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Abstract 

Equine trypanosomosis is a complex of infectious diseases called dourine, nagana and surra. It is caused by several 
species of the genus Trypanosoma that are transmitted cyclically by tsetse flies, mechanically by other haematopha-
gous flies, or sexually. Trypanosoma congolense (subgenus Nannomonas) and T. vivax (subgenus Dutonella) are geneti-
cally and morphologically distinct from T. brucei, T. equiperdum and T. evansi (subgenus Trypanozoon). It remains con-
troversial whether the three latter taxa should be considered distinct species. Recent outbreaks of surra and dourine 
in Europe illustrate the risk and consequences of importation of equine trypanosomosis with infected animals into 
non-endemic countries. Knowledge on the epidemiological situation is fragmentary since many endemic countries 
do not report the diseases to the World Organisation for Animal Health, OIE. Other major obstacles to the control of 
equine trypanosomosis are the lack of vaccines, the inability of drugs to cure the neurological stage of the disease, the 
inconsistent case definition and the limitations of current diagnostics. Especially in view of the ever-increasing move-
ment of horses around the globe, there is not only the obvious need for reliable curative and prophylactic drugs but 
also for accurate diagnostic tests and algorithms. Unfortunately, clinical signs are not pathognomonic, parasitological 
tests are not sufficiently sensitive, serological tests miss sensitivity or specificity, and molecular tests cannot distinguish 
the taxa within the Trypanozoon subgenus. To address the limitations of the current diagnostics for equine trypanoso-
mosis, we recommend studies into improved molecular and serological tests with the highest possible sensitivity and 
specificity. We realise that this is an ambitious goal, but it is dictated by needs at the point of care. However, depend-
ing on available treatment options, it may not always be necessary to identify which trypanosome taxon is responsi-
ble for a given infection.
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Background
Equine trypanosomosis is a complex of infectious dis-
eases called dourine, nagana and surra that are caused 
by several closely related species of Trypanosoma. They 
give rise to important economic losses in Africa, the 
Middle East, Asia and Latin America. Nevertheless, 
they can be considered as animal diseases that are seri-
ously neglected, both by the scientific community as 
by veterinary authorities and regulatory organisations. 

The situation is aggravated by the reluctance of many 
endemic countries to notify dourine and surra to the 
World Organisation for Animal Health. Major obstacles 
to the local and global control of equine trypanosomo-
sis are the lack of vaccines, the inability of drugs to cure 
the neurological stage of the infections, the inconsistent 
case definitions and the limitations of current diagnos-
tics. Recent outbreaks of surra and dourine in Europe 
illustrate the risk and consequences of importation of 
equine trypanosomosis with infected animals into non-
endemic countries. In view of the ever-increasing move-
ment of horses around the globe, there is not only the 
obvious need for reliable curative and prophylactic drugs 
but also for accurate diagnostic tests and algorithms. The 
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aim of this article is to provide an overview of the exist-
ing knowledge on the aetiology of equine trypanosomosis 
and the taxonomic status of the infecting trypanosomes, 
the geographical distribution, prevention and treatment 
options and diagnostic tools. We further discuss the issue 
of imperfect case definitions and propose research to 
address the limitations of current diagnostics.

Aetiology
Equine trypanosomosis is an infectious disease that is 
caused by several species of the genus Trypanosoma, 
including T. evansi, T. equiperdum, T. brucei, T. vivax, T. 
congolense and T. cruzi. Infections of horses with T. cruzi 
are very rare and are not further considered here [1]. 
Historically, the diseases caused by these trypanosomes 
are called “surra” (T. evansi), “dourine” (T. equiperdum) 
and “nagana” (T. brucei, T. congolense and T. vivax) but 
careful examination of published and unpublished data 
reveals that for all these three diseases, the clinical signs 
observed, including ventral oedema, emaciation, anaemia 
and neurological symptoms, can be very similar and are 
certainly not pathognomonic [2–7].

Transmission and resulting geographical 
distribution
Trypanosoma brucei and T. congolense are the only spe-
cies that are confined to the distribution of tsetse flies 
(the vector) in sub-Saharan Africa. Trypanosoma equi-
perdum is transmitted sexually, and T. evansi is transmit-
ted mechanically by blood-sucking flies, vampire bats, 
and possibly sexually [8, 9].

Oral transmission of T. evansi via contaminated meat 
or carcasses is well documented but normally does not 
occur in equines [10, 11]. Trypanosoma vivax can be 
transmitted both cyclically by tsetse flies and mechani-
cally by other haematophagous flies. The global distri-
bution of T. equiperdum, T. evansi and T. vivax is much 
wider, including Africa and Latin America for T. vivax, 
Africa, Latin America and Asia with sporadic import 
cases in Europe for T. evansi and worldwide, except Oce-
ania, for T. equiperdum [12, 13]. Most countries where 
trypanosomoses are endemic do not regularly report 
on these diseases, and as a consequence, the exact bur-
den and area of distribution remain largely unknown. 
For example, a systematic review on surra shows serious 
discrepancy between countries reporting this disease to 
the World Organisation for Animal Health (OIE) and 
countries for which published evidence of surra exist 
[12]. From recent reviews on surra it becomes clear that 
its distribution map is based on anecdotal observations 
[12–15]. No such recent reviews exist on T. brucei, T. 
congolense, T. equiperdum and T. vivax in horses. How-
ever, evidence is increasingly being published on horses 

infected with T. evansi, T. equiperdum and T. vivax in 
Brazil, Ethiopia, India, Israel, Jordan, Mongolia, Nigeria, 
Pakistan, South East Asia, Sudan, Venezuela, etc. [12, 13, 
16–25].

Prevention and treatment
Vaccines against equine trypanosomosis do not exist. 
Chemotherapy of equine trypanosomosis consists of 
treatment with diminazene diaceturate, isometamidium 
chloride, quinapyramine chloride/quinapyramine sul-
phate combination, suramin or melarsomine hydro-
chloride. Except for trypanosome strains that display an 
innate or acquired resistance, these drugs are able to clear 
the parasites from the blood circulation [26]. However, 
except for T. congolense, all the other trypanosomes are 
known to reside mainly in extravascular spaces of many 
tissues and organs, including the central nervous system. 
Evidence is accumulating that none of the aforemen-
tioned drugs is effective in the neurological stage of the 
disease since none is able to cross the blood-brain-barrier 
in sufficient amounts [24, 27–30]. Still, a recent outbreak 
of surra (caused by T. evansi) in Spain was brought under 
control upon treatment with melarsomine hydrochloride 
(Cymelarsan, Merial, France) of all parasitologically con-
firmed and suspect animals (dromedary camels, horses, 
donkeys) as well as of all animals that were in direct or 
indirect contact with the index case [31]. The latter was 
a dromedary camel imported from Gran Canaria, with-
out prior screening for surra, one-and-a-half years before 
the disease was detected [31, 32]. Another outbreak, this 
time of dourine (caused by T. equiperdum), occurred in 
Italy in 2011 and illustrates the risk of importation of 
equine trypanosomosis with infected animals into non-
endemic countries [33]. That outbreak was only brought 
under control thanks to drastic measures taken by the 
veterinary authorities over several years [6, 33, 34]. A 
potential, yet undocumented, risk of importation of 
equine trypanosomosis into non-endemic countries is by 
artificial insemination with contaminated semen [7].

Taxonomy and morphology
Trypanosoma congolense (subgenus Nannomonas) and 
T. vivax (subgenus Duttonella) are species that are 
clearly separated, both genetically and morphologically, 
from the other taxa within the genus Trypanosoma. On 
the other hand, whether T. brucei, T. equiperdum and 
T. evansi, traditionally grouped together under the sub-
genus Trypanozoon, can be considered distinct species 
remains controversial. Morphologically, T. brucei can be 
distinguished from the latter two taxa by its pleomor-
phic nature with long slender, intermediate and short 
stumpy trypomastigote forms present in the mammalian 
host. The short stumpy forms are those that will initiate 
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infection in the vector of nagana, the tsetse fly [5]. Trypa-
nosoma equiperdum and T. evansi are monomorphic and 
display only long slender forms, although in T. evansi, 
intermediate forms may sometimes be found [35]. Lack 
of monophyly of T. equiperdum and T. evansi, and the 
fact that genetic differences to T. brucei are small, have 
led to proposals that they should be classified as sub-
species or strains of T. brucei [35–38]. Other studies 
have proposed that many so-called T. equiperdum iso-
lates are in fact misidentified T. evansi strains, and that 
T. evansi and T. equiperdum evolved separately and on 
more than one occasion from T. brucei [38–41]. Today, 
based on kinetoplast minicircle differences, T. evansi is 
further divided into T. evansi type A and type B, the lat-
ter so far only isolated from camels in eastern Africa [42]. 
The “true” (i.e. non-controversial) T. equiperdum strains 
can be divided in at least two and maybe more clades of 
distinct evolutionary origin [38, 41]. Newly isolated T. 
equiperdum strains from outbreaks in Italy and in Mon-
golia may even further complicate the taxonomic situa-
tion [6, 16]. Table 1 summarises the major characteristics 
of Trypanosoma taxa that may cause trypanosomosis in 
equines.

Diagnosis
Diagnosis of equine trypanosomosis can be challenging 
due to the absence of specific clinical signs, and because 
parasitaemias in infected hosts are usually below the 
detection limit of parasitological tests and can even be 
below the detection limit of molecular DNA tests [33]. 
Therefore, diagnosis heavily relies on the combination of 

clinical signs, serological evidence of infection and epi-
demiological context. Importantly, where several species 
co-exist, mixed infections may be frequent [43, 44].

Clinical diagnosis
Clinical signs of nagana, dourine and surra vary with dis-
ease stage (acute, chronic, neurological stage), infecting 
strain and variable intra- and inter-species susceptibility 
of the host.

For example, donkeys can carry an infection without 
developing classical signs of the diseases [45]. Typical, 
but not pathognomonic, are pyrexia, anaemia, ventral 
and genital oedema, urticarial plaques, conjunctivitis and 
keratitis, etc. [5, 28, 46–48]. In the neurological phase of 
infection with T. brucei, T. equiperdum or T. evansi, ataxia 
and paralysis of the hind quarter and lips usually precede 
death. The clinical course of the disease and long-term 
outcome depend on the parasite strain involved and the 
immunological status of the host. Other equine diseases 
that share some clinical signs with trypanosomosis are 
equine viral arteritis, equine infectious anaemia, conta-
gious equine metritis, anthrax [5].

Parasitological diagnosis
For microscopic parasitological diagnosis, the most com-
mon biological fluid examined is blood, but parasites may 
be detected in lymph aspirated from superficial lymph 
nodes, cerebrospinal fluid, milk and vaginal or preputial 
discharges [6, 16, 49, 50]. In principle, it is possible to dis-
tinguish T. vivax and T. congolense from the Trypanozoon 
species based on morphology, but this is not evident for 

Table 1  Overview of some characteristics of different taxa within the genus Trypanosoma causing equine trypanosomosis

a  Pleomorphic: present as long slender, short stumpy and intermediate trypomastigotes during an infection
b  Monomorphic: long slender trypomastigotes with anecdotal evidence for partial pleomorphism in T. evansi [35]
c  Dyskinetoplastic: partial loss of kinetoplast DNA, in particular maxicircle DNA
d  Akinetoplastic: complete lack of kinetoplast DNA

Trypanozoon Duttonella Nannomonas

T. brucei T. evansi type A T. equiperdum T. vivax T. congolense

Distribution Sub-Saharan Africa Africa, Latin America, Mid-
dle East, Asia

Worldwide except Oce-
ania USA and Canada

Africa, Latin America Sub-Saharan Africa

Mammalian host range Multi-species Multi-species Equines Multi-species Multi-species

Transmission Tsetse Biting flies, vampire bats, 
orally (sexually?)

Sexually (orally via milk?) Tsetse, biting flies Tsetse

Morphology in the mam-
malian host

Pleomorphica Monomorphicb Monomorphic Monomorphic Monomorphic

Kinetoplast Complete Dyskinetoplasticc or 
akinetoplasticd

Dyskinetoplastic Complete or dyskineto-
plastic

Complete

Kinetoplast minicircle 
type

A C or undefined

ATPase γ C-terminus 
mutations

A281- A273P or WT
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the species within the subgenus Trypanozoon. In case 
of a microscopic trypanosome-positive specimen, spe-
cies identification is best performed with a combination 
of molecular tests that have also the advantage of having 
a lower detection limit than microscopic parasite detec-
tion and that are able to detect mixed infections that may 
remain cryptic by microscopic examination [43].

Molecular diagnosis
A plethora of molecular diagnostic tests has been 
described which target DNA sequences that are spe-
cific at different taxonomic levels and which use diverse 
technology. The most commonly used test formats are 
polymerase chain reaction (PCR) and quantitative PCR 
(qPCR). The 18S and ITS1 sequences within the riboso-
mal DNA (rDNA) locus as well as satellite DNA are pref-
erential targets for species-specific molecular diagnostics 
because of their multi-copy nature and the possibility to 
discriminate the taxa of the subgenus Trypanozoon from 
T. congolense and T. vivax [16, 51–54]. Distinguishing 
the taxa within Trypanozoon is more challenging. PCR 
tests based on the mitochondrial DNA of these parasites 
(kinetoplast DNA or kDNA) can potentially distinguish 
T. evansi and some T. equiperdum from T. brucei by the 
absence of the maxicircle component of kDNA, and iden-
tify T. evansi type B by presence of the type B minicircle 
[42, 55, 56]. However, many T. evansi strains are natu-
rally akinetoplastic (i.e. complete lack of kDNA) so that 
molecular tests targeting kDNA have limited value. Some 
authors claim that T. evansi type A can be identified by 
the presence of the type A-specific RoTat 1.2 variant sur-
face glycoprotein (VSG) gene and T. evansi type B by the 
presence of the type B-specific JN 2118HU VSG [57–59]. 
However, both are single-copy genes which inherently 
limits the analytical sensitivity of PCRs based on these 
VSGs and their absence in the genome of T. brucei has 
not been investigated extensively. Furthermore, the VSG 
repertoire is subject to recombination and therefore 
inherently unstable, and other researchers have shown 
that some Kenyan Trypanozoon isolates with type A 
minicircles appear to lack the RoTat 1.2 gene, while the 
JN 2118Hu VSG gene was also found in T. b. gambiense 
type II [56, 60]. Unfortunately, today there is no simple 
molecular test that is able to distinguish T. brucei from T. 
equiperdum, which means that the epidemiological con-
text has to be taken into account to identify the trypano-
some species in an infected horse.

Serological diagnosis
In contrast to T. congolense and, to a lesser extent, T. 
vivax, Trypanozoon trypanosomes are primarily tis-
sue parasites; parasitaemia is often very low and seldom 
reaches the threshold of current parasitological or even 

molecular diagnostic tests, especially in asymptomatic 
carriers. Therefore, antibody detection tests are available 
and can provide indirect evidence of infection.

The complement fixation test (CFT) and the indirect 
fluorescence antibody test (IFAT) are the only OIE rec-
ommended tests for T. equiperdum infection [61]. For 
T. evansi infection, OIE recommends IFAT, an enzyme 
linked immunosorbent assay (ELISA/RoTat 1.2), a card 
agglutination test for trypanosomosis using T. evansi 
antigen (CATT/T. evansi) and immune trypanolysis (IT) 
[62]. For infections with T. brucei, T. vivax and T. congo-
lense, OIE recommends using IFAT and ELISA [63].

The IT test detects exclusively antibodies that recog-
nise one single multi-copy epitope at the surface of the 
RoTat 1.2 VSG expressing T. evansi type A [64]. As a 
result, the specificity of IT test is extremely high, but the 
disadvantages of the test are its complexity and its inabil-
ity to detect antibodies against other trypanosomes. The 
CATT/T. evansi test is a direct agglutination test that 
makes use of the same T. evansi RoTat 1.2 clone used in 
the IT test, but the preparation of the reagent exposes 
other surface antigens as well, resulting in some cross-
reactivity with T. vivax and T. equiperdum [49, 65, 66]. 
Lower cross-reactivity is expected in the ELISA/RoTat 
1.2 with purified VSG RoTat 1.2 as antigen.

Other serological tests use crude preparations derived 
from bloodstream form trypomastigotes grown in vivo 
(mice or rats) or propagated in vitro [67, 68]. The CFT 
test for dourine, using whole cell extracts from a T. equi-
perdum strain, has the advantage that it, to a certain level, 
also reacts with antibodies against T. evansi; however, 
this also entails the risk of false positive reactions [67]. 
Since T. equiperdum infection is considered non-curable, 
any false positive reaction will have serious consequences 
(castration, isolation, slaughtering of CFT positive ani-
mals). Reactivity of CFT with horses infected with T. bru-
cei, or even with T. congolense or T. vivax, seems possible 
but remains undocumented. An additional problem with 
CFT is that reactivity may vary in function of the trypa-
nosome strain used to prepare the antigen and of the 
VSG expressed by the trypanosomes at the moment of 
harvesting. Efforts to harmonise the antigen preparation 
of CFT in the diverse laboratories around the world are 
challenged by the fact that, within the subgenus Trypa-
nozoon, genetic distinction between T. equiperdum, T. 
evansi and T. brucei is blurred, as discussed above [38, 
40, 41, 60, 69, 70]. Among scientist members of the 
OIE Non-Tsetse Transmitted Animal Trypanosomoses 
Network [71], the consensus is that the Onderstepoort 
Veterinary Institute (OVI) strain can be adopted as ref-
erence strain for T. equiperdum for the purpose of CFT 
antigen preparation. It is this strain that is now used by 
the European Reference Laboratory for Equine Diseases 
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in France, the National Reference Laboratory for Dourine 
in Germany and the USDA National Veterinary Services 
Laboratories [67, 68]. New Mongolian T. equiperdum iso-
lates have not been fully typed; whether they may serve 
as reference strains for the Asian region remains to be 
investigated [16].

Similar to the CFT, the trypanosome strains used for 
IFAT and ELISA for T. evansi (other than RoTat 1.2), T. 
brucei, T. vivax and T. congolense have not been defined. 
Furthermore, as a result of antigenic variation, it is not 
possible to control the particular VSG that is expressed 
at the moment of antigen preparation. Since this VSG 
accounts for 10% of the protein content of a bloodstream 
form trypomastigote, it is a major, yet undefined, compo-
nent of crude antigen preparations for IFAT and ELISA. 
Other proteins in crude trypanosome antigen prepara-
tions may cross-react with antibodies unrelated to infec-
tion with trypanosomes [72].

Inconsistent case definitions
Case definitions with unequivocal criteria to identify a 
case of dourine, surra and nagana are essential to esti-
mate the impact of these diseases on the horse popu-
lation, to guide surveillance, control and prevention 
strategies, and to choose among treatment options, the 
latter taking into account that treatment success is largely 
dependent on the stage of the diseases rather than on 
the infecting trypanosome strain. An attempt at such 
case definition was made during the dourine outbreak in 
Italy in 2011; subsequently, the same case definition was 
adopted by the OIE Terrestrial Manual [6, 33]. Accord-
ing to this definition, a case of dourine is considered con-
firmed when an animal has a positive result with CFT, 
IFA or PCR, and (i) shows clinical signs compatible with 
dourine; (ii) shows an increase in serological CFT titre in 
two consecutive tests; or (iii) is epidemiologically linked 
with a confirmed case of dourine [33, 61, 73]. An impor-
tant limitation to consider here is that this case definition 
only fully applies if (i) dourine as a disease is exclusively 
caused by Trypanozoon parasites that can be reliably dis-
tinguished from T. brucei and T. evansi and (ii) if CFT, 
IFAT and PCR exist that are fully specific for these para-
sites. Unfortunately, both conditions are not fulfilled.

According to the OIE Terrestrial Manual [62], an equid 
is negative to surra if it is negative to ELISA-T. evansi 
(anti-horse IgG whole molecule), CATT/T. evansi, PCR-
TBR (i.e. PCR targeting Trypanozoon-specific satellite 
DNA [54]) and microscopic examination. An equid is 
considered infected with Trypanozoon spp. (sic) if it is 
positive to PCR-TBR and/or if Trypanozoon parasites are 
observed by microscopic examination. An equid is con-
sidered as seropositive to surra if it is positive to ELISA-
T. evansi and/or CATT/T. evansi; in this case, the animal 

should be tested for CFT-dourine, and, if it is positive 
for CFT-dourine, it is also considered as seropositive to 
dourine; if it is negative to CFT-dourine, it is considered 
as seropositive to surra only [62]. This “composite” case 
definition takes into account inherent difficulties to dis-
tinguish the Trypanozoon taxa, but the definition of sero-
positivity is questionable and does not take into account 
possible cross-reactions with T. brucei, T. vivax and T. 
congolense. It also disregards the possibility to use more 
specific tests such as the IT and the ELISA/RoTat 1.2 to 
rule out or suggest infection with T. evansi type A. Both 
may miss T. evansi type B infections, but T. evansi type B 
has so far only been isolated from dromedary camels in 
Kenya and Ethiopia [55, 56].

For equine infections with T. brucei, T. vivax and T. 
congolense, the OIE Terrestrial Manual does not provide 
any case definition.

How can the limited specificity of current 
diagnostics for equine trypanosomosis 
that impedes international movement 
of competition horses be addressed?
In order to improve the specificity of diagnostics for 
equine trypanosomosis, the focus should be on molecu-
lar and serological tests.

Molecular tests can identify with relatively high sen-
sitivity and excellent specificity T. congolense, T. vivax 
and Trypanozoon taxa. However, within Trypanozoon, 
no single test is able to identify each taxon unequivo-
cally. On the other hand, for the purpose of international 
movement of horses, it seems sufficient to use a combi-
nation of genus- and subgenus-specific molecular tests. 
As qPCR is becoming the standard now, the conventional 
PCR tests might be transformed into qPCR to improve 
standardisation and sensitivity. In any case, given the 
usually low parasitaemia in clinically healthy, yet infected, 
equines, the negative predictive value of molecular tests 
is inherently low.

Regarding serological tests, improvements are possi-
ble with respect to test format and antigens. CFT and 
IFAT should be replaced by techniques that are less 
complex and easier to standardise, such as ELISA for 
high throughput or immunochromatography for indi-
vidual testing. Important to keep in mind, however, is 
the market failure that prevents commercial companies 
to invest in the development of such tests. The diag-
nostic specificity of antibody detection tests is largely 
defined by the antigen preparation. Therefore, the use 
of crude antigen preparations should be discouraged, 
and initiatives to replace them with recombinant or 
synthetic peptides should be supported. For T. congo-
lense and T. vivax, recombinant fragments of respec-
tively Cathepsin B1 and the cytoskeleton associated 
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protein GM6 are used in the VeryDiag test [74]. Also, 
recombinant T. vivax Cathepsin L has some diagnos-
tic potential [75]. For the species of subgenus Trypa-
nozoon, many common proteins have already been 
expressed as recombinant antigens with proven diag-
nostic potential, in particular the invariant surface gly-
coproteins 65 and 75 (ISG65, ISG75), the cytoskeleton 
associated protein GM6 and, more recently, a T. equi-
perdum protein that exhibits homology with the regu-
latory subunit of mammalian cAMP-dependent protein 
kinases [76–86]. None of them, however, have been 
evaluated for their diagnostic accuracy in Trypanozoon 
infections in general, irrespective of the infecting tryp-
anosome species and geographical origin. In case there 
is a need to detect T. evansi type A specific antibodies, 
a recombinant fragment of VSG RoTat 1.2, expressed 
in different systems, has shown its diagnostic potential 
[80, 87–89].

Conclusions
To address the limitations of the current diagnostics for 
equine trypanosomosis we recommend not to aim for 
the distinction between taxa within the subgenus Trypa-
nozoon. We propose to conduct studies into (i) improved 
molecular tests with the highest possible sensitivity; and 
(ii) improved serological tests with the highest possible 
specificity. For the proper evaluation of these diagnos-
tics, it will be necessary to establish a panel of representa-
tive trypanosome strains, and their corresponding DNA/
RNA, as well as a panel of biological specimens (serum/
plasma/blood) from horses naturally or experimentally 
infected with T. vivax, T. congolense and representative 
Trypanozoon taxa.
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