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Abstract. With equitable key escrow the control of society over the in-

dividual and the control of the individual over society are shared fairly.

In particular, the control is limited to speci�ed time periods. We con-

sider two applications: time controlled key escrow and time controlled

auctions with closed bids. In the �rst the individual cannot be targeted

outside the period authorized by the court. In the second the individual

cannot withhold his closed bid beyond the bidding period. We propose

two protocols, one for each application. We do not require the use of

tamper-proof devices.

Key Words: key escrow, auctions with closed bids, time stamps.

1 Introduction

Key escrow has been proposed as a mechanism to protect society from individu-
als who use a communication system for criminal purposes [4, 25, 10] (an excel-
lent survey of key escrow systems is given by D.E. Denning and D.K. Branstad
in [11]). However key escrow can also be used to target innocent individuals. This
potential targeting is a major factor which contributes to the social unaccept-
ability of key escrow. From the point of view of an individual, key escrow may
restrict his/her privacy and give controlling power to society (Big Brother [8]),
which may, in certain circumstances, abuse it. In a society oriented key escrow
system this power must be equally shared between the individual and society
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(for an analysis of fair cryptosystems see [25, 23]). Furthermore it must have a
limited life span. Indeed a major objection to currently proposed key escrow
schemes is that there is no e�ective time control. Once an order to recover a key
by the escrow agents has been given, there is nothing to prevent the agents from
abusing their power and decrypting all wire-tapped messages, far beyond the
time speci�ed by the Court order. Various scenarios can be envisaged in which
a threat against a minority is indeed serious. While the Bellare{Goldwasser[3]
scheme protects a majority against Big Brother, it does not protect a minority.
For example, an extremist group aiming to take control of the government can
wire-tap all communication of suspect dissidents, which would then be decrypted
when the group took over control.

It is essential that the control of the escrow agents be limited to speci�ed
time periods, beyond which it should not be possible for the agents to recover
the \old" private keys of a targeted individual. For this purpose we have chosen
in our �rst application of equitable key escrow, to update the keys at regular
intervals, and to make it infeasible to compute old keys from the new key. The
escrow agents must destroy all the shares of the old keys with each updating.
We can allow for a small number of corrupted agents who keep their old shares,
but these should not be su�cient to reconstruct the keys.

Our second application of equitable key escrow is contract bidding. In this
case it is the individual who may try to abuse society. To prevent a tender
from being opened before the speci�ed date, it is encrypted with an escrowed
key. The bidder must have some control over the encryption otherwise one can
envisage situations in which the escrow agents may collude with a corrupted
receiving agent. This threat can be eliminated if the bidder pre-encrypts the bid
with his/her own key. However the bidder may then withhold the key. There
are several scenarios in which such a threat may be of concern. For example, if
altered circumstances make the bid unpro�table, or loss making. In this case,
it is \society" (the receiving o�ce) which is threatened by the individual (the
bidder). The solution we propose is to force the bidder to use a weak encryption
key (a nice discussion on weak encryption is given in [29]). This imposes a time
limit which should make it possible for the agents to recover the bid after the
tender is opened. Two keys are used: a key for the bidder and an escrowed key.
The pair of these keys can be regarded as an enlarged escrow key, in which the
share of the bidder is her/his key while the shares of the agents are their old
shares. (In this way the bidder is included in all authorized sets.)

Our goal in this paper is to design protocols which achieve equitable key
escrow. The organization of this paper is as follows. In Section 2 we present our
�rst protocol for a time controlled key escrow system and discuss its security. In
Section 3 we present a protocol for time controlled auctions with closed bids.

Notation and Background

Let p be a prime and g 2 Zp an element of large order. All operations in Zp

are performed modulo p. For simplicity, and when there is no ambiguity, we
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drop the operator \modp". We also write x 2R X to indicate that the element
x is selected uniformly at random from the set X , independently of all other
selections.

The Di�e-Hellman [16] operator DH is de�ned by DH(gx; gy) = gxy. The
problem of �nding DH(gx; gy), given gx; gy, is believed to be hard, and is called
the Di�e-Hellman problem. If gx; gy and z 2 Zp are given, then the problem of
deciding whether z = DH(gx; gy) is called the Di�e-Hellman decision problem. If
this problem is hard then so is the Di�e-Hellman problem. The squaring Di�e-
Hellman problem [24] is the problem of �nding DH(gx; gx) given gx. This problem
is as hard as the Di�e-Hellman problem under some reasonable conditions [24,
Theorem 2]. The problem of deciding whether z = DH(gx; gx), given z; gx is the
squaring Di�e-Hellman decision problem. If this problem is hard then so are the
Di�e-Hellman problem, the Di�e-Hellman decision problem and the squaring
Di�e-Hellman problem. We will also consider the problem of �nding elements
with large order in Zp. This is related to Problem C19 in the Adleman{McCurley
list of open problems in Number Theoretic Complexity [1], and is considered to
be hard.

2 Time controlled key escrow

For simplicity we focus on a basic `-out-of-` escrow system. We will discuss
generalizations to other access structures later on.

Our system uses a Discrete Logarithm setting with prime modulus p and
g 2 Zp an appropriate element of large order. Initially, at time t = 0, the private
key of the receiver, Bob, is a 2R Zp�1 and the public key is y0 = gamod p. Bob
shares his private key among ` escrow agents EAi, i = 1; 2; : : : ; `.

In our basic model each agent gets a share si 2R Zp�1 (i = 1; 2; : : : ; `� 1),
and s` is such that s1� s2 � � � s` = a mod (p� 1). The main feature of our system
is that the private key of Bob and its shares are updated at regular intervals
without the need for interaction. At time t, the private key of Bob is updated
to a2

t

mod (p � 1), the shares are updated to si
2
t

mod (p � 1), and the public

key is updated to yt = ga
2
t

mod p. The agents EAi compute the new shares
by themselves, and must destroy the old shares. As a consequence, the escrow
agents cannot enable the decryption of a ciphertext which was encrypted with
an old key at a later date, even if forced. We shall prove that the problem of
decrypting encryptions with earlier keys is related to two problems: the problem
of �nding elements of large order in Zp and the squaring Di�e-Hellman decision
problem. Both problems are believed to be hard (cf. [1, 24]).

We �rst describe our basic protocol in more detail. For this purpose we
combine the multiplicative threshold scheme of Boyd [7], the ElGamal thresh-
old scheme of Desmedt{Frankel [14] and add time dependency using ideas from
Blum-Blum-Shub [6]. For veri�cation we adapt Pedersen scheme [27].
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Setting

The parties involved: the sender Alice, the receiver Bob, a Court, the Law
Enforcement Agency LEA, and the Escrow Agents EAi, i = 1; 2; : : : ; `.
The parameters: A Discrete Logarithm setting is used. Bob chooses a prime p

such that p� 1 has two large prime factors p1; p2, with p1 � p2 � 3 (mod 4), so
(�1 j p1) = (�1 j p2) = �1 (p1p2 is a Blum integer [6]), and an element g 2 Zp

whose order is p1p2. Bob gives p; g to all the agents EAi, i = 1; 2; : : : ; `, and to
Alice.
Bob has a long term public key which is known to all parties concerned. This key
is used for authenticating (signing) Bob's encryption keys and the parameters
p; g, if required.

Set-up

Set time := 0.
Bob chooses his private key a 2R Z�

p�1
and �nds ` shares si of it, i = 1; : : : ; `,

by choosing si 2R Z�

p�1
for i = 1; : : : ; ` � 1, and taking s` = a � (s1 � � � s`�1)

�1

modulo p� 1. The public key of Bob is y0 = ga. Bob publishes this key.
Then,

1. Bob gives privately to each agent EAi, i = 1; 2; : : : ; `, the share si.
2. Bob publishes z1 := gs1 ; z2 := gs2 ; : : : ; z` := gs` , and each agent EAi checks

that these are correct, that is that zi = gsi , where si is its share. If any check
fails then Bob has cheated and is reported to the LEA.
Bob publishes z1;2 := gs1s2 ; z1;2;3 := gs1s2s3 ; : : : ; z1;2;���;` := gs1s2���s` (= y0),
and proves in zero-knowledge to the LEA that these are correctly con-
structed. That is, Bob proves that z1;2;:::;k = DH(z1;2;:::;k�1; zk), for k =
2; : : : ; `, by using an interactive zero-knowledge proof for the Di�e-Hellman
problem { an example of such a proof is given in Appendix A. If any of the
proofs fails, then Bob has cheated and is reported to the LEA.

The protocol

Updating

At time = t

Each agent EAi updates his share by squaring it, i.e., the current share is
si

2
t

mod (p� 1), and then destroys the old share (si
2
t�1

mod (p� 1)).

Bob updates his private key to a2
t

mod (p � 1) and publishes his public key

yt := ga
2
t

mod p. If necessary Bob proves to the LEA that this is correct by
using an interactive zero-knowledge proof for the Di�e-Hellman problem (for
example, the interactive proof given in Appendix A). That is, Bob proves that
yt = DH(yt�1; yt�1).

Getting an escrowed key

1. Alice asks Bob for a new encryption key.
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2. Bob sends Alice his public key which is authenticated with his long term
key, (p; g; yt; signBob(p; g; yt)).

3. If Bob's signature is valid then Alice sends Bob the encryption ElG(m) =
(gr;myt

r), r 2R Z�

p�1, of a message m 2 Z�

p with key yt.
4. If the Court has issued an order to recover the message, then the LEA

will wire-tap the communication and send gr to agent EA1. The agents
EA1;EA2; : : : ;EA` then compute yt

r sequentially as follows: for i < `, each

EAi on receiving g
r
Q

i�1

j=1
s2

t

j computes g
r
Q

i

j=1
s2

t

j := (g
r
Q

i�1

j=1
s2

t

j )s
2
t

i , which it

sends to EAi+1. Agent EA` then computes (g
r
Q

`�1

j=1
s2

t

j )s
2
t

` , which it sends to
the LEA. Since this corresponds to yt

r, the LEA can decrypt the ciphertext.

Security

Theorem 1. (Irreversible time) If the squaring Di�e-Hellman decision prob-
lem is hard and if �nding elements of large order in Zp is hard, then decrypting
old ciphertext with new shares of the escrow agents is hard.

Proof. (Sketch) Suppose that there is a polynomial time algorithm A which

on input p; g; z1; z2; : : : ; z`, z1;2, z1;2;3, . . . , z1;2;:::;`, the shares s2
t

1 ; s2
t

2 ; : : : ; s2
t

` ,
the old shares of (` � 1) corrupted shareholders, Bob's long term public key,
the certi�cates (p; g; yj ; signBob(p; g; yj)), j = 1; 2; : : : ; t, and an old ciphertext
(w1; w2), with w1 = gr, r 2 Z�

p�1, w2 = myrt�u, m 2 Z�

p , will output the message

m. Then A can be used to compute gra
2
t�u

(= w2=m). We now will use A to
get an element in Zp of large order. First we prepare an input for A.

Note that 0 < u < t (since public key y0 is never used to encrypt). As-
sume that the dishonest escrow agents are i1, i2, . . . , i`�1 and let i` be the
honest escrow agent. Find an appropriate long term secret key for Bob. Choose
�s1; �s2; : : : ; �s` 2R Z�

p�1. Compute b0 = �s1 � � � �s` mod p � 1, �z1 := g�s1 , �z2 := g�s2 ,

. . . , �z` := g�s` , �z1;2 := g�s1�s2 , . . . , �z1;2;:::;` := g�s1����s` , and �y0 := gb0 , �y1 := gb
2

0 ,. . . ,

�yt�u�1 := gb
2
t�u�1

0 .

Take b 2R Z�

p�1 and compute �s0i1 := �s2
t�u

i1
, �s0i2 := �s2

t�u

i2
, . . . , �s0i`�1 :=

�s2
t�u

i`�1
2R Z�

p�1. Compute �s := �s0i1 � �s
0
i2 � � �

�s0i`�1 ,
�s0i` := b � (�s)�1, and the public

keys �yt�u = gb, �yt�u+1 = gb
2

, . . . , �yt = gb
2
u

. Observe that even though it is
highly unlikely that the public key �yt�u is properly constructed (that is, it is
highly unlikely that �yt�u = DH(�yt�u�1; �yt�u�1), it is hard for A to recognize
this, if the squaring Di�e-Hellman decision problem is hard.

Give as input to A: p; g; �z1; �z2; : : : ; �z`, �z1;2; : : : ; �z1;2;:::;`, the \shares" �s0
2
u

1 ; : : : ;
�s0
2
u

` , the \old shares" �s0i1 ; : : : ; �s
0
i`�1 , Bob's long term public key, the certi�cates

(p; g; �yj ; signBob0(p; g; �yj)), j = 1; 2; : : : ; t, and an \old" ciphertext ( �w1; �w2) en-
crypted at time t � u, with �w1 = g�r, �r 2R Z�

p�1, and �w2 2R Z�

p . Algorithm

A will output a message �m such that �w2= �m = g�rd, where d is a 2u{th root of
b2

u

which is a quadratic residue in Zp1p2 . However b was chosen at random in
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Z�

p�1, so that with probability 3/4 we get that b mod p1p2 is not a residue in

Zp1p2
. (Indeed a2

t

, for t > 1, has 4 square roots in Zp1p2
of which only one is

a quadratic residue, because of our restrictions on the primes p1; p2. It follows
that there is only one primitive 2u{th root of a2

t

in Zp1p2 , 0 < u � t, which is
a quadratic residue. in Zp1p2 .) Then with probability one half, b� d is either a
multiple of p1 or a multiple of p2. This means that g�rd=g�rb = g�r(d�b) has order
p1 or p2. Consequently A can �nd an element in Zp of large order.

(Note that, since we work modulo p, the view of the communication between
the escrow agents when co-decrypting can also be included in the simulation,
as discussed in the �nal paper. Moreover, if this communication is encrypted
(to prevent an outsider to learn the ciphertext), the simulation of this part is
straightforward.) ut

Theorem 2. (Privacy) A wire-tapper may try to decipher the ciphertext. This
is as hard as the Di�e-Hellman problem.

Proof. (Sketch) We show this by using the approach in [13]. Suppose that B
is a polynomial time algorithm which on input: p; g; z1; z2; : : : ; z`, z1;2, z1;2;3,
. . . , z1;2;:::;`, the certi�cates (p; g; �yj ; signBob0(p; g; �yj)), j = 1; 2; : : : ; t, and the
ciphertext ( �w1; �w2), �w1 = gr, �w2 = myt

r, will output m. We now prove that B
can be used to solve the Di�e-Hellman problem. Let p; g; �yt; �w1 be an instance
of the the Di�e-Hellman problem. Construct �z1; �z2; : : : ; �z`, �z1;2; ; : : : ; �z1;2;:::`,
�y0; �y1; : : : ; �yt 2 Z�

p , as in the previous case. Give this as input to B together
with ( �w1; �w2), to get a \message" �m such that �w2= �m = DH(�yt; �w1) (= �y�rt ).
The rest can all be simulated because we have used zero-knowledge proofs. ut

2.1 Generalizations

Generalizing time controlled l-out-of-l key escrow systems to l0-out-of-l systems,
is straightforward when using more complex secret sharing schemes over Z�

p�1(�).
The subset of escrow agents involved in the decryption must be known in ad-
vance. Secret sharing schemes that could be used for this purpose can be found
in [15, 12, 2, 5], when using techniques such as those described in [18, 13]. Ro-
bustness can be achieved by using, for example [21, 20].

Other properties such as proactive secret sharing can also be achieved us-
ing [22, 19, 28].

3 Time controlled auctions with closed bids

We �rst consider a basic (additive) `-out-of-` escrow system, using a simple
setting. Generalizations will be discussed later.

Our system uses a Discrete Logarithm setting with composite modulus n =
p1p2, where p1; p2 are appropriate large primes. The bidder, Alice, chooses n and
g1; g2 2 Zn such that g1 has large order whereas g2 has a rather small prime order
q. Alice has two public keys for encryption: y1 = ga11 mod n, y2 = ga22 mod n,
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where a1 2R Z�(n), a2 2R Zq. The private key a1 is shared among ` escrow
agents EAi, i = 1; 2; : : : ; `. The other is not shared. For this system the public
key y2 is weak and must be used only once. This key must be such that it can
be recovered by an exhaustive search of the key space, but the time taken for
this search should not be too short.1

Alice \double" encrypts her contract bid m by using the keys y1; y2. Let
ElG2(m) be the encryption. Alice sends this to the receiving agent Bob. At
completion she will reveal both secret keys a1; a2, from which Bob will get the
tendered bidm. If Alice refuses to reveal these keys, then Bob informs the escrow
agents who will enable a �rst decryption. This will make it possible for Bob to
get an encryption ElG(m) of m with private key a2. Bob then initiates a pro-
cedure to recover m, by exhaustively breaking this encryption. Bob can achieve
this because the second key is relatively weak. A similar argument applies if a
Court order is issued to the escrow agents to enable the decryption of ElG2(m).
The security issues of this protocol will be discussed in more detail later. We
�rst describe the protocol more formally. For this purpose we use the additive
threshold scheme of Boyd and Frankel [7, 17], and/or the ElGamal threshold
scheme of Desmedt{Frankel [14] and use the concept of weak encryption (see,
e.g., [29]).

Setting

The parties involved: the bidder Alice, the receiving o�cer Bob, a Court, the
Law Enforcement Agency LEA, and the Escrow Agents EAi, i = 1; 2; : : : ; `.
The parameters: Both Alice and Bob have long term public keys which are
known to each other. These keys are used for authentication (signing).
A Discrete Logarithm setting is used with a composite modulus n. Alice chooses
n = p1p2, a product of two large primes p1; p2, with p1�1 = 2qq1, p2�1 = 2qq2,
q1; q2 primes, and q a rather small prime (say 140 bits).
Alice chooses g1 2R Zn and g2 2 Zn such that ord(g2 mod p1) = ord(g2 mod
p2) = q. Here ord(g2 mod p1) is the order of g2 in Zp1 and ord(g2 mod p2) is the
order of g2 in Zp2 . Consequently g2 has order q in Zn.

Set-up

Alice chooses a1 2R Z�(n), a2 2R Zq. The public key of Alice is (n; q; g1; g2; y1; y2),
where y1 := g1

a1mod n, y2 := g2
a2mod n.

Alice �nds ` shares of a1, by choosing exponents si 2R Z�(n) for i = 1; 2; : : : ; `�1,
and taking s` = a1 � (s1 + s2 + : : :+ s`�1) mod�(n).

1. Alice gives privately to each agent EAi, i = 1; 2; : : : ; `, the share si.
2. Alice publishes z1 := gs11 ; z2 := gs21 ; : : : ; z` := gs`1 . Each agent EAi checks

that zi = gsi1 and reports failure to the LEA. The LEA checks that y1 =
z1� z2 � � � z`. If any of the checks of the EAi's fails or if the LEA's check fails

1 Since an exhaustive search is parallelizable, some kind of inherently sequential scheme
may be used, such as the time-lock puzzles proposed in [29]. Our protocol can easily
be adapted to allow for such schemes.
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then Alice has cheated, the tender is rejected, and appropriate actions are
taken.

Sending an encrypted contract bid

1. Alice sends Bob the pair of her public keys authenticated with her long term
key,

(n; q; g1; g2; y1; y2; signAlice(g1; g2; n; q; y1; y2));

and the encrypted bid ElG2(m) = (gr1
1
; gr2

2
;myr1

1
yr2
2
); where m 2 Z�

n is the
bid and r1; r2 2R Zn.

2. If the parameters are in the appropriate �elds, with q a small prime, if
the order of g2 and y2 are both q, and if Alice's public keys are authen-
ticated properly, then Bob accepts the tender and sends Alice a receipt
sign

Bob
(Alice;ElG2(m)).

Opening a tender

When the tender is due to be opened, Alice sends Bob the private keys a1; a2.
Bob checks these for correctness. If correct, ElG2(m) is decrypted to get the bid
m, which is validated.
If Alice refuses to send her keys, the LEA is informed and initiates a procedure
to recover m.

The Court recovers the bid

If the Court has issued an order to recover the bid, the LEA will wire-tap the
communication and send gr1 to the escrow agents who will compute yr1

1
. From

this the LEA can get ElG(m) = (g2
r2 ;my2

r2): The key for this ciphertext is
weak, so the LEA can recoverm by brute force. However, q has to be su�ciently
large to prevent a conspiracy, as explained further on.

Security

The security of this system relies on the di�culty of factoring a number n = p1p2,
p1; p2 primes, when a particular number g2 2 Zn is given, with a rather small
prime order q. It is important that both g2 mod p1 6= 1 and g2 mod p2 6= 1.
Otherwise, if say g2 mod p1 = 1, then p1 is a factor of g2 � 1 and it becomes
easy to factor n by taking the gcd(n; g2 � 1). Observe that for g2 = n � 1 we
have q = 2, but this trivial case is too small to be of any use for us.

Fair auction bidding

Alice may refuse to open her bid, on completion. Bob will inform the LEA and
the Court will authorize the escrow agents to decrypt the ciphertext. The escrow
agents will compute yr1

1
from which the LEA will get ElG(m) = (g2

r2 ;my2
r2):

The key for this ciphertext is weak, so the LEA can initiate a procedure to
recover m by brute force. (Note that q has to be su�ciently large, as we now
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explain.)

Conspiracy

The agents may be corrupted by the bidding o�cer Bob. They will recover
ElG(m) = (g2

r2 ;my2
r2); but if the key y2 is not too weak they will not be able

to recover the message in time. For this reason q cannot be too small.

Theorem 3. (Privacy) A wire-tapper may try to decipher the bid m. This is
as hard as breaking the Di�e-Hellman problem.

Proof. (Sketch) For simplicity assume that the dishonest escrow agents are
numbered from 1 to ` � 1 (this can easily be generalized). Suppose that A is
a polynomial time algorithm which on input: n; q; g1; g2; y1; y2, authenticated
with Alice's long term key, z1; z2; : : : ; z`, and (gr1

1
; gr2

2
;my1

r1y2
r2), will output

m. Let n; g1; �y1; g1
�r1 be an instance of the Di�e-Hellman problem similar as

in [14, 13]. Take �s1; : : : ; �s`�1 2R Zn, and �s = �s1 + : : :+ �s`�1. Then let �z1 = g�s1 ,
. . . , �z`�1 = g�s`�1 and �z` = �y1g

��s
1

. Find an appropriate long term key for Alice.
Finally take �r2 2R Zq and compute g2

�r2 and y2
�r2 .

Give as input to A: n; q; g1; g2; �y1; �y2, authenticated with Alice's public key,
�z1; : : : ; �z`, and (g�r1

1
; g�r2

2
; �w), where �w 2R Zn. Algorithm A will output �m, such

that �w= �m = �y�r1
1
�y�r2
2
, from which we get DH(�y1; g1

�r1) = �y�r1
1
. ut

Generalizations

Similar generalizations to those in Section 2.1 apply. (Although �(n) is not pub-
lic, techniques similar to those in [18, 13] will address this problem.)
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A A zero-knowledge proof for the Di�e-Hellman decision

problem

The zero-knowledge proof for the Di�e-Hellman decision problem in [9] is not
adequate for our purpose, since it designed for the case when the group of the
exponents has prime order. In our case the group of exponents has composite
order. The following protocol will serve our purpose.

Input: A prime p, g 2 Zp of large order, � = gamod p, � = gbmod p,

 = gabmod p.

Repeat independently t = log p times the following subroutine:

1. The Prover selects exponents x; y 2R Zp�1 and sends to the Veri�er: �x=
gx mod p, �y = gy mod p, �xy = gxy mod p, �ay = gay mod p, and �bx =
gbx mod p.

2. The Veri�er sends the Prover a query bit e 2R f0; 1g.

3. If e = 0 the Prover sends x; y to the Veri�er, and the Veri�er checks that:
�x = gx mod p, �y = gy mod p, �xy = gxy mod p, �ay = �y mod p, and
�bx = �x mod p.
If e = 1 the Prover sends a0 = a+ x mod (p� 1), b0 = b+ y mod (p� 1) to
the Veri�er who checks that: ga

0

� � � �x (modp), gb
0

� � � �y (modp), and

ga
0b0 � 
 � �ay � �bx � �xy (modp).

If any of the checks fails, the Veri�er halts and rejects the proof.
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The Veri�er accepts the proof of the Prover if all t rounds have been completed
successfully.

Let L = f(p; �; �; 
) j p prime; �= gamod p; � = gbmod p; 
 = gabmod pg:
Then,

Theorem 4. The protocol above is a perfect zero-knowledge proof of membership
in L.

Proof. (Sketch)
Completeness: Obvious.
Soundness: If the Prover can answer the queries e = 0; 1 then there exist a; b; x; y
such that a0 = a+ x mod (p� 1), b0 = b+ y mod (p� 1), with �ay = �y mod p,

�bx = �x mod p, �xy = gxy mod p, and 
 � ga
0b0 � ��1

ay � ��1

bx � ��1

xy � gab (modp).

Zero-knowledge: Let �; �; 
 be given. Pick a0; b0 2R Zp�1, and let �x=ga
0

=�modp,

�y = gb
0

=� mod p. Then solve �b
0

� 
 � �ay (modp), �a
0

� 
 � �bx (modp),

ga
0b0 � 
 ��ay ��bx ��xy (mod p), for the unknowns �ay; �bx, �xy, respectively. ut
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