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AbstracL We consider the problem of determining the smallest dimension d = A (j, k) 

such that, for any j mass distributions in R d, there are k hyperplanes so that each orthant 

contains a fraction 1/2 k of each of the masses. The case A(1, 2) = 2 is very well known. 

The case k = 1 is answered by the ham-sandwich theorem with A(j,  1 ) = j .  By using mass 

distributions on the moment curve the lower bound A(j,  k) >_ j (2  k - t ) / k  is obtained. 

We believe this is a tight bound. However, the only general upper bound that we know is 

A (j, k) _< j 2 k-~. We are able to prove that A (j, k) = [ j  (2 k - 1)/k'} for a few pairs (j, k) 

((j, 2) for j = 3 and j = 2 n with n _> 0, and (2, 3)), and obtain some nontrivial bounds in 

other cases. As an intermediate result of independent interest we prove a Borsuk-Ulam-type 

theorem on a product of balls. The motivation for this work was to determine A(1,4) (the 

only case for j = 1 in which it is not known whether A(1, k) = k); unfortunately the 

approach fails to give an answer in this case (but we can show A(1,4) _< 5). 

1. Introduction 

Let # be a mass distribution in R d. The question arises of whether d hyperplanes exist 

such that each of the 2 d corresponding open orthants contains at most a fraction 1/2 d of 

the mass /z (R d) (point masses are allowed). This is called a d-partition or equipartition 

in R d. The question was posed by Griinbaum in [8] and possibly by others as well. In 

computational geometry, this question resulted from the problem of designing efficient 

algorithms for half-space range queries [ 19]; however, currently the interest is essentially 

theoretical because better partitioning techniques are known [20], [ 12], [ 13] (see [ 14] for 

a survey). The case of point masses can be reduced to the case of density functions (see, 

e.g., [21 ] for an argument). Thus, without loss of generality we restrict here to this latter 

case, and then the condition is that each orthant contains a fraction 1/2 d of the mass. 

* This research was supported by the National Science Foundation under Grant CCR-9118874. 
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The case d = 1 is straightforward. For d = 2, the answer is affirmative, the simple 

argument makes use of  the intermediate value theorem. For d = 3, the answer is again 

affirmative [9], [21]; the proof  in [21] uses the Borsuk-Ulam theorem on the two- 

dimensional sphere. For d > 5, the answer is negative [2]. The open question for d = 4 

motivated the work presented in this paper and it remains open. We consider the more 

general problem of  determining the smallest dimension d = A( j ,  k) for which (j ,  k)- 

partitions exist, that is, given any j mass distributions in R d, there are k hyperplanes 

that k-partition each of  the mass distributions (a fraction 1/2 k of  each mass in each of  

the 2 k orthants). The case k = 1 is settled with A ( j ,  1) = j by the well-known ham- 

sandwich theorem, and our general question seems a natural generalization of  it. Using 

mass distributions on the moment  curve in R d, the lower bound A( j ,  k) > j ( 2  ~ - 1)/k 

is found. We believe this is a tight bound. However, the only general (any k and j )  

upper bound we know is A( j ,  k) _< j 2  k-1 which is somewhat trivial. For a few cases 

we can prove A ( j ,  k) = [ j (2  ~ - 1)/kl and obtain some nontrivial bounds for other 

cases. However, the question of  tight bounds remains open in most cases. Thus, we raise 

a family of  problems possibly as hard as the original 4-partition in R 4. 

A first step in our approach is to define a certain multivalued function (a direct 

generalization of  [21 ]) whose zeros are in direct correspondence with equipartitions. 

Then using an elementary technique we are able to compute the parity of  the number o f  

zeros of  that function in a subset of  the original space of candidate solutions (the degree 

of  the function); an odd parity implies the existence of  a zero and, hence, an equipartition. 

This type of  parity argument underlies any proof o f  the Borsuk-Ulam theorem. As an 

intermediate result o f  independent interest, we obtain a Borsuk-Ulam type theorem for 

functions defined on a product of  several balls. 

The following table shows, for each of k = 2 . . . . .  5, the value of  A( j ,  k) up to the 

first value of  j for which the exact value is not known. The entries marked with * are 

old results; A(2, 2) = 3 is a result o f  Hadwiger [9], and it implies A(1 ,3 )  = 3. 

A(1, 2) = 2" A(1, 3) = 3" 

A(2, 2) = 3" A(2, 3) = 5 

A(3 ,2 )  = 5 7 < A(3, 3) < 9 

A(4, 2) = 6 

8 < A(5, 2) < 9 

4_< A(1 ,4 )  < 5 7_< A ( 1 , 5 ) < 9  

The table below shows some general bounds for A( j ,  k) with k = 2 . . . . .  5: the 

second column is the lower bound j (2 k - 1)/k,  and the third column is the upper bound 

that we prove for j = 2 m, rn > 1. The case k = 1 is the ham-sandwich theorem (so it is 

valid for any j ) .  

k = 1 j j 

k = 2 3j/2 3j/2 

k = 3 7j/3 5j/2 

k = 4 15 j /4  9j/2 

k = 5 3 1 j / 5  15 j /2  

All our upper bounds follow from computing the parity of  certain function o f  a 0--1 

matrix (related to the permanent); parity one indicates that equipartition exists, parity 
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zero is inconclusive. As k grows, the size of  the matrix and the complexi ty  of  comput ing 

the function grows rapidly, ruling out its computation even with the help o f  a computer.  

We have been unable to compute  them analytically for general k. The fact that we do 

not give results for j not a power  of  2 is in pan  due to the difficulty of  comput ing this 

function in general,  and in part because the resulting parity is zero. For  example,  we 

obtain parity zero when trying to establish whether (5, 2)-parti t ions exist in R 8, but we 

can still establish that (5, 2)-parti t ions exist in R 9. 

The contents of  this paper  are as follows. In Section 2 we present the proof  technique 

that allows us to compute the pari ty of  zeros of  a function with certain properties.  In 

Section 3 we further elaborate on the technique in the part icular case in which the domain  

of  the function is a product of  balls, and prove a Borsuk-Ulam- type  theorem. In Section 4 

we present the reduction of  equiparti t ion to a multivalued function, a lower bound and a 

first upper bound. In Section 5 we present an example,  2-partition, that i l lustrates all the 

ideas in a small problem. In Section 6 we present the general case and state the results 

that we can obtain. Finally, in Section 7 we have some concluding remarks  and open 

problems. 

2 .  P r o o f  T e c h n i q u e  

The result for an arbitrary continuous function f :  X --* R n, where X _c R n is n-  

dimensional,  compact,  and equal to the closure of  its interior, follows from the result  

for a continuous piecewise l inear function r = (rl . . . . .  r~): ]TI ~ R ", where T is 

a triangulation of  X, that satisfies a nondegeneracy (or general posit ion) property:  the 

zero-set  of  any m component  (coordinate) functions ri in any m-s implex in T is either 

a single point in the interior or empty. The proof  technique has two elements,  both 

well known in topology. First, the fact that under the stated conditions (nondegenerate 

piecewise linearity) for r = (r ' ,  r") :  X ~ R n- l  • R, the set r ' - I (O)  is a col lect ion of  

paths in X with endpoints in the boundary of  X (perhaps the earliest reference is [ 10]). 

Second, computing the parity of  the number of  zeros of  r in X, as the parity of  zeros of  

r '  in bd(X)  where r"  is positive. A parity argument of  this type is implici t  in any proof  

of  the Borsuk-Ulam theorem (for example,  in the combinatorial  lemma of  Tucker and 

Fan [17], [6], [3]). Recently, that parity argument was used in [11] to prove the existence 

of  ham-sandwich cuts for point  sets and to design an algori thm that finds one. 

For  completeness we include in an appendix some background definitions and facts. 

In this and later sections, arguments related to triangulation and nondegeneracy (for 

which familiarity with the material  in the appendix is needed) appear in smal ler  type; 

the reader may choose to skip over them. 

Nondegeneracy. We need to consider piecewise linear functions with the following nondegeneracy (or general 

position) property: r: 17"l ~ R" is nondegenerate if the zero-set of any m of its component functions (the 
set of points where all of them are zero) in any m-simplex is either empty or a single point in the interior, 

1 < m < n (equivalently, any m of  its component functions have no (common) zero on an/-simplex where 
I < m, 1 < ra < n). Given f :  X --* g n, a nondegerate piecewise linear E-approximation is obtained in 

two steps: (1) Obtain an (e/2)-approximation r* (then each component r/* of r* can be perturbed by at most 

~/2 at any vertex and the resulting function is still an E-approximation); (2) perturb r* as follows: Consider 
the simplices of T in increasing order of dimension. At each step, for each vertex v, let Pv.i > 0 denote the 
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maximum amount by which the ith component function can be changed while the overall function is still 

an ~-approximation (initially, Pv.i -> E/2 for each v, i). A basic step is to consider a k-dimensional simplex 

tr and any /t + 1 component functions rT0 . . . . .  r~, 0 < k < n. By the inductive perturbation, there is at 

most one point p in the interior of tr which is a zero of ri~ . . . . .  r~_. If p is also a zero of r/~, then changing 

by a "small" amount the value of r~ at a vertex v of tr will make the value of ri~ at p different from zero. This 

can be done so that there are new P~.b > 0 for each vertex to ofo and each j (Pw.ij must be updated even for 

j ~ k because the value of ri~ may he perturbed in a later step). 

Let X = 17"1 and r: X --~ R n be nondegenerate piecewise linear. Let r : (r ' ,  r")  

where r" is a single component of r,  and r '  consists of the remaining components  of  

r. Let Zr be the set of zeros of r in X, let Z r  be the set of zeros of r '  in bd(X),  and 

let Z + and Z~ be the sets of zeros of r '  in bd(X) where r" is positive and negative, 

respectively. Nondegeneracy implies that Zr, Zr' are finite sets. Let P (r; X) denote the 

parity (zero or one) of IZrl and let P+(r ' ,  r";  bd(X)) denote the parity of IZ+l.  The 

following lemma gives a relation between P(r;  X)  and P+(r ' ,  r"; bd(X))  which allows 

a recursive computation of P(r;  X) .  

L e m m a  2.1. Let r = (r ' ,  r"): X --* R n-I x R be a nondegenrate piecewise linear 

(npl) function. Then P(r;  X)  = P+ (r', r'__.~'; bd(X)).  

Proof. Let tr ~ T be an n-simplex. Because of nondegeneracy, r ' - I  (0) A ty is either 

empty or a line segment joining the interiors of two (n - 1)-dimensional faces of tr. It 

follows that r ' - I  (0) is a collection of paths (which cannot fork or end abruptly in the 

interior). Thus a path can be either a closed path in the interior of X, or an open path 

with endpoints in the boundary of X. An open path can be either ( + + ) ,  ( - - ) ,  or ( + - )  

depending on the sign of r" at its endpoints. By nondegeneracy, Zr' = Z ~  U Z~,. Since 

the open paths determine a matching on the points in Zr,, then I Zr, [ is even and, hence, 

I Zr-t, I = IZT, I mod 2. Furthermore, the parity of IZTI is equal to the parity of the number  

of ( + - ) - o p e n  paths. Closed paths and also ( + + ) -  and ( - - ) - o p e n  paths carry an even 

number of zeros of r, while ( + - ) - o p e n  paths carry an odd number  of them. Therefore, 

the parity of [Zr[ is equal to the parity of ( + - ) - o p e n  paths. Finally, we conclude that 

IZrl = IZ~l mod 2. [] 

The following theorem includes the additional elements needed for a recursive com- 

putation of P(r; X).  ( ~  denotes sum module 2. 

Theo rem 2.2. Let r = (r ' ,  r"): X --+ R "- l  • R be an nplfunction. 

(i) Suppose bd(X)  = I_J~=l Yi, where each Yi is the underlying space o f t  subcom- 

plex o f T ,  and the Yi are interior disjoint. Then P (r; X) = ~ = 1  P+  (r ' ,  !'"; Yi ). 

(ii) Suppose Yi = Yi.1 U Yi.b is an interior disjoint union and there is a bijection 

~: Yi.tf')Zr , ~ Yi.bNZr, such tha t , fo reachx  ~ Yi.tf")Zr,,r"(x) = ( -1 )a r " ( /5 (x ) )  

where a is zero or one. Then P + ( r ' ,  r"; Yi) = a �9 P(r ' ;  Yi.t). 
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3. A Borsuk-Ulam-Type Theorem on a Product of Balls 

In R n the unit n-bal l  is B n = {x �9 Rn: Uxll < 1} and the unit (n - 1)-sphere is 

S ~-1 = {x �9 l " :  IIxll = 1}. It is natural to use the sphere S n-1 as the space of  possible 

directions. However, it is more convenient for our computations to restrict the space of  

directions to the ball B ~-l ,  a hemisphere of  S n-I  . Thus, throughout we work  with balls. 

By gluing balls to obtain spheres, the results of  this section can be translated into results 

for spheres. 

The boundary of B n, bd(B~),  consists of  two copies of  B n-1 glued by the identifi- 

cation of  their boundaries. We consider a product of  k balls B(n l  . . . . .  nk)  = B n' x 

�9 -- x B n* or just B when the dimensions are understood. We have bd(B) = U~=I bdi (B) 

where bdi(13) = B n' x . . .  x bd(B n') x . - .  x B nk. bdi(B) consists of  two copies 

of B nJ x . . .  x B n~-~ x B n~-I x B n'+j x . . .  x B n* appropriately glued. T he  i th an- 

t ipodal map oti: bdi(13) ~ bdi(13) is defined by Oli(X 1 . . . . .  X i - - l ,  X i ,  X i +  1 . . . . .  X k )  ~--- 

(Xl . . . . .  X i - l ,  - - X  i , X i + l  . . . . .  X k ) .  
k 

Consider f = ( f i  . . . . .  3~): 13(nl . . . . .  nk) -+  R t where l = )-~-i=1 ni.  f i  has posi t ive 

antipodality (resp. negative antipodality) with respect to the j t h  ball if, for all x �9 

bdj (B), ~ (o~j (x)) = f i  (x) (resp. 3~ (otj (x)) = -3~ (x)). Let J r  e (nl . . . . .  n t )  be the set of  

continuous functions f :  13(nl . . . . .  nk) --+ R t, where l = ~-~.ik=l ni ,  such that, for each 

1 < i < l and 1 < j _< k, f / h a s  either positive or negative antipodality with respect 

to the j th  ball. The antipodality matr ix  A ( f )  of  f �9 .Tre is the l x k 0-1  matrix with 

[ A ( f ) ] i j  --- aij equal to zero or one depending on whether the antipodality of  f i  with 

respect to the j t h  ball is positive or negative. The antipodali ty vector  of a component  

function is the corresponding row of  the antipodality matrix. When convenient, we use 

string notation for this vector, with X representing "do not care"; for example,  0 i - l  1X k-i  

indicates positive antipodality with respect to the first i - 1 balls, negative antipodality 

with respect to the ith ball, and either positive or negative antipodality with respect to 

the remaining balls. 

The classic Borsuk-Ulam antipodal theorem states that i f  f �9 ~ e  (n) all o f  whose 

components have negative antipodality, then f has a zero. An antipodal theorem for 

f �9 JrB(m, n) is proved in [22] (with very particular antipodality conditions) using 

techniques of  algebraic topology. Our theorem is much more general and the proof  

techiaique is elementary. Rade Zivaljevid has pointed out that [5] contains a weaker  

version of  a particular case of  our theorem, and that in fact the technique of  that paper  can 

be used to prove our theorem. (These previous results are particular cases of  L e m m a  3.3(i) 

below.) Our elementary proof, however, has the additional advantage that it translates 

into an algorithm to find a zero. We say a few words about the algorithmic aspects in the 

last section. 

In order to state the main theorem of  this section, we need to define a certain 0-1-  

valued function of a 0-1 matrix, which is related to the permanent.  Let A be an I x k 

matrix and let n l  . . . . .  nk be nonnegative integers with l = E i k = l  rl i ,  ni is the weight  of  

column i. Let T'(nl . . . . .  nk) be the set of  functions rl: [l] ~ [k] with 10 -1 (i)1 = ni for 

each i �9 [k] ([m] denotes {1 . . . . .  m}). We define 

l 

permnl,...,n ~ A = E I - I  ain(i)" 
t/E'P(nl ,...,nt) i=1 
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In words, perm~l....,, k A is the sum of  all products  that take one factor per  row and n i 

factors from the ith column of  A. Note  that i f /  = k and nl . . . . .  nk = 1, then this 

corresponds to the usual permanent.  Also  permnt,...,n~ A can be written in terms of  the 

usual permanent  as p e r m ( A ' ) / ( n  1 ! " "  nk !) where A '  is an l • l matrix with the i th column 

of  A repeated ni t imes for each i �9 [k]. The fol lowing equivalent recursive definit ion is 

the form in which permn~.....nk appears  in the proof  of  the main theorem: permo,..., 0 A ----- 1 

and 

permn],...,nk A = ~ aij  �9 perlIln~,...,ni_l,nj_l,nj+l,...,n k A i ,  
nj>__l 

w h e r e  Ai  is A after removing the i th  row (this is expansion on the ith row). Note that 

exchanging rows and columns ( together with the corresponding weights) do not affect 

t h e  v a l u e  ofpermn~.. . . .n ~ A .  W e  w r i t e  perm'n,.....n, A to  denote permn~....,~, A mod 2. 

We define t h e p a r i t y  Q ( f )  = Q ( f ;  nl . . . . .  n~) of  f �9 ~'B(nl . . . . .  nk) as Q ( f )  = 

perm'm,....nk A ( f ) .  Now we can state the main theorem of  this section. 

T h e o r e m  3.1. Let  f �9 ~ B ( n l  . . . . .  nk). I f  Q ( f  ; nl . . . . .  nk) = 1, then f has  a zero. 

Note that the classical Bo r suk -Ulam theorem is a part icular  case when k = 1 and the 

antipodali ty matrix is a single column of  ones. The proof  follows by compactness  f rom 

the following lemma and an argument for the existence of  appropriate approximat ions .  

L e n u n a 3 . 2 .  Let r �9 ~'B(nl . . . . .  nk) be nondegenerate  p iecewise  linear. Then 

P( r ;  B m • . . .  x B n*) = Q(r;  nl . . . . .  nk). 

P r o o f  By induction on l = )'-],ik=l hi. For  I = 0, both P ( - ;  B ~ • . - .  • B ~ = 1 and 

Q ( - ;  0 . . . . .  0) = 1. For  the inductive step, let A = [aq] be the antipodali ty matr ix  of  

r = (rl . . . . .  rt) and let r '  = (rl . . . . .  r t - l )  and r"  = rt in the notation of  Theorem 2.2. 

Then 

p ( r t  t! r ; B  n~ x . . •  B nk) = r (r ,r__; B ~' x . . .  x bd(B  n') • . . .  x B nk) 

n~>__l 

= ( ~ a l i ' P ( r t ;  B nl x . . .  x B n'-I  •  x B ~k ) 

n,>l 

= ( ~ a l i "  Q ( r ' ; n l  . . . . .  n i - -  1 . . . . .  nk)  

ni>l 

= Q(r ' ,  "" r , n l , . . . , n k ) .  

The first equali ty follows by Theorem 2.2(i); the second equality fol lows by Theo-  

rem 2.2( i i ) (not ing that B n, x . . .  • bd (B  n') x - . .  x B nk is the union of  two copies  of  

B n' x �9 �9 �9 x B " ' - I  x . - -  x B "k, that a bi ject ion between the zeros of  r '  in each o f  the 

copies exists because of  the ant ipodal i ty  o f  all components  with respect to the i th ball,  

and that all indicates the antipodali ty of  r"  with respect  to the ith ball); the third equal-  

ity follows by the induction hypothesis;  and the last equali ty follows by the recursive 

definition of  Q(r  ). [2 
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Existence of Approximations. We use the n-dimensional cross polytope Cn as a model for B n . Cn is the 

convex hull of the unit vectors 4-el = (0 . . . . .  0, +1, 0 . . . . .  0), where 4-1 is in the ith coordinate. In fact, Cn 

is the n-ball for the norm [Ixlh = I](~1 . . . . .  ~n)lli = ~ = 1 1 ~ i l .  Let vn = {el, -e l :  i --- 1 . . . . .  n} u {0}. 

The simplicial complex 7- = Tn = {conv(T): T _c Vn, no two points in T are antipodal} (i.e., the complex 

consisting of all cones of the origin with the faces of Cn) is a triangulation of  B n . This triangulation has antipodal 

symmetry: if ~r ~ ~ and tr c_ bd( Bn), then ot(o ) ~ 7-n.We need atriangulation T o f B  = B nJ x . . . x B  n* that 

has componentwise antipodal symmetry, that is, if ix ~ 7" and ~ c bdi (B) for some i, then ati (or) ~ 7" (this is 

important for extending to B by linearity a vertex map with a certain antipedality matrix so that the resulting 

function has the same antipodality matrix). First obtain the cell complex C = {trl x . - .  x ~rk: oi r ~rn~ }, 

and then triangulate by taking a barycentfic subdivision (note that each cell in C is a product of simpliees). 

Clearly, the resulting triangulation has componentwise antipodal symmetry; and so does its Ith barycentric 

subdivision 7"* = Sd/(7-) for any l. Therefore, a piecewise linear approximation defined from the vertex 

map tp(v) = f (v) ,  for v ~ 7-,t0), is in ~-B and has the same antipodality matrix as f .  Finally, we verify 

that the perturbation procedure indicated in Section 2 can be carried out while preserving the antipodality 

properties. Consider the orbits of the antipodality maps: x and y are in the same orbit if, for some il . . . . .  is, 

Y = atix o...oat/, (x). To preserve the antipodality properties, during the perturbation procedure, when changing 

the value of a component function at a vertex, it must be changed correspondingly at all the vertices in the 

same orbit. Since no simplex has two vertices in the same orbit, this procedure works correctly. 

T h e r e  a re  t w o  c a s e s  o f  i n t e r e s t  in  w h i c h  t h e  v a l u e  Q ( A )  c a n  b e  ea s i l y  c o m p u t e d :  

Lemma 3.3. 

(i) f f  ni is the n u m b e r  o f  rows  0 i - 1 1 X  k - i  in A ,  then  Q ( A )  = 1. 

(ii)  Le t  A have  two  co lumns ,  i a n d  j ,  such  tha t  (a) ni  = n j ,  (b)  there  is  a row, t ,  w i t h  

ati ~- at j  = 1 a n d  ats = 0 f o r  s ~ i, j ,  a n d  (c)  each  row k wi th  aki = 0 a n d  

akj = 1 can  be p a i r e d  b i j ec t i ve ly  w i th  a row k '  w i th  ak'i = 1 a n d  ak,j  = O, SO 

that  aks = ak , s f o r  s ~ i, j .  Then  Q ( A )  = O. 

Proof .  T h e r e  is  o n l y  o n e  n o n z e r o  p r o d u c t  in  t h e  s u m  d e f i n i n g  permn, , . . . .n ,  A .  ( i i )  U s i n g  

e x p a n s i o n  on  r o w  t ,  Q ( A ' )  + Q ( A " )  is  o b t a i n e d ,  w h i c h  is  0 m o d  2 b e c a u s e  A "  can b e  

t r a n s f o r m e d  in to  A '  by  e x c h a n g i n g  c o l u m n s  i a n d  j ,  a n d  e a c h  r o w  k w i t h  i ts  c o r r e s p o n d i n g  

r o w  k ' .  t21 

P r o b l e m  3.4 .  Is  T h e o r e m  3.1 b e s t  p o s s i b l e ?  T h a t  is ,  i f  A a n d  n l  . . . . .  nk a r e  s u c h  t h a t  

perm'nj,...,n ~ A = 0, t h e n  d o e s  a f u n c t i o n  f E .TB (nl  . . . . .  nk) w i t h  A ( f )  ----- A a n d  w h i c h  

has  n o  z e r o s  e x i s t ?  

P r o b l e m  3,5 .  Is  t h e r e  a T u c k e r - F a n - t y p e  c o m b i n a t o r i a l  l e m m a  f r o m  w h i c h  T h e o -  

r e m  3.1 c a n  b e  d e r i v e d ?  l 

1 Let Cn be the n-dimensional cross polytope with a barycentric subdivision 7-* of the triangulation 7-n 

described previously. Let ~: 7-,t0) _.+ Ira] tA (--[m]) = [+1 . . . . .  +m} be a labeling of the vertices that 

has negative antipodality, ~(at(v)) = -~(v) .  A simplex conv(v0 . . . . .  ok) of 7-* is alternating if the list 

[r ) . . . . .  ~(vik)] of the labels of  its vertices in increasing order of  magnitude, I~(vi0)l < - . -  __5 I~(vik)l, 

has no repetitions and the signs alternate. The simplex is positive if the first label in that list is positive. The 

Tucker Fan combinatorial lemma [17], [6], [3] says that i f  no edge in 7-* has opposite labels under ~, then 

the number of alternating n-simplices is odd (in particular m > n). Therefore, if m = n, then there must be 

an edge with opposite labels. Together with a compactness argument, this implies the Borsuk-Ulam theorem. 
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4. Equipartition by Hyperplanes 

It is sufficient to consider the existence for the case of  mass distributions which are 

density functions with connected open support (see, e.g., [21]). We assume the mass 

distributions are normalized to one. An oriented hyperplane h = (x, t) ~ B d-I • R 

in R d with normal unit vector x is the set {y G Rd: x �9 y = t}. h defines two half- 

s p a c e s h  ~ = {y G Rd: x . y  > t} and h I = {y ~ Rd: x . y  < t} (positive and 

negative, respectively). The equipartition problem for d = 1 provides the following fact 

by projecting onto a line. 

Fact 4.1. Let lz be a mass distribution with connected open support. For each direction 

x ~ B a-1 in R n, there is a unique bisecting hyperplane (1-partition) hU(x) norn~ l  to x.  

Furthermore, the function h~(x)  is continuous (considering the image space endowed 

with the natural topology o f  B a-: x R) and has negative antipodality. 

4.1. Reducing Equipartition to a Zero o f  a Function 

2-Pal'tition. For hyperplanes hi,  hz and i, j G {0, 1}, let aij(hl ,  h2) = #(h~ N h~). 

The goal is to obtain h i ,  h2 so that aij = 1/4 for each pair i, j .  Let 

f01 (hi, h2) 

f lo (h l ,  h2) 

f l l  (h~, h2) 

= (aoo - aol - a: l  + alo)(hl ,  h2), 

= (aoo + a o )  - all - alo)(hl ,  he), 

= (aoo - aoT + a l l  - alo)(hl ,  he). 

It is easy to verify that hi ,  h2 form a 2-partition if and only if fol = flo = f l l  = 

0. Fix Xl G B 1. Then, for x2 ~ B 1, hU(xl) ,  hU(x2) form a 2-partition iff g(x2) = 

f l l  (hU(xl), h~'(x2)) = 0. g(x2) has negative antipodality. So, by the intermediate value 

theorem, x2 ~ B l exists such that g(x2) = 0 (the case n ----- 1 of  the Borsuk-Ulam 

theorem). It can also be verified that the zero is unique under certain conditions (for 

example, if the support of  # is a ball). 

k-Part i t ion.  The reduction above was generalized to 3-partition by Yao et al. in [21 ]. 

From there, the extension to k-partition given next is straightforward. For hyperplanes 

hi . . . . .  hk, and for jl . . . . .  jk ~ {0, 1} let 

\l=l l 

the mass of  the orthant with indices j l  . . . . .  jk. For i: . . . . .  ik G {0, 11, let 

E eJ~...jk a /h ., ffi '"ik (hI  . . . . .  hk)  m il'"ik jv"jk~ 1 , ' '  hk ) ,  

Jl ..... jk~{0,1} 

where E j t ' ' ' j k  iv..i~ = (--1) b with b = Y:tk=l it jr. We write fi7...ik when there is ambiguity. 
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fil"'ik (hi . . . . .  hk) depends only on those hyperplanes hi with it = 1, say ht~, . . . ,  ht~; 

more precisely, the mass of  an otthant of  hl~ . . . . .  ht, appears with positive (resp. negative) 

sign if that orthant is in the negative half-space for an even (resp. odd) number o f  the 

hyperplanes ht, . . . . .  hi,. Thus, f0...0 = 1 always. We have the following properties: 

P r o p e r t y  4.2. fi~ ...ik ( h l  . . . . .  hk)  is a continuous function of  h~ . . . . .  hk.  

Property 4.3. 

f iw . i~(h l  . . . . .  h i - l ,  -ht, ht+l . . . . .  hk )  ---- (--1)i l  f i r . . i k (h t  . . . . .  ht-x, hi, ht+l . . . . .  hk) .  

I f  it = 0, clearly changing the orientation o f  ht does not affect f/,.i~; if it = 1, then 

the signs of  all the terms are reversed. 

Property 4.4. hi . . . . .  hk form a k-partition of  lz if  and only i f  fi,...ik ( h i  . . . . .  hk)  = 0 

for  (il . . . . .  ik) 5~ (0 . . . . .  0). 

Proof. I f h l  . . . . .  hkisak-part i t ion,  theni t i sc lear that f i r . . i k (h l  . . . . .  hk) = 0 for all 

(il . . . . .  ik) ~ (0 . . . . .  0) (and f0...0 = 1). To verify the other direction, we show that the 

matrix of  coefficients {e j~ --Jk ! is orthogonal and, hence, nonsingular: il'"ik " 

e J r J ~ 8  j~''jk ~ ( - -1)  (j]'''''jD(i'+i']'''''ik+i'k) 
il'"ik i'l.'.i' k : 

jl,...,jk~{0,1} jl....,jk~{0,1} 

= 0 unless (il . . . . .  i~) = (i '  1 . . . . .  " lk) .  

The last step follows because if ik ~ i~, then i~ + if = 1, so the sum can be split into 

the two terms corresponding to jk = 0 and jk ----- 1, which are equal but of  opposite sign; 

if ik = i'k, then ik + i'~ is even, so the sum is twice a sum with one less index, so the 

claim follows by an inductive argument (the base case being trivial). Since the matrix 

is nonsingular, the values of  the aj~...jk(hl . . . . .  hk) for which f i r . . ik(hl  . . . . .  hk)  = 0 

for (il . . . . .  i~) ~ (0 . . . . .  0) and f0...0(hl . . . . .  hk) ---- 1 are unique. That is, they must 

correspond to a k-partition. []  

Note that the functions fi,...ik are well defined for any dimension d, but equipartition 

makes sense only i fd  > k (only then the 2 k orthants are possible). The following property 

will be useful later in our parity computations. 

Property 4.5. 

(i) l f  il "." ik has an even number of  ones and if all hj with ij = 1 are equal, then 

fi,...ik (hl . . . . .  hk) = 1. 

(ii) For any j ' ,  j " ,  exchanging simultaneously i j, and ij ,, and h j, and hi,, has no effect 

on the value of  fij...ik (hi . . . . .  hk). 
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4.2. Equiparti t ion Problem 

The problem of  equipartition by hyperplanes that we consider is the following: 

Determine the smallest dimension d = A (j,  k) such that (j ,  k)-partitions exist in R d, 

that is, given any j mass distributions in R d, there are k hyperplanes which form a 

k-partition for each of  the masses. 

Let #1 . . . . .  # j  be mass distributions in R d. As a first step, the space o f  candidate 

solutions for the k-partition problem is B d-1 x . . .  x B d-1 (k factors) where B d-1 

is a hemisphere of  the unit sphere S d-1 in R d. More specifically, if (xl . . . . .  Xk) 

B d-I x . . .  x B d- l ,  then the candidate hyperplanes are h u' (xl) . . . . .  h u' (xk) where h t' '  (x) 

denotes the unique bisecting hyperplane for /z l  in the direction x. From the discussion 

above, a solution corresponds to a zero of  the function g u, g/Z2, m �9 , gk  ) , w h e r e  = (gk,., k -" 
g~' consists of  the 2 k -- 1 component functions 

gi ,  ""it (Xl . . . . .  Xk)  = fi~ri..i~ ( h  Iz' (Xl) . . . . .  h I't' (Xk ) ) ,  

for (il, ik) ~ (0, ,0) ,  and g "~ consists o f  the same components except those with 

antipodality vector 0 I-110 k- i ,  which are already equal to zero because of  the choice o f  the 

hyperplanes as bisectors for/z 1. Thus, g has a total of  10 ------ j (2 k - 1) - k components.  We 

use the notation r, r~' ,  and r ~' for the npl approximations of  g, g~',  and g~',, respectively. 
k,* 

A limitation of  our approach is that it cannot take advantage, if there is any, o f  the 

additional degrees of  freedom ( d -  1 ) k -  (j  (2 k -  1 ) - k )  = d k - j  (2 k -  1). More precisely, 

we limit the space of  candidate solutions to B = J~(nl . . . . .  nk) = B nt x . . .  x B nk where 

maxie[k] ni  = d -- 1 and Eik=l  n i = lo, SO that the dimension of  both domain and range 

of  g is 10. In the following theorem, to simplify the statement, we include rows with 

antipodality 0 i-1 l 0  k - i  and add one to the weight of  each column. 

! 
' be such that ' = d and ~_,~=j n i = j (2 k - 1), Theorem 4.6, Let  n '  1 . . . . .  n k maxietk] n i 

and let A (j, k) be the j (2 k - 1) • k matr ix  consist ing o f  all 0 -1  strings o f  length k o ther  

than 0 k each repeated j times. I f  perm'm..�9 A ( j ,  k) ----- 1, then (j, k )-parti t ions exist  in 

g d, and hence A(j ,  k) < d. 

Examples .  We can now explain how to obtain some of  the entries in the first table of  the 

Introduction. In each case the lower bound follows from Theorem 4.7 below. A (3, 2) < 5 

follows from perm~, 4 A(3, 2) = 1. A(3, 3) < 9 follows from perm~,s, 4 A (3, 3) = 1; 

since perm~,7, 7 A (3, 3) = 0, perm~,7, 6 A (3, 3) = 0 and perm~,8, 5 A (3, 3) = 0, we can- 

not improve this bound�9 A(5, 2) < 9 follows from p e r ~ ,  6 A(5, 2) = 1; perm~, 7 A(5, 2) 

= 0, so we cannot improve the upper bound. 

Remark .  The second example above illustrates that it is not possible to obtain general 

tight results (assuming the lower bound is tight) relying only on Theorem 3.1: For this, 

' ~ ' and Lemma 3.3(ii) n i < [ j (2  k - 1) /k]  for each i, and then, for some i, j ,  n i = nj ,  
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implies that Q(g)  = 0. This is to be expected, because the symmetry o f  the indices 

reflects the symmetry of  the problem; in fact, exchanging hyperplanes h i and h j  does 

not affect a solution, so the number of  solutions has even parity. The next section tries 

to correct this situation. 

4.3. Lower Bound 

Since k(d  - 1) is the maximum possible dimension of  the domain of  g, then there is 

a first constraint 1o, < k (d  - 1), otherwise the existence o f  zeros cannot be guaranteed 

(if 10 > k(d - 1), nondegeneracy implies that an npl approximation has no zeros). 

Rewriting, the necessary condition is d > j (2 k - 1)/k .  As presented, this is a condition 

for the approach to provide any results. However, this is really a necessary condition for 

the existence of  a k-partition of  any j mass distributions in R d as discussed next. 

T h e o r e m  4.7. A ( j ,  k) > j ( 2  t - 1)/k. 

Proof. This follows the argument in [2] showing that A(1, d) > d for d > 4. Place 

j mass distributions, each one-dimensional and uniform on an interval, along the d- 

dimensional moment c u r v e  M d -~ { ( t l  t 2 . . . . .  td): t ~ R}, with no overlap. A simul- 

taneous k-partition of the j masses would need to cut each interval in at least 2 ~ - 1 

points, for a total of  j ( 2  k - -  1) points. On the other hand, since a hyperplane intersects 

M d in at most d points, k hyperplanes intersect M d in at most kd points. It follows that 

kd >_ j (2 k - 1) is a necessary condition for the existence of  simultaneous k-partitions 

for any j mass distributions in R d. []  

For the moment curve example and j = 1, the condition kd _> 2 k - 1 is almost 

sufficient as we explain next. A k-Gray code C is a list of  all k bit strings so that only one 

bit changes at a time; for C let the bit wear  of the ith bit, bc (i), be the number of  times 

that this bit changes in the 2 k - 1 steps. The maximum bit wear, w(C), is maxietkl be(i) .  

Now, let/z be a mass distribution in M d, let p ~ , . . . ,  P2*-i E M d be the 2 k -- 1 points that 

determine 2 * intervals of  equal mass, and let C be a k-Gray code with w(C) < d. Then 

t7 determines a k-partition of/.t by making the ith hyperplane, i = 1 . . . . .  k, go through 

the points pj~ . . . . .  PA where Jl . . . . .  js are the steps in C where the ith bit changes. Thus, 

i f C  with w(C) < [(2 k - 1) /k l  exists, then the condition d > (2 k - 1) / k  would be 

sufficient for the existence of  a k-partition. We do not know whether such Gray codes 

exist for all k; however, constructions that get very close to this are known. Robinson 

and Cohn [16] have constructed cyclic Gray codes (so there are 2 k steps in this case) 

such that the wear balance, A(r  = maxi~ j Ibc(i) - bc(J)l ,  is zero or two (zero only 

in the case that k is a power of  2; Wagner and West [18] have also given a construction 

for this case). This implies that w(C) < [2k/k] + 8, where t5 is zero or one. Then we 

obtain a sufficient condition for the existence of  a k-partition for a mass distribution in 

Md: d > 2*/k  fork  a power of  2 (which is tight), a n d d  > [2*/k] + 1 otherwise. Thus, 

if A(1, k) differs from [(2 * - 1) /k]  by more than one or two, then one should look 

elsewhere for a better lower bound construction. 
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4.4. A General Upper Bound 

T h e o r e m  4.8. A ( j ,  k).<_ j2  k-1. 

Proof. Set ni to the number of  components  of  g with antipodality vector 0 i -11X k - i  . 

Note that nl = j 2  k-l  - 1 and ni < nl for i > 1. Therefore,  using Lemma  3.3(i) we 

conclude that ( j ,  k)-partitions exist in R d with d = j 2  k-1. []  

Actually, this result can be obtained in a simple manner. For d > j 2  k-l ,  the ham- 

sandwich theorem guarantees that the following procedure works: start with the j original 

masses, in the i th step obtain a 1-partition for the j 2  i-1 masses resulting from the previous 

step, for 1 < i < k. We have given the proof  above to illustrate our approach. Better  

results for a few cases are obtained later. 

5. An Example: 2-Partition 

According to the moment  curve lower bound, R 3 is the lowest dimension we can expect  

to have 2-partition of two sets. In this section we illustrate our machinery by proving 

that this is always possible, which is a result of  Hadwiger  [9]. Our proof, however, is 

simpler and generalizes to deal with the equipartition problem in general. We also show 

how it can be extended to j ----- 2"  masses.  

5.1. 2-Partition of  Two Masses in R 3 

From the previous section we want to determine the existence of zeros of  

/Ll 

g ---- (g2,,, g~'~) ---- (g~], g ~ ,  g~o, g ~ ) "  

At first, the space of candidate solutions is B 2 x B 2. However,  as indicated in the previous 

section, the parity of  zeros of  an npl approximation o f g  in B 2 x B 2 is zero. So, we consider 

as space of candidate solutions 

(B2)2< = {(xl, xz): 0 ~ [Ix1 II ~ IIx211 ~ 1}. 

The boundary of (B2)~ consists of  two three-dimensional components:  

(i) Xl.z ---- {(xl,x2): xi �9 B 2, 0 <_ IlXl II = [Ix~ll _< 1}, and 

(ii) Xz.3 = {(xl, x2): Xi �9 B 2, 0 __< Ilxl tl < Ilx2 i] = 1}. 

X2, 3 is a copy of  B e • bd (B 2 ), that is, two copies of  B 2 • B 1. Two important subsets o f  

X1.2 are the diagonal Dl.z = {(xl, Xl): Xl 6 B 2} and the boundary antidiagonal A'l, 2 = 

{(Xl , - -xl ) :  xl �9 bd(B2)}. (Note that XoA = {(xl, xz): xi �9 B 2, 0 = Ilxl II <- IIx211 <__ 1} 

is two-dimensional and contributes to the boundary of  (B2) 2 only a one-dimensional  

component.)  
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(B2)~ can be triangulated so that Xl,2, X2,3, D1,2, and A'l, 2 are underlying spaces 

of  subcomplexes of the triangulation, and so that the triangulation is symmetr ic  under 

exchange o fx l  and x2 in XI.2. This is verified for the general case in the next section. 

Suppose r is an npl approximation of  g in (B2)~. Then we have 

p r  al az a2 a2 . (B2)2 ) p+(r~it tz2 ~t2 ~rll ,  r(~ 1 , r l0 ,  r l l ,  _ = , r(~ 1 , r io ,  r~12; X1.2) 

p+r~m _#2 ~2 ~z" X2 3)- 4- - ~-I.....L1, roi , r io ,  r l l  , . 

Thesecond t e rmi sequa l t o  P (r~:, r ~  , ~:" B 2 rl 1 , X B 1) (because of  the negative antipodal- 

ity of  r~'  with respect to the second ball and Theorem 2.2(ii)) which is easily evaluated 

as one. We would like to show that the first term is zero, as follows: For each (Xl, x2) such 

that tt2 r01 (xl, x2) = r~o 2 (x~, x2) = r ~  s (Xl, x2) = 0, we have r~l ~ (x2, x~) = r~o (x2, Xl) = 

r~lS(X2,Xl) = 0 and r~ll(Xl,x2) -~ r~lJ(X2,Xl) (using Property 4.5). We say that 

( r ~ ,  r ~ ,  r Ha: , rHa~, is symmetric for zeros in the boundary. Note that (xl,  x2) # (x2, xl)  

unless xl = XE,'--~at is,  ( x l ,  x2) 6 D1,2; but in this case (xl, x2) cannot be a zero of  

(r~ s, r ~ ,  r~l 2) because D1,2 is of  dimension 2 (and by nondegeneracy cannot have zeros 

of  three component  functions). Therefore, using Theorem 2.2(ii), 

p+r-g~ _as a: as .  Xl .2  ) = O. k r l l  , r01 , r l 0  , E l l  ) 

For the previous argument to work, the npl approximation r must satisfy the symmetry  

under exchange of xl and x:  that g satisfies. Specifically, for (Xl, x2) e XL2, 

r~'(x, ,x2) = r~'(x2, x,) ,  r~ ' (x , ,x2)  = r~o'(X:,X,). 

However, the second symmetry is not possible while enforcing antipodality and nonde- 

u: Nonetheless, this function has generacy. For example, in DI,2 it would imply rl~ 2 -- ro~. 

negative antipodality with respect to DI,2 as a copy of  B 2, so it has a zero in a copy of  B 1 

on the boundary of D1,2. Thus, two component  functions have a zero in some simplex 

of  dimension less than 2; a contradiction to nondegeneracy. Similarly, in A' 1,2 we have 

r~l s = - r~o ~ because 

a~ - r ~ ( X l  -r~o~(Xl, rol (xl ,  - x l )  = r ~ j ( - x ~ ,  x l )  = , Xl)  = - X l ) ,  

where the equalities follow by using symmetry,  and antipodality with respect to the 

first and second balls, respectively. Again, the resulting function on A~. 2 has negative 

antipodality and, hence, has a zero. So, again, two component  functions have a zero in 

some simplex of dimension less than 2. In the next section we argue in the general case 

that these are the only possible conflicts. 

To circumvent this problem, we make use of  Property 4.5(i), namely, that r~'  = 1 in 

D1,2 and r~' = - 1  in A'l, 2. Thus, symmetry can be allowed to fail ,c lose"  to D1,2 and 

A~l,2 , as long as, when it is used in the argument for XL2 above, one of the component  

functions remaining is r ~ .  r ~  can be approximated preserving the symmetry everywhere 

without problem. For r~  2 and r~o ~ do the following: For vertices not in D1.2 t_/A'l, 2 enforce 

the symmetry,  and for vertices in D~,2 t3 A'  1.2 treat the functions as different so that they 

can be freely perturbed to remove degeneracies. The barycentric subdivision is chosen 

(previously) so that r~l' is not zero (say Ir~' I > �89 in the simplices incident to D1,2 t.J a '  1,2. 

With this modification, the parity computation above is correct. 
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R e m a r k .  We solve the conflict between symmet ry  and nondegeneracy by using the 

fact that r ~  2 is different from zero where the conflict appears,  and that r~  2 is part  of  the 

remaining function when expanding on r~l t . However,  i f  j = 1, when expanding on r ~  ~, 

there is no  other function r n  to "shie ld"  the t roublesome region. This  makes it more 

difficult to deal  with the case j = 1. However,  with some addit ional  work, the pari ty can 

still be computed;  at least i f  the problem size is small .  We have done this for the problem 

of  4-part i t ion in R 4. Unfortunately, the result ing pari ty is zero. 

5.2. Extension to j = 2 m 

We can extend the 2-partit ion result  to j = 2 m masses�9 We show that the condit ion 

d > j ( 2  k - 1 ) / k  is sufficient for k = 2 and j = 2 m. Replacing values, d > 3 j / 2 .  

In this case l0 = 2m(2 2 - 1) - 2 = 3 - 2 m - 2, so the space of  candidate solutions is 

(Bd-1)  2 where d - 1 = lo/2 = 3 �9 2 m-1 --  1 (thus d = 3 j / 2 ) .  What  has been said 

above for (B2) 2 extends to balls of  arbitrary dimension;  in the next section we deal  

with the general-case. Let r g' be the corresponding npl approximat ions  (with symmet ry  

fail ing "close"  to D1,2 and A~.2), and note that ( r~  ~ , r~  2, r vz~ ) is symmetr ic  for 

zeros in the boundary XL2. Then we find 

PrrU', 2,., r~ z, . . . ,  r2~2,., (Ba-1)  2)_ = P ( r ~  2, . . .  , r~"*; B a - '  x B d-2).  

This last term 

P e l ~ , - 1 , 2 r ~ - 1  _ 1 

to one. 

is equal to P ( r ~  . . . .  r ~ "  ; B 2"-'  �9 • B 2m-'- l)  which is equal  to 

A2~-I where A2*-l  is a (2 m --  I )  x 2 matr ix with all entries equal  

! ! 
L e m m a  5.1. pern12,,_~,2m_~_ 1 A2m_ 1 : perm2._2 2._2_ 1 A2.-~_ 1. 

P r o o f  Let A1 and A 2 denote the p e n n  on the left and right, respectively. Since all 

entries in A2,~_ 1 a r e  one, then A 1 i s  e q u a l  t o  the pari ty of  179(2 m-l  , 2 m - I  - -  1)1 (recall  the 

definition from Section 3). Let y:  [2 m - 1] --> [2 'n - 1] be defined by y ( i )  = 2 m -- i. y 

is an involution, that is y o y is the identity, and it has exactly one fixed point, i = 2 m-1. 

y* (r/) = 7/o y defines an involution on 79 (2 m- 1, 2 m- l _ 1). Thus, A 1 is equal to the pari ty 

of  the fixed points of  y*. I / is  a fixed point  of  y* iff, for each i ~ 2 m- 1, r/(i) = 1/(2 m - i)  

and r/(2 m- l )  = 2 (a fixed point 17 of  y* must  map  its fixed point  2 m-1 to 2 because  

only this column has odd size). So i f  r/ is a fixed point, rl restricted to [2 m-1 - 1 ]  

complete ly  determines rl. Furthermore,  I r / - l (1)  N [ 2  m - I  - -  1]l = 2m-1/2 = 2 m - 2  and 

10 -1 (2) N [2 m-I - 111 ---- (2 m-I - 1 - 1) /2  = 2 m-2 - 1. Therefore,  the parity of  the fixed 

points of  y* is precisely A 2. []  

App ly ing  Lemma 5.1 iteratively, it  is found that perm~, ~ 2- ' 1 A2~,-1 : perm't.0 A1 

which is one. This completes  the computat ion.  We summarize  this in a theorem. 

T h e o r e m  5.2. F o r j  = 2 'n with m _> 1, A ( j ,  2) = 3 j / 2 .  
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A s i m i l a r  c o m p u t a t i o n  a p p l i e s  f o r  j = 2 m - 1. H o w e v e r ,  i t  a p p e a r s  t h a t  f o r  m o s t  o f  

t h e  o t h e r  v a l u e s ,  t r y i n g  to  a c h i e v e  t h e  l o w e s t  d i m e n s i o n  p o s s i b l e  r e s u l t s  in  a z e r o  par i ty ,  

a n d  w e  c a n n o t  c o n c l u d e  t h e  e x i s t e n c e .  T h e  s m a l l e s t  s u c h  c a s e  is  j = 5 f o r  w h i c h  w e  

k n o w  t h a t  (5,  2 ) - p a r t i t i o n s  ex i s t  i n  R 9, b u t  i t  is  o p e n  in  R s. 

6. General Case 

L e t  ( B n )  k = B ~ x . . .  x B ~ b e  t he  u s u a l  p r o d u c t  o f  k c o p i e s  o f  B ~, a n d  l e t  (B~)*< = 

{(Xl . . . . .  x k ) :  xi �9 B n, 0 <_ Ilxl II -< " ' "  -< Ilxk II -< 1}. 

Triangulation of (Bn)*<. Recall that we regard the cross polytope Cn as our model for B n under the norm 

II - Ih. Let O n he an orthant of B n (the portion in an orlhant of the coordinate system). Note that the external 
boundary of O n (the portion of the boundary that is also the boundary of B n ) is a copy of On- ~. (Bn)t~ consists 

of (2n) k products of k orthants, (On) k. For a particular product of orthants, each constraint Ilxi II -< Ilxi+l [[ 

defines a half-space. Thus, (Bn) k consists of (2n) k cells, each the intersection of a product of orthants (On) k 

with k - 1 half-spaces (hence a cell), denoted (O n)~. We need a triangulation of (B")~ with certain symmetries 

on the boundary; it is Sufficient to obtain a cell complex that has those symmetries-for a typical cell (On)~, 
then a barycentric subdivision produces a triangulation. For fixed k, we use induction on n. For n = 1, 

(O 1 )~ is a k-cube intersected with the k - 1 half-spaces [Ixl II _< I[xi+~ II, i = 1 . . . . .  k - 1; this cell and its 

faces is the desired cell complex. For n > 1, consider first (O") ~ (the corresponding product of or't_hants). 

Subdivide the product of its external boundaries, a copy of (On- l )  k, into k! copies of (O n-l)k (a copy for 

each of the orderings of IIx~ II . . . . .  Ilxk ID, and use the inductive construction to obtain a cell complex for each 

copy of (O ~-1 )~. This gives a cell complex C for (0  n--I )k. Then the cells 

i f '  = c ] o s u r e ( l ( x  I . . . . .  Xk): xi ~ O. (11 /1111  II . . . . .  xk/tlxk It) ~ o }) 

for a ~ C form a cell complex C' for ( O" )~. A cell complex for (O n- J )~ is obtained by intersecting each cell 

in r  with the k - 1 half-spaces Ilxi I1 _< Ilxi+l II, i = 1 . . . . .  k - 1. 

T h e  b o u n d a r y  o f  (Bn)~ c o n s i s t s  o f  k f u l l - d i m e n s i o n a l  c o m p o n e n t s  

X~.i+l = {(Xl . . . . .  Xk): x i  ~ B n , O  ~ Ilxl II ~ " - - ~  Ilxi[I : I l x i + l l l  ~ " ' "  ~ Ilxkll ~ 1}, 

f o r l  < i < k. Xk.k+l i s a c o p y o f ( B n ) * <  - l  x b d ( B n ) , t h a t i s ,  twocopiesof (Bn)*< -1 x B  n - I .  

Let  Xb = U~-~ Xi.i+l. O t h e r  c o m p o n e n t s  o f  i n t e r e s t  in  b d ( ( B ~ ) * < )  a re  t h ed i agona l s  

Dij = {(xl  . . . . .  xk) ~ (B")*<: xi = xj}  and the boundary  antidiag-onals 

! 
Aij = {(xl . . . . .  Xk) �9 (Bn)*<:_ Xi,  x j  �9 b d ( B " ) ,  x i  = - x j } .  

Let Cij = { ( x l  . . . . .  Xk) �9 (nn)*<: Ilxill = IIxj'll} (so Ci . i+r  = Xi , i+l) ,  and l e t  

flij: Cij --+ Cij  be the m a p  tha t  e x c h a n g e s  t he  i t h  a n d  j t h  c o o r d i n a t e s ,  t h a t  is, 

# i j ( x l  . . . . .  x i  . . . . .  x j  . . . . .  x k )  = (x l  . . . . .  x j  . . . . .  x i  . . . . .  x k ) .  

A t r i a n g u l a t i o n  T o f  ( B ~ ) ~  is  symmetr ic  on the boundary  i f  or �9 T a n d  cr _c Cij i m p l y  

f l i j (a)  E T .  A f u n c t i o n  f :  ( B n )  k ~ R is symmetr ic  on the boundary if ,  f o r  a l l  i,  j ,  

x �9 Cij, t h e n  f ( ~ i j ( x ) )  = f ( x ) .  ~r162 h a v e  t he  f o l l o w i n g .  
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L e m m a  6 .1 .  The tr iangulat ion o f  ( B~)k< descr ibed  above  is s y m m e t r i c  on the boundary.  

For each i, j ,  Xi , i+l,  Oi , j ,  A~,j are under ly ing spaces  o f  subcomp lexe s  o f  the triangula- 

tion. 

T h e r e f o r e ,  t h e  l i n e a r  e x t e n s i o n  o f  a s y m m e t r i c  v e r t e x  m a p  is  a l s o  s y m m e t r i c .  

W e  s ay  t h a t  r = ( r ' ,  r_.~): (Bn)k< ~ R ~k is s y m m e t r i c  f o r  zeros  in the boundary  if,  f o r  

a l l  i, j and x ~ Cij ,  r'  (x ) = 0 i m p l i e s  t h a t  r' (~i) (x  ) ) = 0 and r" (x  ) = r" (l~i j (x ) ). 

L e m m a  6 .2 .  Suppose  r = (r ' ,  r_.~): (B~)k< -+ R ~k is npl  and symmet r i c  f o r  zeros  

in the boundary,  and let a be the ant ipodal i ty  o f  r"  wi th  respect  to the k th  ball. Then 

P ( r ' ,  r"; (Bn)k<) = a .  e ( r ' ;  (Bn)~< -1 x B n - l ) .  

P r o o f  B y  T h e o r e m  2 .2( i ) ,  P ( r ' ,  r"; (B")k<) = ~)~=l P + ( r ' ,  r'--; Xi , i+l) .  B y  T h e o -  

r e m  2 .2( i i ) ,  P + ( r ' , r " ;  Xk.k+l) a P(r ' ;  - n k - I  Bn -1 )  = �9 ( B ) <  • . B e c a u s e ( r ' , ~ i s s y m -  

m e t r i c  f o r  z e r o s  in  t he  b o u n d a r y ,  a l l  t h e  o t h e r  t e r m s  a r e  z e r o .  [ ]  

Nondegeneracy. As in the previous section, in the general case it is not possible to find npl approximations r~' 
satisfying all the required symmetries. Consider a pair (x; ii . . .  ik ) where x ~ bd((B n)k< ), il . . . . .  ik ~ {0, 1 }. 

An antipodality map t~i, or a symmetry map flij changes this pair into (x', i~1 . . .  i~ ) as follows: for cti, x ~ = cti (x) 

and i'j = ij for all j ;  for fls,, x' = fist (x) and i~ = 6, i~ = is and i~ = il for l ~ s, t. The orbit of (x, i l . . - i k )  

is the set of all (x', i '  1 . . .  i~) that can be obtained by applying maps t~ and 13. In the perturbation procedure, 

when perturbing ril...ik at x, for each (x', i I . . . i~)  in the orbit of (x. il .. "ik), the function ri,i...i, ~ mus t  be 

correspondingly perturbed at x'. A conflict appears if there is a pair (x'; i ' 1 .. �9 i~) in the orbit with either x # x'  

but x, x ~ vertices of the same simplex, or x = x ~ and il �9 �9 �9 ik # i '  l �9 - - i~. In this case the perturbation may 

break down. Because of the triangulation, this can only happen, and only in the case x = x',  in the the sets 

Dij and A~j. However, the function gil'"ik, with ii ~- ij : 1 and it = 0 otherwise, is nonzero in Dij and A'.i: 

(we call it a shieM function). Therefore, the symmetry can he allowed to fail in Dij  and AIj. The perturbation 

procedure is modified so that symmetry 13ij is not enforced in the sets  Dij  and A~ but is enforced elsewhere. j '  

Thus, it is correct to assume that the npl approximations have the required symmetry properties as long as, 

in the expansion in which symmetry is used, a shield function remains for each symmetry used. Thus, the 

remainder of this section applies only for j > 2. 

The  spaces  w e  c o n s i d e r  a re  B_< = B_< ( rn l ,  h ;  - . .  ; ms,  ts) = (Bm' )7 • "'" x (B  m,)~.  

A t r i a n g u l a t i o n  o f / 3 <  is e a s i l y  o b t a i n e d  f r o m  t h e  t r i a n g u l a t i o n s  o f  i t s  f a c t o r s  as  t h e  

b a r y c e n t r i c  s u b d i v i s i o n  o f  t he  p r o d u c t  ce l l  c o m p l e x .  

R e c a l l  t ha t ,  f o r  # i ,  r~ '  d e n o t e s  t h e  np l  a p p r o x i m a t i o n  to  g ; '  ( e a c h  h a s  2 k - 1 c o m -  

p o n e n t s ) ,  a n d  t h a t  gU, and r u' d e n o t e  t h e  c o r r e s p o n d i n g  f u n c t i o n s  n o t  i n c l u d i n g  t h e  k,* k.* 

c o m p o n e n t s  w i t h  a n t i p o d a l i t y  v e c t o r s  0 i -  110 ~ - i .  

L e t  r n l ,  t l ; . . .  ; ms,  ts be s u c h  t h a t  )--~,~=1 mit i  = to and ~-~=l ti = k. W e  n e e d  to  

c o m p u t e  

P:r~'~ k, , ,  rkU2 , . . . ,  rkuJ; /3< ( m l  , _  t l;  . . . ' ,  ms ,  ts)) .  (*) 

Le t  r~.q) b e  t h e  c o m p o n e n t  o f  rff'  w i t h  a n t i p o d a l i t y  v e c t o r  

1)p,q = 0 t' . ' '  0 tp- '  l q O l P - q o  tp . . . . .  0 I~, 

~' w i t h  u'  c o n s i s t  o f  t h e  c o m p o n e n t s  r(p,q) f o r  1 < p < s and 2 <_ q < tp, a n d  le t  r(p) 

2 < q < tp. L e t  r lz' be r lz' w i t h o u t  t h e  c o m p o n e n t s  r ~' 1 < <_ 2 < < ~ k . A  k.* (p.q), -- p S, _ q tp. 
Izl Izl I.tl 

T h u s ,  rka', = r~. a ,  r<l; . . . . .  rcs ~ . 
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T h e o r e m  6.3. For j > 2 ,  (*) is equal to 

P(rk,A rklz2, . . . ,  rkUl", (Bml X ( l m ' - l )  t1-1) X " ' "  >( (B m" • (Bm ' - l ) t ' - l ) ) .  (**) 

Proof. As noted above, 

the required symmetries 

computation: 

( . )  ----- 

we can guarantee the existence of  npl approximations with 

only for j > 2. Using L e m m a  6.2, we have the fol lowing 

pcr lZ l  tz2 izj. (Bml)tt< •  • ( B m , ) ~ )  
k . . , r k  , . . . , r  k , _ 

, r k ; ( B ~ I I ) / <  1 X " ' '  X ( B m ' ) ~ )  
= - -  ~ r k , A ,  r ( 1 )  �9 �9 � 9  r ( s ) ,  �9 �9 � 9  _ _ 

D (  Izl Iz~ I~] Iz2 Izj. 
- - \ r k ,  A, r(2 ), . . . ,  r(s ), r k , . . .  ~r  k 

( a  ml x ( a m l - l )  t l - 1 )  X ( e m 2 ) ~  •  X ( B m ' ) ~ )  

~1" ILl JLI I s r : 2 ,  r~J . 
~- - -~rk ,&,  r(3 ), �9 . . ,  r(s ), �9 . .  , , 

( B  ml • ( B i n 1 - 1 )  t l - l )  • ( B  m2 • ( B m 2 - 1 )  t2-1)  X ( B m s ) ~  X ... X ( B m ' ) ~ )  

I'Zl (B m' x • • (B m" • (Bm'- l ) t*- l ) ) .  [] P(rk,z~, r~2,...,rkt~J', ( B r a , - 1 ) t l - l )  . . .  

Thus, the problem has been reduced to the computat ion of  the perm of  a matrix. We 

do not know how to compute this term in general. Certainly, we can compute  particular 

cases by hand or with the help of  a computer. There is one case we can do with some 

generality: a result for j masses can be extended to j '  = j 2 m masses using a computat ion 

similar to the one in the previous section. 

L e m m a  6,4. Let j '  = j 2  m and m~ = (mi + 1)2 m. Then 

tzl P(rk.z~, r ~ 2 , . . . , r  k~j', ( B  ml x ( B i n ' - l )  t l - 1 )  x . . .  x ( B  m" x ( B m ' - l ) t ' - l ) )  

= ' . . ,  r k ; ( B  m, x (B in ' , -1 )  t ' - l )  • . . .  • ( B  m; • ( B m " - l ) t ' - l ) ) .  

Proof. Let  mi(1) ---- (rai + 1)2 l - 1, L(1) = ~-~=l (mi(l)ti  + 1), a n d k  = ~-'~=1 ti. Let 

! 

At  ~--" pe r l nm I (l)+1 .ra I (I), ..,,ra 1 (1), ...,ms (1)+ 1 ,m, (l), ...,m, (I) A I  

where Al is an L(I) x k matrix that consists of  all nonnull  0-1 k-vectors repeated j 2  m 

times, except the vectors Vp,q, 1 < p < s, 2 < q < tp, which are repeated j 2  m - 1 

t imes (to facilitate the argument we have included all the vectors 0 i-110 k - i  and added 

one to the size of  each column). The P term on the left in the statement is A0 and 

the P term on the right is Am; so we want to show that A0 = Am. For  this we show 

that AI = Al-1 by constructing an involution on the terms contributing one to the sum 

defining Al.  Let At,w be those rows of  Al equal to vector w. Let  nw be the number  of  

rows in At,w. nw = j 2  ra for w # Vp.q nonnull and nw = j 2  m - 1 for w = Vp,q (in 

particular, for m >_ 1, nto is even or odd, respectively).  Establish an involution Yw for 

the rows o f  Al,w so that Yw has no fixed point if  w # Vp.q, and Yw has exact ly one fixed 

point Zp.q i f  w = Vp,q (like y of  Lemma 5. l). Each Yw induces an involution y* on the 

set of  those 77 in 79(m1(I) + 1, ml (l) . . . . .  ml (l) . . . . .  ms( l  ) + 1, ms(l)  . . . . .  ms(l))  that 
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contribute one to A I. Then At is equal to the parity of the fixed points of all y*. Let 

be such a fixed point. Then r /must  map Zp,q to a column of odd size; the only way 

this is possible is Yl(Zp,q) = )"~/P--11 t/ -~- q. It follows that At = At-1 (after noting that 

( m i ( 1 )  + 1)/2 = m i ( l  - 1) + 1 and ( m i ( 1 )  --  1)/2 = m i ( l  - -  1)). [] 

Lemma 6.4 implies 

Theorem 6.5. For j > 2, i f  we conclude that A(j ,  k) < d by computing a correspond- 

ing term (**), then A ( j ' ,  k) <_ d', where j '  = j 2  m andd '  = d2 m. 

6.1. Summary of Results 

In the following table the second colunm shows the space in which a solution exists for 

j = 2 according to Theorem 6.3, the third column shows the lower bound for A( j ,  k) 

from Theorem 4.7, and the fourth column shows the upper bound for A (j,  k) that follows 

for j = 2 m from the j = 2 case by Theorem 6.5 (this represents an improvement over 

the upper bound A(j ,  k) < j2k-l) .  Of course, the first row is just the ham-sandwich 

theorem, and the case k = 2, j = 2 was also already known. The results for k = 4, 5, 

j = 2, are not tight. 

k = 1 B 1 j 2 j / 2  = j 

k = 2 (B2)2< 3 j / 2  3 j / 2  

k = 3 (Ba) 2 x B 3 7 j / 3  5 j / 2  

k = 4 (BS) 2 x (BS) 2 15j /4  9 j / 2  

k = 5 (B14) 3 • B 11 • B 4 31j /5  15j /2  

We can now explain other entries in the first table of the Introduction. Again, lower 

bounds follow from Theorem 4.7. A(2, 3) < 5 and A(4, 2) _< 6 appear in the previous 

table. The upper bounds that we have for A(1, k) are obtained as follows: A k-partition 

can be obtained by choosing a bisector (in an arbitrary direction) and then a (k - 

1)-partition for the two resulting masses; thus, A(1, k) < A(2, k -- 1). For example, 

A(1, 3) < A(2,2)  ---- 3, A(1,4)  < A(2,3)  = 5, and A(1,5)  < A(2,4)  < 9 (which 

appears in the previous table). For k = 3, this results in a tight bound, but possibly not 

for k ---- 4, 5 (assuming the lower bound is tight). 

Finally, we can obtain a small improvement over the bound A (1, k) < 2 k-1 as follows: 

note that, for k' < k, A(1, k) < max(2 k-k'- l ,  A(2 ~-k', k')) (first obtain a (k - k')- 

partition of one mass and then a k'-partition of 2 ~-k' masses); thus, using k' = 5 above, 

we have that, fork > 6, A(1, k) < (15/32)2 k-1. 

7. Concluding Remarks 

Equipartition by Orthogonal Hyperplanes. Using a trick of Hadwiger [9], equipar- 

tition can be obtained by orthogonal hyperplanes. Note that any hyperplanes equipar- 
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titioning a uniform mass distribution on a ball are orthogonal. Therefore k-partition of 

j + 1 mass distributions implies k-partition by orthogonal hyperplanes of j mass distri- 

butions. For example, in R 5, 3-partitions by orthogonal hyperplanes are possible. This 

is probably not an efficient way to obtain equipartition by orthogonal hyperplanes since, 

in R 2, 2-partition of a mass distribution by orthogonal lines exists, but 2-partition of two 

masses does not. 

Equipartition by Algebraic Hypersurfaces. In R a, equipartition of any j mass dis- 

tributions is always possible by k algebraic hypersurfaces of degree sufficiently large (but 

the orthants are in general disconnected). For this embed a mass distribution of R d into 

R d' where d' is such that (j, k)-partitions by hyperplanes exist in R d'. For the embedding, 

map (Xl . . . . .  xd) to (ml (xl . . . . .  Xd) . . . . .  md,(X~ . . . . .  Xd)), where the mi(xl  . . . . .  Xd) 

are different monomials (different from one) in the variables xl . . . . .  Xd of degree at 

most D. These monomials are linearly independent, so the embedded R d does not lie 
D + d  _ _  d' in a hyperplane. D must satisfy the constraint ( d ) > + 1, since the term in the 

left is the number of monomials in d variables of degree at most D. For example, the 

result that (I ,  4)-partitions by hyperplanes exist in R 5 implies that (1,4)-partitions by 

quadratic curves exist in R 2. In a particular case, more can be said about the type of 

hypersurface: for the well-known embedding (xl . . . . .  xd) into (xl . . . . .  xd, ~]d= l X/2), 

the hypersurfaces are spheres, therefore (j ,  k)-partition by hyperplanes in R a implies 

(j ,  k)-partition by spheres in R d-1. For example, we conclude that (1, 4)-partitions by 

spheres are possible in R 4. If d = 1, the embedding is in the moment curve Md, and 

the algebraic surfaces become points. For example, it is obtained that given j mass dis- 

tributions in R I, there are j points that 2-partition them (d' = j and the j points are 

the intersections of the moment curve with the ham-sandwich cut hyperplane). This has 

been investigated by Goldberg and West [7] and by Alon and West [1]. 

Algorithms. We consider here partitions for point sets. There is a natural procedure 

to search for a zero of r = (r' ,  r") when its existence is guaranteed by the parity 

argument, that is, we know that P(r; X) = 1. Decompose the domain X into pieces Xi, 

i = 1 . . . . .  N, some N, and compute P+( r ' ,  r"; bd(Xi)) for each i. This must be one 

for at least one Xi. Then recurse on one such Xi. This is the approach used in [ 11 ] for 

an algorithm that finds a ham-sandwich cut for point sets (of course, some details need 

to be worked out). This, however, does not provide a significant improvement over an 

exhaustive search. It would be interesting to find more efficient algorithms, or to show 

that computing these partitions is hard (e.g., in the sense of [15] or [4]). Computing 

approximations to partitions (say each orthant has at most a fraction 1/2 k + * of the 

points) can be done in linear time using E-approximations (although with large constants 

that depend on the dimension). 

Open Problems. The obvious open problem is to determine tight bounds for A(j ,  k). 

At least it would be interesting to show that the condition A (j,  k) _> j (2 k -- 1 ) /k  is tight 

for infinitely many values of k (say k is a power of 2, recall we have results only for 

small values of k). Two problems related to the Borsuk-Ulam theorem on a product of 

balls were raised in Section 3. Plus, of course, the question that motivated all this, what 

about A(1,4)? 
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Appendix: Preliminary Definitions 

Simplieial Complexes and Triangulat ions.  Consider X _c R ~ compact and full-dimensional. Let bd X 

denote its boundary. A finite collection C of  cells (compact convex polyhedra) in R n is a (cell) complex if (i) 

o ~ C implies r ~ C for each face r of r and (ii) if r a2 ~ C, then or1 fq a2 is either empty or a face of both. 

The k-skeleton C Ct) of C is the subcomplex of C consisting of all cells in C of dimension at most k. Thus, C (~ 

is the set of  vertices of C, and C = C r where the dimension n of C is the maximum dimensionality of  any 

cell in C. A k-simplex is the convex hull o fk  + 1 affinely independent points cony{v0 . . . . .  vk}. A complex is 

simplicial if it consists of  simplices. The underlying space of C is ]CI = [--J~C ~" For x ~ ICl, the carrier of 

x in C is the unique cr ~ C such that x ~ int(cr), the interior of ~r. A triangulation of X is a simplicial complex 

7" and a homeomorphism between lT"l and X.  The barycentric coordinates o f x  ~ 17-1 are the unique numbers 

E' to . . . . .  tt such tha tx  = i=otilJi wherecT : c o n v { v o  . . . . .  v~} ~ C i s t h e c a r r i e r o f x i n  T" (O < ti < l a n d  
t 

~-'~-i=0 li = 1). 

Bar~cent r icSubdiv is ion .  The barycenter of a k-simplex r = cony{v0 . . . . .  vt} is the point 6, = 

( E i = o V i ) / ( k  + 1) (i.e., the point with barycentric coordinates ti = l / ( k  + 1)). The barycentric sub- 

division Sd(7.) = Sd(7.  tn)) of a simplicial complex 7- is defined recursively by Sd(7  "~~ = ,/-to) and 

Sd(7.  (0) = Sd(7. (i-1)) U {~., ~r , z: o" E 7" (i) - 7" (i-1), l" E Sd(7-(i-l)) ,  r C. bd(o)}, where p * a  denotes 

the cone conv({p} tO a )  for p a point and cr a simplex (a simplex is replaced by the cones from its barycenter 

to the simplices triangulating its faces recursively). The lth barycentric subdivision Sd / (7-) of  7" is defined by 

Sd I (7-) = Sd(7.) and Sd/(7.) = Sd(Sd t-1 (7")). The "fineness" of a triangulation C is measured by the mesh 

size, mesh( ' /-)  = maxoe7- diam(~r). It is verified that mesh(Sdt(7")) _5< (d / (d  + 1)) t mesh(7.) ,  so taking l 

sufficiently large, mesh(Sd t (7-)) can he made arbitrarily small. The barycentric subdivision can also he applied 

to any (nonsimplicial) cell complex C as long as the barycenter ~ of a cell ~, is defined. If y is the product of 

simplices ~, = cq x �9 �9 �9 x cry, then the barycenter ~, is the product of the barycenters 7; = 6,1 x �9 �9 - x 6,t. In 

general, the barycenter is the center of mass of  the cell. The barycentric subdivision of a cell complex C gives 

a triangulation of ICI. 

P i ecewi seL inea rApprox ima t ions .  A vertex map on a triangulation T. is a map ~o: 7. ~~ ~ Rn. A piecewise 

linear function r on [7"1 is defined from a vertex map by linear extension within each simplex. More precisely, 

for x ~ 17"1, r (x) = ~-~.~=o ti ~(vi ) where cony{v0 . . . . .  vt} is the carrier of  x and to . . . . .  tt are the barycentric 

coordinates of x. Given a function f :  X ---, R n, a piece'wise linear E-approximation r of f is a piecewise 

linear function on a triangulation 7- of X so that II f ( x )  - r (x ) l l~  < ~ (for simplicity we use the max norm) for 

all x ~ X. Since X is compact, f is uniformly continuous. Therefore, given an initial "coarse" triangulation 

7- of X, there is an integer I such that if r is the piecewise linear extension over 7." = Sd1(7-) of  the vertex 

map ~(v)  = f ( v ) ,  for v ~ 7" *~~ then r 6-approximates f .  
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