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Abstract

A significant aspect in applying the Reflexion Method
is the mapping of components found in the source code
onto the conceptual components defined in the hypothe-
sized architecture. To date, this mapping is established
manually, which requires a lot of work for large soft-
ware systems. In this paper, we present a new ap-
proach, in which clustering techniques are applied to
support the user in the mapping activity. The result
is a semi-automated mapping technique that accommo-
dates the automatic clustering of the source model with
the user’s hypothesized knowledge about the system’s
architecture.

This paper describes also a case study in which our
semi-automated mapping technique has been applied
successfully to extend a partial map of a real-world soft-
ware application.

1 Introduction

Software architecture is described by many views.
The most popular view addressed in research is the
module view [15]. The module view describes the mod-
ules of a system, their layering and composition into
subsystems, and the provided and required interfaces
of these elements. The module view is required for
many purposes such as allocating working packages to
teams, global change impact analysis, evaluating the
maintainability of the system, and more.

Far too often, the module view that was initially
designed does not reflect the real implementation due
to changes made in the source without updating the
documented module view. Murphy and colleagues [28]
have developed the reflexion model technique to re-
construct the mapping from the specified or hypothe-

sized to the concrete module view. The basic idea of
the reflexion model is to create a hypothesized view
from existing documentation or interviews with archi-
tects. Then source entities are extracted from a system
(global variables, routines, types, classes, interfaces,
packages, files, subdirectories, etc.) along with their
respective dependencies forming the concrete module
view. These elements are then mapped to the hypoth-
esized view. A tool then computes resemblances and
differences between the two views. Iteratively, the hy-
pothesized and concrete views and/or the mapping are
refined based on the findings.

The technique was successfully used in several case
studies. The most interesting case study—reported by
Murphy and Notkin [27]—is the analysis of Microsoft
Excel, which consists of about 1.2 MLOC of C code.
Later, we extended the original reflexion model so that
hypothesized modules can be hierarchical and applied
it to two different compilers [18].

The most challenging part of the reflexion method
is to determine the mapping of concrete source enti-
ties onto the hypothesized entities of the hypothesized
model. The original reflexion method does not provide
any support for that – although sometimes naming con-
ventions may be leveraged. Yet, they often do not exist
or are used inconsistently.

The key point of the reflexion method is to start with
an initial hypothesis on the expected module view and
then to validate the hypothesis against the implemen-
tation. Inversely, software clustering techniques group
source entities together – typically based on some no-
tion of coupling and cohesion – to form hypothesized
entities. The advantage of clustering techniques is that
they can be completely automated. Yet, these tech-
niques are not directed towards the expectations of the
analyst and often fail to find the components a human
would find [17].



Contributions. This paper combines the reflexion
method with automatic clustering techniques. The au-
tomatic clustering techniques are used to create addi-
tional candidate mappings based on a partial mapping.
For this to work, the clustering techniques are adjusted
so that they consider an existing mapping and the tar-
geted hypothesized model. A case study explores the
influence of degree of completeness of the existing map-
ping to make reliable suggestions.

2 Related Research

This section describes related research. We start
with a detailed description of the reflexion technique
and introduce concepts later used in the description
of our extension. Then we summarize research in the
wider area of software clustering.

2.1 Reflexion Method

The reflexion method is based on three things. The
hypothesized view (HV) models the user’s view-
point on the system design. It consists of hypothesized
entities and their expected dependencies. Hypothe-
sized entities represent “coherent conceptual modules”
[18], and thus provide the entire or partial system de-
composition that the user expects to exist.

In this paper, the hypothesized view HV is modelled
as a directed graph containing the hypothesized entities
NH connected by hypothesized dependencies EH .

HV = (NH , EH)
NH = {h1, h2, ...hn}, n ∈ N set of hypothesized entities
EH ⊆ (NH ×NH) set of hypothesized dependencies

The concrete view (CV) models the software sys-
tem from the viewpoint of its implementation. The
concrete view consists of the concrete entities and their
dependencies found in the code. Analogously to the
hypothesized view, the concrete view is modelled as
a directed graph containing the concrete entities NC

connected by concrete relationships EC .

CV = (NC , EC)
NC = {c1, c2, ...cn}, n ∈ N set of concrete entities
EC ⊆ (NC ×NC) set of concrete dependencies

The hierarchical nature of concrete entities is mod-
elled using the function partof , which maps concrete
entities to their containing concrete entities, for in-
stance, methods onto classes or classes onto packages:

partof : NC −→ NC

Finally, the (potentially partial) mapping
maps-to: NC → NH connects the two views CV
and HV . A concrete entity may either be mapped
directly by the user (denoted by dmaps-to or be
mapped indirectly by way of its closest containing
component that is directly mapped:

maps-to(c) = dmaps-to(c) : c ∈ dom dmaps-to
maps-to(c′) : c 6∈ dom dmaps-to ∧ part-of(c) = c′

undefined : otherwise

The dependencies in both CV and HV may be
typed: function type assigns a type to each dependency
edge both in CV and HV . One edge type may be a
subtype of another edge type, forming an is-a type hi-
erarchy.

The result of the reflexion analysis is a reflexion
model (RM), summarizing the differences and the
agreements of hypothesized and concrete view on the
basis of the mapping. The result is a multigraph R =
(NC , ER) where the edge types in ER are as follows
(let hi, hj ∈ NC):

Two hypothesized entities are connected by a con-
vergence edge, if an expected relationship defined in
the hypothesized view could be found between concrete
entities mapped to them.

convergence(hi, hj) ∈ ER :⇔
∃[ck, cr] ∈ EC , [hi, hj ] ∈ EH : maps-to(ck) = hi ∧

maps-to(cr) = hj ∧ type([ck, cr]) is-a type([hi, hj ])

Two hypothesized entities are connected by an ab-
sence edge, if an expected relationship could not be
found in the concrete view.

absence(hi, hj) ∈ ER :⇔
6 ∃[ck, cr] ∈ EC ∃[hi, hj ] ∈ EH : maps-to(ck) = hi ∧
maps-to(cr) = hj ∧ type([ck, cr]) is-a type([hi, hj ])

Two hypothesized entities are connected by a diver-
gence edge, if a dependency was found between their
mapped concrete entity that was not expected by the
user.

divergence(hi, hj) ∈ ER :⇔
∃[ck, cr] ∈ EC 6 ∃[hi, hj ] ∈ EH : maps-to(ck) = hi ∧
maps-to(cr) = hj ∧ type([ck, cr]) is-a type([hi, hj ])
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2.2 Clustering Techniques

Clustering techniques aim at deriving the struc-
tural decomposition of a system into modules. Log-
ically related declarations (global variables, routines,
data types, and classes) or whole packages are recov-
ered and described by the part-of relationship. The
results are flat or hierarchical modules. Flat mod-
ules are, for instance, abstract data types or objects
[7, 6, 8, 16, 20, 21, 29, 30, 32, 40, 42, 45]. Hier-
archical modules are often referred to as subsystems
[10, 13, 35, 23].

Typically, static dependencies such as calls or ac-
cesses to variables or fields are leveraged for the group-
ing. Sometimes, similarities between identifiers in the
presence of naming conventions are considered [3, 14]
or an explicit modeling of the application domain is
taken into account [12]. Only one approach (to our
best knowledge) uses dynamic information gathered by
way of use cases [5].

Several types of techniques are used to determine
modules. Software clustering – as one of the most pop-
ular ones – is based on known clustering techniques
that have been developed and used in other domains
such as biology [24, 1, 17, 35, 14]. Generally, a hierar-
chical agglomerative approach is used. The approaches
differ largely in their definition of similarity to compare
two individual entities and whole groups to be grouped.

Other techniques view module recovery as a parti-
tioning problem that aims at minimizing coupling and
maximizing cohesion between modules. To find a good
partition (finding an optimal one is NP hard) genetic
algorithms [23] and other more traditional search tech-
niques, such as hill climbing, are used [22, 23].

Methods from graph theory are also used, for in-
stance, cycle detection to find strongly connected enti-
ties or dominance analysis to find entities local to other
entities [10, 13, 26], or graph pattern matching [34].

Other techniques are based on formal concept anal-
ysis that allows one to analyze binary relations [5, 41,
19, 37, 38, 32]. The resulting concept lattice describes a
hierarchy of concepts, which can then be used to iden-
tify modules. The approaches here differ in the binary
relation and how the concept lattice is used. Data min-
ing [11, 33] and spectral analysis [36] is used as well.

Often, these completely automatic techniques are in-
tegrated into an interactive process [26, 17] because the
factors for a sensible grouping are not exactly defined
(at least not in an operational manner). For interac-
tive methods incremental techniques play an important
role, in which not yet clustered entities are assigned to
existing groups [39, 17].

3 Integration of RM and Clustering
Techniques

3.1 Manual Mapping

It is helpful to view the Software Reflexion Model
technique from a clustering perspective, in order to
identify the potential of cluster analysis to support
the mapping activity. From our perspective, the Soft-
ware Reflexion Model technique can be described as an
incremental, human-controlled, non-hierarchical clus-
tering technique, in which concrete entities that are
mapped to the same hypothesized entity form a clus-
ter. In other words, each hypothesized entity in the hy-
pothesized view represents one cluster and the function
maps-to associates concrete entities with these clusters.

The goal of the mapping activity is to assign con-
crete entities to their correct hypothesized entity. The
correct hypothesized entity is the hypothesized entity
to which a concrete entity belongs when considering
the existing architecture of the system under investi-
gation. The Software Reflexion Model technique is an
incremental clustering technique because concrete en-
tities are mapped to hypothesized entities in multiple
iterations (described by Murphy et al. [28]). The term
human-controlled signifies that cluster decisions are ex-
clusively made by the user.

3.2 Semi-Automated Mapping

Most incremental clustering techniques cluster all
free entities in one iteration [39, 25, 17]. If directly ap-
plied to automated mapping, these techniques would
yield a complete map in one step, which the user could
either accept, reject, or validate manually. This be-
havior would therefore interfere with the human con-
trol and the iterative nature of the Software Reflex-
ion Technique. In order to preserve these attributes,
semi-automated mapping should not replace the man-
ual mapping process but should assist and support the
user to achieve a correct map faster. The following
ideas allow a smoother integration:

1. The cluster analysis should identify concrete enti-
ties for which a mapping decision is “easy enough”
in order to be made automatically. Only these
concrete entities are mapped automatically by the
integrated clustering algorithm.

2. For those concrete entities for which an automatic
mapping decision is not possible, the cluster analy-
sis should support the user in the manual mapping
decision by detecting hypothesized entities that
are likely to be the correct hypothesized entity.
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Furthermore, the introduction of semi-automated map-
ping must not jeopardize the main success factors of
the Software Reflexion Model technique namely its
lightweight nature, scalability, and approximity [28].

3.3 Clustering Algorithm

To address these requirements, we have developed
an incremental, supportive, partial clustering algo-
rithm for semi-automated mapping that incorporates
assets of existing clustering techniques. In the first
phase of our algorithm, unmapped concrete entities are
filtered if a meaningful mapping decision is not possi-
ble, since they are not connected or only slightly con-
nected with mapped concrete entities. Next, an attrac-
tion matrix is calculated containing attraction values
for each pair of unmapped concrete and hypothesized
entities. The attraction values are based on source
dependencies between the unmapped concrete entities
and already mapped concrete entities and represent the
likeliness that a hypothesized entity is the matching
partner for a concrete entity. During our research, we
developed two attraction functions for the calculation
of the attraction matrix. Both attraction functions are
derived from existing clustering approaches. Based on
the attraction matrix, potentially matching hypothe-
sized entities are then detected for each concrete en-
tity. The actual clustering (i.e., automated mapping)
takes place in the last phase of the algorithm. All con-
crete entities are automatically mapped for which only
a single candidate could be detected. All others are
presented to the user ranked by their attraction. The
user then decides.

3.3.1 Partial Clustering

As discussed earlier, the attraction values are based on
source dependencies between the unmapped concrete
entities and already mapped concrete entities. Source
relationships between two unmapped concrete entities
have no effect on the attraction values. This approach,
however, is problematic if unmapped concrete entities
share many source relationships with unmapped con-
crete entities and only a few with mapped ones. In
this case, chances are high that the calculated attrac-
tion values are not representative for the concrete en-
tity and the correct hypothesized entity might not have
a significant attraction.

In order to prevent poor cluster decisions due to
a high degree of ignored source dependencies, a filter
function δ is applied on the set of unmapped concrete
entities (to simplify the description, let {ci, cj} denote

the undirected edges [ci, cj ] or [cj , ci]) .

δ(S ⊂ NC) = {ci ∈ S |
{{cj , ci} ∈ EC | cj ∈ dom(maps-to) ∧ cj 6= ci}|

|{{cj , ci} ∈ EC | cj 6= ci}|
≥ ω}

The filter function δ filters concrete entities whose
ratio of mapped neighbors does not allow a meaning-
ful attraction calculation. Hence, concrete entities that
have a high degree of source dependencies to unmapped
concrete entities are not considered for the automated
mapping. The threshold that defines whether a con-
crete entity is filtered and whether a concrete entity
is considered for the automated mapping is specified
by the parameter ω ∈]0, 1]. An ω value close to 1
will pass through only those free concrete entities that
are mostly connected with mapped concrete entities.
Hence, the cluster decision for those entities is based
on the majority of their dependencies and is not likely
to be strongly affected by ignored source dependencies.
On the other hand, an ω value close to 0 is likely to
result in more concrete entities to be considered for
automated mapping. The accuracy of the attraction
calculation might be misled due to a high number of ig-
nored source dependencies of the entity with unmapped
entities. For the presented case study, an ω value of 0.5
was applied that we determined experimentally [9].

3.3.2 Attraction Calculation

The core of a clustering algorithm is a similarity func-
tion which determines the closeness of entities [43].
In the context of our semi-automated mapping, the
term similarity is appropriate; however, it might be
misleading, since concrete entities are assigned to hy-
pothesized entities and not to similar concrete enti-
ties. To avoid confusion when we talk about our semi-
automated mapping, we use the term attraction to de-
fine the ”closeness“ of concrete entities to hypothesized
entities.

attraction : NC ×NH −→ R+
0

We considered similarity functions from two existing
clustering techniques and tailored them towards our
semi-automated mapping. The attraction functions
CountAttract and MQAttract follow different ap-
proaches to calculate the attraction between a hypoth-
esized entity and a concrete entity. The CountAttract
focusses on the minimization of coupling between hy-
pothesized entities, while the MQAttract attraction
function follows the approach of the Bunch cluster-
ing based on coupling and cohesion [25]. Both attrac-
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tion functions CountAttract and MQAttract imple-
ment the generic function attraction. In the following
case study, the attraction functions are compared in
terms of their value for automated mapping.

Both attraction function base their calculations on
the source dependencies between mapped and un-
mapped concrete entities. Similarly to other clustering
techniques, both attraction functions apply a weight-
ing function on source dependency types to reflect their
semantic impact on the clustering [31, 25].

λ : T −→ R+ T = set of dependency types

Generally, the occurring dependency types vary de-
pending on the programming language of the investi-
gated system and on the scope of the Software Reflex-
ion Model. This flexibility of the Software Reflexion
Model technique, however, makes it difficult to provide
a fixed set of dependency weights. Moreover, differ-
ent reengineering tasks might require different weights.
More research is required to identify weight sets that
are optimal for the different scopes of the technique.

CountAttract

The attraction function CountAttract is derived from
Koschke’s connection based approach [17, algorithm 8-
10]. In his proposed clustering algorithm, a free entity
is assigned to the cluster with the highest similarity
value; in other words, the highest number of entities
that are already part of the cluster and share a source
dependency with the unmapped entity. Thus, each en-
tity is assigned to the cluster so that the lowest number
of inter-cluster dependencies is produced. Note that
this approach does not lead to an absolute minimal
number of edges between clusters after all entities have
been clustered, and a different order in which the enti-
ties are clustered might result in different clusters. In
Koschke’s clustering technique, however, the similarity
function does not facilitate simple source dependencies.
Instead, two entities share a relationship if they are re-
lated to each other according to a certain clustering
heuristic. The same principle can also be applied to
simple source dependencies. In this case, two entities
are connected if they share a source dependency from
the concrete view. The Orphan Adoption algorithm
proposed by Tzerpos et al. [39] implements a similar
type of connection-based similarity function that works
on basic source dependencies.

The CountAttract attraction function follows this
coupling-focussed approach by Tzerpos and Koschke.
The attraction of a hypothesized entity towards a con-
crete entity equals the weighted sum of all source de-
pendencies between the concrete entity and all concrete

entities mapped to the hypothesized entity.

CountAttract(ci, hk) =∑
∀{ci,cj}∈EC : maps-to(cj)=hk

λ(type({ci, cj}))

In addition to the information from the source code,
we integrate more user information into the attrac-
tion calculation in order to improve the quality of our
clustering results. In the hypothesized view, the user
defines hypothesized dependencies that are allowed to
exist in the system architecture. Hence we can distin-
guish two types of source relationships that cause cou-
pling when a concrete entity is mapped. First, source
relationships that cause allowed coupling and second,
source relationships that result in unwanted or not an-
ticipated coupling. It is intuitive that allowed source
relationships should have less of a negative impact on
the attraction than unanticipated source relationships.
In order to integrate this user knowledge into the calcu-
lation, the CountAttract function is transformed and
extended.

CountAttract(ci, hk) counts the number of source
dependencies between a free concrete entity ci and con-
crete entities mapped to hypothesized entity hk. In or-
der to integrate hypothesized dependencies, the initial
attraction function is transformed into CountAttract′.

CountAttract′(ci, hk) = overall(ci)− toOthers(ci, hk)

overall(ci) =∑
∀{ci,cj}∈EC : cj∈dom(maps-to)

λ(type({ci, cj}))

toOthers(ci, hk) =∑
∀{ci,cj}∈EC :

cj∈dom(maps-to) ∧ maps-to(cj)6=hk

λ(type({ci, cj}))

After the transformation, the number of source de-
pendencies from concrete entity ci to concrete enti-
ties mapped to hypothesized entities hk is counted in-
directly. The number of source dependencies that ci

shares with concrete entities of all other hypothesized
entities (toOthers(ci, hk)) is subtracted from the to-
tal amount of source dependencies of ci with mapped
concrete entities (overall(ci)).

The transformation does not modify the result of the
function but makes it easier to see that CountAttract
favors the hypothesized entity with the largest num-
ber of connecting source dependencies. If the concrete
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entity ci is clustered to a hypothesized entity hk, the
source dependencies counted in toOthers(ci, hk) result
in coupling. The larger toOthers(ci, hk) is, the lower
the attraction to this hypothesized entity will be.

At this point, each counted source dependency has
the same influence on the attraction, regardless of
whether the resulting coupling is allowed or not. To
take this conceptual information into account, the func-
tion toOthers(ci, hk) is modified.

toOthers(ci, hk) =∑
∀{ci,cj}∈EC :

cj∈dom(maps-to) ∧ maps-to(cj)6=hk

γ({ci, cj ]}

γ([ci, cj ]) =

 λ(type([ci, cj ]))× φ ∃[maps-to(ci),
maps-to(cj)] ∈ EH

λ(type([ci, cj ]))

In case a source dependency causes unwanted cou-
pling, the function returns its dependency weight with-
out any modification. Source dependencies that re-
sult in allowed coupling, however, are multiplied with
the parameter φ ∈ [0, 1] (recall that toOthers is sub-
tracted). When φ is set to its upper bound of 1, the
conceptual information is ignored. The modified func-
tion CountAttract′(ci, hk) is then equivalent to its ini-
tial version. A higher value of φ is not reasonable.
With φ exceeding its upper bound, a source depen-
dency that causes allowed coupling would decrease the
attraction more than a source dependency that causes
unwanted coupling. If φ is set to its lower bound of 0,
source dependencies creating unwanted coupling have
no negative effect on the attraction value. In the case
study presented in this paper, we have applied differ-
ent φ values to examine their effect on the clustering
quality.

MQAttract

The clustering approach of the Bunch Tool [25], which
follows the idea of maximal coherency and minimal
coupling, applies various optimization clustering algo-
rithms until the modularization quality of the cluster
set is maximal [23]. One feature of the Bunch cluster-
ing technique is the later assignment of free entities into
an existing set of clusters [25]. In this incremental clus-
tering approach, a free entity is sequentially assigned
to each cluster. From there the overall modularization
quality is calculated. Finally, the free entity is assigned
to the cluster for which the modularization quality is
best. Hence, the modularization quality function serves
as a similarity function for the incremental clustering
algorithm of Bunch. For an efficient calculation of the

modularization quality for a cluster set, TurboMQ has
been proposed [25].

For the task of semi-automated mapping, we have
transformed TurboMQ into a second attraction func-
tion. The attraction of a concrete entity ci and a hy-
pothesized entity hj is defined by the MQAttract func-
tion under the assumption that ci is assigned to hj .

MQAttract(ci, hj) =
|NH |∑
k=1

CFk and maps-to(ci) = hj

CFk =


0 µk = 0

2µk

2µk+
|NH |P
j=1
j 6=k

(εk,j+εj,k)

otherwise

To complete the attraction function MQAttract, the
parameters µ, describing the internal dependencies and
ε, describing external edges have to be translated into
the terminology of the Software Reflexion Model tech-
nique.

µk =
∑

∀[cl,cm]:
maps-to(cl)=maps-to(cm)=hk

λ(type([cl, cm]))

εi,j =
∑

∀[cl,cm]:
maps-to(cl)=hi∧maps-to(cm)=hj

λ(type([cl, cm]))

The integration of conceptual information into the
MQAttract function follows the same pattern as the
one in the CountAttract attraction. The adapted at-
traction function MQAttract′ equals the summation of
the modified cluster factor CF ′ of each hypothesized
entity in the case that ci is mapped to hj .

MQAttract′(ci, hj) =
|NH |∑
k=1

CF ′
k and maps-to(ci) = hj

CF ′
k =


0 µk = 0

2µk

2µk+
|NH |P
j=1
j 6=i

(ϕk,j+ϕj,k)

otherwise

In the initial cluster factor CF , the parameter ε repre-
sents the inter-dependencies between hypothesized en-
tities. In the calculation of the modified cluster factor
CF ′, inter-dependencies are represented by the param-
eter ϕ including conceptual information.

ϕi,j =

 λ(type([ci, cj ]))× φ ∃[maps-to(ci),
maps-to(cj)] ∈ EH

λ(type([ci, cj ])) otherwise
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As in the CountAttract′ function, the parameter φ ∈
[0, 1] controls the impact of the conceptual information
on the attraction. If φ is set to the upper bound of
1, conceptual information is ignored and CF ′ equals
CF . Source dependencies that are confirmed by a con-
ceptual dependency do not decrease the similarity if φ
is set to 0. Similar to the CountAttract′ attraction,
exceeding these boundaries is not helpful. A φ value
larger than 1 might result in a negative fraction and
thus lead to a negative attraction value. A φ value
lower than 0 results in a situation where source depen-
dencies that cause allowed coupling penalize the at-
traction more than source dependencies that result in
forbidden coupling.

3.4 Candidate Detection

Clustering techniques such as [25, 17, 2, 1, 41] assign
an entity to the cluster that shares the highest similar-
ity with it. In the case of multiple maximal similarity
values, a cluster is often picked arbitrarily. These ar-
bitrary decisions are likely to have ripple effects in the
course of clustering. To mitigate these effects, our clus-
tering algorithm maps only those entities which fea-
ture a significantly high affinity for a single hypoth-
esized entity. The candidate detection technique, as
part of the clustering algorithm, detects hypothesized
entities whose attraction values ”stick out“ positively
and marks them as candidate hypothesized entities us-
ing statistical analysis. The function cand results in
a candidate set that contains all candidate hypothe-
sized entities for each free concrete entity. The result
of this function equals one of two different temporary
sets, namely candSet1i and candSet2i. Both of these
sets contain candidates for the concrete entity ci, how-
ever, they apply a different threshold for the attraction
value. The threshold of the temporary candidate set
candSet1i is hereby more restrictive than the threshold
applied for the calculation of candSet2i.

cand(ci) =

 candSet1i |candSet1i| > 0

candSet2i otherwise

The temporary candidate set candSet2i contains all
hypothesized entities that have an attraction toward
concrete entity ci equal to or larger than the arith-
metic mean over all attraction values of ci. Therefore,
the temporary candidate set candSet2i is defined as
follows:

candSet2i = {h ∈ NH | attraction(ci, h) ≥ x̄i}

x̄i =
1

|NH |

|NH |∑
j=1

attraction(ci, hj)

The candidate set candSet2i is likely to contain a
high number of candidate hypothesized entities. The
intention of the candidate detection process is, how-
ever, to reduce the number of candidates as much as
possible. In order to filter more concrete entities, the
calculation of the set candSet1i applies a more restric-
tive approach. The standard deviation sdi describes
how much a typical attraction value varies from the
arithmetic mean.

sdi =

√√√√ 1
|NH |

|NH |∑
j=1

(attraction(ci, hj)− x̄i)2

In other words, the standard deviation defines a margin
around the arithmetic mean, in which most attraction
values are located. Attraction values that are located
outside this band, are considered mavericks. Hypothe-
sized entities that possess a positive maverick to ci are
a member of candSet1i.

candSet1i = {h ∈ NH | attraction(ci, h) ≥ x̄i + sdi}

In some cases, candSet1i may not contain any can-
didates due to the dispersion of the attraction values.
The temporary candidate set candSet2i, however, al-
ways contains at least one candidate. Considering the
definitions of the temporary candidate sets candSet1i

and candSet2i, it is trivial to prove that candSet1i is
a subset of candSet2i.

NH ⊇ candSet2i ⊇ candSet1i

Regardless of which temporary candidate set serves
as the final candidate set, the search space for the user
is always reduced. Only if all hypothesized entities hold
the same attraction to a concrete entity, all hypothe-
sized entities are considered candidates.

3.5 Automated Mapping

The actual clustering (i.e., automated mapping)
takes place in the last phase of the algorithm. After the
candidate sets have been calculated for each unmapped
concrete entity, all concrete entities are automatically
mapped for which only a single candidate could be de-
tected. In other words, only those mapping decisions
for which a decision is easy enough to be made without
consulting the user. In all other cases, the candidate
sets are presented to the user for a manual clustering
decision.

4 Case Study

This section reports on a case study to evaluate the
semi-automated mapping and the underlying clustering
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alternatives. The system analyzed in this case study is
the core of SHriMP [44]. SHriMP is a Java application
to visualize graph-based information. The core sys-
tem that was examined comprises roughly 300 classes
and interfaces which share about 7000 source depen-
dencies. The hypothesized view of SHriMP was cre-
ated by a developer who had several years experience
in the development and maintenance of the SHriMP
system. The created hypothesized view contained 10
hypothesized entities and 13 hypothesized dependen-
cies. The concrete view on SHriMP was extracted from
its source code using the extraction tool for Java code
from the Bauhaus toolkit1. After the concrete view
and the hypothesized view had been created, the de-
veloper who had previously modeled the architecture of
the system, mapped all concrete entities to their corre-
sponding subsystem. This complete and correct map
later served as a reference for the automatic clustering
decisions of our algorithm.

In preparation for the application of the clustering
algorithm, the mapping relationships of 218 concrete
entities were deleted randomly. Thus, only 28 per-
cent of the previously 302 mapped concrete entities re-
mained mapped to their correct hypothesized entity.
The concrete entities which were “unmapped” from
their correct hypothesized entity were chosen arbitrar-
ily considering only one constraint: each hypothesized
entity should have at least one concrete entity mapped
to it. Then our clustering algorithm was applied in
order to automatically recreate the deleted mappings.
Both attraction functions were applied in multiple ex-
periments using different φ values. After each exper-
iment, the initial partial map was reset so that the
results of the experiments would be comparable. The
set of dependency weights that was applied in the ex-
periments was taken from the work of Rayside et al.
[31]. Note that investigating the effect of different edge-
weight sets on the clustering was not part of the case
study.

Table 4 and 4 summarizes the results. Several obser-
vations can be made. The most important observation
is that both attraction functions can be applied suc-
cessfully to automatically map concrete entities with
a high mapping quality. Although the MQAttract’
achieved the highest mapping quality of 100 percent in
one experiment, we consider the CountAttract’ attrac-
tion function to be more suitable for semi-automated
mapping for several reasons:

The CountAttract’ attraction function resulted in
an acceptably high cluster quality in each of the exper-
iments. Especially when conceptual information was
considered; about 92 percent of the automated map-

1http://www.bauhaus-stuttgart.de

ping decisions were correct. The MQAttract’ function,
on the other hand, produced a high cluster quality only
when conceptual information had a maximal impact on
the calculation. In the case where conceptual informa-
tion was ignored, the clustering quality was unaccept-
able and even lower than a random mapping decision.
Moreover, if the conceptual information at hand is in-
accurate, or the conceptual dependencies are unknown
to the user and thus not included in the hypothesized
view, the mapping decisions when MQAttract’ is ap-
plied are questionable.

In the experiments, the quality of the technique was
highly dependent on the applied attraction function.
In the case of the MQAttract’ attraction function, the
support for the user was negligible. Although the cor-
rect cluster was considered a candidate in most of the
cases, the reduction of the search space was not effec-
tive. For most concrete entities the search space was
reduced to only about 6 or 7 of the 10 hypothesized
entities. The supportive aspect, however, worked well
when the CountAttract’ attraction function provided
the attraction values. The search space was reduced in
most cases down to 2 or 3 candidates. In addition, in
most of the cases the correct hypothesized entity was
among the detected candidates.

The third benefit of the CountAttract’ function is
that its calculated values allow for an easier human in-
terpretation. The generated attraction values showed
high variation, which allowed for an easier comprehen-
sion of the derivation of attraction values. In contrast,
the MQAttract’ function always produced values be-
tween 9.9 and 10. For most concrete entities, the at-
traction values differed only after the third decimal.
For human judgement, it was very difficult to sepa-
rate the hypothesized entities with high attraction from
those with a low affinity to the concrete entity. Fi-
nally, the complex definition of the MQAttract’ func-
tion makes it very hard for the user to verify the cal-
culated attraction value. The values produced by the
CountAttract’ function, however, were much easier to
verify manually.

In general, the parameter φ (i.e., the impact of con-
ceptual information) has a significant impact on the
quality and quantity of the automated mapping de-
cisions. It was observed that the number of auto-
matic mapping decisions decreased as the influence of
the conceptual information on the attraction value in-
creased. The quality of these mapping decisions, how-
ever, also improved the more influence the conceptual
information gained.
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CountAttract’ MQAttract’
φ = 1 φ = 0.5 φ = 0 φ = 1 φ = 0.5 φ = 0

concrete entities passed filter 53 53 53 53 53 53
entities mapped 49 39 25 30 28 14

correctly mapped 33 31 23 2 5 13
percentage correctly mapped 67% 79% 92% 7% 17% 93%

not mapped 4 14 28 23 25 39
correct con. is candidate 2 12 27 23 25 39
average no. of candidates 2 2.1 2.6 6.7 6.6 5.2

percentage correct support 50% 86% 96% 100% 100% 100%

Table 1. Mapping Results

5 Restrictions

Both attraction functions derive the attraction val-
ues from source relationships between concrete entities
and hypothesized dependencies between hypothesized
entities. This approach shares the same drawbacks as
other clustering techniques based on source dependen-
cies. Similar to those techniques, our clustering algo-
rithm yields hypothesized entities featuring high cohe-
sion and low coupling. As stated by Andritsos et al.
[2], this approach is problematic when the developers
of the system did not follow the principle of low cou-
pling and high cohesion. Especially in a system that
needs to be maintained, the intended architecture is
likely to be repeatedly violated. Moreover, subsystems
such as libraries naturally do not follow the concept of
high cohesion and low coupling and would be therefore
hard to detect. In order to mitigate this problem, we
suggest the approach by Bauer et al. [4]. In their semi-
automated clustering technique, a separate library de-
tection is applied prior to the actual clustering. The
detected libraries would then not be considered for a
later automatic mapping.

6 Conclusions

Our case study demonstrates the support of cluster-
ing techniques for establishing the reflexion mapping.
The clustering technique was able to achieve a map-
ping quality where more than 90 percent of the au-
tomatic mapping decisions turned out to be correct.
Moreover, the experiments indicate that the coupling-
based attraction function (CountAttract’) is more suit-
able for semi-automated mapping than the approach
based on coupling and cohesion (MQAttract’). Espe-
cially in combination with the CountAttract’ attraction
function, the candidate detection technique performed
remarkably well on both tasks of semi-automated map-
ping. In addition to the high quality of the auto-
mated mapping decisions, the search space for the

user’s search for the correct entity was reduced sig-
nificantly.
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