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Abstract

We introduce an extension of the Optimal
Transport problem when multiple costs are in-
volved. Considering each cost as an agent, we
aim to share equally between agents the work
of transporting one distribution to another.
To do so, we minimize the transportation cost
of the agent who works the most. Another
point of view is when the goal is to partition
equitably goods between agents according to
their heterogeneous preferences. Here we aim
to maximize the utility of the least advan-
taged agent. This is a fair division problem.
Like Optimal Transport, the problem can be
cast as a linear optimization problem. When
there is only one agent, we recover the Op-
timal Transport problem. When two agents
are considered, we are able to recover Inte-
gral Probability Metrics defined by ↵-Hölder
functions, which include the widely-known
Dudley metric. To the best of our knowledge,
this is the first time a link is given between
the Dudley metric and Optimal Transport.
We provide an entropic regularization of that
problem which leads to an alternative algo-
rithm faster than the standard linear program.

1 Introduction

Optimal Transport (OT) has gained interest last years
in machine learning with diverse applications in neu-
roimaging (Janati et al., 2020), generative models (Ar-
jovsky et al., 2017; Salimans et al., 2018), super-
vised learning (Courty et al., 2016), word embeddings
(Alvarez-Melis et al., 2018), reconstruction cell trajec-
tories (Yang et al., 2020; Schiebinger et al., 2019) or
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adversarial examples (Wong et al., 2019). The key to
use OT in these applications lies in the gain of computa-
tion efficiency thanks to regularizations that smoothes
the OT problem. More specifically, when one uses an
entropic penalty, one recovers the so called Sinkhorn
distances (Cuturi, 2013). In this paper, we introduce a
new family of variational problems extending the opti-
mal transport problem when multiple costs are involved
with various applications in fair division of goods/work
and operations research problems.

Fair division (Steinhaus, 1949) has been widely studied
by the artificial intelligence (Lattimore et al., 2015) and
economics (Moulin, 2004) communities. Fair division
consists in partitioning diverse resources among agents
according to some fairness criteria. One of the standard
problems in fair division is the fair cake-cutting prob-
lem (Dubins and Spanier, 1961; Brandt et al., 2016).
The cake is an heterogeneous resource, such as a cake
with different toppings, and the agents have heteroge-
neous preferences over different parts of the cake, i.e.,
some people prefer the chocolate toppings, some prefer
the cherries, others just want a piece as large as possible.
Hence, taking into account these preferences, one might
share the cake equitably between the agents. A gener-
alization of this problem, for which achieving fairness
constraints is more challenging, is when the splitting
involves several heterogeneous cakes, and where the
agents have linked preferences over the different parts
of the cakes. This problem has many variants such as
the cake-cutting with two cakes (Cloutier et al., 2010),
or the Multi Type Resource Allocation (Mackin and
Xia, 2015; Wang et al., 2019). In all these models it
is assumed that there is only one indivisible unit per
type of resource available in each cake, and once an
agent choose it, he or she has to take it all. In this set-
ting, the cake can be seen as a set where each element
of the set represents a type of resource, for instance
each element of the cake represents a topping. A nat-
ural relaxation of these problems is when a divisible
quantity of each type of resources is available. We
introduce EOT (Equitable and Optimal Transport),
a formulation that solves both the cake-cutting and the
cake-cutting with two cakes problems in this setting.
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Our problem expresses as an optimal transportation
problem. Hence, we prove duality results and provide
fast computation based on Sinkhorn algorithm. As in-
teresting properties, some Integral Probability Metrics
(IPMs) (Müller, 1997) as Dudley metric (Dudley et al.,
1966), or standard Wasserstein metric (Villani, 2003)
are particular cases of the EOT problem.

Contributions. In this paper we introduce EOT an
extension of Optimal Transport which aims at find-
ing an equitable and optimal transportation strategy
between multiple agents. We make the following con-
tributions:

• In Section 3, we introduce the problem and show
that it solves a fair division problem where het-
erogeneous resources have to be shared among
multiple agents. We derive its dual and prove
strong duality results. As a by-product, we show
that EOT is related to some usual IPMs families
and in particular the widely known Dudley metric.

• In Section 4, we propose an entropic regularized
version of the problem, derive its dual formula-
tion, obtain strong duality. We then provide an
efficient algorithm to compute EOT. Finally we
propose other applications of EOT for Operations
Research problems.

2 Related Work

Optimal Transport. Optimal transport aims to
move a distribution towards another at lowest cost.
More formally, if c is a cost function on the ground
space X ⇥Y , then the relaxed Kantorovich formulation
of OT is defined for µ and ⌫ two distributions as

Wc(µ, ⌫) := inf
�

Z

X⇥Y

c(x, y)d�(x, y)

where the infimum is taken over all distributions �

with marginals µ and ⌫. Kantorovich theorem states
the following strong duality result under mild assump-
tions (Villani, 2003)

Wc(µ, ⌫) = sup
f,g

Z

X

f(x)dµ(x) +

Z

Y

g(y)d⌫(y)

where the supremum is taken over continuous bounded
functions satisfying for all x, y, f(x) + g(y)  c(x, y).
The question of considering an optimal transport prob-
lem when multiple costs are involved has already been
raised in recent works. For instance, (Paty and Cuturi,
2019) proposed a robust Wasserstein distance where the
distributions are projected on a k-dimensional subspace
that maximizes their transport cost. In that sense, they
aim to choose the most expensive cost among Maha-
lanobis square distances with kernels of rank k. In

articles (Li et al., 2019; Sun et al., 2020), the authors
aim to learn a cost given observed matchings by in-
versing the optimal transport problem (Dupuy et al.,
2016). In (Petrovich et al., 2020) the authors study
“feature-robust” optimal transport, which can be also
seen as a robust cost selection for optimal transport.
In articles (Genevay et al., 2017; Scetbon and Cuturi,
2020), the authors learn an adversarial cost to train a
generative adversarial network. Here, we do not aim
to consider a worst case scenario among the available
costs but rather consider that the costs work together
in order to split equitably the transportation problem
among them at lowest cost.

Entropic relaxation of OT. Computing exactly
the optimal transport cost requires solving a linear pro-
gram with a supercubic complexity (n3 log n) (Tarjan,
1997) that results in an output that is not differentiable
with respect to the measures’ locations or weights (Bert-
simas and Tsitsiklis, 1997). Moreover, OT suffers from
the curse of dimensionality (Dudley, 1969; Fournier and
Guillin, 2015) and is therefore likely to be meaningless
when used on samples from high-dimensional densi-
ties. Following the line of work introduced by Cuturi
(2013), we propose an approximated computation of
our problem by regularizing it with an entropic term.
Such regularization in OT accelerates the computa-
tion, makes the problem differentiable with regards to
the distributions (Feydy et al., 2018) and reduces the
curse of dimensionality (Genevay et al., 2018). Taking
the dual of the approximation, we obtain a smooth
and convex optimization problem under a simplicial
constraint.

Fair Division. Fair division of goods has a long
standing history in economics and computational choice.
A classical problem is the fair cake-cutting that con-
sists in splitting the cake between N individuals ac-
cording to their heterogeneous preferences. The cake
X , viewed as a set, is divided in X1, . . . ,XN disjoint
sets among the N individuals. The utility for a single
individual i for a slice S is denoted Vi(S). It is often
assumed that Vi(X ) = 1 and that Vi is additive for
disjoint sets. There exists many criteria to assess fair-
ness for a partition X1, . . . ,XN such as proportionality
(Vi(Xi) � 1/N), envy-freeness (Vi(Xi) � Vi(Xj)) or eq-
uitability (Vi(Xi) = Vj(Xj)). The cake-cutting problem
has applications in many fields such as dividing land
estates, advertisement space or broadcast time. An ex-
tension of the cake-cutting problem is the cake-cutting
with two cakes problem (Cloutier et al., 2010) where
two heterogeneous cakes are involved. In this problem,
preferences of the agents can be coupled over the two
cakes. The slice of one cake that an agent prefers might
be influenced by the slice of the other cake that he or
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she might also obtain. The goal is to find a partition
of the cakes that satisfies fairness conditions for the
agents sharing the cakes. Cloutier et al. (2010) studied
the envy-freeness partitioning. Both the cake-cutting
and the cake-cutting with two cakes problems assume
that there is only one indivisible unit of supply per
element x 2 X of the cake(s). Therefore sharing the
cake(s) consists in obtaining a paritition of the set(s).
In this paper, we show that EOT is a relaxation of
the cutting cake and the cake-cutting with two cakes
problems, when there is a divisible amount of each
element of the cake(s). In that case, cakes are no more
sets but distributions that we aim to divide between
the agents according to their coupled preferences.

Integral Probability Metrics. In our work, we
make links with some integral probability metrics.
IPMs are (semi-)metrics on the space of probability
measures. For a set of functions F and two probability
distributions µ and ⌫, they are defined as

IPMF (µ, ⌫) = sup
f2F

Z

fdµ�

Z

fd⌫.

For instance, when F is chosen to be the set of bounded
functions with uniform norm less or equal than 1, we
recover the Total Variation distance (Steerneman, 1983)
(TV). They recently regained interest in the Machine
Learning community thanks to their application to
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) where IPMs are natural metrics for the dis-
criminator (Dziugaite et al., 2015; Arjovsky et al., 2017;
Mroueh and Sercu, 2017; Husain et al., 2019). They also
helped to build consistent two-sample tests (Gretton
et al., 2012; Scetbon and Varoquaux, 2019). However
when a closed form of the IPM is not available, exact
computation of IPMs between discrete distributions
may not be possible or can be costful. For instance,
the Dudley metric can be written as a Linear Pro-
gram (Sriperumbudur et al., 2012) which has at least
the same complexity as standard OT. Here, we show
that the Dudley metric is in fact a particular case of
our problem and obtain a faster approximation thanks
to the entropic regularization.

3 Equitable and Optimal Transport

Notations. Let Z be a Polish space, we denote
M(Z) the set of Radon measures on Z. We call M+(Z)
the sets of positive Radon measures, and M1

+(Z) the
set of probability measures. We denote Cb(Z) the
vector space of bounded continuous functions on Z.
Let X and Y be two Polish spaces. We denote for
µ 2M(X ) and ⌫ 2M(Y), µ ⌦ ⌫ the tensor product
of the measures µ and ⌫, and µ ⌧ ⌫ means that ⌫

dominates µ. We denote Π1 : (x, y) 2 X ⇥ Y 7! x and

Figure 1: Equitable and optimal division of the re-
sources between N = 3 different negative costs (i.e.
utilities) given by EOT. Utilities have been normal-
ized. Blue dots and red squares represent the different
elements of resources available in each cake. We con-
sider the case where there is exactly one unit of supply
per element in the cakes, which means that we consider
uniform distributions. Note that the partition between
the agents is equitable (i.e. utilities are equal) and
proportional (i.e. utilities are larger than 1/N).

Π2 : (x, y) 2 X ⇥ Y 7! y respectively the projections
on X and Y, which are continuous applications. For
an application g and a measure µ, we denote g]µ the
pushforward measure of µ by g. For X and Y two Pol-
ish spaces, we denote LSC(X ⇥ Y) the space of lower
semi-continuous functions on X ⇥Y , LSC+(X ⇥Y) the
space of non-negative lower semi-continuous functions
on X⇥Y and LSC�

⇤ (X⇥Y) the set of negative bounded
below lower semi-continuous functions on X ⇥ Y . We
also denote C+(X⇥Y) the space of non-negative contin-
uous functions on X ⇥Y and C�

⇤ (X ⇥Y) the set of neg-
ative continuous functions on X ⇥Y . Let N � 1 be an
integer and denote ∆

+
N := {� 2 R

N
+ s.t.

PN
i=1 �i = 1},

the probability simplex of RN . For two positive mea-
sures of same mass µ 2M+(X ) and ⌫ 2M+(Y), we
define the set of couplings with marginals µ and ⌫:

Πµ,⌫ := {� s.t. Π1]� = µ , Π2]� = ⌫} .

We introduce the subset of (M1
+(X )⇥M1

+(Y))N rep-
resenting marginal decomposition:

Υ
N
µ,⌫ :=

n

(µi, ⌫i)
N
i=1 s.t.

X

i

µi = µ,
X

i

⌫i = ⌫

and 8i, µi(X ) = ⌫i(Y)
o

.

We also define the following subset of M+(X ⇥ Y)N

corresponding to the coupling decomposition:

Γ
N
µ,⌫ :=

n

(�i)
N
i=1 s.t. Π1]

X

�i = µ , Π2]

X

�i = ⌫
o

.
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3.1 Primal Formulation

Consider a fair division problem where several agents
aim to share two sets of resources, X and Y, and as-
sume that there is a divisible amount of each resource
x 2 X (resp. y 2 Y) that is available. Formally, we
consider the case where resources are no more sets but
rather distributions on these sets. Denote µ and ⌫

the distribution of resources on respectively X and Y.
For example, one might think about a situation where
agents want to share fruit juices and ice creams and
there is a certain volume of each type of fruit juices
and a certain mass of each type of ice creams avail-
able. Moreover each agent defines his or her paired
preferences for each couple (x, y) 2 X ⇥ Y. Formally,
each person i is associated to an upper semi-continuous
mapping ui : X ⇥ Y �! R

+ corresponding to his or
her preference for any given pair (x, y). For exam-
ple, one may prefer to eat chocolate ice cream with
apple juice, but may prefer pineapple juice when it
comes with vanilla ice cream. The total utility for an
individual i and a pairing �i 2 M+(X ⇥ Y) is then
given by Vi(�i) :=

R

uid�i. To partition fairly among
individuals, we maximize the minimum of individual
utilities.

From a transport point of view, let assume that there
are N workers available to transport a distribution µ
to another one ⌫. The cost of a worker i to transport a
unit mass from location x to the location y is ci(x, y).
To partition the work among the N workers fairly, we
minimize the maximum of individual costs.

These problems are in fact the same where the utility
ui, defined in the fair division problem, might be in-
terpreted as the opposite of the cost ci defined in the
transportation problem, i.e. for all i, ci = �ui. The
two above problem motivate the introduction of EOT

defined as follows.

Definition 1 (Equitable and Optimal Transport). Let
X and Y be Polish spaces. Let c := (ci)1iN be a
family of bounded below lower semi-continuous cost
functions on X ⇥Y, and µ 2M1

+(X ) and ⌫ 2M1
+(Y).

We define the equitable and optimal transport primal
problem:

EOTc(µ, ⌫) := inf
(�i)

N
i=12Γ

N
µ,ν

max
i

Z

cid�i . (1)

We prove along with Theorem 1 that the problem is
well defined and the infimum is attained. Lower-semi
continuity is a standard assumption in OT. In fact, it
is the weakest condition to prove Kantorovich dual-
ity (Villani, 2003, Chap. 1). Note that the problem
defined here is a linear optimization problem and when
N = 1 we recover standard optimal transport. Fig-
ure 1 illustrates the equitable and optimal transport

problem we consider. Figure 5 in Appendix D shows
an illustration with respect to the transport viewpoint
in the exact same setting, i.e. ci = �ui. As expected,
the couplings obtained in the two situations are not
the same.

We now show that in fact, EOT optimum satisfies
equality constraints in case of constant sign costs, i.e.
total utility/cost of each individual are equal in the
optimal partition. See Appendix A.2 for the proof.

Proposition 1 (EOT solves the problem under equal-
ity constraints). Let X and Y be Polish spaces. Let
c := (ci)1iN 2 LSC+(X ⇥ Y)N [ LSC�

⇤ (X ⇥ Y)N ,
µ 2M1

+(X ) and ⌫ 2M1
+(Y). Then the following are

equivalent:

• (�⇤
i )

N
i=1 2 Γ

N
µ,⌫ is solution of Eq. (1),

• (�⇤
i )

N
i=1 2 argmin

(�i)
N
i=12Γ

N
µ,ν

�

t s.t. 8i
R

cid�i = t
 

.

Moreover,

EOTc(µ, ⌫) = min
(�i)

N
i=12Γ

N
µ,ν

⇢

t s.t. 8i

Z

cid�i = t

�

.

This property highly relies on the sign of the costs. For
instance if two costs are considered, one always positive
and the other always negative, then the constraints
cannot be satisfied. When the cost functions are non-
negatives, EOT refers to a transportation problem
while when the costs are all negatives, costs become
utilities and EOT refers to a fair division problem.
The two points of view are concordant, but proofs and
interpretations rely on the sign of the costs.

3.2 An Equitable and Proportional Division

When the cost functions considered ci are all negatives,
EOT become a fair division problem where the utility
functions are defined as ui := �ci. Indeed according
to Proposition 1, EOT solves

max
(�i)

N
i=12Γ

N
µ,ν

⇢

t s.t. 8i,

Z

uid�i = t

�

.

Recall that in our model, the total utility of the agent
i is given by Vi(�i) :=

R

uid�i. Therefore EOT aims
to maximize the total utility of each agent i while
ensuring that they are all equal. Let us now analyze
which fairness conditions the partition induced by EOT

verifies. Assume that the utilities are normalized, i.e.,
8i, there exists �i 2M1

+(X ⇥ Y) such that Vi(�i) = 1.
For example one might consider the cases where 8i,
�i = µ ⌦ ⌫ or �i 2 argmin�2Πµ,ν

R

cid�. Then any

solution (�⇤
i )

N
i=1 2 Γ

N
µ,⌫ of EOT satisfies:

• Proportionality: for all i, Vi(�
⇤
i ) � 1/N ,
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• Equitablity: for all i, j, Vi(�
⇤
i ) = Vj(�

⇤
j ).

Proportionality is a standard fair division criterion for
which a resource is divided among N agents, giving each
agent at least 1/N of the heterogeneous resource by
his/her own subjective valuation. Therefore here, this
situation corresponds to the case where the normalized
utility of each agent is at least 1/N . Moreover, an
equitable division is a division of an heterogeneous
resource, in which each partner is equally happy with
his/her share. Here this corresponds to the case where
the utility of each agent are all equal.

The problem solved by EOT is a fair division problem
where heterogeneous resources have to be shared among
multiple agents according to their preferences. This
problem is a relaxation of the two cake-cutting problem
when there are a divisible amount of each item of the
cakes. In that case, cakes are distributions and EOT

makes a proportional and equitable partition of them.
Details are left in Appendix A.2.

Fair Cake-cutting. Consider the case where the
cake is an heterogeneous resource and there is a certain
divisible quantity of each type of resource available.
For example chocolate and vanilla are two types of
resource present in the cake for which a certain mass
is available. In that case, each type of resource in the
cake is pondered by the actual quantity present in the
cake. Up to a normalization, the cake is no more the set
X but rather a distribution on this set. Note that for
the two points of view to coincide, it suffices to assume
that there is exactly the same amount of mass for each
type of resources available in the cake. In that case, the
cake can be represented by the uniform distribution
over the set X , or equivalently the set X itself. When
cakes are distributions, the fair cutting cake problem
can be interpreted as a particular case of EOT when
the utilities of the agents do not depend on the variable
y 2 Y . In short, we consider that utilities are functions
of the form ui(x, y) = vi(x) for all (x, y) 2 X ⇥ Y.
The normalization of utilities can be cast as follows:
8i, Vi(µ) =

R

vi(x)dµ(x) = 1. Then Proposition 1
shows that the partition of the cake made by EOT

is proportional and equitable. Note that for EOT to
coincide with the classical cake-cutting problem, one
needs to consider that the uniform masses of the cake
associated to each type of resource cannot be splitted.
This can be interpreted as a Monge formulation (Villani,
2003) of EOT which is out of the scope of this paper.

3.3 Optimality of EOT

We next investigate the coupling obtained by solving
EOT. In the next proposition, we show that under the
same assumptions of Proposition 1, EOT solutions are

optimal transportation plans. See Appendix A.3 for
the proof.

Proposition 2 (EOT realizes optimal plans). Under
the same conditions of Proposition 1, for any (�⇤

i )
N
i=1 2

Γ
N
µ,⌫ solution of Eq. (1), we have for all i 2 {1, . . . , N}

�⇤
i 2 argmin

�2Πµ⇤
i
,ν⇤

i

Z

cid�

where µ⇤
i := Π1]�

⇤
i , ⌫⇤i := Π2]�

⇤
i ,

(2)

and
EOTc(µ, ⌫) = min

(µi,⌫i)
N
i=12Υ

N
µ,ν

t

s.t. 8i Wci(µi, ⌫i) = t .
(3)

Given the optimal matchings (�⇤
i )

N
i=1 2 Γ

N
µ,⌫ , one

can easily obtain the partition of the agents of each
marginals. Indeed for all i, µ⇤

i := Π1]�
⇤
i and ⌫⇤i :=

Π2]�
⇤
i represent respectively the portion of the agent i

from distributions µ and ⌫.

Remark 1 (Utilitarian and Optimal Transport). To
contrast with EOT, an alternative problem is to maxi-
mize the sum of the total utilities of agents, or equiv-
alently minimize the sum of the total costs of agents.
This problem can be cast as follows:

inf
(�i)

N
i=12Γ

N
µ,ν

X

i

Z

cid�i (4)

Here one aims to maximize the total utility of all the
agents, while in EOT we aim to maximize the total
utility per agent under egalitarian constraint. The solu-
tion of (4) is not fair among agents and one can show
that this problem is actually equal to Wmini(ci)(µ, ⌫).
Details can be found in Appendix C.1.

3.4 Dual Formulation

Let us now introduce the dual formulation of the prob-
lem and show that strong duality holds under some
mild assumptions. See Appendix A.4 for the proof.

Theorem 1 (Strong Duality). Let X and Y be Polish
spaces. Let c := (ci)

N
i=1 be bounded below lower semi-

continuous costs. Then strong duality holds, i.e. for
(µ, ⌫) 2M1

+(X )⇥M1
+(Y):

EOTc(µ, ⌫) = sup
�2∆

+
N

(f,g)2Fλ

c

Z

fdµ+

Z

gd⌫ (5)

where F�
c := {(f, g) 2 Cb(X ) ⇥ Cb(Y) s.t. 8i 2

{1, ..., N}, f � g  �ici}.

This theorem holds under the same hypothesis and
follows the same reasoning as the one in (Villani, 2003,
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Figure 2: Left, middle left, middle right : the size of dots and squares is proportional to the weight of their
representing atom in the distributions µ⇤

k and ⌫⇤k respectively. The utilities f⇤
k and g⇤k for each point in respectively

µ⇤
k and ⌫⇤k are represented by the color of dots and squares according to the color scale on the right hand side.

The gray dots and squares correspond to the points that are ignored by agent k in the sense that there is no
mass or almost no mass in distributions µ⇤

k or ⌫⇤k . Right : the size of dots and squares are uniform since they
correspond to the weights of uniform distributions µ and ⌫ respectively. The values of f⇤ and g⇤ are given also
by the color at each point. Note that each agent gets exactly the same total utility, corresponding exactly to
EOT. This value can be computed using dual formulation (5) and for each figure it equals the sum of the values
(encoded with colors) multiplied by the weight of each point (encoded with sizes).

Theorem 1.3). While the primal formulation of the
problem is easy to understand, we want to analyse
situations where the dual variables also play a role. For
that purpose we show in the next proposition a simple
characterisation of the primal-dual optimality in case
of constant sign cost functions. See Appendix A.5 for
the proof.

Proposition 3. Let X and Y be compact Polish spaces.
Let c := (ci)1iN 2 C+(X ⇥ Y)N [ C�

⇤ (X ⇥ Y)N ,
µ 2M1

+(X ) and ⌫ 2M1
+(Y). Let also (�k)

N
k=1 2 Γ

N
µ,⌫

and (�, f, g) 2 ∆
+
n ⇥ Cb(X ) ⇥ Cb(Y). Then Eq. (5)

admits a solution and the following are equivalent:

• (�k)
N
k=1 is a solution of Eq. (1) and (�, f, g) is a

solution of Eq. (5).

• 1. 8i 2 {1, ..., N}, f � g  �ici
2. 8i, j 2 {1, ..., N}

R

cid�i =
R

cjd�j
3. f � g = �ici �i-a.e.

Remark 2. It is worth noting that when we assume
that c := (ci)1iN 2 C+

⇤ (X ⇥ Y)N [ C�
⇤ (X ⇥ Y)N ,

then we can refine the second point of the equivalence
presented in Proposition 3 by adding the following con-
dition: 8i 2 {1, ..., N} �i 6= 0.

Given two distributions of resources represented by the
measures µ and ⌫, and N utility functions denoted
(ui)

N
i=1, we want to find an equitable and stable parti-

tion among the agents in case of transferable utilities.
Let k be an agent. We say that his or her utility is

transferable when once x 2 X and y 2 Y get matched,
he or she has to decide how to split his or her associ-
ated utility uk(x, y) . She or he divides uk(x, y) into
a quantity fk(x) which can be seen as the utility of
having x and gk(y) for having y. Therefore in that
problem we ask for (�k, fk, gk)

N
k=1 such that

uk(x, y) = fk(x) + gk(y) �k-a.e. (6)

Moreover, for the partition to be stable (Sotomayor and
Roth, 1990), we want to ensure that, for every agent k,
none of the resources x 2 X and y 2 Y that have not
been matched together for this agent would increase
their utilities, fk(x) and gk(y), if there were matched
together in the current matching instead. Formally we
ask that for k 2 {1, . . . , N} and all (x, y) 2 X ⇥ Y,

fk(x) + gk(y) � uk(x, y) . (7)

Indeed if there exist k, x and y such that uk(x, y) >
fk(x)+gk(y), then x and y will not be matched together
in the share of the agent k and he can improve his utility
for both x and y by matching x with y.

Finally we aim to share equitably the resources among
the agents which boils down to ask

8i, j 2 {1, ..., N}

Z

uid�i =

Z

ujd�j (8)

Thanks to Proposition 3, finding (�k, fk, gk)
N
k=1 satis-

fying (6), (7) and (8) can be done by solving Eq. (1)
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and Eq. (5). Indeed let (�k)
N
k=1 an optimal solution

of Eq. (1) and (�, f, g) an optimal solution of Eq. (5).
Then by denoting for all k = 1, . . . , N , fk = f

�k
and

gk = g
�k

, we obtain that (�k, fk, gk)
N
k=1 solves the eq-

uitable and stable partition problem in case of trans-
ferable utilities. Note that again, we end up with
equality constraints for the optimal dual variables. In-
deed, for all i, j 2 {1, . . . , N}, at optimality we have
R

fi+gid�i =
R

fj+gjd�j . Figure 2 illustrates this for-
mulation of the problem with dual potentials. Figure 7
in Appendix D shows the dual solutions with respect to
the transport viewpoint in the exact same setting, i.e.
ci = �ui. Once again, the obtained solutions differ.

3.5 Link with other Probability Metrics

In this section, we provide some topological properties
on the object defined by the EOT problem. In par-
ticular, we make links with other known probability
metrics, such as Dudley and Wasserstein metrics and
give a tight upper bound.

When N = 1, recall from the definition (1) that the
problem considered is exactly the standard OT problem.
Moreover any EOT problem with k  N costs can
always be rewritten as a EOT problem with N costs.
See Appendix C.2 for the proof. From this property,
it is interesting to note that, for any N � 1, EOT

generalizes standard Optimal Transport.

Optimal Transport. Given a cost function c, if we
consider the problem EOT with N costs such that, for
all i, ci = N ⇥ c then, the problem EOTc is exactly
Wc. See Appendix C.2 for the proof.

Now we have seen that all standard OT problems are
sub-cases of the EOT problem, one may ask whether
EOT can recover other families of metrics different
from standard OT. Indeed we show that the EOT

problem recovers an important family of IPMs with
supremum taken over the space of ↵-Hölder functions
with ↵ 2 (0, 1]. See Appendix A.6 for the proof.

Proposition 4. Let X be a Polish space. Let d be a
metric on X 2 and ↵ 2 (0, 1]. Denote c1 = 2 ⇥ 1x 6=y,
c2 = d↵ and c := (c1, (N � 1)⇥ c2, ..., (N � 1)⇥ c2) 2
LSC(X ⇥X )N then for any (µ, ⌫) 2M1

+(X )⇥M1
+(X )

EOTc(µ, ⌫) = sup
f2Bdα (X )

Z

X

fdµ�

Z

X

fd⌫ (9)

where Bdα(X ) :=
�

f 2 Cb(X ): kfk1 + kfk↵  1
 

and kfk↵ := supx 6=y
|f(x)�f(y)|

dα(x,y) .

Dudley Metric. When ↵ = 1, then for (µ, ⌫) 2
M1

+(X )⇥M1
+(X ), we have

EOTc(µ, ⌫) = EOT(c1,d)(µ, ⌫) = �d(µ, ⌫)

where �d is the Dudley Metric (Dudley et al., 1966).
In other words, the Dudley metric can be interpreted
as an equitable and optimal transport between the
measures with the trivial cost and a metric d. We
acknowledge that Chizat et al. (2018) made a link
between Unbalanced Optimal Transport and the “flat
metric”, an IPM close to the Dudley metric, defined on
the space {f : kfk1  1, kfk1  1}.

Weak Convergence. When d is an unbounded met-
ric on X , it is well known that Wdp with p 2 (0,+1)
metrizes a convergence a bit stronger than weak conver-
gence (Villani, 2003, Chap. 7). A sufficient condition
for Wasserstein distances to metrize weak convergence
on the space of distributions is that the metric d is
bounded. In contrast, metrics defined by Eq. (9) do not
require such assumptions and EOT(1x 6=y,dα) metrizes
the weak convergence of probability measures (Villani,
2003, Chap. 1-7).

For an arbitrary choice of costs (ci)1iN , we obtain a
tight upper control of EOT and show how it is related
to the OT problem associated to each cost involved.
See Appendix A.7 for the proof.

Proposition 5. Let X and Y be Polish spaces. Let
c := (ci)1iN be a family of nonnegative lower semi-
continuous costs. For any (µ, ⌫) 2M1

+(X )⇥M1
+(Y)

EOTc(µ, ⌫) 

 

N
X

i=1

1

Wci(µ, ⌫)

!�1

(10)

Proposition 5 means that the minimal cost to trans-
port all goods under the constraint that all workers
contribute equally is lower than the case where agents
share equitably and optimally the transport with dis-
tributions µi and ⌫i respectively proportional to µ and
⌫, which equals the harmonic sum written in Equa-
tion (10).

Example. Applying the above result in the case of the
Dudley metric recovers the following inequality (Sripe-
rumbudur et al., 2012, Proposition 5.1)

�d(µ, ⌫) 
TV(µ, ⌫)Wd(µ, ⌫)

TV(µ, ⌫) + Wd(µ, ⌫)
.

4 Entropic Relaxation

In their original form, as proposed by Kantorovich Kan-
torovich (1942), Optimal Transport distances are not
a natural fit for applied problems: they minimize a
network flow problem, with a supercubic complexity
(n3 log n) (Tarjan, 1997). Following the work of Cu-
turi (2013), we propose an entropic relaxation of EOT,
obtain its dual formulation and derive an efficient algo-
rithm to compute an approximation of EOT.
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4.1 Primal-Dual Formulation

Let us first extend the notion of Kullback-Leibler di-
vergence for positive Radon measures. Let Z be a
Polish space, for µ, ⌫ 2 M+(Z), we define the gen-
eralized Kullback-Leibler divergence as KL(µ||⌫) =
R

log dµ
d⌫ dµ+

R

d⌫ �
R

dµ if µ⌧ ⌫, and +1 otherwise.
We introduce the following regularized version of EOT.

Definition 2 (Entropic relaxed primal problem). Let
X and Y be two Polish spaces, c := (ci)1iN a fam-
ily of bounded below lower semi-continuous costs lower
semi-continuous costs on X ⇥ Y and ε := ("i)1iN

be non negative real numbers. For (µ, ⌫) 2M1
+(X )⇥

M1
+(Y), we define the EOT regularized primal prob-

lem:

EOT
ε

c(µ, ⌫) := inf
�2ΓN

µ,ν

max
i

Z

cid�i

+

N
X

j=1

"jKL(�j ||µ⌦ ⌫)

Note that here we sum the generalized Kullback-Leibler
divergences since our objective is function of N mea-
sures in M+(X ⇥ Y). This problem can be compared
with the one from standard regularized OT. In the
case where N = 1, we recover the standard regu-
larized OT. For N � 1, the underlying problem is
PN

i=1 "i�strongly convex. Moreover, we prove the es-
sential property that as ε! 0, the regularized problem
converges to the standard problem. See Appendix C.3
for the full statement and the proof. As a consequence,
entropic regularization is a consistent approximation
of the original problem we introduced in Section 3.1.
Next theorem shows that strong duality holds for lower
semi-continuous costs and compact spaces. This is the
basis of the algorithm we will propose in Section 4.2.
See Appendix A.8 for the proof.

Theorem 2 (Duality for the regularized problem). Let
X and Y be two compact Polish spaces, c := (ci)1iN

a family of bounded below lower semi-continuous costs
on X ⇥Y and ε := ("i)1iN be non negative numbers.
For (µ, ⌫) 2M1

+(X )⇥M1
+(Y), strong duality holds:

EOT
ε

c(µ, ⌫) = sup
�2∆

+
N

sup
f2Cb(X )
g2Cb(Y)

Z

fdµ+

Z

gd⌫ (11)

�

N
X

i=1

"i

✓
Z

e
f(x)+g(y)�λici(x,y)

εi dµ(x)d⌫(y)� 1

◆

and the infimum of the primal problem is attained.

As in standard regularized optimal transport there is
a link between primal and dual variables at optimum.
Let �⇤ solving the reguralized primal problem and
(f⇤, g⇤,�⇤) solving the dual one:

8i, �⇤
i = exp

✓

f⇤ + g⇤ � �⇤
i ci

"i

◆

· µ⌦ ⌫

.
4.2 Proposed Algorithms

Algorithm 1 Projected Alternating Maximization

Input: C = (Ci)1iN , a, b, ", L�

Init: f0  1n; g0  1m; �0  (1/N, ..., 1/N) 2 R
N

for k = 1, 2, ... do

Kk  
PN

i=1 K
�k�1
i

i ,
ck  hf

k�1,Kkgk�1i, fk  cka
Kkgk�1 ,

dk  hf
k,Kkgk�1i, gk  dkb

(Kk)T fk ,

�k  Proj
∆

+
N

⇣

�k�1 + 1
Lλ

r�F
"
C(�

k�1, fk, gk)
⌘

.

end

Result: �, f, g

We can now present algorithms obtained from entropic
relaxation to approximately compute the solution of
EOT. Let µ =

Pn
i=1 ai�xi

and ⌫ =
Pm

j=1 bj�yj
be dis-

crete probability measures where a 2 ∆
+
n , b 2 ∆

+
m,

{x1, ..., xn} ⇢ X and {y1, ..., ym} ⇢ Y. Moreover
for all i 2 {1, . . . , N} and � > 0, define C :=

(Ci)1iN 2 (Rn⇥m)
N

with Ci := (ci(xk, yl))k,l the N
cost matrices and K�

i := exp (��Ci/"). Assume that
"1 = · · · = "N = ". Compared to the standard regular-
ized OT, the main difference here is that the problem
contains an additional variable � 2 ∆

+
N . When N = 1,

one can use Sinkhorn algorithm. However when N � 2,
we do not have a closed form for updating � when the
other variables of the problem are fixed. In order to
enjoy from the strong convexity of the primal formula-
tion, we consider instead the dual associated with the
equivalent primal problem given when the additional
trivial constraint 1

T
n (
P

i Pi)1m = 1 is considered. In
that the dual obtained is

\EOT
ε

C(a, b) = sup
�2∆

+
N

f2R
n, g2R

m

hf, ai+ hg, bi

� "

"

log

 

X

i

hef/",K�i

i eg/"i

!

+ 1

#

We show that the new objective obtained above is
smooth w.r.t (�, f, g). See Appendix C.4 for the proof.
One can apply the accelerated projected gradient as-
cent (Beck and Teboulle, 2009; Tseng, 2008) which
enjoys an optimal convergence rate for first order meth-
ods of O(k�2) for k iterations.

It is also possible to adapt Sinkhorn algorithm to our
problem. See Algorithm 1. We denoted by Proj

∆
+
N

the orthogonal projection on ∆
+
N (Shalev-Shwartz and

Singer, 2006), whose complexity is in O(N logN).
The smoothness constant in � in the algorithm is
L� = maxi kCik

2
1/". In practice Alg. 1 gives bet-

ter results than the accelerated gradient descent. Note
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Figure 3: Comparison of the time-accuracy tradeoffs between the different proposed algorithms. Left: we consider
the case where the number of days is N = 2, the size of support for both measures is n = m = 100 and we vary "

from 0.005 to 0.5. Middle: we fix n = m = 100 and the regularization " = 0.05 and we vary the number of days
N from 3 to 5. Right: the setting considered is the same as in the figure in the middle, however we increase the
sample size such that n = m = 500. Note that in that case, LP is too costly to be computed.

that the proposed algorithm differs from the Sinkhorn
algorithm in many points and therefore the convergence
rates cannot be applied here. Analyzing the rates of a
projected alternating maximization method is, to the
best of our knowledge, an unsolved problem. Further
work will be devoted to study the convergence of this
algorithm. We illustrate Algorithm 1 by showing the
convergence of the regularized version of EOT towards
the ground truth when "! 0 in the case of the Dudley
Metric. See Figure 8 in Appendix D.

5 Other applications of EOT

Minimal Transportation Time. Assume there are
N internet service providers who propose different deb-
its to transport data across locations, and one needs
to transfer data from multiple servers to others, the
fastest as possible. We assume that ci(x, y) � 0 corre-
sponds to the transportation time needed by provider i
to transport one unit of data from a server x to a server
y. For instance, the unit of data can be one Megabit.
Then

R

cid�i corresponds the time taken by provider i
to transport µi = Π1]�i to ⌫i = Π2]�i. Assuming the
transportation can be made in parallel and given a par-
tition of the transportation task (�i)

N
i=1, maxi

R

cid�i
corresponds to the total time of transport the data
µ = Π1]

P

�i to the locations ⌫ = Π2]

P

�i accord-
ing to this partition. Then EOT, which minimizes
maxi

R

cid�i, is finding the fastest way to transport the
data from µ to ⌫ by splitting the task among the N
internet service providers. Note that at optimality, all
the internet service providers finish their transportation
task at the same time (see Proposition 1).

Sequential Optimal Transport. Consider the sit-
uation where an agent aims to transport goods from
some stocks to some stores in the next N days. The
cost to transport one unit of good from a stock located

at x to a store located at y may vary across the days.
For example the cost of transportation may depend
on the price of gas, or the daily weather conditions.
Assuming that he or she has a good knowledge of the
daily costs of the N coming days, he or she may want a
transportation strategy such that his or her daily cost
is as low as possible. By denoting ci the cost of trans-
portation the i-th day, and given a strategy (�i)

N
i , the

maximum daily cost is then maxi
R

cid�i, and EOT

therefore finds the cheapest strategy to spread the trans-
port task in the next N days such that the maximum
daily cost is minimized. Note that at optimality he or
she has to spend the exact same amount everyday.

In Figure 3 we aim to simulate the Sequential OT
problem and compare the time-accuracy trade-offs
of the proposed algorithms. Let us consider a sit-
uation where one wants to transport merchandises
from µ = 1

n

Pn
i=1 �xi

to ⌫ = 1
m

Pm
j=1 �yj

in N days.
Here we model the locations {xi} and {yj} by draw-
ing them independently from two Gaussian distribu-
tions in R

2: 8i, xi ⇠ N (( 33 ), (
0 1
1 0 )) and 8j, yj ⇠

N
�

( 44 ),
�

1 �.2
�.2 1

��

. We assume that everyday there
is wind modeled by a vector w ⇠ U(B(0, 1)) where
B(0, 1) is the unit ball in R

2 that is perfectly known
in advance. We define the cost of transportation on
day i as ci(x, y) = ky � xk � 0.7hwi, y � xi to model
the effect of the wind on the transportation cost. In
the following figures we plot the estimates of EOT ob-
tained from the proposed algorithms in function of the
runtime for various sample sizes n, number of days N
and regularizations ". PAM denotes Alg. 1, APGA

denotes Alg. 2 (See Appendix C.4), LP denotes the
linear program which solves exactly the primal formu-
lation of the EOT problem. Note that when LP is
computable (i.e. n  100), it is therefore the ground
truth. We show that in all the settings, PAM performs
better than APGA and provides very high accuracy
with order of magnitude faster than LP.
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