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Video-on-Demand (VoD) services are very user-friendly, but also complex and resource demanding. Deployments involve careful
design of many mechanisms where content attributes and usage models should be taken into account. We define, and propose
a methodology to solve, the VoD Equipment Allocation Problem of determining the number and type of streaming servers with
directly attached storage (VoD servers) to install at each potential location in a metropolitan area network topology such that
deployment costs are minimized. We develop a cost model for VoD deployments based on streaming, storage and transport costs
and train a parametric function that maps the amount of available storage to a worst-case hit ratio. We observe the impact of
having to determine the amount of storage and streaming cojointly, and determine the minimum demand required to deploy
replicas as well as the average hit ratio at each location. We observe that common video-on-demand server configurations lead
to the installation of excessive storage, because a relatively high hit-ratio can be achieved with small amounts of storage so
streaming requirements dominate.
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1. INTRODUCTION

Deployments for services such as Video-on-Demand (VoD) that use Internet resources are today still
very limited in scope, but there is a strong belief among telecommunication companies that this market
will expand exponentially in the next few years. Many service providers wish to take advantage of
this opportunity and are planning the deployment of large-scale Video-on-Demand systems [Markman
2006]. VoD dedicates a single channel to each user and allows the video to be started at any time with
VCR-like controls (pause, rewind, fast-forward, etc.). While being very user-friendly, this type of service
is complex and resource demanding. Deployments of efficient IP network-based VoD services involve
careful design of many mechanisms to route requests, and deliver, distribute and allocatecontent in
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the network [Masa and Parravicini 2003; Wang et al. 2002; Krishnan et al. 2000; Laoutaris et al. 2005;
Wauters et al. 2005]. Furthermore, content attributes and usage models should also be taken into
account [Couch 2005].

The high bandwidth requirements motivate distributed architectures with replication of content,
but such architectures imply a substantial increase in storage requirements, a non-negligible factor
given the large size of video files. An important and complicated task part of the network planning
phase of these distributed architectures is resource allocation. Two emerging trends have made this
nontrivial problem even more complex: peer-to-peer and mobile delivery. By accounting for the re-
sources of each user, peer-to-peer architectures offer better scaling capabilities and represent a promis-
ing alternative to reduce high bandwidth and storage requirements. The peer-to-peer architectures
do not offer any serious benefits in the star topologies of many metropolitan area networks where
VoD network deployments will occur, and there are many other practical issues that must be ad-
dressed before a large-scale implementation becomes feasible [Thouin and Coates 2007a]. The major
trend is the emergence of video delivery to mobile devices, such as portable phones. Mobile users
are interested in accessing a library (and/or their personal library) of videos wherever they go; hav-
ing a video delivery service that follows them around the world. There is still ongoing research try-
ing to determine the best way to approach this problem of meeting delivery requirements for mobile
users.

From these tendencies, it is clear that there is an urgent need for design tools that can determine
how best to expand upon existing network infrastructure and where to deploy storage and streaming
devices. To minimize deployment costs of proxy-based systems, one must determine the equipment
to install at each of these proxy sites to reduce as much as possible costs related to transport. The
streaming servers, called VoD servers, commonly have directly attached storage, a structure easier
to deploy and manage. These benefits come at a cost, however, because the planning phase becomes
more challenging: optimizing resources is more difficult when streaming and storage requirements
need to be determined cojointly. In this paper, we define, and propose a methodology to solve, the VoD

Equipment Allocation Problem (VoD EAP) of determining the number (and type) of VoD servers to
install at each potential location in a metropolitan area network (MAN) topology such that deployment
costs are minimized. Our design tool is the first to not only calculate how much of a given library of
video objects should be replicated at each video server, but also to explicitly describe the specifications
(cost, streaming and storage capacity, etc.) of the equipment that should be deployed to minimize cost.
This information is very valuable for equipment manufacturers. By using the tool to simulate a variety
of different scenarios, fabricators can obtain precious insight into how to optimize their products to best
suit the needs of providers.

The rest of this paper is organized as follows. In Section 2, we discuss related previous work and
outline our main contributions. In Section 3, we define the VoD Equipment Allocation Problem as an
optimization problem. The first step involved in solving this problem is developing a cost model for VoD
deployments; we propose such a model based on streaming, storage and transport costs in Section 4.
We also take into account file popularity by training a parametric function that maps the amount
of available storage to a worst-case hit ratio based on simulations we ran using a file access model
suggested by Gummadi et al. [2003], and Section 5 describes this procedure. Section 6 characterizes
our novel heuristics to solve the VoD EAP and two variations (one where many different models can be
installed at a single location and another where streaming and storage are optimized independently).
Section 7 presents results from simulations and the interactive tool that we developed that integrates
our cost model and heuristic. Finally, we summarize our observations and propose future research
avenues in Section 8.
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2. RELATED WORK

Many known optimization techniques used in the context of content delivery networks (CDNs), such
as the replica placement and facility location problem [Cornuejols et al. 1990], have been adapted to
VoD networks or media delivery design problems: the capacitated facility location problem [Wu et al.
2006], the placement of replica servers [Karlsson et al. 2002; Krishnan et al. 2000; Almeida et al.
2004] or the placement of video objects [Tang et al. 2004]. However, Laoutaris et al. [2005] provide
strong evidence that solving the replica placement or video placement problem independently of the
resource allocation problem usually leads to significantly suboptimal solutions. They define the storage

capacity allocation problem as determining the location of each object from a set to achieve minimal
cost. Although this approach establishes storage requirements at each location, the authors do not
explicitly consider available equipment and streaming requirements. Wauters et al. [2005] address the
problem of determining the equipment required for transport (the number of ports, multiplexers and
switch ports) at each candidate network nodes, but do not consider storage requirements.

Although many of the cost functions proposed in previous work take into account the cost of servers
[Kim and Choi 2003; Nguyen et al. 2003], they typically only include start-up and storage costs and
neglect the streaming requirements at each location. In Thouin et al. [2006], we introduced the VoD

Equipment Allocation Problem as the task of determining the number of VoD servers to allocate to
each potential replica site. We use a network cost function based on the hit ratio [Yang and Fei 2003]
that includes streaming, storage, server start-up, and transport costs. This problem assumed that the
type (model) of equipment installed at each location had been pre-specified. This prespecification is
a challenging task in and of itself and has a dramatic impact on the eventual cost of the system.
In Thouin and Coates [2007b], we reformulated the problem to determine both the number and model
of the servers to install at each location. Instead of fixing the streaming and storage capacity per VoD
server at each site (the approach used in Thouin et al. [2006]), we require only the prespecification of a
set of available VoD servers. We developed heuristics to select the model at each location that minimizes
total network cost.

In this article, we extend the work presented in Thouin et al. [2006] and Thouin and Coates [2007b].
We present heuristics to solve three variations of the VoD EAP, conduct a more detailed analysis of our
observations and address practical deployment considerations. We propose two variations to the single-
model EAP (SMEAP): the relaxed EAP (REAP) and the multimodel EAP (MMEAP). In the multimodel
equipment allocation problem, we modify the assumption that a single model must be chosen for each
location by permitting multiple VoD server models from the provided set to be installed at each replica
site. The flexibility of combining models with different streaming and storage capacity at each location
enables us to perform fine tuning that should lead to lower-cost solutions. In the relaxed EAP, we
allow the streaming and storage to be optimized independently; the resulting solutions establish lower
bounds on the cost of solutions for the single-model and multimodel equipment allocation problems.

2.1 Contributions

Most previous work has focused on the placement of video servers and the allocation of video objects
in the network, neglecting the capabilities and limitations of the server equipment. We formulate the
design task as a constrained optimization problem that focuses on the number and configuration of
video servers at each location in the network. Our contributions to solving this problem are:

(1) We explicitly specify the equipment (quantity and model of video server) that should be deployed
to obtain a cost-efficient design. Due to the complexity involved in solving this problem, we devise
a novel heuristic to perform the optimization procedure.
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Fig. 1. Pictorial depiction of the VoD equipment allocation problem. The diagram shows the logical connectivity among the
origin, the N = 5 clusters of clients, and the potential replica server locations. Clients’ requests (shown as movie stream arrows)
are served by replicas (if content is available) or by the origin. The key shows the specifications of W = 3 different VoD server
models. We show the number and type of VoD servers installed at each potential location. The optimal solution can include
clusters without any servers at a potential replica site.

(2) We develop accurate models for all of the factors involved: the available infrastructures, the network
topology, usage of the system, the popularity of videos, behavior of customers, and bandwidth and
storage requirements. Specifically, to ensure the functionality of the proposed systems, we establish
a relationship between storage and the utilization of a video server that relies heavily on users’
behavior.

(3) We integrate our method in a prototype software package that allows the user, through a graphical
user interface, to determine the number and model of streaming and storage devices to install at
strategic locations in the topology such that deployment costs are minimized. The tool provides
the ability to: (i) create topologies and models of network components and VoD infrastructures and
(ii) visualize the cost-efficient design generated.

3. VOD EQUIPMENT ALLOCATION PROBLEM

We consider metropolitan area networks (MANs) divided into N clusters of clients connected in a star
topology through an origin server that stores the entire library of available objects to users, as depicted
in Figure 1. Our focus on such (logical) topologies is motivated by their prevalence in metropolitan areas.
Each cluster has worst-case demand Mi (peak usage demand) and is colocated with a potential location
to install a proxy server (replica). Replicas serve, using unicast delivery, a fraction of the incoming
demand (from their associated cluster) equal to xi by storing a portion zi of the library of size L (in
TB). We assume that all requests that cannot be served by the replicas are handled directly at the
origin as opposed to alternate replicas, a hierarchical architecture also used in Mundur et al. [2004].
This architecture obviates the implementation of sophisticated routing mechanisms that complicate
the planning of resources and prediction of demand at each node.

3.1 Single-Model Support

The VoD equipment allocation problem (EAP) consists of determining the number and model of VoD
servers to install at each location such that the deployment cost is minimized under worst-case demand.
Any solution that satisfies streaming, storage and bandwidth requirements at times of peak usage also
meets the requirements at any other time. Figure 1 depicts a potential solution to the problem where
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three different models are available. We denote the set of available VoD server models as W = {w j :
j = 1, . . . , W }, where w j is a VoD server with streaming capacity s j Gbps, storage capacity t j TB. We
define n = [n0, n1, . . . , nN ], v = [v0, v1, . . . , vN ] and, x = [x0, x1, . . . , xN ] where xi is the fraction of the
demand Mi served by the replica, ni is the number and vi ∈ W is the model of VoD servers installed
at cluster i (where i = 0 is used to denote the origin server). The optimization problem is expressed as
follows:

(n∗, v∗, x∗) = arg min
n,v,x

Cv(n, x), (1)

where Cv(n, x) is the total cost of the network for a fixed v. We also define the following constraints:

h

(
ni · ti

L

)
≥ xi, i = 1, . . . , N (2)

ni · si ≥ xi · Mi, i = 1, . . . , N (3)

n0 · t0 ≥ L (4)

n0 · s0 ≥

N∑

i=1

(1 − xi) · Mi. (5)

Constraints (2) and (3) state, respectively, that there should be sufficient storage and streaming
capacity at each location i to serve a fraction of the demand equal to xi. Note that xi refers to the
fraction of the worst-case demand that can be served; for demands smaller than Mi, the fraction of
the demand could be greater than xi. In (2), we introduce h : [0, 1] → [0, 1], a function that maps the
fraction of the library stored (a function of the amount of storage) to an upper bound on the achievable
hit ratio. The hit ratio is the fraction of video requests that can be served by a replica. We describe
an example h in Section 5. Constraints (4) and (5) ensure that enough storage and streaming is in-
stalled at the origin to store the entire library and satisfy un-served requests from every cluster of
clients.

3.2 Multimodel Support

In the formulation of the equipment allocation problem, only one server model can be installed at each
replica (single-model EAP). A possible extension is to allow multiple models at each location (multimodel
EAP). For the MMEAP, we redefine ni as a vector ni = [ni(0), ni(1), . . . , ni(W )] where ni( j ) represents
the number of servers of model w j installed at cluster i. The multimodel equipment allocation problem
(MMEAP) is expressed as follows:

(n∗, x∗) = arg min
n,x

CW (n, x), (6)

where n = [n0, n1, . . . , nN ] and CW (n, x) represents the deployment cost for a set of available VoD servers
W. Constraints (2)–(5) are replaced by (7)–(10):

h

(∑W
j=0 ni( j ) · t j

L

)
≥ xi, i = 1, . . . , N (7)

W∑

j=0

ni( j ) · s j ≥ xi · Mi, i = 1, . . . , N (8)
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W∑

j=0

n0( j ) · t j ≥ L (9)

W∑

j=0

n0( j ) · s j ≥

N∑

i=1

(1 − xi) · Mi. (10)

3.3 No VoD Server Restrictions

We define a relaxed version of the EAP (REAP) where we do not consider VoD servers and hence can
adjust the streaming capacity and storage at each location independently. The motivation for solving
this problem is to observe the impact of video servers, which have fixed ratios between storage and
streaming capacity, on the deployment cost. The solution to the REAP problem provides a lower bound
on SMEAP and MMEAP solutions. Because streaming and storage are independent, we can solve this
problem by minimizing solely in terms of xi and zi:

(z∗, x∗) = arg min
z,x

C(z, x), (11)

where C(z, x) is the deployment cost of the network when a fraction of the demand equal to xi is served
at replica i and a fraction of the library zi is cached at the replica. In that case, the only constraint is
the following:

h(zi) ≥ xi, i = 1, . . . , N . (12)

4. NETWORK COST MODEL

To make the optimization problem defined in Section 3 concrete, we first derive an expression for the
total deployment cost C under the relaxed version of the EAP. In (13), we express the total cost C′ as
the sum of the costs of transport and servers (which include startup, storage and streaming costs). We
introduce four constants, α′, β ′, γ ′, and κ ′, that represent, respectively, the startup cost of one server,
the cost of storing 1 TB, the cost of streaming 1 Gbps, and the cost of transporting 1 Gbps from the
origin to a cluster of clients.

C′(z, x) =

N∑

i=0

α′ · ( yi)︸ ︷︷ ︸
startup

+ β ′ · ⌈zi · L⌉︸ ︷︷ ︸
storage

+ γ ′ · ⌈xi · Mi⌉︸ ︷︷ ︸
streaming︸ ︷︷ ︸

server

+ κ ′ ·
[
(1 − xi) · Mi

]
︸ ︷︷ ︸

transport

. (13)

with yi = 1(xi > 0) where 1(x) is the indicator function. Note that we round up the streaming and
storage requirements to the nearest integer and keep fractional values for the amount of bandwidth to
transport because we assume that streaming and storage devices are used solely for the purpose of the
VoD network whereas transport infrastructures can be used for other applications.

As one of the objectives of installing replicas is to reduce transport costs, it makes sense to express
all other costs relative to κ ′. We normalize C′ by dividing the expression inside the summation in (13)
by κ ′ and then setting κ ′ = 1, and obtain the following formulation:

C(z, x) =

N∑

i=0

α · ( yi) + β · ⌈zi · L⌉ + γ · ⌈xi · Mi⌉ + (1 − xi) · Mi, (14)
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where α, β and γ are the ratios between the cost of start-up, storage, and streaming, and the cost of
transport. Because the fraction of the demand served at the origin, x0, is always equal to 1, we can
extract the origin from the summation:

C(z, x) = α + β · ⌈L⌉ + γ

⌈
N∑

i=1

(1 − xi) · Mi

⌉

︸ ︷︷ ︸
origin

+

N∑

i=1

α · ( yi) + β · ⌈zi · L⌉ + γ · ⌈xi · Mi⌉︸ ︷︷ ︸
replica

+ (1 − xi) · Mi︸ ︷︷ ︸
transport

. (15)

As previously mentioned, in practice, streaming and storage are often tied together because of the
physical structures of VoD servers. To solve the single model EAP, we modify C such that it is expressed

in terms of the model of the servers v instead of β and γ . We define Bi
�
= β · ti + γ · si; this is the ratio

between the cost of the VoD server installed at i (with streaming capacity si and storage capacity ti)
and the transport of 1 Gbps from the origin to a cluster. By setting ⌈zi · L = ti · ni⌉ and ⌈xi · Mi⌉ = si · ni

in (14), we derive an expression for Cv:

Cv(n, x) =

N∑

i=1

α · ( yi) + Bi · ni︸ ︷︷ ︸
replica

+ (1 − xi) · Mi︸ ︷︷ ︸
transport

+ α + B0 · n0︸ ︷︷ ︸
origin

, (16)

where

n0 = max

[
L

t0
,

∑N
i=1(1 − xi) · Mi

s0

]
. (17)

In the multiple-model EAP, the cost of servers, and the streaming and storage capacity must be
calculated as a sum over all models in W instead of a single model vi. Thus, we modify the expression
for Cv and define CW , the deployment cost for an available set of VoD server models W:

CW (n, x) =

N∑

i=1

α · ( yi) +

[
W∑

j=1

B( j ) · ni( j )

]

︸ ︷︷ ︸
replica

+ (1 − xi) · Mi︸ ︷︷ ︸
transport

+ α +

[
W∑

j=1

B( j ) · n0( j )

]

︸ ︷︷ ︸
origin

, (18)

where B( j ) is the cost of model w j relative to transport and ni( j ) is the number of servers of model w j

installed at cluster i.

5. HIT RATIO FUNCTION

The fraction of the demand xi a replica can serve is limited by both the streaming and storage capacity
available. It is straightforward to determine an upper bound on the maximum value of xi based on the
amount of streaming capacity installed at a replica i:

xi ≤
ni · si

Mi

. (19)
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However, satisfying this inequality is not sufficient to guarantee that a replica can serve a fraction of
the demand equal to xi. We must also ensure that sufficient requests are for files stored in the cache. We
assume that the cache is regularly updated and stores the most popular objects. We wish to determine
a lower bound on the fraction of all requests from clients in a cluster for objects stored in the cache of its
associated replica, a value we will refer to as the hit ratio hi, based on the amount of storage available.
A hit ratio smaller than the fraction of worst-case demand served at any location (hi < xi) leads to a
suboptimal and defective design: available resources at the replica are underutilized whereas the link
to the origin and the origin itself are overutilized. On the other hand, the scenario where hi > xi does
not create any issues as the demand is simply rerouted to the origin server using available resources
while the replica is utilized at full capacity. Therefore, this lower bound assures that by installing a
certain amount of storage, the replica is capable of serving a minimum fraction of requests xi = hi at
peak usage time, and the link between the origin and cluster i will not be utilized over its capacity
((1 − xi)Mi) by requests for objects not stored in the cache.

5.1 File Access Model

The relationship between storage and hit ratio relies heavily on users’ behavior. With access to user
data (rental statistics from previously deployed VoD systems or other similar services), one can design
an h to fit the data. For example, based on a measurement study for a VoD system that offers free
content, Yu et al. [2006] claim that video popularity match the Zipf distribution. Here, however, we
consider a pay-per-view system where we expect the behavior of the users to be different. We derive
a function h based on a file access model that is driven by Zipf ’s Law, but that takes into account
fetch-at-most-once and new arrivals factors [Gummadi et al. 2003]. Albeit this is just a candidate model
for user behavior in the VoD context, it is still a reasonable one: VoD system users rarely access the
same file twice and popularity of titles diminishes in time because new files, periodically added to
the system, become the most popular titles. Although it is possible to estimate the worst-case hit
ratio through simulations, it is impractical to run a full simulation for every evaluation of the cost
function Cv, which must be performed thousands of times during the optimization procedure. Our
objective is to train a parametric function that provides an estimate of the worst-case hit ratio based on
specified system parameters in a few milliseconds compared to the tens of minutes simulations would
take.

We design a simulation environment (described in Algorithm 1) with a library containing Y files
and a cache with X · Y files where files are accessed according to the model described by Gummadi
et al. [2003]. The users’ requests are generated using a Zipf distribution with coefficient α = 1. The
probability of selecting the file at rank i in library R j is given by p j (i):

p j (i) =
i−α

∑
i∈R j

i−α
.

Files that have already been fetched by the user cannot be selected again (fetch-at-most-once-model).
After every request a user makes, the selected file is removed from his library R j and file selection
probabilities are recalculated. New files are introduced in the library R and each library R j at a
specified rate. The insert position of a file is determined using a Zipf distribution (with α = 1); the
ranks of existing files which are less popular are decreased and selection probabilities are recalculated.
We calculate the hit ratio by dividing the number of requests for objects in the cache by the total number
of requests.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 1, Article 5, Publication date: October 2008.



Equipment Allocation in Video-on-Demand Network Deployments • 5:9

Table I.
Set of Values Used for Parameters of the Hit Ratio Simulation

Environment
Parameter Values

NW Number of weeks 10, 20, 35, 50, 100
NP Number of clients 100, 1000, 2500, 5000
NC Number of new weekly clients 0, 25, 50, 100
X Cache ratio size 0.1, 0.2, 0.3, 0.5, 0.7, 0.9
Y Initial library size (in thousands) 1, 2.5, 5, 6.5, 8, 10
Z Number of new weekly files 0, 10, 25, 50, 75, 100

Algorithm 1. Sequence of events for our discrete-time simulations used to determine our hit ratio function h.

foreach week do

Clients are added to the population at a specified rate;

if file arrival rate > 0 then

for each new object o do

Determine insert position of o in library R;

Recalculate popularity distribution p(i);

end

end

Fill cache with most popular files

for each client do

Remove already requested objects from library R j ;

Recalculate popularity distribution p j (i);

Make a request for an object in R j according to popularity distribution;

end

Sort objects in R according to the total number of requests;

Calculate weekly hit ratio;

end

5.2 Parametric Function Training

We ran simulations using a wide range of values for the parameters described in Table I. From our
simulation results, we determined that the only parameters that have a significant impact on the hit
ratio are the number of files in the library Y , the number of files added every week Z and the cache
size ratio X . For the rest of our simulations, we used NW = 30, NP = 1000 and NC = 50.

We generated 864 points for the hit ratio H by running the simulation four times for 216 possible
combinations of X , Y and Z . The worst-case value of H is obtained by taking the minimum value
observed during all iterations of the four simulations (NW × 4 = 120). In Figure 2, we observe the
linear behavior of H as a function of log(X ) for different values of Y and Z and propose the form in (20)
for our function h, where 0 ≤ X ≤ 1, 1000 ≤ Y ≤ 10000 and 0 ≤ Z ≤ 100. We construct the bilinear
functional form for A and B represented respectively by (21) and (22). In Figure 3 and Figure 4, we
show the fitting curves generated with those functional forms with the dashed lines (- -) and the actual
values of A and B with the markers. The curves fit the markers for most of the sets depicted; the lines
for the file arrival rate Z = 0 and library size Y = 1000 in both figures do not represent the actual
value of A and B as accurately as the other curves. We consider that Y = 1000 represents a library
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Fig. 2. Data fitting curves to construct the form of the hit ratio function h. The linear curves indicate that h = A + B log(X )
achieves an adequate fit. Markers show values of H and the dashed lines (- -) show the linear fits. We plot the hit ratio H as a
function of log(X ) where X is the cache size ratio (Number of files in cache / Total number of files in the library). LEFT: We vary
the file arrival rate Z for a fixed library size Y = 2500. RIGHT: We vary the library size Y for a fixed file arrival rate Z = 50.
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Fig. 3. Data fitting curves to construct the form of A in h = A + B log(X ). Markers show values of A and the dashed lines
(- -) show our fit A = K1 + K2 Z + K3 log(Y ) + K4 Z log(Y ) where Y is the total number of files in the library and Z is the file
arrival rate. LEFT: A as a function of the library size Y for different values of file arrival rate Z . RIGHT: A as a function of Z

for different values of Y .

size smaller than those of interest for large-scale deployment.

h = A(Y , Z ) + B(Y , Z ) · log(X ) (20)

A = K1 + K2 Z + K3 log(Y ) + K4 Z log(Y ) (21)

B = K5 + K6 Z + K7Y + K8 Z Y . (22)

We determine the values of the coefficients K1 to K8 by solving in the least squares sense the sys-
tem K V (X , Y , Z ) ∼= H obtained by substituting (21) and (22) into (20). Our resulting function is
accurate, showing less than a 0.02 error eighty-five percent of the time and less than a 0.05 error
ninety-nine percent of time. Figure 5 shows the histogram of the error distribution for the entire
dataset (1000 ≤ Y ≤ 10000) for our simulations on the left. On the right, the histogram of a re-
duced dataset that focuses on the error for library sizes larger than 2500 files. The accuracy of the
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Fig. 5. Histograms of the error h − H between our function h and the value observed during simulations H. LEFT: The error
for entire dataset generated by our simulations. RIGHT: The error of a reduced dataset where the values for library size below
2500 are discarded.

function estimate for this set is much higher: the error is less than 0.015 ninety-eight percent of the
time.

In Figure 6, we compare our popularity model based on a Zipf distribution to a worst-case scenario
where each object has equal popularity 1/Y . This worst-case scenario is a lower bound for hit ratio
estimates in the case of file distribution with heavier tail than Zipf. The impact of a library size increase
is much more significant in the Non-Zipf case, where a random fraction of the library is stored (whereas
the most popular files are stored at the replica in the Zipf case).

6. SOLVING THE VOD EQUIPMENT ALLOCATION PROBLEM

6.1 Complexity

In this section, we quantify the complexity of the problem we are trying to solve. In Table II, we
present the size of the solution space for different network topologies which consist of all possible
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files stored at the replica. We compare our lower bound h (Zipf) to a worst-case scenario where each object has equal popularity
1/Y (Non-Zipf). File arrival rate Z = 0.

Table II.
Number of possible solutions for topologies of N locations with W possible VoD server models and

estimate of time taken to find the global optimal solution based on an observed average rate of
4000 solutions per second. Values obtained from 50 different topologies for each pair of (N,W)

Number of Solutions Estimated Time (days)

N W Min Median Max Min Median Max

10 1 7.8 × 105 4.5 × 108 9.5 × 1013 2.2 × 10−3 1.3 × 100 2.8 × 105

25 1 5.6 × 1014 7.1 × 1020 2.4 × 1035 1.6 × 106 2.1 × 1012 6.9 × 1026

50 1 2.0 × 1028 1.4 × 1040 1.2 × 1068 5.9 × 1019 4.1 × 1031 3.5 × 1059

100 1 1.9 × 1060 5.0 × 1079 1.3 × 10130 5.6 × 1051 1.4 × 1071 3.7 × 10121

15 2 9.1 × 1013 2.0 × 1018 6.7 × 1023 2.6 × 105 5.9 × 109 1.9 × 1015

10 3 5.4 × 1010 1.0 × 1014 4.3 × 1017 1.6 × 102 2.9 × 105 1.3 × 109

number of servers and server models at each location. From other experiments, we measured that the
machines we used for simulations explore 4000 solutions per second on average, which allows us to
estimate to time it would take to explore the entire solution space in order to determine the global
optimal solution. From our estimates, it is clear that performing a full search is infeasible as even
the smallest problems (N = 10, W = 1) can take up to thousands of days to solve depending on the
demand and the specifications of the equipement. This shows that heuristics are essential to solve the
VoD Equipement Allocation Problem. In the remainder of this section, we describe the heuristics that
we developed to solve the single-model EAP (SMEAP) and multimodel EAP (SMEAP) introduced in
Section 3. As a comparative base for our results, we propose a method to solve a relaxed version of the
EAP (REAP) where streaming and storage requirements can be determined independently (no VoD
server restrictions).

6.2 Single-Model Equipment Allocation Problem (SMEAP)

To find a near-optimal solution to the single-model EAP, we first determine an expression for xi in terms
of ni. For any fixed (n, v), we show that by maximizing xi for all clusters i, we minimize the cost Cv(n, x).

Let x∗
i ≥ xi for i = 1, . . . , N and K (n, v) = α +

∑N
i=1 α · ( yi) + Bi · ni. Assuming that n0 =

∑N
i=1(1−xi )·Mi

s0
,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 1, Article 5, Publication date: October 2008.



Equipment Allocation in Video-on-Demand Network Deployments • 5:13

then for a given pair (n, v) we have:

K (n, v) +

(
B0

s0
+ 1

) N∑

i=1

(1 − x∗
i ) · Mi ≤ K (n, v) +

(
B0

s0
+ 1

) N∑

i=1

(1 − xi) · Mi,

where x∗ = [x∗
1 , . . . , x∗

N ]. So, Cv(n, x∗) ≤ Cv(n, x). Because xi is bounded by streaming and storage
limitations, its maximal value is obtained by combining (19) and (20):

x∗
i = min

[
h

(
ni · ti

L

)
,

ni · si

Mi

]
. (23)

We find a near-optimal solution (̂n∗, v̂∗) through a search procedure consisting of two steps. In the
first step, we allow fractional values for ni to find an initial solution. For each model w j in W, we find
a local minimum to Cv=w j ·1 by performing a constrained nonlinear optimization algorithm based on
sequential quadratic programming [Fletcher 1987]. Then, we calculate the cost associated with each
cluser i (replica + transport) and choose the pair (ni, vi), obtained from the optimization procedure,
that minimizes this cost for each cluster. We complete the initial solution by determining v0, the best
model of VoD server to install at the origin. In the second step, as v∗ has been established, we explore
the surroundings of the initial solution to find a near-optimal integer solution for n: we iteratively try
to remove or add up to two servers at each location until we find a local minimum n̂∗.

6.3 Multimodel Equipment Allocation Problem (MMEAP)

To solve the MMEAP, we modify xi and substitute it in (18), the expression for CW :

xi = min

[
h

(∑W
j=1 ni( j ) · t j

L

)
,

∑W
j=1 ni( j ) · s j

Mi

]
, (24)

where s j and t j represent the streaming and storage capacity of model w j .
We solve the mixed-integer program that we formulated in Section 3.2 using the optimization soft-

ware package CPLEX (http://www.ilog.com/products/cplex/). Since CPLEX does not support nonlinear
functions, we linearize h by replacing the log function with a series of tangent hyperplanes.

6.4 Relaxed Equipment Allocation Problem (REAP)

In the REAP, because streaming and storage are independent, we attempt to solve the relaxed version
of the problem by first minimizing (15) solely in terms of the fraction of the library stored zi and then
determining the necessary amount of streaming to serve a fraction of the demand equal to xi = h(zi).

We developed a routine that performs two searches to obtain a solution to the REAP. The first part
consists of determining the uniform amount of storage (equal storage capacity at every location, ∀i :
zi = z, z ∈ [0, 1]) to install such that the cost C is minimized. This is accomplished using a grid search.
In the second loop, starting from this initial solution, we iteratively adjust each location i, testing each
grid point to determine the zi that minimizes the cost.

7. RESULTS

7.1 Performance

In this section, we evaluate the performance of our heuristic SMEAP. In our first set of tests, we
generated networks with the number of locations N ∈ {1, . . . , 5} and the number server model W = 1
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Fig. 7. Cost ratio between heuristics and the full search averaged over 30 runs.

Table III.
Set of VoD server models used for simulations. For

each model, the streaming capacity in Gbps (s) and the
storage capacityt in TB (t) is shown

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

s 1 2 3 4 5 6 7 8 9 10
t 1 1 1 1 1 1 1 1 1 1

and another series with N = 3 and W ∈ {1, 2, 3}. We choose small networks to allow comparison with
the full search, which cannot produce a solution for larger networks within a reasonable time frame.

In Figure 7, we show the performance of our heuristic by dividing the cost of the solution by the
optimal solution provided by the full search. For these small networks, SMEAP performs within 3%
of the optimal solution. As we have shown in Section 6.1, obtaining the optimal solution through an
exhaustive search is only computationally feasible for very small networks, and, for that reason, we use
the relaxed version of the EAP (REAP) as a comparative base instead of the full search in the remainder
of this paper.

7.2 Simulations

For our simulations, we used a file arrival rate Z = 50 and library of Y = 10000 files where each file
has a size of 2.53 GB (the equivalent of a movie file of 90 minutes with DVD quality compressed with
MPEG-4). We used the set of W = 10 VoD server models described in Table III where the value of B is
calculated with the function presented in Section 5. This set of server models allows the possibility of
closely matching most values of demand while keeping a reasonable control on the amount of storage.
In our simulations, we observe the average hit ratio, the fraction of clusters occupied by replicas and
cost relative to the relaxed EAP (REAP) solution for different values of the average worst-case demand
M , and relative costs α, β, and γ described in Table IV.

We performed tests for N = 25, 50, 75, 100 and observed that the number of clusters does not have
an impact on our results. Therefore, all results presented in this section were obtained for topologies
of N = 25 clusters, but these can be generalized to larger networks. Also, we observed that the costs
associated with solutions obtained for MMEAP using CPLEX are higher than solutions for SMEAP,
which is unexpected as the solution space for the single-model EAP is a subspace of the solution space
for the MMEAP. Due to the large size of the solution space, CPLEX’s heuristics fail to explore the area
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Table IV.
Sets of values used for simulation parameters

M , α, β and γ .
Parameter Simulated values

M 5, 15, 25, 40, 60, 80, 100
α 1, 10, 20, 60
β 1, 10, 20, 45
γ 1, 10, 20

0 25 50 75 100

0

0.25

0.5

0.75

1

Relaxed

F
ra

c
ti
o
n
 o

f 
O

C

0 25 50 75 100 0 25 50 75 100

Unequal
Equal

Fig. 8. Fraction of occupied clusters (OC), i.e. where a replica is installed, as a function of the average demand in the network
for a topology of N = 25 clusters with α = 10, β = 10 and γ = 10. We observe that for equally distributed demand, the fraction
of clusters with a replica is higher.
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Fig. 9. Ratio between the total cost obtained with Centralized (Cent.) and Single-model Equipment Allocation Problem (SMEAP)
heuristics, and the cost for relaxed EAP (REAP) as a function of the average worst-case demand M for α = 1, 10, 60 with β = 1
and γ = 1.

where the SMEAP solutions lie. For that reason, we do not present solutions obtained by solving the
mixed-integer program that describes the multimodel equipment allocation problem.

In our simulations, we compare scenarios with the same average demand per cluster ∀i : Mi = M

(Equal) and cases where the demand is not equal at each cluster (Unequal).1 In Figure 8, we notice
that for cases where the demand is evenly distributed (Equal), the fraction of clusters occupied by a
replica is higher and often reaches 1. However, whether the demand is equal for each cluster does not
have any impact on the cost of deployment. For the rest of our simulations, we used topologies where
the demand is unequal.

1To determine an unequal demand distribution with average demand M , we draw a vector x uniformly from the n−1-dimensional
unit simplex, {x ∈ ℜn :

∑
i xi = 1, xi ≥ 0}, and then set Mi = N · M · xi .
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Fig. 10. Average hit ratio (left) and fraction of occupied clusters (right) of solutions (obtained with the single-model heuristic)
as a function of the average worst-case demand M for α = 1, 10, 60 with β = 1 and γ = 1.
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Fig. 11. Ratio between the total cost obtained with Centralized (Cent.) and Single-model Equipment Allocation Problem
(SMEAP) heuristics, and the cost for relaxed EAP (REAP) as a function of the average worst-case demand M for β = 1, 10, 45
with α = 1 and γ = 1.

We now explore the impact of the relative cost of startup α on the performance of our heuristic and
the resulting solutions. First, we compare our heuristic to a centralized approach (no replicas installed)
using as a reference the solution obtained by our heuristic for solving the relaxed EAP (Figure 9).
The SMEAP solution is very close to this lower bound and presents a significant improvement in
comparison to a centralized approach. As the relative cost of startup α increases, the gap between the
cost of a centralized deployment and our solution decreases; for given values of β and γ , there exists a
value of α where a distributed approach is no longer beneficial from the monetary standpoint. We also
note that, for all values of α, the cost of our solutions relative to the simplified scenario is independent
of the average demand.

Figure 10 shows the average hit ratio and fraction of occupied clusters for the solutions obtained in
the single-model case. These two measures can be used as practical constraints of implementation to,
for example, determine the average demand required to achieve a desired hit ratio. Both values increase
with the average demand and as the startup cost relative to transport grows, the curve moves down;
higher average demand is required is achieve the same hit ratio and fraction of occupied clusters.

Figures 11 and 12 display how the cost of storage relative to transport (β) influences our solutions.
Figure 11 illustrates the advantage of using our heuristics over a centralized approach, but this becomes
less significant as the value of β increases. The costs of solutions obtained with the centralized approach

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 1, Article 5, Publication date: October 2008.



Equipment Allocation in Video-on-Demand Network Deployments • 5:17

0 25 50 75 100

0

0.25

0.5

0.75

1

A
v
e
ra

g
e
 h

it
 r

a
ti
o

0 25 50 75 100

0

0.25

0.5

0.75

1

F
ra

c
ti
o
n
 o

f 
o
c
c
u
p
ie

d
 c

lu
s
te

rs

β=1

β=10

β=45

Fig. 12. Average hit ratio (left) and fraction of occupied clusters (right) of solutions (obtained with the single-model heuristic)
as a function of the average worst-case demand M for β = 1, 10, 45 with α = 1 and γ = 1.
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Fig. 13. Ratio between the total cost obtained with Centralized (Cent.) and Single-model Equipment Allocation Problem
(SMEAP) heuristics, and the cost for relaxed EAP (REAP) as a function of the average worst-case demand M for γ = 1, 10, 20
with α = 1 and β = 1.

and of our heuristics both increase with average demand for larger values of β as a result of having
storage and streaming determined cojointly. To maintain the hit ratio for larger demand, additional
servers must be installed to increase the streaming capacity. However, this also has the effect of adding
unnecessary extra storage capacity (h is independent of the demand). This explains the increasing
discrepancy with the relaxed EAP scenario where the streaming can be increased independently. In
Figure 12, we notice that for all values of β, the number of replicas installed converges as the average
demand increases, whereas for smaller demands, less replicas are deployed when β is greater than
one. Although increasing β shifts both curves down, the impact is less dramatic than that caused by
increasing α.

We observe the impact of increasing γ , the cost of streaming relative to transport, in Figures 13 and 14.
As the average demand and γ increase, the difference between the costs associated with all solutions
(Cent. and SMEAP) and the relaxed EAP cost becomes very small. The total amount of streaming
capacity required is identical for all heuristics; no matter how many replicas are deployed, the same
amount of streaming is required: N · M . For the same reason, the effect of γ on the average hit ratio
and number of replicas installed is very minor (Figure 14).
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Fig. 14. Average hit ratio (left) and fraction of occupied clusters (right) of solutions (obtained with the single-model heuristic)
as a function of the average worst-case demand M for γ = 1, 10, 20 with α = 1 and β = 1.
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Fig. 15. Total cost obtained with the single-model heuristic on a logarithmic scale as a function of the average demand for
α = 1, 10, 60 with β = γ = 1 (left), β = 1, 10, 45 with α = γ = 1 (middle) and γ = 1, 10, 20 with α = β = 1 (right).

In Figure 15, we compare the impact of α, β, and γ on the total cost associated with solutions obtained
with the single-model heuristic (we show the total cost on a logarithmic scale to compare more easily all
three factors). As the average demand increases, the total cost increases with approximately the same
rate on the logarithmic scale for all values of α, β and γ . However, we note that increasing the value
of γ shifts the cost curve up significantly, whereas increasing α has almost no noticeable effect on the
cost. This corroborates the evidence we presented earlier in this section; increasing the cost of storage
or streaming relative to transport has a significant impact on the cost associated with the solutions
obtained from the single-model heuristic.

Figure 16 depicts the impact of using a heavy tail distribution where each file has equal popularity
1/Y . As expected, the hit ratio that minimizes the cost is higher when using a file access model that
takes into account the popularity of each object. Because the cost obtained for the relaxed and single-
model EAP is higher in the Non-Zipf case, the relative cost of the centralized approach, not affected
by the popularity model, is smaller. Therefore, we can anticipate deployment costs to increase and hit
ratios to decrease as libraries grow in size and the fraction of requests for objects with low popularity
is higher.
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Fig. 16. Impact of using a Non-Zipf distribution to calculate the hit ratio on the cost relative to relaxed equipment allocation
problem (left) and the average hit ratio (right) for α = β = γ = 1. We compare the values with the results obtained with our
model (Zipf).

7.3 Design Tool

We developed an interactive design tool, VoD Equipment Allocation Tool, that integrates our network
cost model and heuristic to produce near-optimal solutions to the VoD equipment allocation problem
(Figure 17). The tool includes two components: the Topology Design Tool (TDT) (developed by Vinokurov
[2005]) and our solution. The TDT allows the user to (i) create topologies and models of network com-
ponents and VoD infrastructures and (ii) visualize the design we generate with our heuristic.

We describe the typical workflow to follow to design a VoD network with the tool. The first step is to
create the network topology with all the locations using the TDT Wizard or manually. The second step
is building models for network components, VoD equipment (VoD server models) and the VoD network
itself. At least one model (cost and specifications) needs to be created, using the model editor, for each
of the following components before adding infrastructures to the topology: network interface, DWDM
switch, fiber, stored file, VoD server, library server (or origin) and replica server. Once the topology and
the models have been generated, the user can create replicas and origin objects using a built-in wizard.
A valid VoD network includes only one origin and any number of replicas (up to one per location). With
a valid network setup, it is possible to run the optimization program (a MATLAB-compiled executable)
to determine near-optimal equipment.

8. CONCLUDING REMARKS

In this article, we addressed a resource allocation problem associated with Video-on-Demand networks.
More precisely, we defined the VoD equipment allocation problem (EAP) as determining the number and
model of VoD servers to install at each cluster of clients in the topology to minimize the deployment cost
while serving the entire demand. We formulated the problem as an optimization problem and proposed
a model for the network cost that includes costs related to startup, streaming, storage and transport.
We trained a parametric function to map the amount of storage at a server to an estimate of the hit
ratio based on a file access pattern proper to VoD networks. Because of the complexity of the problem
and the size of the solution space, we developed heuristics to find a near-optimal solution to the VoD
EAP and two variations, the relaxed EAP and the multimodel EAP.

We showed that the performance of our heuristic for the single-model EAP does not depend on the
number of cluster of clients in the topology or whether the demand is evenly distributed among all
locations or not, but rather on the average demand per cluster. Given the cost of startup, streaming and
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Fig. 17. Interactive design tool that integrates our network cost model and SMEAP heuristic to solve the Video-on-Demand
equipment allocation problem. The tool allows the creation of custom topologies, equipment models and VoD networks. Shown
in the figure, a randomly generated topology, the properties of one replica server after the optimization procedure (demand, hit
ratio, equipment installed), and the results from our heuristic displaying the number, cost, streaming and storage capacity of the
servers deployed at each location.

storage relative to transport, it is possible to determine the average hit ratio and fraction of clusters
that require a replica server as a function of the average demand in the network. In practice, this is
useful for providers who wish to establish the minimum average demand a cluster must generate in
order to achieve a certain hit ratio. This can be considered as measure of performance when it comes
to deploying not only cost-efficient but also easily-manageable networks.

Through our simulations, we observed the impact of having to determine the amount of storage
and streaming co-jointly through the VoD servers by comparing our results with the simplified EAP.
If the file access in VoD is Zipf-like, then relatively small amounts of storage are required to ensure
a high hit ratio. Most VoD servers provide a disproportionate amount of storage capacity relative to
their streaming capabilities. This leads to the installation of unnecessary storage capacity and higher
deployment cost (which we have shown by increasing the cost of storage relative to transport). The
results obtained with the multimodel were disappointing; we anticipated lower cost solutions due to
the greater flexibility in matching the storage and streaming requirements of each cluster. Even if it is
possible to obtain better solutions by modifying our heuristic, we now expect the improvement relative
to the single-model case to be marginal and not worth the complexity involved in deploying such a
network.
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Although proxy-based VoD networks offer important cost savings, their future is uncertain because
hybrid peer-to-peer architectures offer better scaling capabilities. In the near future, however, the proxy-
based architectures are more mature and the most frequently deployed. It is important to investigate
multistage deployments, where equipment is added incrementally over time. Optimizing such deploy-
ments requires prediction of the variations in demand and costs through time. Intuitively, because the
costs of streaming and storage decrease, it is beneficial to wait as long as possible before deploying any
equipment. Another challenge is to adapt the mapping between the amount of storage and the hit ratio
to larger libraries. As libraries grow in size, there will be a larger portion of requests for less popular
objects (the long tail of content), making it difficult to maintain the hit ratio without substantially
increasing the amount of storage.
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