentom
transfer observed in these react1ons.]4 16 However, the constant difficulty
of the prob]em and the occasional occurrence in literature of
ad-hoc generalization of results to models with additional degrees _
of treedom not explicitly treated, has led us to the conclusion that a'
good_dea] could be 1earned by simplifying the problem in two ways: first,
by moking the model as simple as possible, strivﬁng to obtatn trans-
parent analytical results; second, by cOnstdering the 1ongut1me.11m1t of

statistical equilibrium, to which all the transport equations must tend.

With the latter simplification we are, in a way, losing sight of
the most exciting part of the game, namely the time dependence. However,

we believe this to be a small and temporary sacrifice to make, considering



]

fexpTain by compound nucleus decay.

the clarity of the results. Yet, even the statistical equilibrium Timit
is not deprived of‘ihterest.';On'the=one~hand;-such a 1imit applies to
all of the compound nucleus processes, fission in partich]ar. On the
other hand,'manyjof*the co]Tective degrees of freedom which we consider
are quite Tike]y‘to be in most cases, either close, or at the statistical
equilibrium Timit. There are,fof course, most interesting and notab]e
exceptions.

The plan of the paper is as follows: - Section 1 deaTs with angular
momentum fractionation along the mass_asymmetry coordinate. As this
degree of freedom is perhaps the slowest t0-eqn111brate; this section

is perhaps more relevant to fission than to deep-inelastic processes.

~“Yet there exists, in heavy ion reactions, components which are apparently

““equilibrated along the mass asymmetry mode and yet are difficult to

17-20 14 4 possible that our formalism

may enable one to learn about these components as well. Section 2 deals
with the equilibrium partition of angular momentum between orbital and . "

intrinsic rotation which involves the eXcitation of the collective modes

'known;as wrigg]ing a In it both the average values and fluctuations are
-considered. The effect of the wriggling mode on the fragment sp1n a11gn—

ment is discussed Sect1on 3 genera11zes Sect1on 2 by aTTow1ng the dis-

1ntegrat1on axis to tilt with respect to the pTane normal to the total
angu]ar momentum The average fragment anguTar momentum is obta1ned and
the San and angu]ar fTuctuat1ons are est1mated In Sect1on 4 the |
therma] exc1tat1on of tw1st1ng and bend1ng modes is studied for a system
with zero_tota] angular momentum. The average and rms angular momenta of
the fragments are caTchated.. Sectjon(S generaTizes Section 4 by_censider-

ing the twisting and bending modes in a system‘with a finite total anguTar



momentum, - The first and second moment of the fragment angular momentum
as well as the fragment angular.momentum'depo1arization are evaluated.
In Section 6 a]]vof the above cases are considéred for the reaction
600 MeV Kf + Au, and numerical estimates of angular momenta and their
a1ignment_are'calculated!' .

It is hoped that this simple exercise in statistical mechanics
will prove as useful to many heavy ion practitioners, both theoretical

and experimental, as it has been useful to us.

LI

1. Aggu1ar Momentum Fractionation Along the Mass Asymmetry Coordinate

’Variatﬁohs in the total exit channel angular mohentum_d]dhdfthéfﬁf
mass asymmetry coordinate have been observed in non-equi]ibriumlheavy:{gh
reactions.® In fhese processes the angular momentum fractiohation appears
to arise mainly from the decreasiﬁg rate of spread of the{pbpulation
along the mass asymmetry coordinate with increasing angular momentum
due to fhe dependence of the interaction time upon angular momentum.

It is interesting to note that angular momentum fractionation is
expected even when statistical equilibruim is attained along the ridge-

Tine, either directly as the end product of diffusion, or through the



population of the compound nucleus. The reason for this can easily be
seen. For sufficiently heavy“Systems the potential as a function of mass

asymmetry (ridge poténtia]zz)

has a minimum at symmetry whosg_second
derivative increases with 1ncreasin§_ahgu1ar momentum._ Atkéqu111brium,
the mass distributions forlarge angular momenta are more sharply peaked
about symmetry than the mass distributions fdr small angular momenta.

It follows that, after summation over all partial g-waves, the angular
.»momentuhldeCreaseé with increasing asymmetry. This is a straightforward
prediction that can be easily ver{fied. More quantitatively, let us

- consider the ridge line as a function of mass asymmétry and angular

“momenta. For two touching liquid drop spheres of mass numbers Ays A,, the

energy is
o Eb._ 2 E : 1 .
> R -0 [x? +(1-) 3T+ %.<X5/3 +(1-x)5{3>
4 EL 2 . ¢ (1-x)%
Cl 3 'Xl/é + (-]_x)l./S ]
v lxz/s ¢ (1-x)2/3 | - .

‘where Ep, E., Eg are the rotational, Coulomb, and surface energies of

the equivalent sphere and x = A1/(A1+A2)-

Expanding about x =% , we have:

E = (0.45354 + 1.29584 y?)E, + (0.89244 + 0.46664 y*)E.

R

+ (1.25992 - 0.55996 y2)E

g ~ ofp * BEC + yES (1.2)

where y =x-%.
incidenta]ly, it may be of interest to note the value of the fission-

ab111ty parameter,'X=EC/2Es, at which the second derivative at symmetry is zero



(Businaro-Gallone point):
| mivelu

- _R . ,
Xgg = & - 1.3885 o a)

fw

" Now let us assume that a compound nucleus has been formed and that
neutron decéy and fission are the only competing processes}"Iﬁtfhé” |
constanfztémberature 1imit, dropping %£-independent factors and assuming
FT = PN, we get

P(2.y) «.FTZ (L,y) = 2e Cdedy- (1.4)

where, R = a-1, € = B8-1, S =1y-1, and & is the angular momentum. . .

Integrating over angular momentum we obtain for a triangular distribution

CE. + SE gx 1
{exp - ——ji———~§-} {exp R ;J%— - 1} (1.5)

P(y) « X

T
R .

where EEX is the maximum rotational energy of the equivalent sphere,
and ® = -R. The last equation can be written in terms of the fission-

ability parameter X and the rotational parémeter Y (X = EC/ZES,

oY= Ep/Eg),
- r 2E(CK + §5) " Eg - ; S
P(y) = g expl- T - exp\— &y | - 1 (1.6)
The first moment of the angular momentum is:
- WX\ mx
[1 - \/::f:— F < GER > ] exp RER
- RED T T
Ly = X (1.7)
_ Eq
e -1
Xp —

where

—
-y 2 2
F(X)=exfey dy
0



o

" is the Dawson integral and me'is the maximum of the entrance channel

angular momentum distribution. The second moment of the angular momentum

' mx '
, T R T
1- mx | &P 77 A
) A\ RE B . &E
: . o

is

These moments.as well as the mass,diétributions as a function of the
mass asymmetry y are shown in Fig. 1(a,b)..

From Fig. 1(a) one seeé that the ma§s distributions for low values
- of ¢ are considerably broader than those obtained for high & vajués.
This. is-due to -the fact that the minimum in the potential energy, which
is shallow for the lower % va]ueé,‘becomes progressively deeper with
 in¢reas1ng angular momentum, resulting in an increased ébhtentfafion,qf
afhe;yie]d near.- symmetry. It is precisely this effect whichhleads to
the fractionation of the angular momentum along the mass asymmetry
coordinate (see Fig. 1(b)). However, it is important to realize that the
.;fissionabi11tyrincreasestapidly with ¢. This causeé the distfibdtion of
angular momenta leading to fission to be narrower thén the input triangular
distribution and the overall average angu]arAmomentum.leading to fission,
ED,.to be larger than that obtained by éveraging over a triéngu]ar dis- |
tribution. The.resu1tihg;mass distribution, P(y), is narrow and. resembles
the mass distributions obtained for the highest g-values.

With these points in mind, the interpretation of Fig. 1(b), which
depicts % and Ezlas a function of y, is fairly straightforward. For |
moderate values of y;‘both E/EB and EZ/E%-are constant and close to unity.

This is due to the fact that the high g-waves dominate the yield for this



range of asymmetries, so that averaging over & yields a value of.ﬁ,vg?,

D,Z%. However, the mass distributions for,highﬁ

2-waves are relatively narrow, and as one moves out to extreme asymmetries

which is essentially %

their contribution to the total yield for a given asymmetry becomes Tessv
important, resulting in a slightly ‘lower average L.

‘The constant temperature approximation is féir]y poor. Iﬁ particular,
it is rather unwise to‘drop the dependence of T on angd]ar momentum.
Furthermore, the approximation It =T, fails when the fission width is
large. - At the expense of an analytic answer, a more accurate picture
can be obtained by including the angular momentum dependence of T and
by replacing I, with Ty =T +T.. The results are shown in Figs. 2(a,b).
One sees that the mass distributions for the high 2-waves are narrower
because of the lower temperature. ‘On thé other hand, the z-integratéd
© mass distribufion is somewhat broader because of the diminished weight
given‘to the high.%-waves by the lower T and the division by FT;f‘TheSé -
refinements cause i,EE to drop off more as one moves to larger -asym-"°
metries (see Fig. 2(b)). HoWever, the qualitative interpretatidn‘is
similar to that described above: E,EE are neér]y constant as a -function
‘of y for small y due to the dominance of the high & waves, and then

drop off rather abruptly because of‘the small contribution of the high
l-wavés to the extreme asymmetries.

Another case which may be relevant in heav&—ion reactions arises
when the system equilibrates along the ridge 1ine and decays without
passing through the compound nucleus stage. In other words, there is no
competition from neutron emission‘or from other particle decay modes.

In this case, Eqs. (1.4, 5, 7, 8) must be modified as follows:

I



-(REp +CE +SEC)/T ,
P(e,y) = A%, T)o e de dy - (1.9)
where S (REg +CE. +SEQ)/T ) -1
| A(e,T) = <j'e R 5) dy) _
Then o
Ply) = [ P(e.y)de | (1.10)
anq |
wy) = S P(ey)de/p(y) o (1.11)
2(y) = fa? p(ay)de/e(y) ; (a2

Notice that the difference between Eq.(1-4) and’Eq.(1.9) resides only
in the factor vA(z,T)..which is absent in the former case and present in
‘the Tatter. :Caltu1aﬁions based upon this second set of equations are
shown jn.Fig. 3(a,b). The mass distributions for the individual f2-waves
shown in Fig. 3(a) are identical to those in Fig. 2(a) since the éffect
of neutron competition only changes_the normalization (the mass distri—
butions 1in the p]oté have all been normalized to unity to facilitate
cpﬁpafison).‘ However, the distribution P(y) is now considerably broader
thn.its équnterpart_in Fig. 2(a) due to the change in the weighting of
P(2,y) in the integration over %.
| The most significant effect of the assumption of equi]ibraiioﬁ along
the ridge line can be seen in Fig. 3(b). In contrast to the.preceding
case (neutron competition), where % and EE remained constant out to -
moderate asymmetries and then dropped off rapidly, 2 and 22 peak at
symmetry and fall off more gradually with increasing y, gfving rise to

- curves: which are gaussian in. appearance. The dramatic differences in the
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9-fractionation imply that it may be possible to distinguish between the
two mechanisms, i.e. compound nucleus fission and non-compound nut]eus
decay, by measuring the angular momentum as a function of asymmetry..
This result is particularly important in 1ight of the fact that there

17-20

are a number of examples in heavy ion reactions where fission-like

mass distributions occur which are difficult to explain in terms of

compound nucleus decay, the reaction Xe + Fe being a recent examp]e]8

Moreover, recent y-multiplicity resu1t523 for the react1on Cu + Au bear_

a remarkable resemblence to the calculations in Fig. 3b.

2. Statistical Coupling Between Orbital and Instrinsic Angular
Momenta and Wr1qg11nq7Modes

'Iﬁ the sp1r1t of s1mp11c1ty let us assume that we can approx1mate
tnevextt channe] conf1gurat1on by two touch1ng, equal, r1g1d ”
spheres w1th a]] the associated rotational degrees of freedom. As we
sha]] see this model leads to s1mp1e ana]yt1ca1 predictions for the )
vre]evant stat1st1ca1 d1str1but1ons

‘ F1rst let us cons1der the equ111br1um between 1ntr1ns1c rotat1on
ef-the fragments andthe1r orbital rotation, assuming that the relevant
angular momenta ane all parallel to each other. If the tota1 angular

momentum is I and the spin fragment is s, the energy for an arbitrary

partition between orbital and intrinsic angular momentum is:

)2

: 2 ' . 2
E(s) = {1-25)° . 2s° (_2_+L>Sz__2is+ I (2.1)
2ur? 27 T ur? 2ur?

* .

In this model the normal modes do not have any restoring force and because
of this it may be thought that some relevant physics may be missing. However,
insofar as the angular momenta associated with these normal modes are con-
cerned, the model does not suffer any limitation. This can be easily seen
by observing that the angular momentum arises only from the momentum com-
ponent of the phase space which is indeed accounted for in the present model.
The addition of restoring forces introduces a coordinate component of the
phase space which would have to be integrated out.
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The first term is the orbital and the second the intrinsic rotational

energy, 57 being the moment of“inertia of one of the two equal spheres. -

The partition function is given by:

| “E(s)/T [ mur’JT 12 }
7 « - d = ur . (2.2)
[e ° 27 + ur? =P { 2T(2 + ur?)

The average spin for both fragments is given by

E(s)/T :
- Zj.s e . ds ZJf

2
2s = : = — = -1 = 2I . (2.3)
: z ur? + 2 7 R
The second moment $2 is given by
G 2 1 22 _
PCIN T4 S P G A (2.4)
(w2 +20)  (ur* + 2S)
From this we obtain the standard deviation
4o = 24“‘” - Wy (2.5)
2(ur? + 25' 7

The result in (2.3) is temperature independent as one should have expected
from the fact that (2.1) -is quadratic in s. It could in fact be obtained

by solving the equation

dE -
ds
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This result c¢orresponds to the mechanical Timit of rigid rotation,when;“,
the orbital and the intrinsfc angu]ér velocities aré matched.

The resultin (2.5) could have been obtained also by appreciating
that the thermal fluctuations about the average in (2.3) aré controlled

by the second derivative of (2.1) at the minimum, or:

sl = T, " e

2
b=[85] .
. BS'rg.

It is important to appreciate the meaning of (2.5). The quantity 4o?

where

represents the amount of angular momentum trade-off allowed by:the‘
temperature, between orbital and intrinsic rotation. It should corre-

16

spond exactly to the long time 1imit of c§ of Ayik et al. Just because

?o¥ fhe meaning ofvthis trade-off, it is unwarranted to assume a prioff that
similar values should be taken by o; and o;, however defined (other
orthogonal rotational modes), as implied in the same paper.

In some instances, such as y-multiplicity measurements, one is
interested in the averége sum of the moduli of the fragment spins.

Thié can be obtained from

— -E(s)/T
2|s] = d/ﬂlsl e dsl/ z ,

which yields

1
]

2[s| = 2 ur®s )
* <ﬂ(uY2 +29)

R4 >
o (e

25 i) |
[ —~—— erf{l , (2.8)
! (ur? + 29 ) = urT(ur? + 2J)
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or, in dimensionless form,

—21514- = 2 [—l—- exp(-x?) +_xerf(x)] , (2.9)
VITT v |

where x = IR/\(7*T: and g~ = ur{jﬂ/(ur2+-2J7). Also Ip=1/7 s

, the spin per fragment arising from rigid rotation. ‘The above expression

is-plotted in Fig. 4. In the limit of large I, one recovers (2.3): .

T - 2f1 2
Is| = —5"— = 3
ur? + 24

For small I,

Ik
—
-
+
x

2ls| .
VT*T VT
to order x?, so for I=0 one obtains

_._,z‘ jT LlY'Z L i S_\Z_T_ v
2|S| | ,2’/ T <ur2 N 2f> 2 7 . (2.10)

The second moment, still given by Eq. (2.4) can be rewritten as:

452 ﬁyZ:j*T + 4I§. In this case the fragmentbangu]ar}momentum'at zero A
angu1arvmomentum arises from the excitation‘of a collective mode (wrigg]ingZ])
in which thé two fragments spin in the same direction while the system as

a who]e rotates in the obposite direction in order to maintain I=0. Cbntrarym
to what has been assumed thus far, the wrigg]iné mode is actually doubly
degenerate, as illustrated in Fig. 5. 'Considering first the two-fold

\

degenerancy of the wriggling mode in the limit, I[=0, one contains

. .2 - )
E(s) = -5 4 4s° =<_l.+__?_> s2 - S 2.11
° g 2ur? J ur‘z J* (2.11)

7 « g7, o | (2.12)
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2|s| = Vag*T o BETREE

4s? = agMT - - (2.1)
and |

of = (4-n)g7*T . -  (2.15)

Let us now couple this doubly degenerate mode to the spin arising_

from rigid rotation. If the aligned component of the angular momentum

+

arising from rigid rotation is IR and ‘that due to wriggling is R, the

total angular momentum for each fragment is

2 _ L2 2 ’
s° = .IR + R+ ZIRR coso . (2.16)

The orbital angular momentum is

2% + 4R% - 44R cose |

2 —
o] =
= (1-215)% + 4R - 4(I- 21 )R cose (2.17)
arld the total energy is
o 38Ip + 14R® |
R : ' (2.18)
107

The partition function.

7 « //R exp(-E/T)dRds

-1s readily evaluated and yields

, I 3.5-1; '
In Z = 1n - 7 + const . (2.19)
1.4 T
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The angular momentum of either fragment is

2 2 -
s = v/IR + R + ZIRR coso .

so the average sum of the moduli of the fragment spins is

2|s| = %ff\/Ié + R® + 2[R cos® R'exp(-E/T)dRde . (2.20)

The double integral in Eq. (2.20) cannot be evaluated in closed form. |

waever, for large IR and small IR’one can immediate]y'bbtain the

integral over 6:

R2 . h¢
ZIR + -Z-I—R' for IR>> R
1.2
2R + _R for I.<xR
2R R

" The above are.only limiting expressions, but they can be used aé inter-
'po]atjop¢f¢rmulqg from 0 to Iy and from I, to =. Taken together the
expressions.above form a continuous function at R = IR‘ The integral,
moreover, is.a continuous function along with its first derivative on the

interval (0,») and yields a rather accurate approxiamtion to 2|s|. It

. J IZ
*T R
<I’R~ "I >exp<_ J*T>

R ) L (2.21)

s .given by:

1]
nN
—

+
SN
*
—

2]s|

' : 1
‘R 21g - 2

sﬁ?(x/ﬂ*T v

o

Ip > ( I
2ot ) © \ T

where again ’¢7*‘='ur%j7/(ﬁr2 +27) = ¢771.4. In dimensionless form:
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2L L oaxe b o Lk d) exp(ex®) + v (1 X)) erfe(x)
T*T X 2 V.
(2.22)

This function, which is plotted in Fig. 4, has the fo]]owing Timiting

values:
' Tl 2
;Z%%%i:- = v (1+ 55—) : s small IR (2.22a)
T , | |
——i;él—- = 2x + §£- -, large IR (2.22b) -

Also in the Timit of large IR’ one obtains

2

2 =
40° = 4IR

+R% - 412 - /% = 2R° = 20T  (2.23)

where R2 = J™T.
It is interesting to note that the wrﬁgg]ing mode generates’a::

random angular momentum in_a plane perpendicular to_the line of -cénters™

of the fragments. The vector sum of this random angular momentum and™ ™"
 that arising from rigid rotation thus leads to a fluctuation in the

orientation of the total spin, again in the plane perpendicular to the

separation axis. The corresponding rms angle is easily obtained from

, =
tang = R . = j*T = _5__:1.1 (224)
I2 I2 713
: R R R

Now let us consider the effect of this spin depolarization on the

in-plane and out-of-plane angular distributions of fission fragments

produced via the sequential decay of heavy products produced by deep-

©
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inelastic collisions. (The fission process itself can lead to an out-
of-p1ane width,23 although one need not consider that in this discussion.)
If the recoiling nuc]eus'fﬁssions perpendicular to the separation axis
in a plane perpendicular to;tts spin, then wriggling will contribute
‘to the out-of-plane anisotropy via Eq. (2.24). On the other hand, if the
'fissjon occurs along the separation axis, the wriggling process will have
no effect on the out-of-plane width;'However, an in-plane anisotropy
will be generéted due to the intersection of all possible fission decay
planes along the original separation axis.
fnteresting]y énough, a depolarization of the.type discussed above
has been employed in calculations aimed at reproducing sequential fission
' déta for Kk +-Bi']] where an in-plane anistropy haé been observed experi-
menta11y. However, it is not possible to attrioute the in-plane
'anisotropy to wriggling alone since other measur‘eménts]3 have not shown
any apprec1ab1e variation in the out-of-plane.width with the in-plane
'ang1e
At any rate, the fragment spih depolarization arises‘from'other

sources as well, as will be discussed in the next chapters.

3. - Thermal Fluctuation of the Angular Momentum Projection on the
D1s1ntegrat1on Axis: Tilting

~ Above, we have assumed that the two touch1ng fragments are aligned
w1th their common axis- perpend1cu1ar to the total angular momentum
‘Because of the therma] fluctuations, this condition can be relaxed
(Seé Fig. 5). Aééuming now that the two fragments are rigidly attached

one to the other, the energy is given by

E = 1° 'K2 + K2 = 12 + K° (3.1)
251 29'" zjl 2ﬂeﬁ,
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where:

GZ.= 27 + ur?; Car= 27

~ projection of’the angular momentum I

1 ol
and T ee =7,

I Kis the

along the line of centers.’ The
part1t1on function is: |
7 = /_exp 1/2’5 T) JzT‘Tff erf( 1// j (3.2)
from which
- 1/2 A I exp - 12/2’j T
2 _ ' eff P eff
K= = J el - — = (3.3)
v Aro o erf V2T T
For small I we have
K2=%12 (3.4a)
while for 1érge I we have:
K- q. T-—dT (3.4b)
eff
The total fkagmenthspin is given by
25 = \fK2+a%(12— K*) (3.5)
and the averaged square quantity is
3. P b2_ 42 452,40
s = K 49l -qgk 53 K * 791
~ (3.6a)
and for large I,
2 .18 A4+, 4 -2
4s -‘.7‘jT‘4’-7@I (3.6b)
The average, on the other hand, is
: . \k
2. (1, 45 K >2 “E/T 45 K> -E/T
- f7,1,<1+41—2 e dK~21+f§§—I—e dK
-7
Z JA
_ 45 K |2 AT 9 gt
7 1 28 1 7 I <] ¥ 8. 12 = 2p a7 -7; (3.7)
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" where we have dropped terms of order h1gher than K /I2
From' the above equations one learns that the total angu]ar momentum- of
the nragments is on]y s]1ght]y affected by the thermal f]uctuat1ons of
the separat1on ax1s and that the correct1on to the ord1nary r1g1d
rotat1on 11m1t, at constant temperature,_decreases as I ], Furthermore,
the f]uctuatfon__o?.é 0 up to order E?)Iz ’and can be neg}ectedvin
most.cases.

Due to the excitetion of this mode the reaction plane is not
perpendicular to the total angular momentum of the system I; but is
"tilted" by an angle 6

t‘g1ven oy

=
N

sing, = ./ -K - | (3.8)

The angle more relevant to sequential fission angular distributions is
the angle between the total spin of one fragment and the normaT to the

line of centers (in the same plane as 1), which is given by
sing = of — . . (3.9)

Since I may be considerably larger than s, this angle can be considerably

larger than ¢ One should note that the combined effect of wriggling

¢
and tilting will produce spin components along all the coordinate axes.
I1f the separation axis is the z-axfs, tilting will Tead to an rms
z-component of - V[E§7Z-= 0;84-VC27?7 for each fragment; ‘On'the other
hand, the rms x- and y-components due to wriggling will be \f:%75 =
0.60 \[-— hence, tilting and wriggling together generate an angular

momentum wh1ch is almost random.
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SRR

Twisting and Bending Modes Excited in a.Zerb Angu]ak'Momentum §Xstem ¥

These three degreeswdf freedom ére.i]TuStrated_in Fig. 6. i:They
are degenerate jn our two—equa]-sphere mode]l.'2 A sbfitting of the degen-
" eracy could easily occur in the case of fragment deformationQ~ wé shall
not consider this rather important possibility at the moment, although
it isvcomp]ete]y trivial, because of the arbitrariness in the choice
of deformation. o

The partition function can be written as:

7 « fR-Z exp(- RE/T'T) dR - (4.1)
and _ | |
| - 3, 1
InZ = A=-% In — (4.2
, Ve ( \)
from“whiqﬁ ‘
L : ) '1/ Lo
R = 2 VRS s ' : (4:'53)"’
T . . :
RE o= - 2InZ _ 3 g ' o (4.4)
s(i/r1] 2
and
2 _ (3 4Y - '
o = (3-2)g7 = 021 . (4.5

Notice that R is the angular momentum of each fragment and that, for
each mode, the angular momenta of the two ffagments cancel out pairwise.

Furthermore, for each fragment the resulting angular momentum is
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- randomly oriented. It is worth stressing again that this angu]ar
momentum can exist even when the tota] angu]ar momentum is zero because

of the pairwise cance]]at1on mentioned above.

Coupling of Twisting and Bending Modes to Rigid Rotation

We want to generalize the previous calculation to the case of non-
zero total angular momentum. Let us assume that gggb_fragmentrhas an
aligned angular momentum:component IR-arising from rigid rotation and
a random component R due to the bending and twisting modes. The overall

rotational energy arising from the fragment spins is:

L2 s %Rl 2,02 ont cocl = L (17 4 g2
E = 2;7{(IR + R 4—2RIRcose) +(IR-+R - 2RIRcose)} N (IR + R*%)
| | (5.1)

The average total angular momentum of the. fragments is:

2

f \/I +R? +21RRcose + \/I +R% - ZIRRcose>R exp<— i—>dR sin6 do

2|s] =

JT
[[R exp - ————>dR s1ne de

The integral over @ yields

(5.2)

2 R*
ZIR + 3 TE— fur IR > R
o Iz' ‘

2 R
2R + 3 R for Ip <R

Thus caution is necessary in ealculating the thermal average. The

result is:
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RRCETR
ISR

2ls| = <2IR+~‘7—T-) erf(I,NVIT ) + \/2— VTT exp(-TphIT) o

'n- N
oo o (5.3)
This expression can be written in dimensionless form as
_2lsl - (2x + %—>'erf(x) § 2 exp (-x?) s (5.4)
T o _

m

[

where: x*éLIR/vt7T . This function is plotted in Fig. 7. For small x

one obtains

2ls| o 4 (1+2(3—2_—) . _ '> - (5.5)

JT NES

’ ¢

In the 1limit of IR==O,.oheuobtains

olsl = —& JIT = @&’ - (5.8)

“2lsl s g+l (5.7)
VT X - |
or
. JT 2 R _ 2 4 JT
2|s| = 2Ip + %5 = 2ptz 7 o= 511+ ”
R R 1
(5.8)

Similarly the average square angular momentum is
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— ' (12+R?) [ LR
- 2 P Woo4 1202 R sl R 2
452 = 20p + R+ 2[ 5V I8 4R -2 + i *<12'+R2 R
. . |
& : R2 ‘ '. '
. X exp <— ———<>dR v -, _ v : (5.9)
gT o -
which, to order .RZ/I;, yields
4s? = 41z + R ~ (5.10)
4o? = %Rz = 2JT1 . - (5.11)

In ‘this' case as well as:in (3.7) and (2.22b) we see that the correction
to the rigid rotation limit decreases as I'] in Eq. (5.8), but with a
slightly Targef coefficient. - However, there is some appreciable contri-
butfon?to"the width. Of greatest importance is the fact that'a sizeable
"ti1t" of the angu]ak momentum of each fragment about the dﬁrebtibn‘Of

the total angular momentum is introduced

. = S . ;
tane = B;— = —5 _ (5.12)
| Vi 21, |

This depolarization is of gréat importance'for the proper interpretatiqn .
- | of the out-of—plané angular distribution of gamma rays emitted by‘the

fragments and of the out-of-plane angular distribution of sequential

fission fragméntsﬁz Note that the effect on the depolarization in.

Eq. (5.12) is larger than that due to tilting in Ea. (2.24).
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6. A Simp]e Application to a Typical Heavy-Ion Reaction

' It should be ‘stressed again that the above formalism app]fé§
strictly to a system which has }eached statistical equilibrium. In
general this iS not the case in heavy;ion’reéctions, especially insofar
as the mass asymmetry degree of freedom is concerned. However, for other
degrees of freedom statistical equilibrium may be reached or
closely approached. At any rate, it is interesting to compare the
preditfions of an equi]ibridm mode] witﬁlexperiment.

The reaction which we want to consider is 600 MeV 86Kr.+ 197

Au.
Some of the vital statistics of this reaction are summarized in Table 1.
If we allow the system to evolve to the configuration of two touéhing
spheres (ro = 1.22) we have (either for Lyms OF %) an excitation energy
of 113 MeV, so T = 1.78 MeV and JT = 131 %2 or VIT =12 f.

Now let us first consider the effect of the doubly degenerate
wriggling mode. For the average angular momentum the total spin is.

~given by Eq. (2.22b),

2. 7 93.75 '
2sl = 7190+ 7 S55
= 54,29 +1.73 = 56.02H

and from Eq. (2.23),
402 = 2(93.75) = 187.50 H?

The fluctuation of the separation axis with respect to the total angular

momentum yields the following from Eqs. (3.4b) and (3.7)

K2 = 13*:7T = 367.50 ﬁz
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TABLE 1.
600 Mev Sbkr + 197,
£y = 600 MeV
B = 18 MeV
| Bgoy =, 283 Mey
E/BCbul ]748
% 285 4
max _
s 202
2 190 -
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25 = 2999 + 2 131.25
7 2

54,29 + 3.11 = 57.40 %

The out-of-plane tilting of the separation axis from Eq. (3.8) is

g =. S'in--l <;/_3_6_7_'_59._> = 5_7.90-.

- . 190
Since wriggling and tilting together produce an angular momentum which is
nearly random we can estimate their combined effect on the‘depo1arization

of the fragment spin from Eq. (3.9)

o1 BV36T50 )\ L g iee
B = s1h ( 5870 .> 19.51°

1

which is indeed substantial. The twistihg and -bending modes. lead to

RZ = _g_j'r = 196.88 2

25 = 2190 + 713125
7 ' 190
= 54,29 + 4.84 =

59.13 h -

492 = 2(131.25) = 262.50 h°

This produces an angular momentum depolarization of

o = tan! ( Y 2%6]3? > = 27.34°

which is considerably larger than that arising from the combined effect

of wriggling and the fluctuation of the separation axis.

’
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If one assumes a triangular distribution for the angular momentum
 distribution (i:.e., no %~fractionation), there is an additional contri-

bution to the sigma squared of both fragments of

' ('3 v _ :

Summing all the fluctuations we obtain
402 = 818.37H%  or 20 = 28.6M .

In conclusion, without allowing for angular momentum fractionation, we

obtain for the overall fragment spin

2|s] = 6429

' Another 1nterest1ng case is spin generated by the wr1gg11ng, bend1ng

3y A

band tw1st1ng modes for zero total angu]ar momentum. For wr1gg11ng we.

obtain

2[s| = v aT*T = 17.16 4

Bending'ahd!tW1Sting contribute

25 = =& _ JFT = 25.85H

Vi
Combining both angular momenta one obtains

Js2 = 15.5#

for each fragment.
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7. Conclusion o L amiEgaiet

In conclusion, using a simple model we have investigated-the . -
angular momenta associated with a number of collective degrees of freedom.
For the mass asymmetry mode we have found that there can be-apprecfable
2-fractionation along the mass asymmetry coordinate, even in the equi1ibrium
1imit. Furthermore, the distinctly différent patterns observed for the
case of compound nucleus decay and for nbn-compoUnd nucleus decay (i.e.,

'equ11ibration along the rfdge line) imply that it may be possible to
experimentally distinguish between thése two mechanisms, perhaps via
Y-ray multiplicity measurements. :Six other collective modes have been
considered: two wriggling, one tilting, two bending, and one twisting.
Excitation of these moaes causes a modest increase in the average
fragment spins bver the rigid rotational value but Tead to a sizeable
_spread 1n the fragment S angu]ar momenta about the average va]ue In
“add1t1oﬁ, these modes also result in a depolarization of the fragment
spins and 1nduce s1gn1f1cant spin in the fragments for zero total
angular momentum.

Comparisons with experimental results aré, of course, welcome and
left to the readers. To many the agreement may appear remarkable. _
However, we caution against excessive confidence in view of the crudene§§
of the model. Yet we hope that the wise use of this exercise ("cum grans
salis") may help in understanding the much more intricate aspects of

everyday life in fission and heavy-ion reactions.
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Figure Captions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

(a) Mass distributions for the indicated reaction obtained by
integrating over all f£-waves leading to fission (squares) and
for selected individual 2-waves (solid curves). The g2-values

are ¢ = 0, sz/Z and me.' A1l curves have been normalized to

-unity at symmetry.

(b) Mean (crosses) and mean squared (squares) angular momentum
divided by the corresponding quantities obfained by averaging

over the g-distribution which leads to fission vs asymmetry.

(a) Same as Fig. 1(a) except that the angular momentum dependence
of the temperature and total reaction width have been incorporated
into the calculations (see text).

(b) Same as Fig. 1(b) but including the same refihements.as the |
calculation shown in Fig. 2(a).

(a) Same as Fig. 2(a) but in the absence of neutron competition.
Note that only the total mass distribution (squares) is different
from Figf 2(a). (b) Same as Fig. 2(b) but without neutron competitibn.
Total spin of the fragmenté arising from wriggling as a function
of the spin arising from rigid notation alone plotted in
dimensionless form. The upper solid curve shows the result for
both of the wriggling modes while the lower solid curve
corresponds to the excitation of a single wriggling mode (see
text). The 1imiting behavior for both small and large x are

indicated in both cases.
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Fig. 5.
Fig. 6.
Fig. 7.
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Schematic illustrating the tilting mode and the doubly degenerate ‘

~ wriggling modes for the two equal sphere model. The long arrows

originating at the point of tangehcy for the two spheres is

the orbital angular momentum while the shorterrarrows represent
the individual fragment spins..

Schematic illustrating the ﬁwisting and bending modes for the;'
two equal sphere model. Note the péir wise cancellation of the
fragment spins.

Total fragment spin as. a function of the spin arising from

rigid rotation for the-twisting and bending modes. Dimensionless
forms are utilized. The limiting behévior for large and small

x are indicated.
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Fig. 6.
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