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Abstract

The objective of this study is to analyze and characterize equilibrium in a labor market

where firms post wage contract offers and workers - both employed and unemployed -

search for better paid job opportunities. Given the environment faced, it is shown that

in equilibrium the contract offered by a firm to any employee implies the worker’s wage

increases with tenure at that firm. Further, although different firms offer different

contracts, in equilibrium all contracts can be related to a single wage/tenure contract

with different starting points. The results lead to several predictions about the labor

market histories of workers and the nature of labor market equilibria that have not

been exploited to date.



The objective of this study is to analyze and characterize equilibrium in a labor

market where firms post wage contract offers and workers - both employed and un-

employed - search for better paid job opportunities. Given the environment faced, it

is shown that in equilibrium the contract offered by a firm to any employee implies

the worker’s wage increases with tenure at that firm. Further, although different

firms offer different contracts, in equilibrium all contracts can be related to a single

wage/tenure contract with different starting points. The results lead to several pre-

dictions about the labor market histories of workers and the nature of labor market

equilibria that have not been exploited to date.

During the last ten years or so a literature has developed based on the equilibrium

analysis of labor markets where employed workers continue search for better job

opportunities. This has led to significant theoretical and empirical insights which

have deepened our understanding of how real world markets work (see, Van den Berg

(1999) for a survey). Much of this work has been based on the framework developed

by Burdett and Mortensen (1989,1998) (hereafter termed B/M).1

A critical feature of the B/M framework is that each firm posts a single price -

a wage which it pays all of its employees at every point in time. In the context of a

relatively standard matching framework with identical firms and workers, equilibrium

with on-the-job search implies a non-degenerate distribution of wage offers. The logic

is relatively simple. Firms offering a high wage make less profit per employee than

those firms offering a lower wage. On-the-job search, however, implies those firms

offering higher wages attract more workers and so enjoy a larger steady-state labor

force. In equilibrium, all firms obtain the same steady-state profit flow, even though

they offer different wages.

The objective is to extend the B/M framework to equilibria where firms do not

post a single wage, but post wage contracts. These contracts specify the wage paid

to any employee as a function of that worker’s tenure at the firm. It will be shown

that in equilibrium each firm offers a wage/tenure contract that imply an employee’s

wage increases smoothly with tenure. As with the B/M study, the market equilibrium

is characterized by wage dispersion in that there is a non-degenerate distribution of

1An alternative approach, developed by Burdett and Judd (1983), has recently been investigated

by Acemoglu and Shimmer (1997).
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wage/tenure contracts offered by firms. There is wage dispersion within a firm due to

different tenures as well as across the market when controlling for tenure. This leads

to new and testable predictions about the nature of markets.

Three restrictions play a critical role in obtaining these results. First, as is common

in labor market modelling, we assume there is an imperfect capital market where

workers cannot borrow against future earnings. Second, workers are assumed to be

risk averse. Third, each firm is assumed not to respond to outside offers received by

any of its employees. The first two restrictions are relatively standard, the third is

not. Clearly, this latter restriction is not satisfied in some labor markets such as the

academic labor market in the U.S.. Nevertheless, there are several reasons to suspect

our restriction holds in other labor markets, especially those market where workers

are homogenous. First, outside offers may not be observable (or verifiable) by firms.

Indeed, why should a firm verify to another firm that it has made a particular offer

to a worker? Of course, given offers from other firms are not verifiable, they will be

ignored. Second, as we assume throughout that all workers are equally productive,

some employees may well become disgruntled should a no more talented and more

junior employee receive a higher wage on the basis of some random outside offer.

Third, as we know in bargaining theory, it is best to have all the bargaining power.

By precommiting to a fixed company wage policy, the firm refuses to bargain with

employees over their search rents.

In contrast, suppose a firm does respond to an offer received by one of its workers.

How would this process then proceed? Clearly, several alternative modelling restric-

tions can be made. In an insightful study Robin and Postel-Visnay (2001) propose

that the two firms - the worker’s current employer and the firm that made the new

offer - enter into a Bertrand pricing game. In such a case with identical firms, both

firms offer a wage equal to the worker’s marginal product. The worker then stays at

his or her current employer but yields no further profit to the firm. In addition, the

firm making the ‘verifiable’ outside offer makes no profit.

The basic structure considered here is that a firm precommits to a fixed com-

pany wage policy where, with identical workers, the wage paid depends only on the

worker’s current tenure (or seniority). The firm realises that its employees will receive

alternative (non-verifiable) job offers from time to time and will quit if a preferred
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offer is received. A primary issue is what form does the firm’s optimal wage contract

take?

It turns out there are two basic forces at work. First, there is an incentive effect

where a firm prefers to backload wages in any wage/tenure profile. By offering a

worker a smaller wage today but a greater wage at some future date, a firm reduces

its current wage bill and also increases an employee’s expected return to staying with

the firm. This, in turn, reduces the probability the worker quits to a preferred job

contact. Second, there is an insurance effect. As workers cannot borrow against future

earnings then, ceteris paribus, each risk averse worker prefers a wage/tenure contract

which implies a constant wage per period. An optimal contract trades off these two

competing effects and implies wages rise smoothly with tenure, limiting to a wage

which is strictly less than marginal product.

The above result is of course a partial - about how a given firm behaves in a

particular environment. Later in this study we show that such behavior is consistent

with a steady-state market equilibrium. At such an equilibrium each firm offers an

optimal wage/tenure contract given its correct beliefs about the contracts offered by

other firms and the behavior of workers. Further, workers utilize their best search

strategy.

An important element of our results is that the equilibrium identified can be

characterized by a baseline salary scale. A baseline salary scale is the equilibrium

wage/tenure profile of a firm offering the lowest initial wage to those it employs. It

is shown that any other firm’s wage tenure profile can be described by the baseline

salary scale with a different starting point. For example, suppose a firm offers a

starting wage that is the same as the baseline salary at (say) 7 months tenure. An

optimal contract implies employees at this firm are paid a wage after 3 months equal

to the wage paid at 10 months according to the baseline salary scale. And so on.

This, of course, leads to a strong testable restriction on possible wage/tenure profiles

offered by firms.

In equilibrium, wage dispersion arises for three reasons. First, different unem-

ployed workers obtain different acceptable job offers - some are lucky and obtain a

job with a high initial wage, others are not. Second, a worker’s wage at a particular

firm increases with tenure according to the baseline salary scale. Finally, on-the-job
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search implies a worker will change job if a more valuable contract offer is received.

A particularly convenient result for applied work is that equilibrium also implies

that an employee’s current wage is a sufficient statistic describing that worker’s con-

temporaneous quit rate. Of course when receiving an outside offer, a worker considers

the relative value of accepting the alternative job offer, which depends on expected

future wages at the respective firms. But the baseline salary scale property implies

a worker will quit if and only if the initial wage offered at the new firm is strictly

greater than the worker’s current wage.

A closely related paper is Stevens (2000) who assumes risk neutral workers. When

workers are indifferent to risk, there is no reason to smooth payments with tenure.

The optimal wage contract is then a step contract where a zero wage is paid until

some finite tenure date, after which the worker is paid marginal product. A surprising

feature is that a market equilibrium then implies all firms offer the same step contract,

and this degenerate outcome then implies no quit turnover.

In the next Section we specify the basic elements of the model. As the derivation

of the results is not trivial, things are kept reasonably simple. After briefly describing

the optimal quit behavior of workers, we first derive the optimal contract a firm offers

within a particular matching environment. We then construct a market equilibrium

using a two-step procedure. Given the assumed search behavior of workers, we first

describe a non-cooperative wage contract posting game played by firms. Given the

equilibrium to that game, we then identify a market equilibrium where the assumed

search behavior of workers is indeed optimal (given firm behaviour). Finally the

implications of our results are discussed.

1 Basic Framework

Although the major results of this study are presented within the context of a contin-

uous time model, for the present assume that time can be divided into small discrete

intervals dt > 0.

Suppose a unit mass of workers and firms participate in a labor market. Workers

and firms are assumed to be homogeneous such that any firm generates revenue pdt

for each worker it employs in interval dt. Both unemployed and employed workers
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obtain new job offers from time to time. Let λdt denote the probability a new job

offer is received by a worker at the end of interval dt. Any job offer is fully described

by the wage contract offered by the firm. Such a contract specifies the wage the

worker receives as a function of his or her tenure at that firm. As employees are

identical, anti-discrimination legislation requires that a firm offers all new hires the

same contract.

An unemployed worker becomes employed on receiving a job offer that yields an

expected return at least as great as unemployment, whereas an employed worker

changes employer on receiving an offer that yields a strictly greater expected return

than remaining with his or her current employer.

Employed workers continue to work and receive new offers until they die. Let

δdt denote the probability any worker dies (leaves the market for good) in interval

dt. Such workers are instantly replaced by new unemployed workers. Unemployed

workers obtain bdt unemployment insurance payment in interval dt.

2 The Workers

All we need to know about the firms at present is that each firm is assumed to post

a contract ŵ = {w(τ)}∞τ=0, where w(τ)dt specifies the amount it pays any employee

with tenure τ for the following period dt.

As stated previously, we assume throughout that the worker cannot borrow against

future earnings. As wages will be monotonically increasing with age, it will not be

optimal for workers to save for future consumption. Hence we assume workers are

always liquidity constrained. The worker maximizes expected lifetime utility, where

given the worker consumes income wdt in period t, the worker obtains one period

utility u(w)dt. Assume u is strictly increasing, strictly concave, twice differentiable

and

lim
w→0+

u(w) = −∞. (1)

Note these restrictions are consistent with utility functions which have constant rela-

tive risk aversion u(x) = x1−σ/[1−σ] with parameter σ ≥ 1.2 Aside from their death

rate δ > 0, assume workers do not discount the future.

2this assumption ensures that the corner constraint w ≥ 0 is never binding.
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Any job offer received is assumed to be the realization of a random draw from F,

where F (V ) is the probability any contract offered yields an expected lifetime utility

no greater than V if it is accepted. Let [V , V ] denote its support.

Given a worker with tenure t is employed by a firm offering contract ŵ, let V (t; ŵ)

denote the worker’s expected lifetime payoff when using an optimal quit strategy.

Similarly, let Vu denote an unemployed worker’s expected lifetime payoff. For now,

take Vu as given.

Given any contract ŵ and any tenure t where V (t + dt; ŵ) ≥ Vu, the Bellman

equation implies

V (t; ŵ) = u(w(t))dt+ (1− δdt)[(1− λdt)V (t+ dt; ŵ)

+λdtF (V (t + dt; ŵ)V (t+ dt; ŵ) + λdt

∫ V

V (t+dt;ŵ)

xdF (x)] (2)

where the interpretation is standard - the worker quits to another firm if an outside

offer is received whose value x exceeds V (t+ dt; ŵ).

Of course given some arbitrary contract ŵ, it may happen that V (t+ dt; ŵ) < Vu

for some t. In that case the worker quits to unemployment at the end of the period

and so

V (t; ŵ) = u(w(t))dt+ (1− δdt)[(1− λdt)Vu + λdtF (Vu)Vu + λdt

∫ V

Vu

xdF (x)].

Define T (ŵ) = min{t ≥ 0 : V (t; ŵ) < Vu} which is the tenure date at which the

worker quits to unemployment. If no such tenure date exists, then set T (ŵ) = ∞.

From (2) it can be seen that V (.; ŵ) satisfies the difference equation

δV (t; ŵ)

1− δdt −
V (t+ dt; ŵ)− V (t; ŵ)

dt
(3)

=
u(w(t))

1− δdt + λ

∫ V

V (t+dt;ŵ)

[x− V (t+ dt; ŵ)]dF (x),

while V (t + dt; ŵ) ≥ Vu, and the boundary condition V (T ; ŵ) = Vu if T <∞.
Consider an employee at a firm offering contract ŵ. At any tenure t where t+dt <

T (ŵ), then (δ + λ(1− F (V (t+ dt; ŵ))dt+ o(dt) is the probability he or she leaves at

the end of the period. Hence for dt arbitrarily small and for any t such that t < T (ŵ),

ψ(t; ŵ) = e−
∫ t
0 [δ+λ(1−F (V (s;ŵ))]ds

is the probability an employee does not leave before tenure t. The next section con-

siders a firm’s optimal wage contract ŵ, given this quit strategy.
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3 The Firms

The objective in this Section is to derive the contract that maximizes a firm’s expected

profit given it yields an expected lifetime utility of at least Vp to any new worker who

accepts it. Such a contract is termed an optimal contract. It is shown that there are

two forces which determine the nature of this contract. First, as capital markets are

imperfect, there is an insurance problem where, ceteris paribus, risk averse workers

prefer a constant wage stream. The insurance effect implies workers value a smoother

wage stream more highly. Second, there is a moral hazard problem where an employee

quits if a better outside offer is received.

When designing an optimal contract, each firm takes as given (a) F, the distribu-

tion of contracts offered by other firms in the market, (b) Vu, the expected lifetime

utility of an unemployed worker, and (c) the quit strategy of an employed worker

given the contract offered .

We start by making two preliminary points. First, as the arrival rate of further

job offers is independent of a worker’s state, an unemployed worker accepts a contract

which offers w(t) = b for all t. As b < p by assumption, a firm can always obtain

strictly positive profit by offering this contract. Hence, the following only considers

situations where firms make strictly positive profit.

Second, note that a firm which offers a contract that yields an expected lifetime

utility Vp to a worker, where Vp < Vu, hires no workers. As such a contract makes

zero profit, strictly positive profit therefore requires that each firm offers a Vp ≥ Vu.

As F describes the distribution of contract offers in the market, we only consider

situations where V ≥ Vu; i.e. the lowest value wage contract offered in the market

has value at least as great as Vu.

The distribution of outside offers faced by workers plays a central role in what

follows. We construct an equilibrium where F has the following properties.

A1: (a) V < u(p)/δ, and (b) for all V ∈ (V , V ), F is continuously differentiable and

satisfies F ′(V ) > 0.

Note, A1(a) must hold, otherwise V ≥ u(p)/δ would require that some firms offer

contracts which make negative profits. The second assumption, A1(b), is more diffi-

cult to justify at this stage. This restriction and potential alternatives are discussed

later.
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Fix an F satisfying A1, and a Vu satisfying Vu ≤ V . In equilibrium both F and Vu

are endogenously determined, but each firm takes these objects as given. Given such

a Vu and F, suppose the firm offers a starting wage contract that yields an expected

utility Vp to any worker it hires.

Clearly Vp < Vu implies this contract does not attract any workers, and so consider

Vp satisfying Vp ≥ Vu. Suppose the firm utilizes contract ŵ. Assuming firms do not

discount the future, then for dt arbitrarily small the firm’s expected return to hiring

a worker is ∫ T (ŵ)

0

ψ(t; ŵ)[p− w(t)]dt,

where ψ(t; ŵ) and T (ŵ) are defined in the previous section. Of course if T (ŵ) <∞,
the worker quits at tenure T (ŵ) and the firm makes no further profit from this hire.

Hence given the worker’s optimal quit strategy, the firm’s formal optimal con-

tracting problem (for dt arbitrarily small) can be written as

max
ŵ

∫ T (ŵ)

0

ψ(t; ŵ)[p− w(t)]dt (4)

subject to

V (0; ŵ) ≥ Vp (5)

The first result is immediate.

Claim 1. Fix an F satisfying A1 and a Vu ≤ V . If Vp ≥ V and dt > 0, the optimal

wage contract implies w(t) = wp for all t where u(wp) = δVp, and an employee never

quits.

Proof : Fix any Vp ≥ V . Now consider the wage contract ŵ ≡ {w(t) = wp}∞t=0 where

wp is defined in the Claim. The Bellman equation (3) implies V (t; ŵ) = Vp for all

t, where Vp ≥ V implies the worker never quits. As this contract is jointly efficient

and also extracts maximal employee rents (given Vp) it therefore maximizes the firm’s

profit.

As it plays a most important role in what follows, define w where

u(w) = δV .

Claim 1 establishes that a firm which offers the contract that yields the greatest

lifetime utility to new hires (i.e. sets Vp = V ), provides perfect income insurance - it
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offers a constant wage w(t) = w for all t. As an employee never quits at such a firm,

the firm’s expected profit Π per hire is

Π = [p− w]/δ.

Note that A1(a) implies w < p and Π > 0.

We now turn to a firm that offers a contract which yields Vp, where V ≤ Vp < V .

Such a firm faces a positive risk that its employee quits to competing firms. What

follows establishes that in the optimal contract, a firm will gradually increase wage

payments with tenure.

The necessary conditions describing the optimal wage contract are derived in

Appendix A. Here we simply describe the solution for the limiting case where dt→ 0.

Given Vp, let w∗ = {w∗(τ |Vp)}∞τ=0 denote the firm’s optimal contract. Let V ∗(τ |Vp)
describe the value of being employed with tenure τ at a firm which offers contract

w∗ with expected (starting) payoff Vp.
3 Similarly, let Π∗(τ |Vp) describe the firm’s

expected profit given a current employee with tenure τ .

Theorem 1.

Fix an F satisfying A1 and a Vu ≤ V . In the limit as dt → 0 and for any

Vp ∈ [V , V ), the optimal contract w∗ and corresponding worker and firm payoffs

{V ∗,Π∗} are solutions to the differential equation system {w, V,Π}:

−u′′(w)

u′(w)2

dw

dt
= λF ′(V )Π, (6)

δV − dV

dt
= u(w) + λ

∫ V

V

[x− V ]F ′(x)dx, (7)

[δ + λ(1− F (V ))]Π− dΠ

dt
= [p− w], (8)

subject to the boundary conditions:

(a) limt→∞{w(t), V (t),Π(t)} = (w, V ,Π), and

(b) the initial condition V (0) = Vp

Proof is in Appendix A.

A formal existence proof of an optimal contract is provided later (see the proof of

Theorem 2 below). For now, we provide the relevant insights.

3Note, that V ∗(τ |Vp) is equivalent to V (τ ; ŵ) when ŵ = w∗.
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Equations (7) and (8) are standard flow equations describing the continuation

payoffs V ∗ and Π∗. For example, (7) follows directly from the Bellman equation

(3), while integration of (8) and boundary condition (a) (which implies boundedness)

gives

Π∗(t|.) =

∫ ∞
t

ψ(τ ;w∗)

ψ(t;w∗)
[p− w∗(τ |.)]dτ (9)

which is simply the firm’s expected future profit given an employee with current

tenure t (where Appendix A establishes that T (w∗) = ∞; a worker never quits into

unemployment).

The central economic insight is provided by (6) which describes how wages change

with tenure. As Π > 0 and F ′ > 0 by assumption, wages are strictly increasing with

tenure and converge asymptotically to w. Given an employee with current expected

payoff V = V ∗(τ |.), the density function F ′(V ) measures the number of firms whose

outside offer will marginally attract this worker. If there are no such firms, i.e.,

F ′(V ) = 0, marginally raising the worker’s wage w∗(τ |.) at tenure τ has no marginal

effect on the worker’s quit rate at τ . Optimal insurance then implies the firm pays

a (locally) constant wage. However as F ′(V ) > 0 by assumption, there is a trade-

off between increasing pay at tenure τ , which reduces marginally the worker’s quit

rate at τ , and worsening ex-ante income insurance. Indeed, integrating (6) over [0, τ ]

implies
u′(w∗(0|.))
u′(w∗(τ |.)) = 1 + u′(w∗(0|.))

∫ τ

0

λF ′(V ∗(t|.))Π∗(t|.)dt. (10)

By marginally increasing the wage paid at tenure τ , the firm reduces marginally the

worker’s quit rate over [0,τ ]. The integral term in (10) measures the firm’s overall

return to that decreased quit rate, which distorts the optimal wage contract away

from full insurance.

As is standard with moral hazard, the optimal contract rewards those who do not

quit - in this case the principal increases payments for those with higher tenure. Being

liquidity constrained new employees are potentially made worse off (as they cannot

borrow against future earnings), but the promise of higher earnings in the future

lowers their quit rate and increases joint surplus (where a quit is jointly inefficient).

Of course, as wages increase with tenure, so does the value of employment V ∗(t|.).
Further, as wages keep rising while V ∗ < V , there comes a point where V ∗ equals (or is

at least very close to) V . But Claim 1 establishes the optimal contract for V = V , and
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so boundary condition (a) ensures that the limiting contract is optimal. Backward

induction using (6)-(8) then backs out the optimal transitional wage dynamics, where

the iteration stops at the point where V = Vp.

More formally, the optimal wage contract corresponds to the saddle path implied

by the differential equations (6)-(8) and the stationary point (w, V ,Π).4 In fact, a

backward induction argument using A1 and Theorem 1 establishes that w∗(τ |Vp)
and V ∗(τ |Vp) are continuous and strictly increasing with τ , converging to w and V

respectively.

The above has characterized the wage contract a profit maximizing firm offers

its employees given the distribution of outside offers, and that it chooses to offer

new employees a starting payoff Vp. Not surprisingly, it can be shown that the firm’s

expected payoff per newly hired employee is strictly decreasing in Vp. Clearly, if this

were the only consideration, firms would choose the lowest Vp that is acceptable.

However, with on-the-job search, the greater the starting payoff Vp offered by a firm,

the more workers it will attract.

The next section now determines F, the distribution of starting payoffs Vp, as part

of a non-cooperative wage contract posting game.

4 A Firm Replication

Throughout we focus on steady state and so define the following steady-state vari-

ables. First consider steady state unemployment U . Strictly positive profit implies

V ≥ Vu, and so each unemployed worker matches with the first job offer received.

Also an optimal contract implies a worker never quits into unemployment. Hence

steady state unemployment satisfies δ(1− U) = λU, and so

U =
δ

δ + λ
,

while steady state employment is λ/(δ + λ).

Now define G(V ) as the steady-state probability a randomly selected employed

worker has current expected lifetime utility no greater than V. This distribution

function depends not only on F, but also on wage-tenure effects and quit turnover. As

we do not rule out mass points in G, use the notation G(V −) ≡ limε>0,ε→0G(V − ε).
4note, equations (7),(8) have unstable forward looking roots.
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Now note that if the firm offers starting payoff Vp ≥ Vu, its steady state hiring

inflow, denoted h(Vp), is

h(Vp) = λ[
δ

δ + λ
+

λ

δ + λ
G(V −p )]

where Vp ≥ Vu implies λδ/(δ + λ) is the firm’s inflow from the unemployment pool,

while λ2G(V −p )/(δ + λ) is the firm’s inflow from the pool of employed workers whose

current lifetime utility is strictly less than Vp.

Of course given an arbitrary contract ŵ which offers starting payoff Vp, the firm’s

steady state profit flow is

θ(Vp) =

∫ T (ŵ)

0

[hψ(t; ŵ)dt][p− w(t)],

where hψ(t; ŵ)dt is the measure of employees with tenure t, and [p−w(t)] is the firm’s

profit flow given the wage paid to those workers. But given Vp and the corresponding

hiring inflow h, note that an optimal contract maximizes this flow payoff; i.e. the

firm’s maximal steady state profit flow is

θ∗(Vp) = h(Vp)

∫ ∞
0

ψ(t;w∗)[p− w∗(t | Vp)]dt

= h(Vp)Π
∗(0|Vp).

Definition: Given Vu, a replication is a distribution of optimal wage contracts

{w∗, V ∗,Π∗}, with corresponding steady state distributions F,G, and a flow profit

θ > 0 where

(i) θ∗(Vp) = θ for all Vp in the support of F ;

(ii) θ∗(Vp) ≤ θ otherwise.

A replication requires that all firms make the same steady state profit flow θ > 0 and

that any other wage contract results in lower profit.

The following establishes necessary conditions for a replication. The first step in

accomplishing this task is to consider the wage contract of firms offering the lowest

value contract in the market; i.e., those firms that offer Vp = V .

Definition : Given an F satisfying A1, the baseline salary scale, denoted {ws(t),
V s(t), Πs(t)}, is the solution to the differential equations and boundary conditions

defined in Theorem 1 with Vp = V .
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Assumption A1 and the equations of Theorem 1 imply that ws(.) and V s(.) are

both continuous and strictly increasing functions which converge to w and V respec-

tively. Hence, given any other starting payoff Vp ∈ [V , V ), a salary point tp ≥ 0 exists

where V s(tp) = Vp. Further, reflecting the saddle path property of the differential

equations described in Theorem 1, optimality of ws implies that the optimal wage

contract given starting payoff Vp = V s(tp) corresponds to the wage tenure payments

ws(.) described for tenures t ≥ tp.

This yields the convenient result that w∗(t|Vp) ≡ ws(t + tp); i.e. given starting

salary point tp an optimal wage contract pays a worker with tenure t a wage commen-

surate with point (tp+t) on the baseline salary scale. Such a worker then only quits if

offered a starting point t′p strictly greater than his/her current salary point. Note this

also implies the firm’s continuation payoff can be written as Π∗(t|Vp) ≡ Πs(t+ tp).

Due to the argument made above, rather than consider firms as competing on

starting payoffs Vp, we consider instead firms competing on starting points tp on an

endogenously determined baseline salary scale. The least generous firms set tp = 0

and so offer wage contract {ws(t)}∞t=0 which implies starting payoff Vp = V s(0) ≡ V . A

firm offering a higher starting point tp > 0 offers a wage contract {ws(tp+t)}∞t=0 which

is the optimal wage contract given alternative starting payoff Vp = V s(tp) ∈ (V , V ].

Define F s(tp) as the distribution of starting points tp on the baseline salary scale

in a replication, and note that V s strictly increasing implies

F (V s(tp)) = F s(tp).

Also note that A1 and the definition of the baseline salary scale imply dF s/dt =

F ′(V s)dV s/dt > 0 for all t > 0 and therefore F s has a connected support [0,∞) and

is differentiable for t > 0. Also by definition V s(0) ≡ V and limt→∞ V
s(t) = V .

Similarly, the distribution of worker payoffs in a steady state, G(V ), can instead

be considered as a distribution of workers along the baseline salary scale. However, it

is mathematically convenient to define 1−Gs(tp) as the measure of employed workers

on points t ≥ tp on the baseline salary scale, so that Gs(tp) is the total measure of

those unemployed and those employed at a point strictly below tp.

In the rest of this study we consider a replication as a quintuple {ws, V s,Πs, F s, Gs}
where:

(a) {ws, V s,Πs} jointly describe the baseline salary scale,
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(b) F s describes the distribution of starting points tp offered by firms, and so ws(tp+t)

and F s describes the distribution of wage contracts w∗(t|.), and

(c) Gs describes the distribution of workers across that salary scale.

The next three claims characterize each component in turn.

Claim 2. A replication satisfying A1 implies the baseline salary scale {ws, V s,Πs}
satisfies the differential equations

−u′′(ws)
u′(ws)2

dws

dt
= λΠs dF

s/dt

dV s/dt
, (11)

δV s − dV s

dt
= u(ws) + λ

∫ ∞
t

[V s(τ)− V s(t)]dF s(τ), (12)

{δ + λ[1− F s]}Πs − dΠs

dt
= [p− ws], (13)

for all t ≥ 0, and the boundary conditions

(a) limt→∞(ws(t), V s(t),Πs(t)) = (w, V ,Π) where V = u(w)/δ,Π = [p− w]/δ;

(b) V s(0) = V .

Proof : Follows from the definition of the baseline salary scale and Theorem 1,

using F (V s) = F s, F ′(V s) = [dF s/dt]/[dV s/dt] (which exists by A1) and using the

transform x = V s(τ) to establish∫ V

V s(t)

[x− V s(t)]F ′(x)dx =

∫ ∞
t

[V s(τ )− V s(t)]dF s(τ ).

This completes the proof.

Next we compute steady state Gs.

Claim 3. A replication satisfying A1 implies

Gs(0) = δ/(δ + λ)

[δ + λ[1− F s]]Gs +
dGs

dt
= δ for t > 0. (14)

Proof: Note that the definition of Gs implies Gs(0) is equal to the number unem-

ployed, which in a (steady state) replication is δ/(δ+λ). The differential equation for

Gs follows from standard steady state flow arguments which are provided in Appendix

B.

Finally we compute the steady state profit condition. As F s has connected support

[0,∞), the constant profit condition requires

λGs(t)Πs(t) = θ for all t ≥ 0
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where steady state implies λGs(t) is the hiring rate of a firm that offers starting

point t ≥ 0, i.e., it attracts all those workers who are not employed on a higher salary

point, and Πs(t) is the firm’s expected profit per worker by posting the corresponding

optimal wage contract.

Claim 4. A replication satisfying A1 implies:

(i) limt→∞ F
s(t) = 1 (i.e. there is no mass point in F at V ),

(ii) limt→∞G
s(t) = 1,

(iii) θ = λ[p− w]/δ and so positive profit requires w < p and

Gs(t)Πs(t) = [p− w]/δ for all t ≥ 0. (15)

Proof in Appendix B.

Claims 2-4 establish the following Proposition.

Proposition 1 (Necessary Conditions for a Replication)

Necessary conditions for a replication satisfying A1 is a quintuple {ws, V s,Πs, F s, Gs}
satisfying the four differential equations (11)-(14), the constant profit condition (15),

the boundary conditions;

(a) limt→∞(ws(t), V s(t),Πs(t), Gs(t), F s(t)) = (w, V ,Π, 1, 1) where w < p, V = u(w)/δ,Π =

[p− w]/δ,

(b) Gs(0) = δ/(λ+ δ),

where F s, Gs have the properties of distribution functions; i.e., are positive and

(strictly) increasing for all t ≥ 0, and F has the assumed properties A1 where F

satisfies F (V s) = F s for all t ≥ 0.

Identifying a solution to the conditions stated in Proposition 1 is relatively straight-

forward. First pick some arbitrary value for w satisfying w < p. Using the limit point

defined in boundary condition (a), the proof of Lemma A below shows we can iterate

the differential equation system (11)-(15) backwards through time along the saddle

path. When Gs = δ/(λ + δ) (should it occur), the iteration is stopped and time is

then renormalized so that t = 0 at this point. This ensures boundary condition (b)

is satisfied. As long as this path also implies F s, Gs are positive and increasing and

that the implied F has properties A1, we then have a candidate replication - a system

{ws, V s,Πs, F s, Gs} which satisfies the conditions stated in Proposition 1. Formally,

we define any such solution as a Candidate Replication and denote it as a quintuple
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{w̃s, Ṽ s, Π̃s, F̃ s, G̃s} where, for example, w̃s(t|w) denotes the wage paid at point t on

the baseline salary scale in Candidate Replication w.

Lemma A. A Candidate Replication exists and is unique for any w ∈ (w1, p) where

w1 = λ(λ+ 2δ)p/[λ+ δ]2 < p. A Candidate Replication does not exist for w < w1.

Proof in Appendix B.

This restriction on w (the highest wage in the market) is discussed in detail later.

w1 is a critical point where a Candidate Replication with initial value w < w1 does

not exist (it would require ws(0) < 0). From now on, we restrict attention to initial

values w ∈ (w1, p).

Claim 5. A replication satisfying A1 and w ∈ (w1, p) implies V = Vu.

Proof in Appendix B.

Claim 5 establishes that the firm offering the lowest value contract in the market

extracts full rents from the unemployed. This last Claim now allows us to fully

characterize a replication.

Proposition 2. (Characterization of a Replication)

Given Vu, necessary and sufficient conditions for a replication satisfying A1 with

w ∈ (w1, p) are those conditions described in Proposition 1 and the boundary condi-

tion

V s(0) = Vu.

Proof. Proposition 1 and Claims 2(b) and 5 establish that these conditions are

necessary. To see that they are sufficient note that the constant profit condition (15)

(and w < p) ensures that all optimal contracts with payoffs Vp ∈ [V , V ] generate the

same payoff θ = λ[p− w]/δ > 0. Obviously a contract which offers Vp > V generates

less profit (it pays a higher wage wp > w and limt→∞Gs(t) = 1 implies it attracts no

more workers than a contract offering w). Also any contract offering Vp < V = Vu

attracts no workers and so makes zero profit. Hence any solution to the conditions

stated must describe a replication.

Theorem 2 now establishes existence of a replication. However to simplify that

proof assume5

A2 :
∫ a

0
u(x)dx = −∞ for any a > 0 (finite).

5otherwise we have to worry much more about the limiting properties of the equations described

in Proposition 1 as w → w1 which implies ws(0)→ 0.
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which with constant relative risk aversion would now require σ ≥ 2.

Theorem 2. (Existence of a Replication)

Given A2, a replication satisfying A1 exists for any Vu < u(p)/δ.

The proof is in Appendix B. It establishes that for any Vu < u(p)/δ, there exists a

w ∈ (w1, p) where the corresponding Candidate Replication implies Ṽ s(0 | w) = Vu.

This Candidate Replication then satisfies the conditions of Proposition 2 and so

describes a replication.

5 A Market Equilibrium

The previous section has described equilibrium firm behavior assuming the unem-

ployed have some value Vu to being unemployed. But if F describes the distribution

of job offers, then in the limit as dt→ 0, optimal job search implies

δVu = u(b) + λ

∫ V

Vu

[x− Vu]dF (x). (16)

Of course, equilibrium requires that Vu must not only satisfy this job search condition,

but F must be consistent with a replication. Further we know that V s(0) = V = Vu

in any such replication. Hence by transforming variable x = V s(t), we can define a

market equilibrium as follows.

Definition : A Market Equilibrium is a replication where Vu also satisfies

δVu = u(b) + λ

∫ ∞
0

[V s(t)− Vu]dF s(t). (17)

(17) of course ties down Vu.

Theorem 3. (Existence of a Market Equilibrium)

Given A2, a Market Equilibrium satisfying A1 exists for any b ∈ (0, p).

Proof in Appendix C.

The approach to identifying a Market Equilibrium is the same as for a replication.

Pick some arbitrary value w ∈ (w1, p) and compute a Candidate Replication satisfying

the conditions given in Proposition 1. Now a replication requires V s(0) = V = Vu,

while (17) determines Vu. Hence a replication and a Market Equilibrium implies

V s(0) must satisfy

δV s(0) = u(b) + λ

∫ ∞
0

[V s(t)− V s(0)]dF s(t).
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The proof in Appendix C establishes that a w ∈ (w1, p) exists where the corresponding

Candidate Replication satisfies this equilibrium criterion. This Candidate Replication

and Vu = Ṽ s(0|w) then describes a Market Equilibrium.

6 Appendix A

Proof of Theorem 1

The proof takes four steps. Step 1 establishes that a firm always offers a contract

such that a worker never quits into unemployment, i.e., T (ŵ) = ∞. Step 2 uses

a backward induction argument to characterize how wages change optimally with

tenure. Step 3 then identifies the appropriate transversality condition; that wages

converge to w as tenure becomes large. Step 4 then computes the limiting solution

as dt→ 0 and so establishes the Theorem.

Step 1. Fix dt > 0 satisfying λdt < 1, an F satisfying A1 and Vu ≤ V . Now choose

any Vp ∈ [V , V ) and let w∗ = {w∗(t|Vp)}∞t=0 denote the optimal wage tenure contract.

As Vp is fixed throughout this proof, simplify notation by subsuming reference to it

in w∗.

Given w∗, the Bellman equation (3) determines V (t;w∗). Let Π(t;w∗) denote the

firm’s expected profit given a worker with tenure t employed with wage contract w∗.

For t where V (t+ dt;w∗) ≥ Vu, standard recursive arguments imply

Π(t;w∗) = [p− w∗(t)]dt+ (1− δdt)[1− λq(t+ dt;w∗)dt]Π(t+ dt;w∗) (18)

where conditional on an outside offer, q(t+ dt;w∗) ≡ 1−F (V (t+ dt;w∗)) is the quit

probability of a worker with tenure t+ dt .

Now consider the optimal contract at tenure τ , where using an optimal quit strat-

egy, the worker obtains expected payoff V (τ ;w∗). Clearly optimality implies that the

wage payments w∗ specified for tenures t ≥ τ must maximize the firm’s continuation

payoff Π(τ ; ŵ) given V = V (τ ;w∗). This insight implies the following Claim.

Claim A1 :

(i) For tenures τ ≥ 0 where V (τ ;w∗) ≤ V , optimality implies V (τ ;w∗) ≥ Vu and

Π(τ ;w∗) > 0,

(ii) the constraint (5) binds; i.e., V (0;w∗) = Vp.

Proof is by contradiction arguments.
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(i) Suppose first that V (τ ;w∗) < Vu, in which case the worker quits and obtains

payoff Vu while the firm obtains a zero payoff. But this is dominated by offering

contract ŵ where w(t) = w for all t > τ and w(τ) = w satisfying [u(w)− u(w)]dt =

[Vu − V ]. In that case the worker obtains the same payoff Vu and so does not quit

into unemployment, while w < p and Vu ≤ V imply the firm makes strictly positive

profit, which contradicts the optimality of the original wage contract.

Suppose now that Π(τ ;w∗) ≤ 0. As V (τ ;w∗) ≤ V by assumption, that supposedly

optimal contract is dominated by specifying w(t) = w for all t > τ and w(τ) = w

satisfying [u(w)− u(w)]dt = [V (τ ;w∗)− V ] which makes strictly positive profit, and

hence contradicts Π(τ ;w∗) ≤ 0.

(ii) If (5) is not binding, i.e. V (0;w∗) > Vp, then offering the same wage contract

but cutting the period zero wage to w where [u(w)− u(w∗(0))]dt = [Vp − V (0;w∗)]

is strictly profit increasing (it satisfies (5)), does not affect the worker’s quit strategy

and strictly reduces total wages which is the required contradiction. This completes

the proof of Claim A1.

Claim A1(i) establishes two facts. First, V (t;w∗) ≥ Vu for all t and so T (w∗) =∞;

the worker never quits into unemployment. Second, the liquidity constraint is never

binding; i.e. w∗(t) > 0 for all t (otherwise dt > 0 and w∗(t) = 0 implies V (t;w∗) =

−∞ < u(b)/δ ≤ Vu).

Step 2. Assume an optimal contract w∗ exists and fix some tenure date τ ≥ 0. Now

consider an alternative wage contract, denoted wτ = {w(t)}∞t=0, which is defined by:

(i) w(t) = w∗(t) for all t 6= τ , τ + dt

(ii) w(τ) = w∗(τ ) + dx and w(τ + dt) = w∗(τ + dt) + dy

where (dx, dy) are arbitrarily small and satisfy

u′(w∗(τ ))dx+ (1− δdt)[1− λq(τ + dt;w∗)dt]u′(w∗(τ + dt))dy = 0. (19)

Note, this perturbation implies wτ changes wages at just two tenure dates τ , τ + dt.

Also note that as the liquidity constraint is never binding on w∗, this variation is

always feasible as long as (dx, dy) are small enough .

Define dV (t) = V (t;wτ)−V (t;w∗) which is the increase in the employee’s expected

payoff at tenure t given this contract perturbation. For dy arbitrarily small, backward

induction now implies

dV (τ + dt) = u′(w∗(τ + dt))dydt. (20)
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and dV (t) = 0 for all other t. This occurs because wτ = w∗ for all tenures t > τ + dt

and so dV (t) = 0 for those t. As V (τ + 2dt;wτ) = V ∗(τ + 2dt), (20) then follows from

the Bellman equation describing V (τ + dt; ŵ). Note that a wage increase dy > 0 at

tenure date τ + dt implies the worker is better off at this tenure date. But (19) then

compensates by choosing dx so that V (τ ;wτ ) = V (τ ;w∗) (use the Bellman equation

for V (τ ; ŵ) and the Envelope Theorem). Backward induction then implies dV (t) = 0

for t ≤ τ . Most importantly, note that V (0;wτ) = V (0;w∗) and so wτ satisfies (5).

Hence a necessary condition for optimality of w∗ is that any such contract variation

cannot be profit increasing.

Claim A1 implies the firm’s continuation payoff at tenure τ satisfies (18) above.

Now let dΠ(τ) = Π(τ ;wτ) − Π(τ ;w∗) denote the increase in the firm’s continuation

payoff implied by the perturbed contract wτ . As Π(τ + 2dt;w∗) = Π(τ + 2dt;wτ), it

follows using (18) that for dy arbitrarily small, the first order effect of this contract

perturbation is

dΠ(τ) = −dxdt− (1− δdt)[1− λq(τ + dt;w∗)dt]dydt

+(1− δdt)λdt[−dq(τ + dt)]Π(τ + dt;w∗)

where dq(τ + dt) = q(τ + dt;wτ )− q(τ + dt;w∗) denotes the change in the worker’s

quit probability at tenure τ+dt. Note, the first two terms are the direct wage costs of

this perturbation, while the last term is the increase in expected profit by changing

the worker’s quit probability at tenure τ + dt.

We now solve for dΠ(τ). The definition of dq implies

dq(τ + dt) = [1− F (V (τ + dt;wτ)]− [1− F (V (τ + dt;w∗)].

Hence F differentiable and dy arbitrarily small imply

dq(τ + dt) = −λF ′(V (τ + dt;w∗))dV (τ + dt),

where dV is given by (20). Using this and (19) to substitute out dx give:

dΠ(τ) = dydt(1− δdt)[[1− λq(τ + dt;w∗)dt][
u′(w∗(τ + dt))

u′(w∗(τ ))
− 1]

+λdtF ′(V (τ + dt;w∗)u′(w∗(τ + dt))Π(τ + dt;w∗)]
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But dy ≷ 0 and so optimality of the wage contract requires dΠ(τ) = 0. Hence a

necessary condition for optimality is

(1− λq(τ + dt;w∗)dt)

[
1− u′(w∗(τ + dt))

u′(w∗(τ))

]
(21)

= λdtF ′(V (τ + dt;w∗))u′(w∗(τ + dt)Π(τ + dt;w∗)

and we have established the following Claim.

Claim A2. Given dt > 0 satisfying λdt < 1, the optimal wage contract satisfies (21)

for all τ , which implies

(i) if V (t+ dt;w∗) < V then w∗(τ) ≤ w∗(τ + dt)

(ii) if V (t+ dt;w∗) > V then w∗(τ) = w∗(τ + dt).

Proof : Implications (i) and (ii) follow directly from (21) given assumption A1 and

Π > 0 (Claim A1(i)).

Note, Claim A2 implies w∗ increases with tenure, and so V (τ ;w∗) is also increasing

with tenure. This also implies V (τ ;w∗) ≥ V (0;w∗) = Vp ≥ V ≥ Vu for all τ ≥ 0.

Step 3: We now use forward induction to obtain the appropriate transversality

condition.

Claim A3. Optimality implies

lim
τ→∞

w∗(τ) = w, and lim
τ→∞

V ∗(τ ) = V

Proof: Consider any τ ≥ 0 where V (τ ;w∗) ≤ V . A contradiction argument using

Claim A2 implies V (τ + dt;w∗) ≤ V .6 As Claim A1(ii) implies V (0;w∗) = Vp < V ,

forward induction now implies V (τ ;w∗) ≤ V for all τ .

Monotonicity of w∗ now requires w∗(τ) ≤ w for all τ [otherwise V (t;w∗) > V for

t large enough, which contradicts the previous paragraph]. Hence w∗ must converge

to some limit point w∞ ≤ w as t → ∞. Finally, a contradiction argument using A1

implies w∞ = w which completes the proof of the Claim.7

6Suppose instead V (τ + dt;w∗) > V . But Claim 1 in the text then implies w∗(t) = wp for all

t ≥ τ + dt, where u(wp) = δV (τ + dt;w∗). Claim A2(ii) then implies w∗(τ ) = w∗(τ + dt) and so

V (τ ;w∗) = V (τ + dt;w∗) > V which is the required contradiction.
7Suppose not, and so limt→∞w

∗(t) = w∞ < w. Let V∞ = limt→∞ V (t;w∗), Π∞ =

limt→∞ Π(t;w∗). Note that w∞ < w implies V∞ < V , and Claim A1(i) then implies Π∞ > 0.

But assumption A1 implies F ′ > 0 at V = V∞. Hence given dt > 0, (21) implies w∗(t)− w∗(t+ dt)

is bounded away from zero as t→∞, which is the required contradiction.
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Step 4. Steps 1 and 2 characterize the optimal contract for any dt > 0 satisfying

λdt < 1. Note that (21) can be written as

1− λq(τ + dt;w∗)dt

u′(w∗(τ ))u′(w∗(τ + dt)

[
u′(w∗(τ ))− u′(w∗(τ + dt))

dt

]
= λF ′(V (τ + dt;w∗))Π(τ + dt;w∗)

Hence the limiting solution as dt → 0 implies the differential equation given in the

Theorem, where the differential equations for V and Π follow from (3) and (18).

Claim A3 implies the boundary condition (a), and Claim A1(ii) establishes the initial

condition (b).

This completes the proof of Theorem 1.

7 Appendix B.

Proof of Claim 3.

Vu ≤ V implies all unemployed workers accept the first job offer they receive.

Hence steady state unemployment U must satisfy δ[1 − U ] = λU, which implies

U = δ/(λ + δ). As 1− Gs(0) is the steady state measure of employed workers (with

salary points t ≥ 0) then Gs(0) = U.

Now pick any point t > 0 on the baseline salary scale. As F s is continuous for all

t > 0 (A1 implies it is differentiable) then over any arbitrarily small time interval ε,

steady state implies

δε(1−Gs(t)) = [Gs(t)−Gs(t− ε)] +Gs(t− ε)λε(1− F s(t)) + 0(ε2),

where the LHS is the flow out workers in the set of employed workers with salary

point no lower than t, and the RHS is the flow in, which includes those whose tenure

increases sufficiently over time period ε, those who receive outside offers with starting

point no lower than t,and the 0(ε2) term captures those who receive outside offers

in the interval [t − ε, t) and whose tenure increases sufficiently within this ε period

that they rise above the t threshold. Letting ε → 0 implies Gs is continuous, while

dividing by ε and rearranging, this limit then implies the differential equation stated

in the Claim.
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Proof of Claim 4.

We first establish that a replication implies there is no mass point in F at V .

Suppose instead that a mass point exists in F at V . Then Claim 1 implies there is

also a mass point in G at V (as all such employees receive V forever), which we denote

by m > 0. Hence for any t <∞, 1−Gs(t) ≥ m, and so limt→∞G
s(t) ≤ 1−m. As the

definition of the baseline salary scale implies limt→∞Πs(t) = Π, then the constant

profit condition, which requires θ = λGs(t)Πs(t) for all t > 0 implies θ ≤ λ[1−m]Π.

Of course θ > 0 in a replication requires Π > 0 and w < p.

Now consider the deviating contract ŵ = {w+ ε}∞t=0 where ε > 0. Claim 1 implies

this contract offers starting payoff Vp = u(w + ε)/δ > V which implies hiring rate λ.

Further Claim 1 implies per worker profit of Π−ε/δ, and so ŵ generates steady state

flow profit λ[Π − ε/δ]. Clearly given m > 0, ε small enough implies this profit flow

exceeds θ which contradicts the definition of a replication.

No mass point in F at V and the definition of F s now implies (a). (b) then follows

from (a) and Claim 3 [with limt→∞ dG
s/dt = 0]. As F s has connected support [0,∞),

then θ = limt→∞[λGs(t)Πs(t)] which implies (c).

Proof of Lemma A.

The proof is by construction - we fix some w < p and starting at the limiting point

described in boundary condition (a), iterate the differential equations described in

Proposition 1 backwards through time. But first simplify those conditions as follows.

Claim B1. The conditions of Proposition 1 imply

Gs(t) =

[
p− w

p− ws(t)

] 1
2

,Πs(t) =
p− w
δGs(t)

.

Proof. Substitute out Πs using the constant profit condition (15) in (13). Using

(14) to substitute out dGs/dt in the resulting expression implies the above solution

for Gs. Πs then follows from (15).

We can use Claim B1 to substitute outGs,Πs in the conditions described in Propo-

sition 1 and so reduce that system to a differential equation system for {ws, V s, F s}.
However, notice that V s described by (12) contains an integral term. To obtain a

system of autonomous first order differential equations, define the surplus function

S(t) =

∫ ∞
τ=t

[V s(τ)− V s(t)]dF s(τ ),
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and note that it is the solution to the differential equation

dS

dt
= −[1− F s]

dV s

dt
,

subject to the boundary condition limt→∞ S(t) = 0.

Proposition 2 (A Reduced Form Characterization of a Replication).

A Candidate Replication with w < p is described by a sextuple

{ws, V s,Πs, F s, Gs, S} where

(I) {ws, V s, F s, S} satisfy

dws

dt
= δ

[
p− ws
p− w

] 1
2

− [δ + λ[1− F s]], (22)

dV s

dt
= −u(ws)− λS + δV s, (23)

dF s

dt
=

−u′′(ws)δ
u′(ws)2λ[p− w]

1
2 [p− ws] 1

2

dws

dt

dV s

dt
; (24)

dS

dt
= −[1− F s]

dV s

dt
, (25)

subject to the boundary conditions

(a) limt→∞(ws(t), V s(t), F s(t), S(t)) = (w, V , 1, 0) where V = u(w)/δ,

(b) [ p−w
p−ws(0)

]1/2 = δ/(λ+ δ),

(II) {Gs,Πs} are given by Claim B1, and

(III) F s, Gs are positive and strictly increasing for all t ≥ 0.

Note Claim B1 implies that boundary condition (b) for Gs(0) defined in Propo-

sition 1 now defines a boundary condition for ws(0). Establishing Lemma A reduces

to showing a solution exists to the conditions given in Proposition 2.

First consider boundary condition (b) in Proposition 2. Given w1 defined in the

Lemma, straightforward algebra establishes that w < w1 requires ws(0) < 0 which

cannot be part of a replication.

Now fix a w ∈ (w1, p) and define w0 = w0(w) where p−w0 = (λ+δ)2(p−w)/δ2 (and

note this implies w0 ∈ (0, w)). Also note that boundary condition (b) in Proposition

2 is satisfied if and only if ws(0) = w0. We now use backward induction to show a

solution exists to the conditions of Proposition 2.

First note that the limiting point (w, V , 1, 0) is a stationary point of the system

(22)-(25). Standard stability analysis implies this stationary point has one stable
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root, one unstable root and two degenerate roots. The eigenvectors for that system

imply a convergent saddle path exists with limiting solution:

w̃s = w + A1e
−γt

Ṽ s =
u(w)

δ
+

u′(w)[p− w]

δ[p− w + 0.5]
A1e

−γt

F̃ s = 1

S̃ = 0,

where γ = 0.5δ/[p−w] > 0. Note, the degenerate roots allow a continuum of potential

steady states (which we are essentially indexing by w).8

Given the limiting solution for this saddle path (with A1 < 0, which implies

dws/dt > 0 for t large enough), we now use backward induction on the system

(22)-(25). Obviously as equations (22)-(25) are continuous in (ws, V s, F s, S) (while

ws > 0) a solution always exists while ws > 0. The issue is whether the saddle path

that is traced out satisfies the conditions of Proposition 2.

Claim B2. The saddle path implied by the conditions of Proposition 2 implies

dws/dt > 0 while ws(t) > 0.

Proof by contradiction. As dws/dt > 0 for t large enough [along the saddle path],

then if Claim B2 fails, there must exist some t0 where ws(t0) > 0 and dws/dt = 0,

and dws/dt > 0 for all t > t0. Furthermore, as wages are ever increasing for t > t0,

this implies dV s/dt ≥ 0 for all t ≥ t0 and V s(t0) > u(ws(t0))/δ. We now argue to a

contradiction.

Differentiating (22) with respect to t and using (24) implies,
..

ws
.
ws

=
δ

(p− w)1/2(p− ws)1/2

[
−1

2
+

(
−u′′(ws)
[u′(ws)]2

)
.

V s

]
which can be integrated as

lnws(t0) = lnws(T )

+

∫ T

t0

δ

(p− w)1/2(p− ws)1/2

[
1

2
− −u

′′(ws)

[u′(ws)]2
dV s

dt

]
dt

Now given ws(t0) > 0, let

B0 = max
ws(t0)≤x≤w

(
−u′′(x)

[u′(x)]2

)
8The second degenerate root implies a root which is of order t and so is asymptotically unstable.
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and note that u(x) strictly increasing and twice differentiable for x > 0 implies

0 < B0 <∞. The above now implies

lnws(t0) ≥ lnws(T ) +
0.5δ(T − t0)

(p− w)1/2(p− ws(t0))1/2
− B0[δV − u(ws(t0))]

(p− w)

But choosing any T satisfying t0 < T <∞ implies the RHS is greater than -∞, and

so
.

ws (t0) > 0 which is the required contradiction.

A simple contradiction argument also implies the saddle path must imply a so-

lution to ws(t) = w0 exists. Suppose instead while iterating backwards, the saddle

path converges to some wc ∈ (w0, w); i.e. it never reaches w0 > 0. But as t → −∞,
the above inequality implies

lnws(t) ≥ lnws(T ) +
0.5δ(T − t)

(p− w)1/2(p− wc)1/2
− B0[δV − u(wc)]

(p− w)

and so ws(t) becomes arbitrarily large, which is the required contradiction. Hence

there exists some point in time where the saddle path implies ws = w0. By renormal-

izing time to t = 0 at that point we satisfy boundary condition (b).

All that remains to show is that this solution satisfies part (III) in Proposition 2.

Now ws is strictly increasing over time and converges to w [Claim B2] and so Gs given

in Claim B1 implies Gs satisfies (III). Also dws/dt > 0 and dV s/dt > 0 everywhere

along the saddle path, and so (24) implies F s is also strictly increasing. Further at

t = 0, (22) and ws(0) = w0 imply

F s(0) =
1

λ

dws(0)

dt
> 0.

and so F s satisfies (III). Note, there is a mass point at t = 0. Hence, given w ∈
(w1, p), a solution exists to the conditions of Proposition 2, which therefore describes

a Candidate Replication.

Proof of Claim 5.

Claim 4 implies θ = λGs(0)Πs(0) in a replication, and so Claims 3 and 4 imply

Πs(0) = (λ+δ)[p−w]/δ2. w > w1 and the definition of w1 now imply Πs(0) < p/(λ+δ).

Also note that a replication must also be a Candidate Replication, and the

proof of Lemma A establishes that w > w1 implies ws(0) > 0.

Given the above facts, we now prove Claim 5 using a contradiction argument.

Suppose Claim 5 is not true, and so Claim 3 implies Vu < V . Now consider the
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deviating contract wε = {w(t)}∞t=0 where for some ε > 0 (small), wε makes the

following wage payments:

w(t) = w0 for all 0 ≤ t < ε

w(t) = ws(t− ε) for all t ≥ ε

where w0 satisfies 0 < w0 < min[ws(0), p/(λ + δ) − Πs(0)]. Note the first paragraph

implies such a w0 exists.

Clearly at tenure τ = ε this contract wε coincides with the baseline salary scale,

and so V (ε;wε) = V s(0) = V and Π(ε;wε) = Πs(0). Most importantly, V s(0) > Vu,

by assumption, and w0 > 0 now guarantee V (0;wε) ≥ Vu for ε small enough. Hence

contract wε will continue to attract the unemployed for ε small enough, though during

the early low wage phase workers will quit at rate λ [as w0 < ws(0)].

Note that the firm’s continuation payoff Π(t;wε) satisfies (8) in Theorem 1. As

Π(ε;wε) = Πs(0), then at t = ε−;

dΠ

dt
= [δ + λ]Πs(0)− [p− w0].

But the above choice of w0 implies dΠ/dt < 0 and so for ε small enough Π(0;wε) >

Πs(0). However, as this contract implies the same hiring rate as one offering Vp =

V s(0) (both only attract the unemployed) this deviating contract generates greater

steady state profit which contradicts the definition of a replication.

Proof of Theorem 2.

Establishing the existence of a replication requires finding a w ∈ (w1, p) and cor-

responding Candidate Replication which satisfies the additional boundary condition

Ṽ s(0|w) = Vu.

Recall that the proof of Lemma A establishes that for any w ∈ (w1, p), a Candidate

Replication exists. Further, that solution corresponds to the saddle path to the

differential equations described in proposition 2, where the saddle path implies w =

w̃s(t|w) is strictly increasing in t. Given that, it is now helpful to re-parameterize the

saddle path as follows.

Given the baseline salary scale w = w̃s(t|w) (which exists) define the inverse

function τ(w|w) = (w̃s)−1(w|w) which is the salary point at which a worker is paid

wage w on the baseline salary scale [in that Candidate Replication]. Given a worker
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is currently receiving wage w, a Candidate Replication then implies the worker’s

expected payoff, denoted V e(w|w),is given by

V e(w|w) = Ṽ s(τ (w|w)|w).

Similarly we can define F e(w|w) = F̃ s(τ(.)|w), and Se(w|w) = S̃(τ (.)|w).

This allows us to describe the saddle path in w-space. In particular, as a candidate

replication implies Ṽ s(t|.) ≡ V e(w̃s(t|.)|.) we obtain

dV e

dw
=
dṼ s/dt

dw̃s/dt

and similarly for dF e/dw, dSe/dw.Hence, we can rewrite the conditions of Proposition

2 as follows.

Proposition 3.

Given w ∈ (w1, p), a Candidate Replication implies a baseline salary scale w̃s(t|w)

and a triple {V e, F e, Se} satisfying

dV e

dw
=

−u(w)− λSe + δV e

δ
[
p−w
p−w

]1/2

− [δ + λ(1− F e)]

, (26)

dF e

dw
=

(
−u′′(w)

u′(w)2

)
δ[−u(w)− λSe + δV e]

λ[p− w]1/2[p− w]1/2
; (27)

dSe

dw
= −[1− F e]

dV e

dw
, (28)

and the boundary conditions

(a) (V e, F e, Se) = (V , 1, 0) at w = w, and

(b) dV e/dw = u′(w)[p− w]/[δ(p− w + 0.5)] at w = w.

Proof The differential equations follow directly from Proposition 2 and the definitions

of {V e, F e, Se}. However, note that the initial conditions imply (26) is not well defined

at w = w. Instead the value of dV e/dw (which is given in (b)) is determined by the

eigenvectors associated with the saddle path at the limiting steady state (as described

in the Proof of Lemma A).

This Proposition transforms the dynamical system describing a Candidate Repli-

cation to an initial value problem. Given starting values (V , 1, 0) at w = w, iterate

these differential equations backwards with w, stopping at w = w0 where w0 = w0(w)
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as previously defined. Most importantly, we know that the Candidate Replication im-

plies w̃s(0|w) = w0. Hence by definition of V e, the boundary condition Ṽ s(0|w) = Vu

is satisfied if and only if V e(w0|w) = Vu. Establishing Theorem 2 simply requires es-

tablishing that a w ∈ (w1, p) exists where V e(w0|w) = Vu. The Candidate Replication

with that particular value of w then defines a Replication.

Claim B3.

The conditions of Proposition 3 imply V e(w0(w) | w) is continuous in w for all

w ∈ (w1, p),and assumption A2 implies,

(i) limw→w+
1
V e(w0|w) = −∞,and

(ii) limw→p− V
e(w0|w) = u(p)/δ.

The proof is relegated to Appendix C which considers the properties of the differential

equation system defined in Proposition 3 in detail. However given any Vu < u(p)/δ,

Claim B3 now implies there exists w ∈ (w1, p) where V e(w0|w) = Vu. Hence for

that value of w, the corresponding Candidate Replication defines a replication which

completes the proof of Theorem 2.

8 Appendix C.

This Appendix focuses on the properties of the differential equation system defined

in Proposition 3 in Appendix B, which we quickly restate.

Given w ∈ (w1, p), a Candidate Replication implies a baseline salary scale w̃s(t |
w) and a triple {V e, F e, Se} satisfying

dV e

dw
=

−u(w)− λSe + δV e

δ
[
p−w
p−w

]1/2

− [δ + λ(1− F e)]

, (29)

dF e

dw
=

(
−u′′(w)

u′(w)2

)
δ[−u(w)− λSe + δV e]

λ[p− w]1/2[p− w]1/2
; (30)

dSe

dw
= −[1− F e]

dV e

dw
, (31)

subject to the boundary conditions

(BC1) (V e, F e, Se) = (V , 1, 0) at w = w, and

(BC2) dV e/dw = u′(w)[p− w]/[δ(p− w + 0.5)] at w = w.
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Note that w̃s strictly increasing and (22) imply the denominator in (29) is strictly

positive for all w < w (along the solution path).

Proof of Claim B3. We prove each part of Claim B3 in turn.

Step 1. To prove V e(w0(w)|w) is continuous for all w ∈ (w1, p) we first establish the

following Claim.

Claim C1. For any w ∈ (0, w), V e(w|w) is continuous in w

Proof. Consider the Candidate Replication given w. Then for w = w − ε, where

ε > 0 but small, the boundary conditions (BC1),(BC2) imply

V e(w − ε|w) =
u(w)

δ
− εu′(w)[p− w]/[δ(p− w + 0.5)] + o(ε)

F e(w − ε|w) = 1− o(ε), Se(w − ε|w) = o(ε)

where o(ε) describes the residual term which has the property limε→0[o(ε)/ε] = 0.

Now for w ≤ w − ε, define ∆V ε(w) = V e(w|w) − V e(w|w − ε) which describes

the distance between these two trajectories at any point w. Similarly define ∆F ε(w),

∆Sε(w). The above establishes that ∆V ε(w − ε) = 0(ε), while ∆F ε(w − ε) = o(ε),

∆Sε(w − ε) = o(ε), i.e., these trajectories are initially arbitrarily close to each other

at w = w − ε.
Now use backward iteration. Along the saddle path (in any Candidate Replica-

tion) Lemma A establishes that dws/dt > 0, and so (22) implies δ[(p−w)/(p−w)]1/2−
[δ+λ]+λF e > 0 for all w < w. Hence, for any w ∈ (0, w−ε], the differential equation

system (26)-(28) describing V e, F e, Se is continuously differentiable in w, V e, F e, Se.

Hence starting at w = w − ε implies

d

dw
[∆V ε] =

dV e(w|w)

dw
− dV e(w|w − ε)

dw
= 0(ε);

and similarly for ∆F ε,∆Sε; i.e. the trajectories separate very slowly with w. Back-

ward iteration and integration now imply ∆V ε(w),∆F ε(w),∆Sε(w) remain 0(ε) while

w > 0 (i.e., the paths remain close together over any bounded interval [w,w−ε]). Of

course, ∆V ε(w) = 0(ε) establishes Claim C1.

The following corollary establishes Step 1.

Corollary of Claim C1. V e(w0(w)|w) is continuous in w for all w ∈ (w1, p).

Proof. The definition of w0 implies w0(w − ε) = w0(w)− ε(λ + δ)2/λ2 > 0. As the

differential equations in Proposition 3 are continuously differentiable in w for w > 0
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[along the saddle path], then for ε small enough

V e(w0(w − ε)|w − ε) = V e(w0(w)|w − ε) + 0(ε)

and Claim C1 now establishes the corollary.

Step 2.

lim
w→p

V e(w0|w) = u(p)/δ.

Proof As this limit also implies w0 → p, then ws(t) ∈ [w0, p] for all t in any Candidate

Replication implies all wages paid are arbitrarily close to p.

Step 3.

lim
w→w1

V e(w0|w) = −∞.

Proof Fix a w ∈ (w1, p) and define

φ(w|w) = δV e(w|w)− u(w)− λSe(w|w). (32)

Differentiating (32) with respect to w and using (26) and (28) implies:

r(w|w)φ− dφ

dw
= u′(w), (33)

where

r(w|w) =
δ + λ(1− F e)

δ
[
p−w
p−w

]1/2

− [δ + λ(1− F e)]

.

As the definition of φ implies φ = 0 at w = w, integrating (33) implies

φ(w|w) =

∫ w

w

e−
∫ y
w r(x|w)dxu′(y)dy.

Furthermore, as
∫ w
w
r(x|w)dx =∞, 9 integration by parts implies

φ(w|w) =

∫ w

w

r(y|w)e−
∫ y
w r(x|w)dx[u(y)− u(w)]dy.

9Define transformation x = ws(t) and note that∫ w

w

r(x | w)dx =
∫ ∞
τ

[δ + λ(1− F s(t))]dt.

Also note this implies ∫ w

w

r(y | w)e−
∫
y
w
r(x|w)dxdy = 1.
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Hence putting w = w0, (32) implies:

δV e(w0|w) =

∫ w

w0

r(w|w)e
−
∫ w
w0

r(x|w)dx
[u(w)− u(w0)]dw

+u(w0) + λSe(w0|w)

and as
∫ w
w0
r(w|w)e

−
∫ w
w0

r(x|w)dx
dw = 1, this reduces to

δV e(w0|w) =

∫ w

w0

r(w|w)e
−
∫ w
w0

r(x|w)dx
u(w)dw + λSe(w0|w) (34)

Now the definition of S in the text [and transform w = w̃s(t | w)] implies

Se(w0|w) =

∫ w

w0

[V e(w|w)− V e(w0|w)]dF e(w|w)

≤ [V − V e(w0|w)],

and so using this equation in (34) and re-arranging gives

(λ+ δ)[V e(w0|w)− V ] ≤
∫ w

w0

r(w|w)e
−
∫ w
w0

r(x|w)dx
[u(w)− u(w)]dw.

Note that the integral on the RHS is a weighted average of [u(w)−u(w)], where these

weights necessarily add up to one. Further, this integral increases as we reduce r(w|.)
for any w < w (reducing r(w|.) reduces the weight on u(w) and increases it on all

u(w′) > u(w)). Furthermore, the definition of r implies

r ≥ δ

δ[p−w0

p−w ]1/2 − δ

and the definition of w0 now implies r(w | w) ≥ δ/λ. Hence

(λ+ δ)[V e(w0|w)− V ] ≤
∫ w

w0

δ

λ
e−

δ
λ

[w−w0][u(w)− u(w)]dw

≤ δ

λ
e−

δ[w−w0]
λ

∫ w

w0

[u(w)− u(w)]dw

Finally, assumption A2, that∫ a

0

u(w)dw = −∞ for any a > 0

now implies V e(w0 | w)→ −∞ as w → w1, w0 → 0.

This completes the proof of Claim B3.
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Proof of Theorem 3. Identifying a Market Equilibrium requires finding a w ∈
(w1, p) and a Candidate Replication so that (17) is satisfied. Given the definitions of

V e, F e, Se in the proof of Theorem 2, such a fixed point requires finding a w where

δVu = u(b) + λ

∫ V

Vu

[V e(w|w)− Vu]dF e(w|w). (35)

Claim B4. A Market Equilibrium exists if and only if a w ∈ (w1, p) exists which

satisfies

u(b) =

∫ w

w0

r(w|w)e
−
∫ w
w0

r(x|w)dx
u(w)dw (36)

where r is defined in the Proof of Claim B3.

Proof. As a replication requires V e(w0|w) = Vu, (35) for a Market Equilibrium

implies

δV e(w0|w) = u(b) + λ

∫ V

V e(w0|w)

[V e(w|w)− V e(w0|w)]dF e(w|w)

= u(b) + λSe(w0|w)

by definition of S. Claim B4 now follows from (34) in the Proof of Claim B3.

Given this condition for w, we now use the arguments demonstrated in the proof

of claim B3. In particular, the proof of claim B3 (Step 3) establishes that the RHS

of (36) is a weighted average of u(w), where those weights integrate up to one, and

which shift as w changes value. The proof of Claim B3 (Step 1) implies this integral

is a continuous function of w. The proof of claim B3 (Step 2) implies this integral

limits to u(p) as w → p− (as this also implies w0 → p−). Conversely w → w+
1 implies

w0 → 0+ and given assumption A2, the proof of Claim B3 (Step 3) implies this

integral goes to -∞. Hence for any b ∈ (0, p), a w ∈ (w1, p) exists which satisfies (36).

Given that value for w, a Market Equilibrium then exists with the corresponding

Candidate Replication and Vu = V e(w0|w).
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