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ABSTRACT. We construct a formal versal equisingular deformation of a
plane algebroid curve (in characteristic zero), and show it is smoothly embedded
in the whole deformation space of the singularity.  Closer analysis relates equi-
singular deformations of the curve to locally trivial deformations of a certain
(nonreduced) projective curve. Finally, we prove that algebraic ff,  of the com-
plement of a plane algebroid curve remains constant during formal equisingular
deformation. .

Introduction. In a series of papers ([10], [ll], [12]), Zariski has studied the
concept of equisingularity of plane algebroid curves. Two curves are equisingular
if one can simultaneously resolve their singularities; this equivalence relation is
weaker than analytic equivalence, but stronger than equimultiplicity. Using topo-
logical techniques, Zariski proves that two equisingular curves over C have
locally the same topological embedding in C ; in particular, the characteristic
pairs of their branches are the same, whence they yield knots of the same knot
type in R3 (cf. [4]).

Utilizing techniques developed by M. Schlessinger [6], we study infinitesi-

mal equisingular families of curves. Our deformation theory takes place over the
category C of artin local C-algebras. Recall that if / £ C[[X, Y]] is reduced, and

if 8l> • ' ' » gm e C[[X, Y]] induce a basis of the artin ring C[[X, Y]]/if, fx, fy),
then the formal family /+ t.e. +•••+ /  g    £ C[[X, Y, /,,•••, /  ]] induces a*   '        i°l mm l m
formal versal (or semiuniversal) deformation of the singularity defined by (/).

Thus, in a weak sense, the family represents the functor on C oí infinitesimal
deformations of the singularity.

To define equisingular deformation, we emulate Zariski's original definition.
Recall that every plane algebroid singularity can be reduced to a number of ordi-
nary double points by a finite number of quadratic transforms. We say a deformation
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144 J. M. WAHL

A[[X, Y]]/(f ) (A £ C) is equisingular if it is normally flat (i.e., equimultiple)
along an A-section and, after blowing up the section, the transform is equisingular
along A-sections lying above the first; finally, equisingular means equimultiple
for an .ordinary double point. Theorems 3.2 and 4.2 below imply

Theorem.  There exists a smooth closed subscheme of Spec C[[/,, • • •, t ]]
on which the induced family of curves yields a formal versal equisingular deforma-
tion. Infinitesimal equisingular sections are unique.

There are some equisingular deformations that are simpler than others, namely
those for which all significant equisingular sections can be simultaneously trivial-
ized; call the functor of such deformations ES , a subfunctor of the regular equi-

singular functor ES. From most points of view, ES   is much easier to work with.
For instance, the tangent space of ES   is easily described algebraically (Propo-
sition 6.3), and in §8 we prove

Theorem. ES  = ES if and only if, for appropriate choice of g,, • ■ •, g   , the
subscheme of the previous theorem may be given by r, =• • ■= f  =0; that is, there

is a versal equisingular deformation defined by f + 2™    , t .g..

Using this result, we show a formal versal equisingular deformation of Yp + Xq is given

by Yp + Xq + S t.. X'Y', where the sum is over pairs(z, /) with z < q - 2, j <p - 2, and

(i/q) + (i/p) > 1. On the other hand, ES   is in general smaller than ES (Example
6.8); in fact, ES   is the kernel of a smooth morphism ES —» L, where L may be

viewed as the functor of classes of locally trivial deformations of a certain non-
reduced projective curve (Theorem 5.7).

Finally, using a theorem on deformations of branched coverings from [8], we

prove, in §9,

Theorem. Let F(X, Y, *,,•••, t) € C[[X, Y, t..t ]] define a formal
equisingular deformation of F(X, Y, 0, • • •, 0) = f(X, Y). Then the natural map

77j(Spec C[[X, Y]] - V(f)) -7 Trapee C[[X, Y, ||t..., tj\ - V(F))

is an isomorphism.

Here, n.  is the algebraic fundamental group. Though this result is weaker
than Zariski's, the proof is purely algebraic, and is established (as are all our
results) for any algebraically closed field k of characteristic zero. The proof
utilizes the Grothendieck existence theorem and a well-known result on the alge-
braicity of the ring k[[X, Y]]/(f).

A portion of this paper appeared in the author's 1971 Harvard thesis, Defor-
mations of branched covers and equisingularity. We are grateful to Bruce Bennett
and Michael Schlessinger for several useful conversations, and are indebted to

David Mumford for his advice and support.
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DEFORMATIONS OF PLANE ALGEBROID CURVES 145

0. Preliminaries.
(0.1) We shall rely on the techniques of functors of artin rings. Let C be the

category of artin local ¿-algebras; denote by k[i] the object k[e]/e . Every sur-
jection in Ç may be factored by 5772«// extensions, i.e., ones whose kernel is one-
dimensional over k.

(0.2) Let F be a covariant functor from Ç to sets with F(k) = one point. If
A  —* A and A  —* A ate morphisms in C, there is a natural map

(a): F(A' xA A") - F(A') xp{A) F(A").

Recall the conditions of Schlessinger [6]:
(H.) (a) is a surjection when A   —» A is small.
(H2) (a) is a bijection when A   = k[e\, A « k.
(H.) F(¿[f]) (the tangent space) is a finite-dimensional /e-vector space.
(H.) (a.) is a bijection when A   —► A is small.

We say that F satisfying (H.) and (H2) has a good deformation theory; ii it satis-
fies (H.) as well, we say it has a very good deformation theory. Ii F has a good
deformation theory and A   —» A is small, then F(£[e]) is a ¿-vector space and it
acts transitively on the fibres of FÍA ) —» FÍA); if F has a very good theory, the
action is free as well. F is smooth if F(A ) —» F(A) is always surjective.

(0.3) Schlessinger's criterion [6] says that a functor with a good (respectively
very good) deformation theory satisfying (H,) is versal (resp. pro-representable);

that is, there is a complete local /e-algebra R, oí residue field k, and a morphism
hR —» F which is smooth and a bijection on the tangent spaces (resp. which is a
bijection). We refer the reader to [8] for a discussion and examples.

1. Equimultiple liftings.
(1.1) Let / £ k[[X, Y]] = R be a reduced formal power series of degree r> 1,

i.e., / e (X, Y)T - (X, Y)r+ . Denote by / the leading form of /; the linear factors
of / define the tangent directions of V(f) C Spec R. By Hensel's lemma, one knows
that / irreducible implies / = («X + bY)r, for some a, b £ k;  hence / irreducible
implies / unitangential (has one tangent direction). Thus, any / may be written
as a product of Tangential components.

(1.2) We consider several important functors on C:

/7(A) = ¡ideals (J) C R ®k A = RA\J induces / in R\

= set of (flat) liftings of (/) to RA-

G(A) = groups of A-automorphisms of RA inducing the identity on R.

H and G have very good deformation theories and are smooth; the quotient D of
H by the natural action of G is versal and smooth, and is the functor of deformation
classes of the algebra R/(f) [8].

(1.3) Denote by s: R/if) —♦ k the residue field map. Recall that a surjection
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146 J. M. WAHL

of rings S —» T = S// is normally flat if Ip/lp+1 is a locally free T-module for all
p > 1. We define a functor E on Ç by

E(A) =!((/"), J)\(f) £ H(A) and

F: RA/(f ) —* ̂  is a normally flat ^-section inducing s}.

Given (/ ), the section s  is uniquely determined by an ideal I C RA, with (/ ) C
/ ; /   may be written (X — 222,, Y — m A), fot some m . £ m.. The section s  is
called trivial if / = (X, Y). We shall eventually show E has a very good deforma-
tion theory and is smooth.

Lemma 1.4. Ler A   —* A  be small, with kernel (e), and let ((/ ), s") £ E(A),
where s~ is defined by the ideal I C R.. Suppose (f ) £ H(A ) lifts (f) and I   £
RAi   lifts 1, and defines a section s': RAiAf ) —* A' (i.e., (/') C /'). Then
((/'), s') £ E(A') if and only if g £ l'p and eg £ (/' *+1, /') imply g £ (f**%,
f , mAil p), for all integers p > 1.

Proof. This is essentially Grothendieck's infinitesimal criterion of flatness
[1, IV. 5].

(1.5) There is a functorial group action G x E —► E  defined by

o((J), 7) = (o(J), 7 . a'1),

with obvious notation; one easily checks that o(f) is normally flat along s-er     ,
and that the action is indeed a functorial group action. Note that, for every 7/ £

E(A), there is a o £ G(A) such that o(r¡) has a trivial section.

The following result shows that E is the functor of equimultiple liftings and
sections; we shall subsequently drop the term normally flat.

Proposition 1.6. For A £ C, let zzz,, ■ • •, 222    be a k-basis for m ., and let

(f ) £ H(A), where f = / + 2 722 .p ., some p. £ R. Then if T is the trivial section,
((/ ), F) £ E(A) if and only if degree p. > r, for all i. More generally, ((/ ), s~) £
E(A) if and only if f   £l T, where I   is the ideal of s~.

Proof. We proceed by induction on the length of A, the result being trivial
for A = k. Given A   £ C and a basis ml , • • •, m    .   of m.i, we may suppose
that A   —»A /(z22    ,) is small; rename e = 222    ,.u+i ' u+1

If ((/ ), t ) £ E(A ), then by induction we have degree p. > r, i » 1, 2,« • •, u.
It remains to show pu+1 £ (X, Y)r. Suppose pu+l £ (X, Y)d - (X, Y)d+1, where

d<r. Then ePu+1 = /' - S^ m'.p. £ ((X, YY, /') C ((X, Y)d*X, /'), whence
(Lemma 1.4) pu  . £((X, Y)      , /', rnA¡). Reducing mod 222^, yields p    j e
(X, Y)  + , a contradiction.

Conversely, suppose degree p. > r, for all z; since the result is true mod (e),
by Lemma 1.4 it suffices to show that if g £ (X, Y)p and eg £ ((X, Y)p+l, /'),
then g£((X, Y)p+1,f',mA,).
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DEFORMATIONS OF PLANE ALGEBROID CURVES 147

If p < r - 1, then g £ (X, Y)p, eg £ ((X, Y)p+l, /') = (X, Y)"+1 already implies
that the homogeneous component of degree p in g is killed by e; hence, by flat-
ness, it belongs to K® m a'%

If p = r, let /   be the homogeneous component of degree r of / ; then
((X, Y)r+1, /') = ((X, Y)r+1, f'r ). Write g = gr + h, where h denotes terms of degree
> r. Now, eg £ (iX, Y)r+ , /') implies tgr = af' ; since /    is not a zero-divisor,
we have a = at. But fig  - af') = 0 implies g  - af'  £ R ® ttî^,, so g £ ((X, Y)r    ,

/', mA,).
If p > r, assume g £ (X, Y)p and eg = Af + h, where deg i > p. With / as

above, we note it is not a zero-divisor, whence the leading term A of A is of

degree p — r. U g is the f-component of g, eg = A f implies as above

A = ta , so g - a fr £ R ® 777^». Since we may suppose a e(X, Y)p~r,
we have g - a f £ ((X, Y)p+ , mA,), as desired. This completes the proof of the
first claim.

The final remark follows easily by choosing a a £ GiA) such that oiT) = (X, Y).

Proposition 1.7. E has a very good deformation theory and is smooth. Fur-
ther, the tangent space is

!((/ + eg), (X -ae,Y- be))\g + afx + bfy £ (X, Y)r\.

Proof. The proof follows easily by trivializing the sections involved, using
the fact that H and G have very good deformation theories and are smooth, and
applying Proposition 1.6. For instance, suppose ß = ((/ + eg), (X - at, Y — bt)) is
in E(/e[e]), with a, b £ k. Let a £ Gik[e]) send X to X + at, Y to Y + be. Then
oiß) = (oif + eg), (X, Y)) = ((/ + ciafx + bfy + g)), (X, Y)), so Proposition 1.6
yields the result.

(1.8) Let p: E —» H be the forgetful morphism which neglects the section. The
injectivity of p is equivalent to equimultiple sections being uniquely determined
by the lifting.

Proposition 1.9. p: E —» H is injective if and only if f is not unitangential,
i.e., the leading form f    of f has distinct factors.

Proof. By [8, 1.1.4], it suffices to consider p . If / is unitangential, we may
assume after change of coordinates that /   = YT. Then one easily checks that if F

is defined by (X - e, Y), then ((/+ f/x), F) and ((/+ i/x), s) ate in E(k[t]). Thus,
p   is not injective.

If / is not unitangential, we can change coordinates and write /  = Ymg,

where Y does not divide g. Ii (if), (X - at, Y - be)) is in the kernel of p , then
afx + bfY £ (X, YY, whence aYmgx + bimY™-^ + Ymgy) = 0. Thus, Y divides
bg, so b = a = 0, and p   is injective.
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148 J. M. WAHL

Proposition 1.10. Equimultiple liftings preserve tangential components. That

is, if (/) = (g.) - • • (g ) is a factorization into tangential components, there exists
a natural inclusion

2 = 1 '

with image all tuples with the same equimultiple section.

Proof. Let ((/ ), s) £ E..ÁA); it suffices to assume s  is trivial. We show we
can write (/ ) uniquely as (g.) • • • (g ,), where the (g .) are equimultiple liftings
of the (g.) over the trivial section. We first write (/) = (g.)(G), and factor (/ ) =
(g .)(G). This may be done by an induction on the length of A using a standard
formal argument and the key fact that (X, Y)rC (g,, G). The uniqueness follows

because g,  and G are relatively prime in R. Factoring (G) in this fashion yields
the desired morphism. The final remark follows from Proposition 1.6.

Remarks. (1.11) Equimultiple liftings do not, in general, preserve irreducible
components (i.e., branches); for instance, (Y(Y + X ) + eX ) is equimultiple along
the trivial section, but does not factor (Y + ea)(Y + X   + eß). For, that would
imply (a + ß)Y + aXi = X2, whence Y divides X2(l - aX), an impossibility.

(1.12) If f £ k[[X., • • •, X ]] is reduced, then one can define the functor E
as above, and all the results in (1.2) through (1.8) carry over verbatim. Note the
leading form /   will not in general factor into linear terms. However, we general-
ize Proposition 1.9 as follows: p.: E —> H is not injective if and only if /   is,

after a linear change of coordinates, a form in (n — 1) variables.

2. Higher order equimultiple functors.
(2.1) We now wish to consider liftings that are not only equimultiple, but equi-

multiple in the "first infinitesimal neighborhoods" as well. Suppose that ((/), 5")
£ E(A). Let p~: B- —» Spec RA be the blowing-up of Spec R .  along the sheaf of
ideals /   defined by the section s. Let / - = p~~ (V(I )) denote the exceptional
fibre, a divisor in Bj, and let the total transform of V(f) be p~~l(V(f)) = T(f ).

Lemma 2.2.  The divisor T(J) — rl - is effective and flat over A, called the

proper transform P(f ).

Proof. If /  = (X + Z22J, Y + 22Z2), then Bj is the union of the affines
Spec RA[X + mjY + m2\ and Spec RA\Y + m2/X + mA. In the first affine, / j
has local equation Y + 2zz2, while (/) defines T(f ). By Proposition 1.6, f  €lr,

whence / /(Y + mAT £ RA\X + m./Y + m2]. The result now follows easily.

(2.3) We define the reduced total transform R(f ) to be the divisor T(f ) —
(r- l)/ -. Looking at the closed fibre, R(f) has singularities precisely at P(f)

D ¡s; the number of such points is t, the number of tangent directions of (/). P(f)
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DEFORMATIONS OF PLANE ALGEBROID CURVES 149

is the union of the proper transforms of the tangential components. We define

E2(A) = {((/"), F; Fj, •. •, st)\((f), F) £ E(A) ahd the F. : Spec A — B_

are A-sections inducing F (F = p~ • Ty and

inducing equimultiple sections of Rif ) in Op.,

for p; a singular point of Rif )}.

The supports of the s.'s are called the first infinitesimal neighborhoods of the
2 2singularity of (/). As before, there is a natural group action G x E   —» E    com-

patible with the forgetful morphism E   —» E. If a £ G(A), a £ E (A), then oia)
consists of the lifting oif ), an equimultiple section u =s~ • a~  , and equimultiple
sections F. • a      in B-, where we view a also as an isomorphism B- ^V B-.I 12 ' * U S

Lemma 2.4. Suppose (/) 25 unitangential. If (if ), s ; F.) £ E (A), /¿en /¿ere

is a a £ GÍA) such that oiif ), F; F.) = (oif ), T; T.), where T and T.  are trivial
sections.

Proof. First, there is a a £ G(A) such that F • a~    is trivial; so, we may
assume F = T. Suppose /   = V, and let k[[X, Y, T]]/(XT - Y) denote the comple-
tion of the local ring of the one point of B   at which /?(/) has a singularity. By

assumption, Rif ) is equimultiple along some section of A[[X, T]] defined by
(X, T - 772), for some m £mA, since it lies over the trivial section T oí A[[X, Y]].
But if a £ GiA) sends X to X and V to Y + mX, then o is the desired automor-
phism.

Proposition 2.5. E    has a very good deformation theory and is smooth.

Proof. Let A   —» A be small, A" —» A arbitrary, A* = A   *A A", and consider

(o):E2(A*)-*E2(A')x   .      E2(A").
E (A)

If ((/'), s'; s[,...,s¡)£ E2(A'), (if"), s"; *',..., s'¡) £ E2iA") have the same
image in E (A), then (Proposition 1.7) there is a unique ((/*), s*) £ EiA*) lying
over the liftings and first equimultiple sections. There are natural isomorphisms

Bs* =*♦ Bs, xß_ Bs„ and Rif*) ^ Rif') xR(j) R(f"). Therefore, there are unique

sections s* oí B,_* lifting the s. and s! . A local argument (using Proposition 1.7)
shows ((/*), s*; s*,«-., s*) is in E2(A*), whence (a) is surjective. The injec-
tivity is similar.

For smoothness, let A   —»A be small, and consider ((/ ), F; F., • • •, F ) in

E (A). By Proposition 1.9, we may write (/) = (/,)•••(/ /)• But Lemma 2.4 implies
we may lift each ((/(.), F; J.) to ((/!), s'; s') £ E2(A') (with the same section s'
for all i), whence (Proposition 1.10) ((/¿ • • • f'( ), s'; s J, • • •, s'() is in E2iA') and
lifts the original element.
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150 J. M. WAHL

Remark 2.6. The equimultiple sections in Bj need not be unique, as seen
from the example ((Y2 + X3 + eXY), T).

(2.7) It is now clear how to define inductively the »th equimultiple functor
E" on C. Suppose E' has been defined for 2 < /' < w - 1, with natural maps E1 —»

E'~ . For an element a of E'(A), let a* = ((/ ), s; s",,«.«, s ) denote the image
of a in E (A); also, let Ba denote the Spec A-scheme obtained by blowing up
Spec RA  successively along the A-sections of <x. Let (/ .) be the ideal of R(f ) C
B— at the singular point p~. defined by s.. There are ordered collections a. of

sections in a such that ((/ .), a ) £ El"?.(A); this makes sense, because for in-
2 2 l./¿7

stance A-sections of B-.-. inducing 5". on B- yield A-sections of the blowing-

up of Spec 0-   along s ..
An element of E"(A) is then, by definition, (a; ~u~.,. • •, z7  ), where
(a) a £En~HA),
(b) z7. is an A-section of Ba,
(c) every z7. lies overa section s.  of B- in a*; letting ¡T. .»•••» H.

denote all such sections, we have, for all /',

(£. «-.; z7. ,,..., u~.   ) £ EItHa).
v7      1     7.1 1,9 (/.)

The supports of the sections in the data of an element of En(A) ate called the
(infinitesimal) neighborhoods of (/ ). We may further speak of the reduced total

transform of (/ ) in Ba; as above, it is a lifting of a reduced divisor supported on

the total transform of (/).

Proposition 2.8.  E" has a very good deformation theory for all ».

Proof. Using induction on », one proceeds exactly as in Proposition 2.5. The
point is that because E"~    satisfies (H.), all sections of En(A   xA A ) ate equi-

multiple and uniquely determined by E"(A ) and En(A'), except possibly in the
last blowing-up. But one then applies Proposition 2.5.

Remarks. (2.9) The usual functorial group action G x E" —► E" is defined for

every », and commutes with the forgetful maps E" —» E"~  .
(2.10) Presumably all functors E" are smooth. However, Lemma 2.4 does not

generalize; we may not be able to trivialize simultaneously all sections of an ele-
ment of E"(A), even if / is irreducible.

(2.11) Suppose (/) is a curve for which R(f) C Bs has an ordinary double
point at a section s.. Thenuf ((/ ), s) £ E(A), then there exists a unique A-sec-
tion F. of B-  lifting s. along which R(f ) is equimultiple (by 1.9).

(2.12) If (/) defines an ordinary multiple point (i.e., /   has r distinct factors),
then one computes that E   m* E. (Use the previous remark.)

(2.13) Our definition of E" requires that all sections be supported on singular

points of R(f) (i.e., points on the proper transform).
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3. The equisingular functor ES.
(3.1) It is a well-known fact in the theory of curves that after blowing up

Spec k[[X, Y]] and its transforms sufficiently many times, the reduced total trans-
form of (/) has only ordinary double points as singularities.

Theorem 3.2. There exists an integer N such that the natural maps E   +I —»
E   +        are bijective, for all i > 0. For such an N, the natural map E    —» H is

injective, unless f is a regular parameter.

Proof. Let N be the smallest positive integer so that in any sequence of the

form {(/), (/j), ify), ' "\, where (/. .) is the ideal in the complete local ring at a
singular point of the reduced total transform of a blowing-up of (/.) [10, p. 512], we
have that (f¡) defines an ordinary double point for ;' > N — 1. It suffices to show
E   +   —» EN is a-bijection. The question being one of existence and uniqueness
of equimultiple sections, it suffices to show that for an ordinary double point,
E   at, E. But this fact was mentioned in Remark 2.12.

To show E —» H is injective, it suffices to check on tangent spaces. Fur-
ther, by induction on N, we have only to check that if ((/), F) £ E(k[e]) is in the
image of E (k[e]) —» E(&[e]), then F is the trivial section. The result is obvious
by Proposition 1.9 if / is not unitangential.

Thus, suppose / has tangent V = 0 and multiplicity r> I; since we are only
concerned with (/), the Weierstrass preparation theorem allows us to assume

f(X, Y) = y + mi ¿(X)y', with d. £ k[[X]]. After a further coordinate change,
¿._j(X) = 0, so we write /(X, Y) = YT + 2.eA ¿.(X)Y£, where A C |0, 1,.. •, r- 2},
and d.(X) has leading form c.X ', with e. > r — i.

With ((/), F) as above, F defined by (X — at, Y), we prove a = 0. Let a £

G(k[e]) send X to X + at, Y to Y, whence (oif), T) is in the image of E (k[e]).
Note

oif) = Yr + £ (d.(X) + aed'. (X))Y\
ieA      '

Since (o(f), T) is in the image of E (/e[e]), the reduced total transform (with coor-
dinate T, = V/X) in B- is given by

Tt(X, Ty) = X(T[ + £(¿.(X) + aed'.iXÏÏX'-'Ti),

and it is equimultiple along a section of the form (X, T, - be). The multiplicity
q.  oí /j is min .eA {r + 1, e. + 2i - r + 1}. We distinguish two cases.

If q. < r + 1, let ;' be the largest integer in A such that e. + 2/ — r + 1 = q..
Then, by Proposition 1.7,

a £¿;(X)X'^+1T/ + b^r(fx) £ (X, T/1,
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152 J. M. WAHL

whence ac .e. =0. Since e . > r - /' > 0, a = 0, and we are done in this case.
7   7 i '        ' '

If a, = r + 1, then, as above, the series

b(rXT[-1 + Z ic.X     '        r;-1) + aZ c.e.X «       T[

is in (X, TAT+ . Since every i < r- 2, the term brXT7"   = 0, whence b = 0, so
that a = 0 or e. + 2z - r + 1 > r + 1, for all i. In the second case, (/,) is equi-
multiple along the trivial section only; since ((/ ), T; T) is in the imagé of
E (k[e\), we blow up again, and have (with T\ = T./X)

T2(x, t2) = x(r2r + ZU40f) + aed'AX^X^-^Tp

is equimultiple along a section (X, T2 — be). Proceeding as above, we find that
either a = 0 or else 6 = 0 and r + 1 < e. + 3z - 2r + 1, for all i £ A. Repeating

this procedure n times, we have either a = 0 or the reduced total transform is equi-
multiple along the trivial section and r + 1 < e. + (n + l)i — nr + 1, fot all i £ A.

The second case implies r < (e Jn + 1)) + z; but A 40 and i < r, so this is a con-
tradiction for n sufficiently large. Therefore, a = 0, and the theorem is proved.

(3.3) We-can now make the following definition. With N as in Theorem 3-2,

we call E     the functor of equisingular liftings, and denote it by ES. Since the
natural map ES —* H is an inclusion, we need not mention the sections; although
they are part of the data, they are uniquely determined once the lifting is given.
Recall (Proposition 1.9) that the functor of equimultiple liftings does not have a
good deformation theory—it must be equipped with sections. Note also that in con-
sidering equisingular liftings, one need not blow up every section as in each E';
one only must blow up sections supported on nonordinary double points, and we
can consider any resolution of the singularity B —» Spec R.

We shall frequently say "(/ ) is equisingular along s " to mean ((7"), s~) is in
the image of E    —♦ E.

Proposition 3.4. Suppose (/) = (gj)(g2). Then there exists a natural injection
ES... —► ES.    , x ES.    y In particular, equisingular liftings preserve branches.

Proof. Let (/ ) £ ES..ÀA); we claim (/ ) factors uniquely as a product
(g.)(g2) of equisingular liftings of gx and g2. Let J: B —► Spec RA be a resolu-
tion of the singularity of (/ ); that is, the reduced total transform (/ ) has only
ordinary double points as singularities, all trivially deformed. Let /   be the ideal
sheaf of X C B, the proper transform of (/ ). It is well known that p~AQ-g) = IXOp)

= RA; Rlp~ßB = 0; and ?*£*([) = (/")■ We shall show below that pj = (J);

assume it is true.
Reducing mod 222., we have the resolution p: B —* Spec R and the sheaf of

ideals / of X on B. Since (/) = (gj)(g2), we may write / = /j n i*2, where i\ is the
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ideal sheaf of the proper transform X . of (g .). But Xj n X2 = 0, so we may write
/ =/,n/2 on B, where /. is a uniquely determined lifting of L. Thus,

fj = (/") = £(7¡ n T2) = ft(7¡) n &(r2).
We claim F*(' .) is a flat R^-module, hence a principal ideal; but using the infini-
tesimal criterion of flatness, one sees that it suffices to show p~J,l¡) is A-flat.
On B, we have the exact sequences

1        II        i

Taking J5"+ yields

o-nfj n r2) -nOg) -nox )®no^ ) -r»^o; nr2)-o
i        ll           'i i

o —» nn —. nog)-► nöjp )-» * '^r —► o
Since the third vertical map is a projection of r(0g)-modules and hence admits
a section, a diagram chase yields an isomorphism R p~+(/ j ^ / 2) ^ R ?*' i  ®
R p"^/2. But since the two middle terms of either row are A-flat (X. is affine),
the first module in a row is A-flat if and only if the fourth is. But IX / j n 12) =
(/) is flat, hence so is R P~JJ, ^ I 2) and each direct summand R p¿ •• There-
fore, p"+/. is A-flat, hence is a principal ¡deal (g .) C R^  lifting (g.). By con-
struction, (g .) £ ES.   ÂA). We leave the rest of the details to the reader.

It remains to show f^I  = (/ ). We immediately reduce to the case where
p~: B —» Spec RA is one blowing-up along the trivial section. If /   is the ideal
sheaf of the exceptional fibre E, then we have p~*(f ) = / r ® /   (r= degree of /).
We claim

rx/' « T) = nji+1 ® D,   i = o, i,..., r -1.
Due to the exact sequence 0 -♦ J'+1 ® F —• J' ® F —» J1 ® F® 0- —♦ 0, it suffices to
show H/ ' ® /  ® Og) = 0. However, since E is isomorphic to P1 x Spec A and
H (0pj) = 0. we have that / ' ® /  ® 0g is a product deformation of the invertible
sheaf /'' ® / ® Q.E on E C ß [l, III. 7]. Now / ® 0g * Q£(_ r), while / ® 0g
= 0£(1) = conormal sheaf of E in B; thus, /'® / ® 0£ = ©E(- r + i). The result
now follows because H°(E, 0g(- r + ¿)) = 0, for all i < r- 1.

Remarks. (3.5) The above result guarantees that equisingular liftings induce
"tangentially stable pairings" of the branches (part of Zariski's definition in [10]).
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(3.6) It is not true that the product of two equisingular liftings is equisingular,
unless one knows all sections in all neighborhoods of the liftings are disjoint or
coincide. For example, Y(Y + X   + eX) is not equisingular. However, we have the

Proposition 3.7. Let (/) = (/,) • « • (/ ) be a factorization into tangential com-
ponents. Then the inclusion ES,,. —> II ES,,, has as image all products of equi-
singular liftings with the same equisingular section in Spec R ., A £ C.

4. The smoothness of ES.
(4.1) Let (/) be a reduced curve, and suppose p: B —»Spec R resolves the

singularity (i.e., R(f) has only nodes as singularities). As usual, we require that

all blown-up sections lie on the proper transforms of (/) (2.13). Let E = p~  \mR\
be the reduced exceptional subscheme; it is a tree of P 's. By [EGA, II. 4.6.13],
there is an effective divisor Z of B, with support E, such that ö(- Z) is ample
for p; thus, we may assume H (Tß ® ß(- Z)) = 0, where we denote by T„ the
dual of fi„ ... Let L_ be the functor on C of classes of locally trivial deforma-
tions of Z over Spec k. From [8], it follows that L_ is versal and smooth (since

H (Tz) = 0), with tangent space H (Tz); further, local triviality is equivalent to
formal triviality [8, Proposition 2.1.5]. In this section, we prove the following

Theorem 4.2. There is a natural smooth morphism y: ES —* Lz. In particular,
ES is smooth.

(4.3) We start with a description of L£. Let E.,• ", E be the components
of E, T. = E. O (U.   . E.), and t. = number of elements in T..'       2 2 ^7*2        7 2 2

Proposition 4.4. There is a natural isomorphism T£ ^©p ■ 0-E (2 - t.),

where p . : E . —» E is the inclusion. In particular,

dim Hl(TE) =Z max(0, t. - 3).
i

Proof. The natural map TE —» p.  T E . is easily seen to land in p.  (TE . ® /.),

where /. is the sheaf of ideals of the subscheme T. C E. (since derivations of E
l 2 2

must vanish on the inverse images in E. of the singular points of E). A local
argument shows the induced map TE —*@p ■ (TE  ® /.) is an isomorphism; for, if
E is given formally at a singular point by 0 = k[[X, Y]]/XY, then the map

[•»♦'¿*B«eaF ,Y + bX = 0 j - Xk[[X]]JL © Yk[[Y]]L
) oX dY

is an isomorphism. But TE , = 0£ (2), /. = 0E ,(— /.), whence the result.

(4.5) Unfortunately, Tz does not in general admit as simple a description.
On the other hand, if N° = Coker(Tz --» Tß ® 0Z) (the "locally trivial" normal
sheaf, cf. [8, 3.2.3]), the natural map Nz —» NE is an isomorphism (a formal check).
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On the other hand, an argument as in Proposition 4.4 shows   Np ***> ©P¿  ^e ■'
where Nc   is the normal bundle of E. in B. Since H°(NP ) = 0, there is an exact** i ' c I
sequence

0 - Hl(Tz) -» Hl(TB ® 0Z) - Hl(N°E) -+ 0.

(4.6) We want to introduce an auxiliary functor L. Note B was obtained from
Spec R by a sequence of blowings-up B = B„ —» BM_. —► • ••—.Spec R, where
B. j —♦ B. is centered at a section <r. of the exceptional fibre of p.: B. —►

Spec R. Although B is regular and excellent, it is not smooth over k in the usual
sense (nor even formally smooth in the sense of Lichtenbaum-Schlessinger [3]),
since the local rings have mixed "algebraic" and "continuous" structure over k;
thus, it is not clear that all deformations of B are locally trivial in the Zariski
topology.

If Spec 5 = Spec k[X, Y], then it is clear there is a sequence of blowings-up
C = C„ —» C„   , —»...—► Spec S inducing the resolution B —► Spec R via flat
base change. Of course, G is now a nonsingular variety over k. Denote also by E
the exceptional subscheme of r: C —► Spec S, and by o. the section of C. to be
blown up. Let L(A) be the set of classes of deformations C —» Spec A which may
be obtained by a sequence of blowings-up C —+ C„   j J-»- • •—► Spec SA, where

C. , —► C. is centered at a normally flat A-section o. of the exceptional sub-
scheme of C.—»Spec 5.   lifting o. and inducing 0 ■_..

Lemma 4.7.  L is versal and smooth, and is the functor of those deformation
classes of C to which E admits a locally trivial lifting.

Proof. Since T'c is coherent, H (Tc) = R r^Tc is a finite k[X, Y]-module
(r is proper); since it is supported on V(X, V), Hl(Tc) is finite over k, whence
the functor of deformation classes of C is versal [6]. Since L is contained in
this functor, it suffices to show L satisfies (H.). One can do this once we show
that if A   —» A  is small, two Spec A -morphisms C  —» Spec SAi, inducing the
same map over Spec SA, differ by an automorphism of Spec SA,. But this follows

from [1, III. 5.4], because H°(C, r*TSpecS) = TSpecS = Derfe(S, S), since H°(C, Q-c)
= S. The smoothness of L is obvious.

If /: X —» y is a blowing-up of a (closed) point P of a nonsingular variety Y
oí dimension > 2, then one establishes easily the exact sequence

°^f*TX -Ty^Np^O,

where Np is the normal sheaf of P in Y. There is a morphism of the functor of
deformation classes of Y and liftings of P into the functor of deformation classes
of X; the exact sequence

H°(Np) — HHTX) -> HHTy) -» 0
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shows the morphism is surjective on the tangent spaces, whence the usual argu-
ment shows it is surjective. We conclude that every deformation class [C] of C
is obtained from Spec S .  by a sequence of blowings-up.

Any element of L(A) certainly induces a locally trivial deformation of E. For
the converse, one uses induction and reduces to proving the following: if (g) C
k[[X, Y]] is (X) or (XY), (g) C RA a lifting, and s  an A-section of RA, then the
total transform T(g) C B- (2.1) is a locally trivial deformation of T(g) if and only

if ((g), s~) £ E,  ÁA). The proof is an easy computation.
(4.8) From obstruction theory and the map Tc —» Tc ® 0E —» NE, one has

that

L(k[e])=Ket(Hl(Tc)^H\N°E)).

On the other hand, Z was chosen so that Hl(Tc) *** rll(Tc ® 0Z), whence, as in
(4.5), we have L(k[e]) = Hl(Tz). In fact, we have

Proposition 4.9.  There is a natural isomorphism ß- L «*» L-.

Proof. Since L is smooth and ß   is surjective (4.8), it follows that ß is
surjective [8, 1.1.4].

To show ß is injective, suppose C. —»Spec A    induce elements of L(A )
with the same image in LZ(A ); we may suppose they are isomorphic over Spec A,
where A   —► A is small. Let Z. CC   be the induced subschemes, and consider

2 2 '

the diagram

Z'
\

n   \
N

Cl--C2

\    /
Spec A'

The obstruction to lifting the isomorphism over A to an A -homomorphism C,  —»
Cl   lies in H (Tc) [l, III. 5-4], while the obstruction to lifting to a map Zl —►

CÍ   is easily seen to lie in H (Tc ® ©z). But by assumption, H (Tc) &**
H (Tc ® 0Z); thus, if Z. ai* Z2, the obstruction vanishes, so C,  and C2 are
necessarily A -isomorphic.

Proof of Theorem 4.2.  Suppose Z = X r.E .. If (/ ) e E5(A), one blows up suc-

cessively the equisingular sections of (/ ) and its transforms to get a map p~:

B —► Spec RA ; such a process is well defined, since all sections are unique

((2.13)  and Theorem 3.2).  Let yAi(f )) be the deformation class of Z = £ r{E.,
where E. is the unique lifting of E . to B. As in (4.6), p~ is induced by C —»
Spec SA.
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If [Z'] e LZ(A') lifts Z; where A' —» A is small, then by Proposition 4.9,
there is a C' —»Spec 5^, lifting C and containing Z ; suppose C   induces p :

ß' —> Spec R. ». The total transform Tif ) C B is defined by the free sheaf of 0g-

modules, p~*(f ), which consists of the product of the ideal sheaves of R.E,  (some
«.) and of the proper transform of / . Having lifted the E. to E. C ß , one can
easily lift T(f ) in a locally trivial fashion to a relative A -divisor on B , defined
by the sheaf of 0ß,-ideals K'. But K' is a free 0ß)-module, since it lifts the
free ©ß-module p*(f) and since hHb, 0ß) = 0 [l, III. 7.1]. Thus, p^iK') C RA,
is a free R.» -module, hence is a principal ideal (/ ) lifting (/). Further, the

natural map p *P^K  —>K   of free ©„»-modules is necessarily an isomorphism.

We must show (/ ) £ ESiA ). Let E, C E correspond to the blowing-up of the
origin in Spec R; then the multiplicity of E,  in p*if) is r, the multiplicity of
(/). By construction, /   vanishes r times on E.; equivalently (Proposition 1.6),

(/') is equimultiple along the section defined by IX0ß,) = R ., —♦ IXC/j ') — A'.
Next, let py. B. —» Spec RA, be the blowing-up of this section; then p   factors

» p>
B1 —» B'. -X Spec RAi. U E2 C E comes from blowing up a point of Bj, then the
morphisms 0ß» ^* qßB, -» q^ ©E ' « A' gives rise to the section of B¡ to be

blown up. Thus, equimultiplicity of the transform of (/ ) along this section is

equivalent to /   vanishing sufficiently many times on E- C ß . But this is guar-

anteed by construction. In this fashion, we find if ) £ ESiA ), so y is smooth.

Remarks. (4.10) The proof shows that if Z is any divisor for which H iTc)
Ot» HliTc ® 0Z) ("the deformations of C are determined by those of Z"), then
L^LZ.

(4.11) One can show that ES —» Lp is smooth; L„ is pro-representable and

has tangent space described by Proposition 4.4.

(4.12) For a direct proof of the smoothness of ES, see [9, p. 134].

5. The functor ES .
(5.1) Let p: B —»Spec R be a minimum resolution of the singularity of (/);

that is, one blows up only nonnodes of the reduced total transforms.

Lemma 5.2.  If if ) e ESiA) is equisingular along the trivial section in all

neighborhoods of B —» Spec R except at nodes, then it is automatically equisingu-

lar along the trivial section at nodes of the exceptional fibre.

Proof. We may restrict ourselves to the following case. Suppose ©. is the

local ring of a point P in B¿) (/ ) is equisingular along the trivial section in ©.

® A, while Q £ B. .  (the blowing-up of P) is a point not on the proper transform

of (/), but at which R(/) has a node. Let 0. j be the local ring of Q. We may

assume (/ ) = (Y)(g) in 0¿ ® A, where  y = 0 is the local equation of an excep-

tional line (as all previous blown-up sections are trivial). Therefore, the reduced
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total transform of (/) in 0¿+1 ®A is given by (XT) (where Y = XT), hence is
equisingular along the trivial section.

Convention (5.3). We shall say that those (/ ) as in Lemma 5.2 are equisingu-
lar via trivial sections, recalling that this does not apply to nodes of the proper
transforms. This is not to be confused with "(/) equisingular along the trivial
section" (see (3.3)).

(5.4) Consider the subfunctor of ES defined by

ES'(A) = {(/ ) £ ES(A)|o-(/ ) is equisingular via trivial sections, some o £ G(A)j.

Thus, ES   consists of the "easiest" equisingular liftings; one does not worry

about equisingular sections.

Proposition 5.5.  ES   has a very good deformation theory and is smooth.

Proof. If (/ ) and o(f ) ate equisingular via trivial sections, then we may view
o as an element of G (A), the group of infinitesimal Spec A-automorphisms of
B x Spec A. The result follows directly once we show G' is smooth. For this,
one imitates the proof of [8, 1.3.1], in showing that one can "exponentiate in the
Lie algebra G'(k[e\)". In particular, if d £ G'(k[e]), m £ mA, one can define e      £

G (A), and prove that every element of G (A) is a composite of such Spec A-auto-
morphisms.

Remark 5.6. One could have started by defining ES' as a subfunctor of H,
and proving directly as above that ES    has a very good deformation theory and is

smooth; one can therefore avoid Theorems 3-2 and 4.2 for this simpler functor.
However, as we shall see below, ES   is generally smaller than ES. Denote hence-
forth by L the functor Lz, where Z is as in (4.1).

Theorem 5.7. ES   is the kernel of the smooth morphism y: ES —» L. That
is, ES'(A) = \(J) £ ES(A)\yA((J)) is the trivial element of L(A)\.

Proof. If (/ ) is equisingular via trivial sections, then the induced deforma-
tion B is trivial, whence so is the element of L(A); therefore, ES (A) is in the
kernel of ES(A) —» L(A). Conversely, if (/ ) £ ES(A) induces a trivial element of
L(A), then by Proposition 4.9 it induces a trivial deformation of B. So, if BM —»

BM_, —»-► Spec RA is a resolution attached to (/ ), then after automorphism
o £ G(A), it becomes BM x Spec A —»• • •—♦ Spec R x Spec A (cf. Lemma 4.7).
Therefore, o(f ) is equisingular via trivial sections, whence (/ ) £ ES (A).

Corollary 5.8. ES' = ES if and only if L is trivial.

6. The tangent space of ES.

Proposition 6.1.  The tangent space of ES, I = ig £ k[[X, Y]]\(f + eg) £
ES(k[e])\, is an ideal.
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Proof. / is certainly a /e-module because ES has a good deformation theory.
Thus, we must show g £ I implies ag £ I, any a £ R = k[[X, Y]]. Since, for

O £ G(k[e]), there are p, q £ R such that o(f + eg) = (/ + e(g + pfx + a/y)), it follows
that / contains the ideal (/, fx, /y); further, we may suppose (/+ eg) is equisingu-
lar along the trivial section, and prove (/+ eag) £ ES(k[e]).

We use induction on M, the number of blowings-up needed to resolve the sin-

gularity of (/). For M = 1, (/) is an ordinary multiple point, and / = (/, fx, fy,
(X, YÍO, since in this case equimultiplicity is the same as equisingularity. If
(/) = (/t) ... (/) is a product of tangential components, then (/ + eg) = II (f¡ + íg¿)
(Proposition 1.10), whence (/+ eag) = II (/. + eag); thus, it suffices to prove the
result when (/) is unitangential. But after another automorphism (Lemma 2.4), we

may assume (/ + eg) and its first transform are equisingular along the trivial sec-

tion. A direct computation now shows that (/ + fag) and its first transform are
equimultiple along the trivial section; but induction in the first neighborhood
implies (/ + eag) e ES(k[e\).

(6.2) To get a better hold of /, we let B —► Spec R be a minimal resolution of

(/) (5.1). Let l0aiaeT be the set of 0Q = R and all local rings of the B¿ in the
resolution at which the reduced total transform has a singularity. Thus, there are

/ such local rings 0,, • • •, 0   in B,, where t is the number of tangential compo-
nents of (/). Let S C T be the index set corresponding to the nonnodes. Let

772a C 0a be the maximal ideal, and let va be the ma-adic valuation on 0a. Of
course, R C 0a is birational.

Proposition 6.3. (/ + eg) £ ES (k[e\) if and only if g is in the ideal I  = (/, fx,
/y» l>aeS ma.       ^ '" particular, /' C /.

Proof. If (/ + eg) £ ES'(k[e]), there is a o £ G(k[e]) such that o(f + eg) is equi-
singular via trivial sections. Since (/, fx, /„) C / , it suffices to assume (/ + eg)
is equisingular via trivial sections. The result then follows by definition and
Proposition 1.6.

Conversely, suppose g £ I ; writing g = a/ + bfx + cfy + g., where gj £

rïa€S 222^a(/), one has (/ + eg) £ ES'(k[e]) if and only if (/+ egA £ ES'(k[e\). Thus,
it suffices to show gel laeS rna implies (/ + eg) is equisingular via trivial

sections. If M = 1, (/) is an ordinary multiple point, and this case is clear. In the
general case, certainly (/+ eg) is equimultiple along the trivial section. If Y +
ßi X, i = 1, • • •, í, are linear forms defining the tangent directions of (/), then

0. = d[[X, Y]][T]/Y - TX)(XiT+/3 y

But the reduced total transform of (/ + eg) in 0 [e] is given by (/ + eg)/Xr~l =
/,- + (g¡- For any 0a (a £ S) dominating 0., we have va(f)= vAJ.) + va(Xr~l)
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and vaig) = VaigJ + va(Xr-1). Thus, va(g) > va(f) (i.e., g £ mVaa(,)) ii and only

if va(g~¿) > va(f¿ ). Since taking completions does not change the values of va, the
inductive assumption is fulfilled for (/. + eg .), unless (/.) defines an ordinary
double point. Since this case is covered by Remark 2.11, we are done.

Remarks. (6.4) Of course, / C (/, fx, fy, (X, y)0, since equisingular liftings
are equimultiple.

(6.5) If B . is some blowing-up in a minimal resolution of (/), and if the correspond-

ing functor L of B . (4.6) is trivial, then one easily shows

¡C (a/x'/v n mvJ'\,

where S. C S corresponds to the local rings ©a contained in the local rings of B ..

Proposition 6.6. In case ¡(X, Y) = Yp + Xq (p < q), then 1 = /' is the ideal
generated by Xq~  , Yp~  , and the monomials X'Y', where pi + qj > pq. In partic-

ular, (/) has nontrivial equisingular liftings if and only if p = 3, q > 5  or p > 3.

Proof. We proceed by induction on pq, the case pq = 1 being trivial; also,

(2.12) proves the result for p - q.

Suppose p < q, and (Yp + Xq + e S a.X'y') e ESU[i]); we may as well sup-

pose i < q - 2, j < p - 2, and the lifting is equisingular along the trivial section.

Letting y = TX, the reduced total transform is given by

XiTp + Xq~p + e ya.Xui-pT>).

By Proposition 3.4, (Tp + Xq~p + e I a..X'*'"pTi) is equisingular; since
piq - p) < pq, we may use induction. An easy computation shows pi + qj > pq,

lot all 2, ;' such that a.. ^0.

Conversely, it suffices to show iYp + Xq + eX'Y') £ ES(k[e]), for pi + qj > pq.
This may be done using Zariski's discriminant criterion for the formal family over

k[[t]] defined by  Yp + Xq + tX'Y' [10, Theorem 7]. However, we show directly
(by induction) that (Yp + Xq + eX'Y1) is equisingular via trivial sections if pi +
qj > pq. Since i + /' > p, the lifting is equimultiple along the trivial section; let-

ting y = TX, induction shows the proper transform (Tp + Xq~p + eX'+'~pT!) is
equisingular via trivial sections. To show this for XiTp + Xq~p + eX'+,~pTJ), we
must prove that the equisingular sections of each component are compatible in all

neighborhoods. However, since these sections are almost all trivial, one need
only consider the following case: there is an ordinary double point of the reduced

total transform of Tp + Xq~p at which the transform of XiTp + Xq~p) does not

have a node. An elementary argument shows this occurs only if q = p + 1. But a

direct computation then shows that pi + qj > pq implies XiTp + X + eX'*7~pT')
is equisingular via trivial sections. This completes the proof.
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Corollary 6.7. In case f(X, Y) = Yp + X", then ES' = ES.

Proof. ES' —► ES is surjective on the tangent spaces, and ES   is smooth,

whence ES  —► ES is surjective.
Example 6.8. Consider the reduced curve defined by /(X, Y) = (X   - Y )   -

X   . This curve has four tangential components, each of which consists of two
nonsingular branches with a first-order contact (i.e., the branches become trans-
versal after one blowing-up). If Bj —» Spec R is one blowing-up of the origin, the
singularities of R(f) ate four ordinary triple points. Thus, (/ + eg) is equisingular
via trivial sections precisely when g is of the form gs + ga + g , where gg =

c(X4 - Y4)2 (c£k), g9 e(X2, XY, Y2)Afx, fy), and g   £ (X, Y)10 (verification
is straightforward). Therefore, /  = (/, fx, fy, (X, Y)   ).

However, one computes that

(/+ eg) = ((X4 - Y4)2 - X10 + eX(X4 - Y4)(X3 + X2Y + XY2 + Y3))

is equimultiple along the trivial section, and R(f + eg) is equimultiple along four
sections of Bj[f], only three of which are trivial. Further, g 4 I   (essentially be-

cause X2Y2(X4 - Y4) 4 I'), whence /' < /. In fact,

/=(/', X2Y2(X4-Y4)).

This extra equisingular lifting arises from the one-dimensional vector space
LE(k[e]) (the exceptional fibre E of a minimal resolution consists of four lines
intersecting a given line in four points) via the smooth morphism ES —» L
(Theorem 5.7) and L —► LE (in this case a bijection).

Remark 6.9. Via (5.7) and (6.3), a thorough knowledge of ES(k[e]) requires
knowledge of H (Tz), where Z is a certain nonreduced curve. We hope to return
to this question in a future paper.

7. Equisingular deformation classes.

(7.1) The notions of equimultiplicity and equisingularity may be considered
in terms of the local ring of the singularity, and not just in terms of the embedding

in Spec R. As in (1.2), we may speak of the functor D of classes of deformations
of P = R/(f); assume P is not regular.

If P is a deformation of P to A, and if F: P —» A is a normally flat A-sec-

tion inducing the canonical map s: P —» k, then we say (P, J) is an equimultiple

deformation of (P, s). Two such pairs (Pj, JA and (P2, s~2) are said to be equiv-
alent if there is an A-isomorphism 0: P, —> P2, inducing the identity over k, such

that s"2 • 0 = Sj. We then define the functor of equimultiple deformation classes
plus sections by

E(A) = set of equivalence classes of (P, 7),
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Proposition 7.2. E is the quotient functor of E by G, hence is versal and
smooth. The natural morphism E —» D is injective if and only if (/) is not uni-

tangential.

Proof. The group action was defined in 1.5; that E is the quotient is straight-

forward, so one applies [8, Proposition 1.1.6]. The finite dimensionality of

E(£[e]) follows from that of D(k[e]), since there is a two-dimensional space of

Md-sections of R[e] inducing the trivial section over k. The second statement
follows easily from Proposition 1.9.

(7.3) One can define higher order functors E" of equimultiple deformation

classes plus sections; again, they are the quotients of the actions G x En —► E"
and are versal.

In particular, for N large enough, E &■ E + ~ . •. is the quotient of ES

by G, the functor ES oí equisingular deformation classes (plus sections). By

Theorem 3.2, ES <-* H is injective, hence so is the map of G-quotients ES C-+ D,

and we can again neglect the (uniquely determined) sections. The fundamental

morphism ES —» L factors through ES , whence there is a smooth morphism ES

—► L. We also have a smooth versal subfunctor ES oí ES . Gathering up our pre-
vious results, we have

Theorem 7.4.  The functor ES   of equisingular deformation classes is a versal

and smooth subfunctor of the deformation functor D of the singularity. The tan-
gent space is given by l/if, fx, fy).  There is a smooth morphism ES —» L, with

"kernel"  ES  , where L  is the locally trivial deformation functor of a projective

curve. If if) = if.) •••(/) is a factorization into irreducible factors, there is a
natural map

ES (!)"**■*■ Esur

8. Formal versal equisingular deformations.
(8.1) An important property of the deformation functor of a complete intersec-

tion with isolated singularity is the fact that a formal versal deformation may be

written down from the tangent space [7]. In particular, if (/) defines a (reduced)

algebroid curve, and if g,,•••, g     £ k[[X, Y]] have residues forming a basis of

k[[X, y]]/(/, fx, fy), then the homomorphism

k[[tl,...,t ]]-A[[x,y,/.,...,/ ]]/(/+ £/.g.)
1 777 1 77! ' *—'    2°l

is a formal versal deformation of the singularity.

It would be nice to be able to write down a formal versal equisingular defor-
mation, and not just the generic first-order one (given by the tangent space). The
next result indicates that ES   is the "maximum" subfunctor with the property that
a versal family involves only linear terms in the t.'s.
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Theorem 8.2.  Let (/) C R define a reduced curve. Then the following are

equivalent:
(a) ES' = ES;

(a') /' = /;

(b) L is trivial for a minimal resolution of (/);
(c) there are elements g,, • • •, g    £ I such that the formal family

k[[tv-• •, tß -k[[x, y, i,,.• •, t]]/(f + Z ',«,-)

defines a versal deformation for ES .

Proof. The equivalence of (a), (a ), and (b) has already been observed.

Suppose then ES  = ES, and let g,, • • •, gs £ 1 induce a basis of ES(k[e\);
we may also suppose that (/+ eg) is equisingular via trivial sections, for all i.

Let C - k[[t., - • •, ts]], and define a morphism <f>: hc —► ES  by associating to
each local map a: C —»A the deformation class defined by (/+ S a(t)g). An
easy induction on the number of blowings-up needed to resolve the singularity

shows that this lifting is equisingular via trivial sections, whence r/> is well

defined. Since <f>   is a bijection, <f> will be versal once we show it is smooth. One

easily reduces to the proof of the following: if A   —, A  is small of kernel (rj),

and if (/ + S Z2z. g. + r¡g) £ ES (A ) is equisingular via trivial sections, then so is
(/+ eg) in ES (k[e]). Again, the straightforward proof is by induction on the num-
ber of blowings-up. Thus, (a) implies (c).

To see that (c) implies (a), it suffices to show that if (/ + tg) £ ES(k[t]/t"),
fot all », then (/+ eg) is equisingular via trivial sections. This follows from the
usual induction by the next

Lemma 8.3. Suppose r> 1 and (/) does not define a node; let g£ k[[X, Y]].

// (/+ tg) £ k[[X, Y, /]] z's equimultiple along the k[[t]]-section defined by I =
(X - ait), Y - bit)) (i.e., one gets equimultiple liftings and sections on all trunca-
tions /e[[r]]/f"), then g £ (X, Y)r and either

(i) a(t) = bit) = 0 or
(ii) / is a product of two regular parameters with the same tangent direction.
If (/+ rg) induces equisingular liftings, then ait) = bit) = 0.

Proof. Proposition 1.6 implies (/+ rg) £ ¡T in k[[X, Y, t]]. Differentiation
with respect to / yields g £ lr~  , whence f, g e /      . Let

P = \h£k[[X, Y]]\hiait), bit)) = 0!;

then P = R Pi / is prime. If P = (X, Y), then ait) = bit) = 0, and g £ (X, Y)r.
The only other possibility is P = (h), where h is irreducible; write /= f.h,

g « gjè. Since h does not divide /,, we have h e /      ; if r > 3, differentiation
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yields hx, hy £ P have lower degree. Thus, r= 2. If /,  is a constant, then
(/+ tg) = (h) = (/), whence hx, hy £ I n R, a contradiction. Thus, /,  and h are
regular parameters with the same tangent direction (since V(f) is not a node).
Assuming (after change of coordinates) that h = Y, we have that Y(f. + tg.) £

(X - ait), Y - bit))2, whence b(t) = 0 and fl + tgl £ (X - ait), Y). But if
f.iait), 0) + tg.iait), 0) = 0, then g,  has no constant term, since the linear term of
/,  is a multiple of Y. Consequently, g = g.h £ (X, Y) .

If (/) is as in case (ii), we claim (/) has no nontrivial equisingular liftings;
then (/+ tg) equisingular would imply, for all n, there is an element a   £
GT¿[z]//") such that (ct (/)) = (/+ tg) in R ® k[t]/tn. A small computation would
then show g e (/), whence (/+ tg) = (/); but Theorem 3.2 says (/) is equisingular
along only the trivial section in R ® k[t]/t", whence ait) = bit) = 0.

Now, after a change of coordinates we may suppose /= Y(Y + X"), some

« > 2. One checks any first-order lifting is equivalent to one of the form (/ +

f 2 f*J"   a .X'); ii one such is equisingular (with a . 4- 0), then so is (/ + eX    ~  ),
since / is an ideal. However, an easy induction on « shows this is false.

Corollary 8.4. Let g,, • • •, gs £ I   be equisingular via trivial sections and

induce a basis of I   mod(/, fx, fy). Then if + 2 tg) C k[[X, Y, /,,•••, ts]]
defines a versal formal deformation for ES  .

Corollary 8.5. A formal versal equisingular deformation of Yp + Xq (p < q) is

defined by the formal family iYp + Xq + 2 t.X'Y') over ¿[[/.J], where we consider

pairs ii, j) with pi + qj > pq, i < q - 2, j < p - 2.

Proof. Follows from Proposition 6.6 and the Theorem.

(8.6) The formal lifting YiY - X3 + tX2) is equimultiple along (X - /, Y) as
well as along (X, Y); thus, the phenomenon in (ii) of Lemma 8.3 does occur.

(8.7) In the general case, choose g,, • • •, g   £ I inducing a basis of ESik[e]),

and then let gs+i> • ■ • > gm e k[[X, Y]] be such that g,, — , g     induce a basis of

k[[X, Y]]/if, fx, fY) = D(k[e]).
Proposition 8.8.  Under the above conditions, a formal versal equisingular de-

formation is given over k[[t., • • •, tj] by a lifting of the form f + £"\ a ,(t)g.,

where a .(/) = a..(/,,..., t  ) has linear term t. if i < s, and has no linear term if
i> s.

Proof. The result follows easily from the following lemma, applied to ES C D.

Lemma 8.9. Let F, C F' be an inclusion of versal functors, where hs —» F,

and h~ —a F- are the smooth morphisms yielding versality. Then there exists a

(nonunique) surjection T —»X such that the induced inclusion hs —► hT yields a
commutative diagram
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h-»'i
f     f
hT->F2

Proof. Let S   = S/m^. The canonical elements of hs(S ) induce a compatible

sequence of elements in F2(Sn). Since ¿>T(S    ,) —» hT(Sj xp ,s ^ E2(S    .)    is
surjective, we may lift these elements compatibly to elements in hT(Sj; but T
is complete, so this process yields a homomorphism T —» S. If now a £ hs(A),
some A £ C, then a is the image of the canonical element in a map bAS ) —»

hsiA). Commutativity of the above diagram follows easily. Since hsik[e]) =
F.d[f]) C FAk[e\) = hTik[e\), we have T —► S is surjective, whence hs C hj..

Remark 8.10. One cannot in general eliminate terms g. with i > s, as seen
by the formal equisingular deformation given by

[(X4 - Y4) + tiX4 + X3Y + X2Y2 + XY3)]2 - X10    (Example 6.8).

9. Equisingularity and topological equivalence.
(9.1) In this section we prove that 77,  of the complement of a plane algebroid

curve remains constant during formal equisingular lifting. This result is the alge-

braic analogue of the fact that two equisingular curves over the complex numbers

yield knots of the same knot type in R . Zariski has proved an analogous result
for convergent power series rings, relying heavily on topological arguments [12,
Theorem 6.1].

We need to use a theorem on deformations of branched covers. Recall that if
id) C R, R any domain, a lifting id) C R ® A is called trivializable if there is a
o £ GiA) such that (o(d)) = (d). If R —» S is finite and free, then a deformation
RA —» S   is called trivializable if there is a o £ G(A) such that <A.RA —► S] is the
class of the trivial deformation RA —* SA. For details, see [8, §§1.3 and L4].

Theorem A [8, Theorem 2.4.1]. Let R be a regular excellent k-domain, S nor-
mal, and R —» S a finite free homomorphism with discriminant (d) C R.  Then to

every trivializable lifting (d) of id) to R ., there exists a trivializable deforma-
tion RA —* S   with discriminant id), and this deformation is unique up to unique
RA-isomorphism.

The whole point of Theorem A is the uniqueness of the trivializable deforma-
tion class. Recall that if R is a finitely generated ¿-domain, then the trivializable
liftings of (d) ate precisely those (d) that do not change the formal nature of the
singularities of R/(d).

(9.2) If / £ k[[X, Y]] = R and F £ k[[X, Y, tv-.., tß are reduced such that
F(X, Y, 0, • •., 0) = fiX, Y), then we say V(F) defines a formal equisingular lift-
ing of Vif) if the image Fn of F in k[[X, Y, t^---, tß/it^--•, ts)n defines
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an equisingular lifting in the usual sense, for all «. Let 5 = k[[t., • • •, t ]] and
S   = S/mç, and denote by o\ S [[X, Y]] —> S    the equisingular section for V(F ) C
Spec S [[X, Y]]. Since equisingular sections are unique, the o    are induced by a
unique section o: S[[X, Y]] —» S. By Proposition 1.6, F is equimultiple along o
in the sense that F £ (Ker o)T, r = multiplicity of /. Let f y. ßj —» Spec S[[X, Y]]
be the blowing-up along a. Then, as for artinian S, the reduced total transform
R(F) of V(F) is obtained by taking r — 1 copies of the exceptional subscheme of
ßj out of JT~ ÍVÍF)). Further, RÍF) C Bl yields formal equisingular liftings of the
singularities of Rif) C ßj. Thus we may repeat the process and obtain a sequence
of blowings-up p~: B —* Spec S[[X, Y]] such that the reduced total transform of
V(F) has only ordinary double points as singularities; this will of course induce
the same situation on the truncations p : B   —» Spec S [[X, Y]]. Therefore, this
definition of formal equisingular lifting agrees with Zariski's via [11, Theorem 7.4].

(9.3) Let RiF ) C B    be the reduced total transform of F    via p . Recalln n n * n
(4.5) that p    is induced via flat base change from a morphism r : C   —►

Spec S [X, Y], where C    is an algebraic /e-scheme, whence B   —» Spec S    is a
locally trivial deformation of B —► Spec k in the Zariski topology. In order to
apply Theorem A, we will have to know RiF ) C ß    is locally a trivializable lift-

ing of R(/); since our definition of equisingularity guarantees only formal trivial-
izability, an algebraicity result is needed. But an old result (e.g., [2, Theorem B])

implies that after change of coordinates in k[[X, Y]], the ideal (/) is generated
by a polynomial (which we call /).  Further, if g,,- • •, g     are polynomials induc-

ing a basis of Dik[e]), then (/ + S s .g¿) C k[[X, Y, s., • • •, s   ]] defines a formai
versai deformation of k[[X, Y]]/(/). Thus, after an S-automorphism of S[[X, Y]]

inducing the identity mod 777^, (F) is generated by an element in ¿[X, Y][[T., • • •, TJ].

Therefore, RÍF ) C ß    is induced by the reduced total transform in C    of F ,' n n ' n tr
considered as an element of S [X, Y]. Since formally trivializable implies locally
trivializable for liftings on an algebraic ¿-scheme [8, 2.1.5], it follows that the

liftings RiF ) C ß    of Rif) ate trivializable locally in the Zariski topology.

Theorem 9.4. Let F £ k[[X, Y, /,»•••, / ]] define a formal equisingular lift-
ing of fiX, Y) = FÍX, Y, 0, • • •, 0). Then the natural map of algebraic fundamental
groups

7r.(Spec k[[X, Y]] - V(f)) - 77,(Spec k[[X, Y, /,,...,/]] - yip))
1 i 1 s

is an isomorphism.

Proof. We must show that every finite ¿tale cover of Spec k[[X, Y]] - V(/)
lifts uniquely to an ¿tale cover of Spec S[[X, Y]] - V(f). We shall do this via the
natural isomorphisms

ß _ R(F) ~, Spec S[[X, y]] - VÍF)   and B - R(f) ̂  Spec k[[X, Y]] - V(f).
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Let X be a finite ¿tale cover of B - Rif), and let Y be the normalization of
B in the quotient field of X. Then Y —♦ B is finite and flat (since two-dimensional
normal local rings are Cohen-Macaulay), and has its discriminant D supported on
a subset of R(f). There is a unique locally trivializable lifting of D to a Cartier
divisor D   C B    such that D   C R(F ), since D consists of components of R(f)
counted with various multiplicities. Since k[[X, Y]] is excellent, so is B; the
B 's are locally trivial deformations of B, so Theorem A implies there is a (unique)
locally trivializable deformation Y   —* B    with discriminant D , for all »./ 72 77 72__

View 0V    as a (finite flat) 0„ -algebra, and note that p~: B —* Spec S[[X, Y]]
" r i •      •is proper. The Grothendieck existence theorem [EGA, III. 5.1.4J implies there is a

unique finite O^-algebra 0t> inducing the 0y . For, one first lifts the 0y    to

0y as an 0g-module, and then applies the Grothendieck existence theorem again to

the algebraic structure maps Oy   ® 0y   —»0y    to make 0y an Og-algebra. An

easy local argument shows the corresponding finite map Y —» B is flat, whence

Y —* B is ¿tale off the discriminant divisor D. But since Y —* B induces  Y   .—»
72

B , it follows that D induces D    fot all », so DC R(F). Consequently, Y induces
a finite ¿tale cover of B - R(F) lifting X —» B - Rif).

For uniqueness, suppose X.—* B - RÍF), i = 1, 2, are finite ¿tale covers

lifting X. Let Y.  be the normalization of B in the function field of X.; then Y.
—» B is finite, and Lemma 9.5 below shows it is flat as well. It suffices to prove

Yj and Y2 ate isomorphic over B, or (by the Grothendieck existence theorem
again) that the induced Y.     are (compatibly) isomorphic over the B . But Y.

—♦ Bn is finite, flat, and ¿tale off RÍF ); one also checks that these maps induce
Y —» B over Spec k. Since the discriminants involved are liftings of D. = DC Rif),

they are locally trivializable liftings. Therefore, everything will follow from
Theorem A once we show the deformations Y.    —► B    are locally trivializable, or

2,77 77 ' '

even formally trivializable [8, 2.1.6]; in fact, by [8, 2.4.5], it suffices to check
this over nonsingular points x of D. However,  Y. --+ B induces a finite free

extension of ©g      branched along a regular parameter; by Abhyankar's lemma, this

extension is obtained by extracting an 222th root of a parameter. Therefore, the
induced branched covers of 0D    „ are trivializable.

Lemma 9.5. Let k[[X.,- • •, X ]] —♦ S in > 2) be a finite infective map, with
S normal, such that the map on the spectra is étale over Spec k[[X., • « •, X ]] —

V(XjX2). Then k[[Xv • • •, Xj] — S is flat.

Proof. By one form of Abhyankar's lemma (e.g., [8, 2.3-3]),

Trapee *[[X ,..., X ]] - V(XjX2)) = Z®Z.
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Thus, every such cover is obtained by taking a certain finite free map &[[Xj, X2]]
—► S,, ¿tale off V(X,X2), and considering the ¿tale cover induced off V(XjX2) by
k[[X.,..., X ]] —» S = 5,[[X,, • • •, X ]]. Since 5,  is normal, so is S ; since S
agrees with S off V(X.X2), then S = S, whence it is flat over k[[X., • • «, X ]].

10. A counterexample.

(10.1) We had originally hoped to prove Theorem 9.4 by showing that if
k[[X, Y]] —» T is finite and flat with discriminant (d), and if (d) C A[[X, Y]] is an
equisingular lifting (so (d) should be reduced), then there is a finite flat cover
A[[X, Y]] —» T with discriminant (d) lifting the original "branched cover". The
problem is that, in the notation of the proof of Theorem 9.4, IXY) will be a finite
normal IXß) = S[[X, Y]]-algebra, but it will not be flat in general; equivalently,
IXY) —► IXY) need not be surjective (see [9, p. 69]). We outline a counterexample
suggested by Mumford, in which (d) is an ordinary multiple point; for details, see

[9, p. 152].
(10.2) We start with a family of nonsingular space curves C C P" x X over X,

a nonsingular affine variety, with the following "jump phenomenon" at a closed

point x e X; the natural map T((_, ©g(l)) ® q    k(x) —» T(C , ©c (l)) is not sur-
jective. To see that such families exist, let C be a nonhyperelliptic curve of
genus g > 5. Then the canonical bundle K is very ample via C—»Proj(H (X, K) )

= P8     ; further, for generic hyperplane L C H (X, K), any choice of g — 1 inde-
pendent sections induces a closed immersion C—» Ps     . Let 5 be the (2g — 2)th
symmetric power of C, the variety parametrizing effective divisors of degree 2g —
2; let / be the component of the Picard group of C parametrizing invertible sheaves
of degree 2g — 2, O: S —► / the natural map, and x £ ] the point corresponding to
K. A divisor D £ \K\  corresponds to a point s e$" (x). One can identify the
tangent space map Q>y. Ts s —» T, x with the map on cohomology H (ND) —»
H i0x) [5, p. I65], whence it has rank g — 1. Therefore, one can find near s a
nonsingular (g — l)-dimensional variety V    such that 0|V    is a closed immersion;

let W    be the image. We may view Vs as a global section of the invertible sheaf
on C xW    induced from the universal invertible sheaf M of degree 2g — 2 on
C x J; this section extends s. Thus, if s,, • • •, s _, £ H (X, K) induce a projec-
tive embedding C —» P8~  , we may intersect the Wg. near x, and find a nonsingular
curve X through x on / over which the sections s. extend. Shrinking X perhaps,
we get a family of closed immersions r: C x X —* P8"2 x X such that r*(©(l)) is
the invertible sheaf on C x X induced from M on C x ]. Using Riemann-Roch, one
checks that this family of embeddings has the desired jump phenomenon at x £ X.

(10.3) Denote by C the embedding of C% in P", and let fy. C -* P1 be a
"generic projection" onto a line; thus, if C has degree d in P" and genus g,

there are b = 2(g + d — l) distinct branch points on P . Shrinking X perhaps, we
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may extend to a family of generic projections /: C —» P   x X, where the discrimi-
nant of / is a finite ¿tale cover of X of degree b. Writing X = Spec S, and sup-

posing 222 C S corresponds to C, consider the induced map of affine cones (see

[EGA, II.8.8]):

© HP1 x x, 0 ,  d-» - © ne, 0e(i)).
¿=o Pxx ,=o

II II
S[X, Y] T

(10.4) One checks that S[X, Y] —► T is a finite map of normal domains, and

it is ¿tale off a subscheme Z C Spec S[X, Y] which, over Spec S, yields a family

of ordinary 6-tuple points. But T/mT —* ©°°-0 ^^' ®C^ = T is a strict inclu-
sion (by the jump phenomenon) and a finite birational map (since IXC, Og(z')) —►
TiC, ©çd)) is surjective for all large z); since T is normal, T/mT is not normal.
Then g: Spec T —> Spec k[[X, Y]] (taking completions over the vertex of the cone)
is a finite flat morphism whose discriminant (d) is an ordinary multiple point of
< b branches; let (d ) C Spec S/t72"[[X, Y]] be the equisingular lifting induced by
Z. Then g cannot lift for all w to a cover with discriminant (d ). If it did, there
would be a finite flat map Spec T. —» Spec S[[X, Y]], isomorphic off the pull-back
of Z to Spec T —» Spec S[[X, Y]], and inducing g. But since T is normal, there

would have to be a factorization S[[X, Y]] —► T. —» T; but reduction mod the max-
imal ideal of S yields a contradiction.

Added in proof. The first part of the proof of Proposition 6.6 is incomplete
as it stands. One must check that if i + j — p>q — p— 1, but pi + qj < pq, then

the reduced total transform is not equisingular (if a.. 4 0), even though one has a
trivial deformation of the proper transform. These inequalities occur only if i + / =
a - 1 and j(q — p) < p; of course j > 1, so p > q - p. Letting r = a - p, we claim
X(Xr + Tp + e 2 a . XT~ lT*) is equisingular only if a . = 0 for / < p/r. Since
ES(k[e]) is an ideal, it suffices to show X(Xr + Tp + eXT~  Ts) is not equisingular,

where s is the largest integer < p/r. This is proved by induction on pr, by blowing

up and treating separately the cases r < p - r, r = p - r, and r> p - r. One uses

that g singular, (/ + eh) • g equisingular imply (by 3-2 and 3-4) that f + eh is equi-
singular along the trivial section.

Concerning §10, we have proved that the cover k[[X, Y]] —» T does lift (with
prescribed equisingular deformation of the discriminant), provided T has a singu-
larity for which the "geometric genus" equals the "arithmetic genus of thé funda-
mental cycle" (e.g., if T has a rational singularity). For, it will follow automat-
ically in this case that T(Y) —> T(Y) is surjective.
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