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Abstract

Dynamic equity portfolios can be generated by positive twice continuously differentiable

functions of the ranked capitalization weights of an equity market. The return on such a

portfolio relative to the market follows a stochastic differential equation that decomposes the

relative return into two components: the logarithmic change in the value of the generating

function, and a drift process that is of bounded variation. The method can be used to construct

broad classes of stock portfolios, and has both theoretical and practical applications. Two

applications of the method are presented: one offers an explanation for the size effect, the

observed tendency of small stocks to have higher long-term returns than large stocks, and the

other provides a rigorous analysis of the behavior of diversity-weighted indices, stock indices

with weights that lie between capitalization weights and equal weights.
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1 Introduction

Functionally generated portfolios first appeared in Fernholz (1999a) with the entropy-weighted port-
folio, and then in general form in Fernholz (1999b) where it was shown that certain functions of
the market weights in an equity market generate dynamic portfolios. The return of a function-
ally generated portfolio relative to the market portfolio follows a stochastic differential equation.
This equation decomposes the relative return into two components: the change in the value of the
generating function, and a drift process that is of finite variation. By appropriate selection of the
generating function, the components can be structured so that the portfolio will have desirable re-
turn characteristics. In fact, functionally generated equity portfolios have been used for institutional
investment for several years (see Fernholz, Garvy, and Hannon (1998)).

The properties of functionally generated portfolios are somewhat different from the portfolios
customarily considered in the literature. Functionally generated portfolios are unlikely to be optimal
in the sense of Markowitz (1952,1959), over single periods, or Merton (1969,1971), in continuous time.
Nor can they be expected to be asymptotically optimal in the sense of Breiman (1961) or Cover
(1991). Functionally generated portfolios are perhaps more like the hedging portfolio corresponding
to the Black and Scholes (1973) option pricing formula (see, e.g., Karatzas and Shreve (1998) for
a discussion of these concepts). In this case, the option pricing function “generates” the hedging
portfolio, and the return on the hedging portfolio must conform exactly to changes in the value
of the option, or else arbitrage is possible. In a similar manner, Fernholz (1999a,b) showed that
functionally generated portfolios can be used to determine structural market conditions that are
compatible with an arbitrage-free market. These conditions are based on observable variables such
as market weights rather than on abstract constructions such as an equivalent martingale measure
(see Harrison and Kreps (1979) and Harrison and Pliska (1981,1983)).

Fernholz (1999b) assumed that the market is closed, i.e., there are no stocks entering or leaving
the market. However, this assumption is not completely satisfactory, especially in practice where the
theory has been applied to large-stock indices like the S&P 500 or the Russell 1000 in which stocks
frequently enter or leave. In fact, Fernholz, Garvy, and Hannon (1998) observed that an adjustment
must be made to the theory to account for “leakage” caused by the systematic attrition of the smaller
stocks that are dropped from the S&P 500 Index. To a lesser extent, the same phenomenon will
affect even a broad universe such as the market of all publicly traded stocks, since smaller stocks are
continually entering the market (as IPOs) or leaving the market (as bankruptcies, buyouts, etc.).
Hence, the theory developed by Fernholz (1999b) needs to be extended to account for the movement
of small stocks into and out of the market.

In this paper we consider functions of the ranked market weights, and show that under appro-
priate conditions they also generate portfolios. This will allow us to consider portfolios composed
exclusively of large stocks, which are identified by ranked market weights. This problem is more
complicated mathematically than Fernholz (1999b) because the ranking of the weights is not a
differentiable transformation, and hence Itô’s (1951) lemma cannot be applied directly.

We show that a positive twice continuously differentiable function of the ranked market weights
generates a dynamic equity portfolio. For such a portfolio the return relative to the market port-
folio follows a stochastic differential equation similar to that of Fernholz (1999b). This equation
decomposes the relative return into the same two components as in Fernholz (1999b), however now
the drift process includes semimartingale local times that account for changes in rank among the
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market weights. We present two applications of this decomposition. The first application provides
an explanation for the size effect, the observed tendency of small stocks to have higher long-term
returns than large stocks (see Banz (1981) and Reinganum (1981)), and extends the discrete-time
results of Fernholz (1998) to the continuous-time setting. Our result is quite different from alter-
native explanations for the size effect that have been offered by Roll (1981), Handa, Kothari, and
Wasley (1989), and Jegadeesh (1992). The second application provides a rigorous mathematical
treatment of diversity-weighted indexing, a new type of passive equity strategy that was introduced
by Fernholz, Garvy, and Hannon (1998) and is currently being used for actual investment.

Section 2 of the paper contains some basic definitions and results regarding continuous-time
equity portfolios. The main theorem on portfolios generated by functions of ranked market weights
is presented in Section 3. In Section 4 we present two applications of the theory, and Section 5 is a
summary. An Appendix contains some results that we need on semimartingale local times.

We shall assume that we operate in a continuously-traded, frictionless market in which the stock
prices vary continuously and the companies pay no dividends. We assume that companies neither
enter nor leave the market, nor do they merge or break up, and that the total number of shares of a
company remains constant. Shares of stock are assumed to be infinitely divisible, so we can assume
without loss of generality that each company has a single share of stock outstanding.

2 Stocks and portfolios

We shall consider a market M comprising n stocks represented by their price processes X1, . . . , Xn.
We assume that there is a single share of each stock, so Xi(t) represents the total capitalization of
the i-th company at time t. The price processes evolve according to the equations

Xi(t) = Xi
0 exp

(∫ t

0

γi(s) ds +
∫ t

0

n∑
ν=1

ξiν(s) dWν(s)
)

, t ∈ [ 0, T ], (2.1)

for i = 1, . . . , n. Here Xi
0, i = 1, . . . , n, are positive constants and W = {W (t) = (W1(t), . . . , Wn(t)),

Ft, t ∈ [ 0, T ]} is a standard n-dimensional Brownian motion defined on a complete probability space
{Ω,F, P} where {Ft} is the P -augmentation of the natural filtration {FW

t = σ(W (s); 0 ≤ s ≤ t)}.
From (2.1), we see that the stocks satisfy

d log Xi(t) = γi(t) dt +
n∑

ν=1

ξiν(t) dWν(t), t ∈ [ 0, T ], (2.2)

for i = 1, . . . , n. The growth rate processes γi = {γi(t), Ft, t ∈ [ 0, T ]}, i = 1, . . . , n, are measurable,
adapted, and satisfy

∫ T

0
|γi(s)|ds < ∞, a.s. For i, ν = 1, . . . , n, the volatility processes ξiν =

{ξiν(t), Ft, t ∈ [ 0, T ]} are measurable, adapted, and satisfy
∫ T

0
ξ2
iν(s)ds < ∞, a.s., with ξ2

i1(t)+ · · ·+
ξ2
in(t) > 0, t ∈ [ 0, T ], a.s. From (2.2) it follows that each stock is a square-integrable continuous

semimartingale.

Remark. The time domain [ 0, T ] is commonly used in mathematical finance due to the need for
Girsanov’s theorem (see Duffie (1992) or Karatzas and Shreve (1998)). By convention, we shall use
the time domain [ 0, T ], but since our results are not dependent on Girsanov’s theorem, all of the
results remain valid for price processes defined on [ 0,∞).
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Consider the matrix valued process ξ defined by ξ(t) = (ξiν(t))1≤i,ν≤n and define the covariance
process σ where σ(t) = ξ(t)ξT (t). Then

σij(t) dt = d〈log Xi, log Xj〉t, t ∈ [ 0, T ], a.s.

The conditions on the volatility processes ensure that the σij are a.s. L1 functions of t.

Definition 2.1. A portfolio in M is a measurable, adapted process π that is bounded on [ 0, T ]×Ω
and satisfies

π1(t) + · · ·+ πn(t) = 1, t ∈ [ 0, T ], a.s.

The processes πi represent the respective proportions, or weights, of each stock in the portfolio.
A negative value for πi(t) indicates a short sale.

Suppose Zπ(t) represents the value of an investment in π at time t. Then Zπ(t) satisfies

dZπ(t) = Zπ(t)
n∑

i=1

πi(t)
dXi(t)
Xi(t)

, (2.3)

for t ∈ [ 0, T ]. This equation and an initial value Zπ(0) > 0 determine the portfolio value through
time (see Fernholz (1999a)), so we shall call the process Zπ the portfolio value process for π. Two
applications of Itô’s lemma transform (2.3) into

d log Zπ(t) =
n∑

i=1

πi(t) d log Xi(t) + γ∗π(t) dt, (2.4)

where

γ∗π(t) =
1
2

( n∑

i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)
)

, t ∈ [ 0, T ], (2.5)

is called the excess growth rate.

Remark. It can be shown that for portfolios without short sales the excess growth rate is non-
negative, and is positive if σ(t) is nonsingular and π(t) has at least two positive weights (see Fernholz
(1999a)).

Definition 2.2. The portfolio µ defined by

µi(t) =
Xi(t)

X1(t) + · · ·+ Xn(t)
, t ∈ [ 0, T ], (2.6)

for i = 1, . . . , n, is called the market portfolio (process).

It can easily be verified that the weights µi defined by (2.6) satisfy the requirements of Definition
2.1, and that they are continuous square-integrable semimartingales. If we let

Z(t) = X1(t) + · · ·+ Xn(t), t ∈ [ 0, T ],

then Z(t) satisfies (2.3) with the weights µi, so with appropriate initial conditions, Zµ = Z, and
the portfolio value process represents the combined capitalization of all the stocks in the market.
Henceforth we shall let µ exclusively represent the market portfolio and Z represent its value process.
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The instantaneous relative return of Xi with respect to the market at time t is represented by

d log
(
Xi(t)/Z(t)

)
= d log Xi(t)− d log Z(t).

Since µi = Xi/Z, the relative return process log(Xi/Z) can be represented by log µi. The cross
variation processes for the relative returns of the stocks in the market generate the (matrix valued)
relative covariance process τ = (τij), which satisfies

τij(t) dt = d〈log µi, log µj〉t (2.7)

= d〈log Xi, log Xj〉t − d〈log Xi, log Z〉t − d〈log Xj , log Z〉t + d〈log Z〉t, (2.8)

for 1 ≤ i, j ≤ n and all t ∈ [ 0, T ], a.s. From (2.8) it follows that for 1 ≤ i, j ≤ n,

τij(t) = σij(t)−
n∑

k=1

µk(t)σik(t)−
n∑

l=1

µl(t)σjl(t) +
n∑

k,l=1

µk(t)µl(t)σkl(t), (2.9)

for t ∈ [ 0, T ], a.s., and that τij is a.s. an L1 function of t.

Lemma 2.1. The market portfolio µ(t) is in the null space of τ(t), for all t ∈ [ 0, T ], a.s.

Proof. From (2.9) it follows that for any portfolio π,

π(t)τ(t)πT (t) =
(
π(t)− µ(t)

)
σ(t)

(
π(t)− µ(t)

)T
, t ∈ [ 0, T ] a.s.,

and this expression is zero if π(t) = µ(t).

By combining (2.5) and (2.9) we obtain

γ∗π(t) =
1
2

( n∑

i=1

πi(t)τii(t)−
n∑

i,j=1

πi(t)πj(t)τij(t)
)

, t ∈ [ 0, T ], (2.10)

which will be useful in the next section.

3 Portfolios generated by functions of ranked market weights

The idea of portfolio generating portfolios was introduced by Fernholz (1999b), where it was shown
that a positive twice continuously differentiable function of the market weights will generate a
portfolio. Although these functionally generated portfolios had useful theoretical properties, the
construction was not sufficiently general to allow for the study of portfolios composed of stocks
selected by market capitalization, as occurs in many equity indices. Stocks selected by size depend
on the ranks of the stocks in the market, and rank functions are not differentiable. Here we shall
extend the results of Fernholz (1999b) to portfolios that are generated by functions of the ranked
market weights. We first need a definition for rank processes.

Definition 3.1. Let X1, . . . , Xn be processes. For 1 ≤ k ≤ n, the k-th rank process of X1, . . . , Xn

is defined by

X(k)(t) = max
i1<···<ik

min
(
Xi1(t), . . . , Xik

(t)
)
, t ∈ [ 0, T ],

where 1 ≤ i1 and ik ≤ n. We shall adopt the convention that X(0) and X(n+1) are defined such that
for t ∈ [ 0, T ], X(0)(t) > X(1)(t) and X(n+1)(t) < X(n)(t).
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According to this definition, for t ∈ [ 0, T ],

max
(
X1(t), . . . , Xn(t)

)
= X(1)(t) ≥ X(2)(t) ≥ · · · ≥ X(n)(t) = min

(
X1(t), . . . , Xn(t)

)
,

so that at any given time, the values of the rank processes represent the values of the original
processes arranged in descending order.

We shall study functions of the ranked market weights µ(1)(t), . . . , µ(n)(t), and shall use the
notation

µ(·)(t) = (µ(1)(t), . . . , µ(n)(t)), t ∈ [ 0, T ].

For any t ∈ [ 0, T ], we can define pt to be the random permutation of {1, . . . , n} such that for
k ∈ {1, . . . , n},

µpt(k)(t) = µ(k)(t), (3.1)

and

pt(k) < pt(k + 1) if µ(k)(t) = µ(k+1)(t). (3.2)

The permutation pt is uniquely defined by (3.1) and (3.2), and associates each rank process with
one of the original market weights that has the same value at time t. For i, j = 1, . . . , n, we can
define the relative rank covariance processes τ(ij) by

τ(ij)(t) = τpt(i)pt(j)(t), t ∈ [ 0, T ]. (3.3)

Since for all i and j, τij is a.s. an L1 function of t, the same is true for τ(ij).

Although a change in a market weight represents the relative return of the corresponding stock,
changes in the ranked market weights do not have such a simple interpretation. In order to char-
acterize the changes in the ranked market weights in terms of the relative returns of the stocks, we
need to introduce the concept of a semimartingale local time, a measure of the amount of time a
process spends near the origin.

Definition 3.2. Let X be a continuous semimartingale. Then the local time (at 0) is the process
ΛX defined for t ∈ [ 0, T ] by

ΛX(t) =
1
2

(
|X(t)| − |X(0)| −

∫ t

0

sgn(X(s)) dX(s)
)
, (3.4)

where sgn(x) = 2 I(0,∞)(x)− 1, with I(0,∞) the indicator function of (0,∞).

The asymmetry in sgn induces an asymmetry in the local time: in general ΛX differs from Λ−X .
For general background on local times, see Karatzas and Shreve (1991); the technical results that
we shall need can be found in the Appendix. Equation (3.4), which we use as a definition, is one of
the Tanaka-Meyer formulas (Tanaka (1963), Meyer (1976)). It can be shown that ΛX(t) is almost
surely nondecreasing in t, and satisfies

I{0}(X(t)) dΛX(t) = dΛX(t), t ∈ [ 0, T ], a.s. (3.5)

(see Karatzas and Shreve (1991), 3.7.1). This implies, for example, that for one-dimensional Brow-
nian motion B, ΛB is a non-negative random measure on [ 0, T ] that almost surely has support
contained in the set {t : B(t) = 0}, and hence is singular with respect to Lebesgue measure. In order
to effectively use local times, we must ensure that the stock price processes we consider exhibit a
certain level of nondegeneracy.
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Definition 3.3. The processes X1, . . . , Xn are pathwise mutually nondegenerate if:

i) for all i 6= j, {t : Xi(t) = Xj(t)} has Lebesgue measure zero, a.s.;

ii) for all i < j < k, {t : Xi(t) = Xj(t) = Xk(t)} = ∅, a.s.

The components of multidimensional Brownian motion (W1, . . . , Wn) are pathwise mutually
nondegenerate, at least for t > 0. Condition i is well known for Brownian motion, and condition ii
follows from the fact that, with probability one, 2-dimensional Brownian motion never returns to
the origin (see Karatzas and Shreve (1991)).

The ranked stock price processes X(1), . . . , X(n) cannot be be represented by individual stocks
or by portfolios of stocks. Instead, Proposition A.1 implies that for 1 ≤ k ≤ n,

dX(k)(t) =
n∑

i=1

I{0}
(
pt(k)− i

)
dXi(t) +

1
2
dΛX(k)−X(k+1)(t)−

1
2
dΛX(k−1)−X(k)(t), t ∈ [ 0, T ], a.s.

Let us interpret this equation for X(1)(t), the maximum stock price at time t. In this case, when the
two largest stocks are momentarily equal in value, the sum on the right-hand side of the equation
cannot anticipate which of them will be the maximum in the future. The local time dΛX(1)−X(2)(t)/2
adjusts for the difference.

Let us leave local times for now and proceed with the concept of portfolio generating functions
and functionally generated portfolios.

Definition 3.4. Let U be an open neighborhood in Rn of the open simplex

∆n = {x ∈ Rn : x1 + · · ·+ xn = 1, 0 < xi < 1, i = 1, . . . , n},

and let S be a positive function defined in U . Then S generates the portfolio π if there exists a
measurable, adapted process of bounded variation Θ = {Θ(t), Ft, t ∈ [ 0, T ]} such that

log
(
Zπ(t)/Z(t)

)
= log S(µ(·)(t)) + Θ(t), t ∈ [ 0, T ], a.s. (3.6)

The function S in Definition 3.4 is called a portfolio generating function, and (3.6) decomposes
the relative return process log

(
Zπ(t)/Z(t)

)
into a generating function component log S(µ(·)(t)) and a

drift process Θ(t). Since the drift process is of bounded variation, the generating function component
includes the local martingale part of the relative return process. This decomposition is useful because
the variation of the generating function component can be controlled by bounds on log S, so under
certain conditions the drift process will dominate the behavior of the relative return.

Remark. The portfolio π generated by S in Definition 3.4 is a hedging portfolio for S(µ(·)(t)) in the
sense that its relative return hedges out the martingale part of log S. Definition 3.4 can be extended
to include time-dependent portfolio generating functions defined on U × [ 0, T ], with log S(µ(·)(t), t)
replacing log S(µ(·)(t)) in (3.6). A time-dependent generating function with Θ = 0 can be considered
to be an option pricing function with hedging portfolio π (see Karatzas and Shreve (1998)).

Portfolio generating functions were introduced in Fernholz (1999b), but only as functions of the
market weights, not the ranked market weights. For theoretical applications, the use of ranked
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market weights makes it possible to analyze the effect of company size on portfolio returns. Since in
practice one is frequently interested in a specific family of stocks determined by company size, e.g.,
the S&P 500 Index or the Russell 1000 Index, generating functions based on ranked market weights
have much wider applicability. We shall give examples of both of these types of application in the
next section.

The next theorem is the main result of this paper. It shows that there exists a broad class of
portfolio generating functions that depend on ranked market weights.

Theorem 3.1. Let M be a market of stocks X1, . . . , Xn that are pathwise mutually nondegenerate,
and let pt be the random permutation defined by (3.1) and (3.2). Let S be a positive C2 function
defined on a neighborhood U of ∆n such that for i = 1, . . . , n, xiDi log S(x) is bounded on ∆n. Then
S generates the portfolio π with weights that satisfy

πpt(k)(t) =
(
Dk log S(µ(·)(t)) + 1−

n∑

j=1

µ(j)(t)Dj log S(µ(·)(t))
)
µ(k)(t), t ∈ [ 0, T ], a.s., (3.7)

for k = 1, . . . , n, and drift process Θ that satisfies

dΘ(t) =
−1

2S(µ(·)(t))

n∑

i,j=1

DijS(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t) dt

+
1
2

n−1∑

k=1

(
πpt(k+1)(t)− πpt(k)(t)

)
dΛlog µ(k)−log µ(k+1)(t), t ∈ [ 0, T ], a.s. (3.8)

Proof. First we must verify that π defined by (3.7) is a portfolio, and that Θ defined by (3.8) is of
bounded variation. If π satisfies (3.7), then

∑n
i=1 πi(t) = 1, and the conditions on S imply that the

processes πi are bounded on [ 0, T ]×Ω. Hence, π is a portfolio process. Regarding Θ, let us consider
the two expressions on the right hand side of (3.8) separately. The process represented by the first
expression is a.s. of bounded variation because τ(ij) is an L1 function of t and the rest of the terms
are continuous in t. The second expression is a sum of local times multiplied by bounded functions,
and hence is also of bounded variation. Therefore Θ is a.s. of bounded variation.

We must show that the portfolio π defined by (3.7) and the drift process Θ defined by (3.8) satisfy
(3.6). To accomplish this, we shall analyze the generating function term log S((µ(·)(t)) in (3.6) and
the relative return process log

(
Zπ(t)/Z(t)

)
, and show that the difference of these two terms satisfies

(3.8). We first need some preliminary results.

Proposition A.1 implies that the ranked weight processes µ(k), for k = 1, . . . , n, satisfy

d log µ(k)(t) =
n∑

i=1

I{0}
(
pt(k)− i

)
d log µi(t)

+
1
2
dΛlog µ(k)−log µ(k+1)(t)−

1
2
dΛlog µ(k−1)−log µ(k)(t), t ∈ [ 0, T ], a.s. (3.9)

This and (2.7) imply that, for i, j = 1, . . . , n,

d〈log µ(i), log µ(j)〉t = τ(ij)(t) dt, t ∈ [ 0, T ], a.s.,

so by Itô’s Lemma,

dµ(i)(t) = µ(i)(t) d log µ(i)(t) +
1
2
µ(i)(t)τ(ii)(t) dt, t ∈ [ 0, T ], a.s., (3.10)
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and

d〈µ(i), µ(j)〉t = µ(i)(t)µ(j)(t)τ(ij)(t) dt, t ∈ [ 0, T ], a.s. (3.11)

Let us also note that for all t ∈ [ 0, T ],
∑n

i=1 µ(i)(t) = 1, and hence,
∑n

i=1 dµ(i)(t) = 0.

Let us consider the generating function component of the relative return, log S((µ(·)(t)). Itô’s
lemma, along with (3.11), implies that a.s. for all t ∈ [ 0, T ],

d log S(µ(·)(t)) =
n∑

i=1

Di log S(µ(·)(t)) dµ(i)(t)

+
1

2S(µ(·)(t))

n∑

i,j=1

DijS(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t) dt (3.12)

− 1
2

n∑

i,j=1

Di log S(µ(·)(t))Dj log S(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t) dt.

Now let us consider the relative return process log
(
Zπ(t)/Z(t)

)
. From (2.4) we have a.s., for all

t ∈ [ 0, T ],

d log
(
Zπ(t)/Z(t)

)
=

n∑

i=1

πi(t) d log µi(t) + γ∗π(t)

=
n∑

i=1

n∑

k=1

I{0}
(
pt(k)− i

)
πpt(k)(t) d log µi(t) + γ∗π(t)

=
n∑

k=1

πpt(k)(t)
n∑

i=1

I{0}
(
pt(k)− i

)
d log µi(t) + γ∗π(t)

=
n∑

k=1

πpt(k)(t) d log µ(k)(t) +
1
2

n−1∑

k=1

(
πpt(k)(t)− πpt(k+1)(t)

)
dΛlog µ(k)−log µ(k+1)(t)

+
1
2

( n∑

i=1

πpt(i)(t)τ(ii)(t)−
n∑

i,j=1

πpt(i)(t)πpt(j)(t)τ(ij)(t)
)

dt (3.13)

=
n∑

k=1

πpt(k)(t)
µ(k)(t)

dµ(k)(t) +
1
2

n−1∑

k=1

(
πpt(k)(t)− πpt(k+1)(t)

)
dΛlog µ(k)−log µ(k+1)(t)

− 1
2

n∑

i,j=1

πpt(i)(t)πpt(j)(t)τ(ij)(t) dt, (3.14)

where (3.13) follows from (3.9) and (2.10), and (3.14) follows from (3.10).

Let us simplify the first summation on the right hand side of (3.14). If the weights πi, i = 1, . . . , n

satisfy (3.7), then

πpt(k)(t) =
(
Dk log S(µ(·)(t)) + ϕ(t)

)
µ(k)(t), t ∈ [ 0, T ], (3.15)

for k = 1, . . . , n, where

ϕ(t) = 1−
n∑

j=1

µ(j)(t)Dj log S(µ(·)(t)), t ∈ [ 0, T ].

8



In this case, a.s. for all t ∈ [ 0, T ],

n∑

i=1

πpt(i)(t)
µ(i)(t)

dµ(i)(t) =
n∑

i=1

Di log S(µ(·)(t)) dµ(i)(t) + ϕ(t)
n∑

i=1

dµ(i)(t)

=
n∑

i=1

Di log S(µ(·)(t)) dµ(i)(t), (3.16)

since
∑n

i=1 dµ(i)(t) = 0.

Now consider the last summation in (3.14). It follows from (3.15) that a.s., for all t ∈ [ 0, T ],

n∑

i,j=1

πpt(i)(t)πpt(j)(t)τ(ij)(t) =
n∑

i,j=1

Di log S(µ(·)(t))Dj log S(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t)

+ 2ϕ(t)
n∑

i,j=1

Di log S(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t)

+ ϕ2(t)
n∑

i,j=1

µ(i)(t)µ(j)(t)τ(ij)(t)

=
n∑

i,j=1

Di log S(µ(·)(t))Dj log S(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t), (3.17)

since Lemma 2.1 implies that µ(·)(t) is in the null space of
(
τ(ij)(t)

)
. Equations (3.14), (3.16), and

(3.17), imply that a.s. for all t ∈ [ 0, T ],

d log
(
Zπ(t)/Z(t)

)
=

n∑

i=1

Di log S(µ(·)(t)) dµ(i)(t)

− 1
2

n∑

i,j=1

Di log S(µ(·)(t))Dj log S(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t) dt

+
1
2

n−1∑

k=1

(
πpt(k+1)(t)− πpt(k)(t)

)
dΛlog µ(k)−log µ(k+1)(t).

This equation and (3.12) imply (3.8).

4 Applications

Portfolio generating functions allow us to construct a large class of portfolios, some of which are
interesting theoretically, and some of which are useful for actual investment purposes. Our first
application is a theoretical explanation of the size effect, the observed tendency of small stocks to
have higher long-term returns than large stocks (see Banz (1981) and Reinganum (1981)). A number
of hypotheses have been proposed to explain the size effect (see, e.g., Roll (1981), Handa, Kothari,
and Wasley (1989), and Jegadeesh (1992)); here we present an alternative hypothesis proposed in
discrete time by Fernholz (1998).

Our second application is to diversity-weighted indexing, a passive indexing methodology that is
currently being used for actual investments (see Fernholz, Garvy, and Hannon (1998)). Most stock
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indices are either capitalization-weighted, as with the S&P 500 Index or the Russell 1000 Index, or
equal-weighted, as with the Value Line Index. Diversity weighting introduces a class of portfolios
with weights that lie between capitalization weights and equal weights. Moreover, (3.6) allows us to
draw conclusions about the performance of diversity-weighted indices.

Example 4.1. (The size effect) We shall use generating functions to generate two portfolios, a
large-stock portfolio ξ and a small-stock portfolio η, and then we shall compare their performance.

Let 1 < m < n, and suppose

SL(x1, . . . , xn) = x1 + · · ·+ xm.

Then Theorem 3.1 implies that SL generates a portfolio ξ with weights

ξ(k)(t) =





µ(k)(t)
SL(µ(·)(t))

, k ≤ m,

0, k > m,

for t ∈ [ 0, T ], and drift process that satisfies

dΘ(t) = −1
2
ξ(m+1)(t) dΛlog µ(m)−log µ(m+1)(t), t ∈ [ 0, T ], a.s.

Here ξ represents a large-stock index composed of the m largest stocks in the market, and the weights
ξi, i = 1, . . . , n, represent the capitalization weights of the stocks in this index. The value of the
generating function

SL(µ(·)(t)) = µ(1)(t) + · · ·+ µ(m)(t)

measures the relative capitalization of the large-stock index compared to the market as a whole.

Similarly

SS(x) = xm+1 + · · ·+ xn

generates a portfolio η with weights

η(k)(t) =





µ(k)(t)
SS(µ(·)(t))

, k > m,

0, k ≤ m,

and with drift process that satisfies

dΘ(t) =
1
2
η(m+1)(t) dΛlog µ(m)−log µ(m+1)(t) t ∈ [ 0, T ], a.s.

In this case SS(µ(·)(t)) measures the relative capitalization of the small-stock index composed of
the n − m smallest stocks in the market. The relative return of the small-stock index versus the
large-stock index will satisfy

d log
(
Zη(t)/Zξ(t)

)
= d log

(
SS(µ(·)(t))/SL(µ(·)(t))

)

+
1
2
(
ξ(m)(t) + η(m+1)(t)

)
dΛlog µ(m)−log µ(m+1)(t), t ∈ [ 0, T ], a.s. (4.1)
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It can be argued that general market stability imposes bounds on the variation of the relative
capitalizations of the small-stock index and the large-stock index. In this case, over a sufficiently
long period of time, the relative return will be dominated by the local time term in (4.1), which is
a.s. increasing. Hence, the long-term return of the small-stock index will be greater than that of
the large-stock portfolio. This phenomenon is structural, and will occur regardless of whether of not
small stocks are riskier than large stocks.

Example 4.2. (Diversity-weighted stock indices) The diversity-weighted S&P 500 Index was
defined in Fernholz, Garvy, and Hannon (1998) to be the portfolio of stocks in the S&P 500 Index
generated by

Dp(x) =
( 500∑

i=1

xp
i

)1/p

,

with p = .76. (Dp is called a measure of diversity.) That paper was nontechnical, and a rigorous
mathematical derivation of the results was not available when it appeared. We shall present the
derivation here.

Rather than the S&P 500, let us consider a diversity-weighted version of the large-stock index
in Example 4.1. In this case we have the generating function

S(x1, . . . , xn) =
( m∑

i=1

xp
i

)1/p

,

with 1 < m < n and 0 < p < 1. Theorem 3.1 implies that S generates a portfolio π with

π(k)(t) =





µp
(k)(t)

Sp(µ(·)(t))
, k ≤ m,

0, k > m,

for t ∈ [ 0, T ], and drift process that satisfies

dΘ(t) = (1− p)γ∗π(t) dt− 1
2
π(m)(t) dΛlog µ(m)−log µ(m+1)(t), t ∈ [ 0, T ], a.s.

We are interested in the performance of π relative to ξ of Example 4.1, and we have a.s., for
t ∈ [ 0, T ],

d log
(
Zπ(t)/Zξ(t)

)
= d log Dp

(
ξ(1)(t), . . . , ξ(m)(t)

)
+ (1− p)γ∗π(t) dt

+
1
2
(
ξ(m)(t)− π(m)(t)

)
dΛlog µ(m)−log µ(m+1)(t), (4.2)

since S(µ(·)(t))/SL(µ(·)(t)) = Dp

(
ξ(1)(t), . . . , ξ(m)(t)

)
. As in Example 4.1, we can argue that market

stability implies that log Dp(ξ(·)(t)) will be stable and mean-reverting over the long term. If this is
true, then the long-term relative return of the Dp-weighted index will be dominated by the last two
terms in (4.2). Since p < 1, the remark following (2.5) implies that (1−p)γ∗π(t) dt is increasing. The
last term, involving the local time, is called leakage because it measures the effect on the relative
return of stocks that become too small and subsequently are dropped from (“leak” out of) the
large-stock index. Since p < 1, it follows that π(m)(t) > ξ(m)(t), and this implies that the leakage is
decreasing. The relative magnitude of these last two terms determines whether the drift process is
increasing or decreasing.
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To get some idea of the behavior of (4.2) for actual stocks, we ran a simulation using the stock
database from the Center for Research in Securities Prices (CRSP) at the University of Chicago. The
data included 60 years of monthly values from 1939 to 1998 for all NYSE, AMEX, and NASDAQ
stocks after the removal of closed-end funds, REITs, and ADRs not included in the S&P 500 Index.
The large-stock portfolio consisted of the largest 1000 stocks in the database for those months that
the database contained 1250 or more stocks, and the largest 80% of the stocks those months that
the database contained fewer than 1250. We used the parameter value p = .5 for Dp, and no trading
costs were included.

The results of the simulation are presented in Figure 1: Curve 1 is the change in the generating
function, Curve 2 is the drift process, and Curve 3 is the relative return. Each curve shows the
cumulative value of the monthly changes induced in the corresponding process by capital gains
or losses in the stocks: the curves are unaffected by monthly changes in the composition of the
database. As can be seen, Curve 3 is the sum of Curves 1 and 2. The drift process Θ(t) was the
dominant process over the period, with a contribution of 46.4% to the relative return, and was
remarkably stable. Of the drift process’s contribution, the (1− p)γ∗π(t) dt term accounted for 88.0%,
and the local time term (leakage) accounted for −41.6%. To calculate the total relative return of
an investment in the Dp-weighted index versus an investment in the capitalization-weighted index,
dividend payments must also be considered. However the difference in dividend payments between
the two portfolios was quite small, with a total contribution over the period of only 1.3% in favor of
the capitalization-weighted index. (Figure 1 does not include dividend payments.)

−
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39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96
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Figure 1: Simulation of the Dp-weighted index, 1939–1998
1: log Dp(ξ(·)(t)); 2: Θ(t); 3: log

(
Zπ(t)/Zξ(t)

)

If log Dp(ξ(·)(t)) is mean-reverting and Θ(t) continues to follow the trend line in Figure 1, then the
long-term return of π will be greater than that of ξ. The volatility of the two portfolios will be about
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the same over periods of the order of the relaxation time of log Dp(ξ(·)(t)). Hence, π would appear to
have higher return than ξ, but with about the same long-term risk. Of course, trading costs and other
considerations must be taken into account in any actual investment, however Fernholz, Garvy, and
Hannon (1998) indicated that trading costs were not a significant factor for the diversity-weighted
S&P 500 Index.

5 Conclusions

We have shown how stock portfolios can be generated by functions of ranked equity market weights.
This method offers a wide class of portfolios both for theoretical study and for actual investment.
We also have shown how semimartingale local times are involved when the maximum, minimum,
and ranks of stock price processes are studied.

The essential feature of functionally generated portfolios is that the relative return of such a
portfolio can be decomposed naturally into two components: the change in the value of the generating
function and a finite variation drift process. This decomposition can be used to derive results that
have both theoretical and practical interest. As a theoretical application, we showed that the size
effect may be explained independently of whether or not small stocks have higher risk than larger
stocks. As a practical application, we showed that diversity-weighted large-stock indices may have
favorable characteristics as long-term investments.

To date only a few functionally generated portfolios have been studied, and it is possible that
other interesting classes of applications will be found. Here are a few possibilities: (i) derive testable
equilibrium conditions with respect to the relative returns for different strata of stocks ranked by
capitalization; (ii) develop connections between functionally generated portfolios and option pricing
theory; (iii) develop an optimization theory for functionally generated portfolios.

A Appendix: Rank processes and local times

In this appendix we prove some technical results on semimartingale local times that we need in order
to deal with ranked market weights.

Meyer (1976) showed that convex functions of continuous semimartingales are themselves contin-
uous semimartingales, and since Definition 3.1 implies that rank processes are generated by convex
functions, it follows that rank processes derived from continuous semimartingales are also continu-
ous semimartingales. However, Meyer (1976) did not provide an explicit representation of the rank
processes in terms of the original processes. Representations have been derived for certain cases,
but none specifically fits our needs (see, e.g., Carlen and Protter (1992) and Protter and San Martin
(1993)). Here we shall provide an explicit representation for rank processes in terms of the original
processes from which they are derived. However, to achieve this, we must restrict our consideration
to a limited class of continuous semimartingales. Fortunately this class is broad enough to include
the market weights that interest us.

Definition A.1. Let X be a continuous semimartingale with canonical decomposition

X(t) = X(0) + MX(t) + VX(t), t ∈ [ 0, T ], a.s., (A.1)
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where MX a continuous local martingale and VX is a continuous process of bounded variation. Then
X is absolutely continuous if the random signed measures dVX and d〈X〉 = d〈MX〉 are both almost
surely absolutely continuous with respect to Lebesgue measure on [ 0, T ].

Note that the sample paths of absolutely continuous semimartingales are usually not absolutely
continuous functions of t: consider, e.g., Brownian motion.

Lemma A.1. Suppose X1, . . . , Xn are absolutely continuous semimartingales, and f is a real valued
C2 function defined on Rn. Then f(X1, . . . , Xn) is an absolutely continuous semimartingale.

Proof. Suppose that X1, . . . , Xn are absolutely continuous semimartingales and A is a Lebesgue
measurable subset of [ 0, T ]. Then a.s.,

2
∣∣∣∣
∫

A

d〈Xi, Xj〉t
∣∣∣∣ ≤

∫

A

d〈Xi〉t +
∫

A

d〈Xj〉t,

for 1 ≤ i, j ≤ n. Hence, the random signed measure d〈Xi, Xj〉 is almost surely absolutely continuous
with respect to Lebesgue measure on [ 0, T ]. The lemma then follows from Itô’s lemma applied to
f(X1(t), . . . , Xn(t)).

The semimartingale representation (2.2) and Lemma A.1 imply that stock price processes, the
market value process, and market weight processes, are all absolutely continuous semimartingales.

Lemma A.2. Let X and Y be continuous semimartingales with X absolutely continuous, and sup-
pose that the set {t : Y (t) = 0} almost surely has Lebesgue measure 0. Then

∫ t

0

I{0}(Y (s)) dX(s) = 0, t ∈ [ 0, T ], a.s.

Proof. We have

dX(t) = dMX(t) + dVX(t), t ∈ [ 0, T ],

where MX and VX are defined as in the decomposition (A.1). Since dVX is almost surely absolutely
continuous with respect to Lebesgue measure, and the Lebesgue measure of {t : Y (t) = 0} is 0, a.s.,
it follows that

∫ t

0

I{0}(Y (s)) dVX(s) = 0, t ∈ [ 0, T ], a.s.

Therefore,
∫ t

0

I{0}(Y (s)) dX(s) =
∫ t

0

I{0}(Y (s)) dMX(s), t ∈ [ 0, T ], a.s.

The process U defined by

U(t) =
∫ t

0

I{0}(Y (s)) dMX(s), t ∈ [ 0, T ],
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is a continuous local martingale. Since {t : Y (t) = 0} almost surely has Lebesgue measure 0 and
d〈MX〉 is almost surely absolutely continuous with respect to Lebesgue measure,

〈U〉t =
∫ t

0

I{0}(Y (s)) d〈MX〉s
= 0, t ∈ [ 0, T ], a.s.

It follows that U(t) = 0 for all t ∈ [ 0, T ], a.s. (see Karatzas and Shreve (1991), 1.5.12 and 1.5.21).

Lemma A.3. Let X be an absolutely continuous semimartingale such that the set {t : X(t) = 0}
has Lebesgue measure 0, almost surely. Then

Λ|X|(t) = 2ΛX(t), t ∈ [ 0, T ], a.s.

Proof. By definition,

2ΛX(t) = |X(t)| − |X(0)| −
∫ t

0

sgn(X(s)) dX(s), t ∈ [ 0, T ], (A.2)

so

d|X(t)| = 2 dΛX(t) + sgn(X(t)) dX(t), t ∈ [ 0, T ], a.s.

As in (A.2), a.s., for all t ∈ [ 0, T ],

2Λ|X|(t) = |X(t)| − |X(0)| −
∫ t

0

sgn|X(s)| d|X(s)|

= 2ΛX(t) +
∫ t

0

sgn(X(s)) dX(s)− 2
∫ t

0

sgn|X(s)| dΛX(s)−
∫ t

0

sgn|X(s)| sgn(X(s)) dX(s)

= 4ΛX(t)− 2
∫ t

0

I{0}(X(s)) dX(s) (A.3)

= 4ΛX(t), (A.4)

where (A.3) follows from (3.5) and the fact that sgn(0) = −1, and (A.4) follows from Lemma A.2
since X is absolutely continuous and X(s) = 0 only on a set of Lebesgue measure 0, almost surely.

Definition 3.1 constructs rank processes by means of maximum and minimum processes, so we
shall consider these processes first.

Lemma A.4. Let X and Y be pathwise mutually nondegenerate absolutely continuous semimartin-
gales. Then

d max
(
X(t), Y (t)

)
= I(0,∞)

(
X(t)− Y (t)

)
dX(t)

+ I(0,∞)

(
Y (t)−X(t)

)
dY (t) + dΛX−Y (t), t ∈ [ 0, T ], a.s. (A.5)

Proof. We shall do the calculation:

dmax
(
X(t), Y (t)

)
=

dX(t) + dY (t)
2

+
d|X(t)− Y (t)|

2

=
dX(t) + dY (t)

2
+

sgn
(
X(t)− Y (t)

)
d
(
X(t)− Y (t)

)

2
+ dΛX−Y (t) (A.6)
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= I(0,∞)

(
X(t)− Y (t)

)
dX(t) + I[ 0,∞)

(
Y (t)−X(t)

)
dY (t) + dΛX−Y (t)

= I(0,∞)

(
X(t)− Y (t)

)
dX(t) + I(0,∞)

(
Y (t)−X(t)

)
dY (t) + dΛX−Y (t), (A.7)

where (A.6) follows from Definition 3.2, and (A.7) is implied by Lemma A.2.

A similar result holds for the minimum function since min(x, y) = −max(−x,−y).

The following proposition is the result we need in order to prove Theorem 3.1. The proposition
shows that rank processes derived from pathwise mutually nondegenerate absolutely continuous
semimartingales can be expressed in terms of the original processes, adjusted by local times.

Proposition A.1. Let X1, . . . , Xn be pathwise mutually nondegenerate absolutely continuous semi-
martingales, and for t ∈ [ 0, T ], let pt be the random permutation of {1, . . . , n} such that for
k = 1, . . . , n,

Xpt(k)(t) = X(k)(t), and pt(k) < pt(k + 1) if X(k)(t) = X(k+1)(t).

Then the rank processes X(k), k = 1, . . . , n, are continuous semimartingales such that a.s., for all
t ∈ [ 0, T ],

dX(k)(t) =
n∑

i=1

I{0}
(
pt(k)− i

)
dXi(t) +

1
2
dΛX(k)−X(k+1)(t)−

1
2
dΛX(k−1)−X(k)(t). (A.8)

Proof. Since this proof is somewhat technical, it is convenient to explicitly show the dependence
of all random variables and processes on ω ∈ Ω. By hypothesis and Lemma A.2, we can choose a
subset Ω′ ⊂ Ω with P (Ω′) = 1 such that for ω ∈ Ω′, and i, j, k ∈ {1, . . . , n}, the following conditions
will apply:

1. Xi(t, ω) is continuous in t;

2. for i 6= j, the set {t : Xi(t, ω) = Xj(t, ω)} has Lebesgue measure 0;

3. for i < j < k, the set {t : Xi(t, ω) = Xj(t, ω) = Xk(t, ω)} = ∅;

4. for i 6= j and t ∈ [ 0, T ],

d max
(
Xi(t, ω), Xj(t, ω)

)
= I(0,∞)

(
Xi(t, ω)−Xj(t, ω)

)
dXi(t, ω)

+ I(0,∞)

(
Xj(t, ω)−Xi(t, ω)

)
dXj(t, ω) + dΛXi−Xj (t, ω);

5. for i 6= j and t ∈ [ 0, T ],

dΛXi−Xj (t, ω) =
1
2
dΛ|Xi−Xj |(t, ω).

6. for k = 1, . . . , n− 1 and t ∈ [ 0, T ],

dΛX(k)−X(k+1)(t, ω) = I{0}
(
X(k)(t, ω)−X(k+1)(t, ω)

)
dΛX(k)−X(k+1)(t, ω).

Conditions 1, 2, and 3 follow directly from Definitions A.1 and 3.3; we can impose condition 4
because of Lemma A.4; condition 5 follows from Lemma A.3; and condition 6 follows from (3.5).

16



Suppose that ω ∈ Ω′, t0 ∈ [ 0, T ], and k ∈ {1, . . . , n}, and let m(ω) = pt0(k, ω). Then

X(k)(t0, ω) = Xm(ω)(t0, ω).

There are two cases we must consider. In the first case, for all j 6= m(ω),

Xj(t0, ω) 6= Xm(ω)(t0, ω), (A.9)

and in the second case, there is an r(ω) 6= m(ω), 1 ≤ r(ω) ≤ n, such that

Xr(ω)(t0, ω) = Xm(ω)(t0, ω). (A.10)

Let us consider the first case: Condition 1 implies that (A.9) continues to hold for all t in some
neighborhood U of t0. Hence, for all t ∈ U ,

X(k−1)(t, ω) > X(k)(t, ω) > X(k+1)(t, ω),

so for all t ∈ U , pt(k, ω) = m(ω), and condition 6 implies that (A.8) reduces to

dX(k)(t, ω) = dXm(ω)(t, ω).

Now consider the second case, so (A.10) holds. Then conditions 1 and 3 imply that there is a
neighborhood U of t0 such that for all t ∈ U , either

X(k−1)(t, ω) > X(k)(t, ω) ≥ X(k+1)(t, ω) > X(k+2)(t, ω), (A.11)

in which case for t ∈ U ,

X(k)(t, ω) = max(Xm(ω)(t, ω), Xr(ω)(t, ω)), (A.12)

or,

X(k−2)(t, ω) > X(k−1)(t, ω) ≥ X(k)(t, ω) > X(k+1)(t, ω), (A.13)

in which case for t ∈ U ,

X(k)(t, ω) = min(Xm(ω)(t, ω), Xr(ω)(t, ω)). (A.14)

Suppose that (A.11) and (A.12) hold. Then for t ∈ U ,

dX(k)(t, ω) = d max(Xm(ω)(t, ω), Xr(ω)(t, ω))

= I(0,∞)

(
Xm(ω)(t, ω)−Xr(ω)(t, ω)

)
dXm(ω)(t, ω)

+ I(0,∞)

(
Xr(ω)(t, ω)−Xm(ω)(t, ω)

)
dXr(ω)(t, ω) + dΛXr(ω)−Xm(ω)(t, ω) (A.15)

= I{0}
(
pt(k, ω)−m(ω)

)
dXm(ω)(t, ω)

+ I{0}
(
pt(k, ω)− r(ω)

)
dXr(ω)(t, ω) +

1
2
dΛ|Xr(ω)−Xm(ω)|(t, ω) (A.16)

= I{0}
(
pt(k, ω)−m(ω)

)
dXm(ω)(t, ω)

+ I{0}
(
pt(k, ω)− r(ω)

)
dXr(ω)(t, ω) +

1
2
dΛX(k)−X(k+1)(t, ω)
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=
n∑

i=1

I{0}
(
pt(k, ω)− i

)
dXi(t, ω)

+
1
2
dΛX(k)−X(k+1)(t, ω)− 1

2
dΛX(k−1)−X(k)(t, ω),

(A.17)

where condition 4 implies (A.15), (A.16) follows from (A.12) and condition 5, and (A.17) follows
from condition 6. Hence, if (A.11) and (A.12) hold, (A.8) is valid.

The proof is similar when (A.13) and (A.14) hold, so (A.8) is valid for all ω ∈ Ω′. Since P (Ω′) = 1,
the proposition is proved.
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