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Abstract whereas compositional algorithms can only be applied to
sets of warps that forreemi-groupsThe incremental warp
must becomposeadvith the current estimate of the warp and
so the set of warps must be closed under composition.
Another difference between the various algorithms is
their efficiency. For exampléHager and Belhumeur, 19p8
recently proposed a very efficient algorithm. The key step
in the derivation of their algorithm is to apply a change of
variables tainvert the role of the image and the template.
To do this the Jacobian of the change of variables must take
a particularly simple form. As a result their algorithm can
unfortunately only be used with translations, 2D similarity
transforms, affine warps, and certain other esoteric warps.
Hager and Belhumeur use the additive formulation. We
erefore call their algorithm thaverse additivalgorithm.
A natural question then, is what happens if we apply the
same change of variables in the compositional formulation?
It turns out that the change of variables in this case is al-
: ways the identity, the Jacobian of which is 1, to a first order
1 Introduction approximation. Noticing this fact immediately leads us to
Image alignmentor registration consists of moving, and a new efficient image alignment algorithm that can be ap-
possibly deforming, a template to minimize the difference plied to much wider class of warps. The change of variables
between the template and an image. Some of the applicameans that every warp in the set must now be invertible, but
tions of alignment include optical flofLucas and Kanade, that is the only new restriction. Thaverse compositional
1981, tracking[Black and Jepson, 1998, Hager and Bel- algorithm proposed in this paper can be applied to any set
humeur, 1998, Cascit al., 2004, parametric and layered of warps that form ayroup. This includes many warps that
motion estimatioBergenet al, 1994, mosaic-indShum the inverse additive algorithm cannot be applied to, such as

There are two major formulations of image alignment us-
ing gradient descent. The first estimates an additive incre-
ment to the parameters (tlaglditiveapproach), the second
an incremental warp (theompositionahpproach). We first
prove that these two formulations are equivalent. A very ef-
ficient algorithm was recently proposed by Hager and Bel-
humeur using the additive approach that unfortunately can
only be applied to a very restricted class of warps. We show
that using the compositional approach an equally efficient
algorithm (theinverse compositionallgorithm) can be de-
rived that can be applied to any set of warps which form
agroup. While most warps used in computer vision form
groups, there are a certain warps that do not. Perhaps mosﬂ1
notable is the set of piecewise affine warps used in Flexible
Appearance Models (FAMs). We end this paper by extend-
ing the inverse compositional algorithm to apply to FAMSs.

and Szeliski, 2000 and face codinfCooteset al,, 1999. homographies and 3D rotatiofShum and Szeliski, 2000
The usual approach to image alignment is gradient de-  Although nearly all warps used in computer vision are
scent. Various other numerical algorithms (suchdfer- groups, there is one important set that is not, the piecewise

ence decompositiolGleicher, 1997, Casciat al,, 200Q) affine warps used in Flexible Appearance Mod¢RAMSs),
have also been proposed, but gradient descent is the defactActive Appearance Models (AAMd)Cooteset al, 1994,
standard. There are several different formulations of gra-and Active Blobs[Sclaroff and Isidoro, 1998 Although
dient descent, however. One major difference between thethe inverse compositional algorithm cannotiectly used
various algorithms is whether they estimate an additive in- with piecewise affine warps, in the final part of this paper
crementto the parametdtsicas and Kanade, 19B(n ap- we show how it can be extended to apply to such warps.
proach which we will caladditive), or whether instead they  The approach is to derive first order approximations to the
estimate an incremental waihum and Szeliski, 200¢an inversion and composition operators. Until now, the users
approach which we will refer to asompositional) of piecewise affine warps have had to resort to “non gradi-

The first part of this paper proves that these two ap- ent descent” algorithms in order to obtain efficiency. Our
proaches are equivalent in the sense that they take the samienage alignment framework leads naturally to the first effi-
s’Feps in each iteration (to a first Order apprOX|mat|on_.) One lwe use the ternFlexible Appearance Moddbr models based on
difference between the two formulations, however, is that piecewise affine warps and which have independent shape and appearance
additive algorithms can be applied to any type of warp, eigenspaces, unlike AAMs which have coupled eigen-spaces.




cient gradient descent algorithm for FAMs.

2 Equivalence

Suppose we are trying to align a template imd@ge) to an
inputimagel (x), wherex = (z,y)" is a vector containing
the image coordinates. If the warp is denotedWyx; p),
wherep = (p1,...p,)T is a vector of parameters, we as-
sume that the goal of image alignment is to minimize:

> [I(W(x;p)) - T(x) ]’ 1

X

with respect tg, where the sum is performed over the pix-
elsx in the template imag® (x).

2.1 Additive Image Alignment

The additive approach assumes that a current estimate of
is known and then iteratively solves for increments to the
parameterd\p; i.e. the following expression is minimized:

S [ I(W(x;p + Ap)) — T(x)]? (2

with respect taAp. Performing a first order Taylor expan-
sion on this expression gives:
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This is a least squares problem, the solution of which is:

o 0W]T
Ap = Y H Vi [T(x) - I(W(x;p))] (4)
whereH is then x n Hessianmatrix:
oW1t [_ oW
H = I— I—|.
C[v%] %

X

The additive algorithniLucas and Kanade, 19Btonsists
of iterating the following steps until the estimates of the pa-
rametergp converge:

WarpI with W (x; p) to computel (W (x; p));
Compute the error imageé(x) — I (W (x;p));
Warp the gradient of imagleto computeV I;
Evaluate the Jacobidg ;

Compute the Hessian matrix using Equation (5);

o o A~ w N PE

ComputeAp using Equation (4);
7.

Because the warped gradiemt/ and the Jacobiar—‘?(%
both, in general, depend gm all of these steps must be
performed in every iteration of the algorithm. The estimate
of the parameterg varies from iteration to iteration.

Update the parameteps«— p + Ap.

2.2 Compositional Image Alignment

The compositional approach also assumes that a current es-
timate ofp is known, but iteratively solves for an an incre-
mental warpW (x; Ap) rather than an additive updatego
[Shum and Szeliski, 2090.e. the following is minimized:

> [ I(W(W(x;Ap); p)) — T(x)]° (6)

X

with respect tdAp. A first order Taylor expansion gives:

2
8—VVAp -T(x)| .

) [I(W(W(X; 0);p)) + VI(W) 5

X

(7
wherel (W) (x) is the warped imagé(W (x; p)). Assum-
ing (without loss of generality) thaW (x; 0) is the identity,
then (W (W (x;0),p)) = I(W(x;p)). There are then
two differences between Equations (3) and (7). The first
difference is that the gradient dfx) is replaced with the
gradient of/(W (x;p)). The second difference is hidden
by the concise notation. The Jacobi%% is evaluated at
(x; p) in Equation (3), but in Equation (7) it is evaluated at
(x;0); i.e. where the Taylor expansion was performed.

The only changes to the algorithm are therefore: (1) the
gradient ofI(W(x; p)) should be used in Step 3, (2) the
Jacobian should be evaluated=§0) in Step 4, and (3) the
warp is updatedW (x;p) « W(x;p) o W(x;Ap) in
Step 7. The Jacobian in Step 4 is a constant across itera-
tions and can be pre-computed. (Itis also generally simpler
analytically[Shum and Szeliski, 2009 On the other hand,
the update of the warp is more complex. Instead of simply
adding the updateAp to the current estimate of the param-
etersp, the incremental update to the wa¥yj(x; Ap) must
becomposeavith the current estimat® (x; p). This oper-
ation typically involves multiplying two matrices, although
for more complex warps it can be more involved. The warps
must also form aemi-grougf W (x; p) o W(x; Ap) is al-
ways to be a valid warp, an@ (x; 0) is to be the identity.

2.3 Proof of Equivalence

In the additive formulation we minimize:

Z [I(W(x;p)) + VI%—‘:Ap - T(x)

X

(8)

with respect toAp and then update < p + Ap. The
corresponding update to the warp is:

ow

W(x;p) + W(x;p+Ap) ~ W(x;p)+ op

Ap (9)



when a first order Taylor expansion is madeAp. In the Suppose that the images, (x),..., Aq4(x) are an or-
compositional formulation we minimize: thonormal basis for the appearance linear subspace. Image
alignment is then posed as minimizing:

) [I(W(W(x; 0)ip)) + V(W) T Ap - T(x>] . :

d
i (10) > [I(W(X; p)) — T(x) - ; Xidi(x)

whereV (W) is the gradient of (W (x; p)), which equals
VI%—V: by the chain rule. Assuming thd¥ (x; 0) is the
identity warp, Equation (10) simplifies further to:

(15)

X

simultaneouslyver the vector of parametepsand the ap-
pearance coefficients;. If we denote the linear subspace
byspan(4;) and its orthogonal complement byan(A;)+,
the expression in Equation (15) can be rewritten as:

OW oW ?
> [I(W(x;p)) + VIEEAp - T(x)] . (11) . 5
* I(W(x;p)) — T(x) — > Aidi(x) +
In the compositional approach, the update to the warp is i=1 span(A;)L
W(x;p) « W(x;p) o W(x;Ap). In order to simplify d 2
this expression, note that: I(W(x;p)) — T(x) — Z AiAi(x) (16)
1=1 span(A;)
OW OW pan(
W(x; Ap) ~ W(x;0)+ 3—pAp = X+ EAP (12)  \where - ||2 denotes the square of the Euclidean norm of the

vector projected into the linear subspdceSince the norm
is the first order Taylor expansion 8 (x; Ap) and that: only considers the components of vectors in the orthogo-
nal complement ofpan(A;), any component ispan(A4;)
W(x;p) o W(x;Ap) = W(W(x;Ap);p).  (13)  itself can be dropped. We therefore have to minimize:

2
Combining these last two equations, and applying the Tay- (W (x5p)) = T (%)l 5panan s +
lor expansion again, gives the update in the compositional 2
formulation as:

d
I(W(x;p)) — T(x) = > Aidi(x) (17)
OW OW i=1 span(A;)
W(xp) « Wixp)+ 8—x%Ap' (34) " The first of these two terms does not depend upprFor

] N ~_ anyp, the minimum value of the second term is alwalys
The only difference between the additive formulation in The minimization can therefore be performeztuentially
Equations (8) and (9), and the compositional forvnaugséion N py first minimizing the first term with respect o alone,
Equations (11) and (14) is thafl is replaced by7Y p * and then minimizing the second term with respeco
Equations (8) and (11) therefore generally result in differ-  \inimizing the first term in Equation (17) is not really
ent estimates foAp. The overall updates to the warp are gy different to solving the original alignment problem. We
the same to first order ihp, however. The warp update jyst need to work in the linear subspagpen(4;)*; i.e. we

oW it i W oW !

vectorsa— in the addlt!ve formulation anéa;(.a—ﬁ{ in the projeCtVI% into span(4;)* in Equations (4) and (5).
compositional formulation both span the same linear space;the error image does not need to be projected into this sub-
the tangent space 8% (x; p). The optimalvalue o5 Ap  space because if one of the two terms in a dot product is
in Equation (8) will therefore equal the optimal value of projected into a linear subspace, the result is the same as

O e Ap in Equation (11) and so the updates are equal; if they both were. Minimizing the second term in Equa-

i.e. we have proved that the two formulations are equivalent.tjon (17) has the closed-form solution:

2.4 Modeling Appearance Variation Ai = D Aix)-I(W(x;p) —T(x)]. (18)

Often it is assumed thdf (x) is not just a single image,
but is actually a single image plus an unknown vector in a
(known) linear subspace. Often the linear subspace is use
to model illumination changHager and Belhumeur, 1998,
Casciaet al, 2004, but could easily model more general -
appearance variatid@ooteset al., 1998, Black and Jepson, 3 EffICIenCy

1999. We now briefly describe how either of the equivalent As a number of authors have pointed out, there is a huge
algorithms can be extended to allow appearance variationcomputational cost in re-evaluating the Hessian in every it-
(See the technical repdBakeret al.,, 2001 for the details.) eration (Steps 3-5) of the algoritHidager and Belhumeur,

The description here has been in terms of the additive for-
mulation, but the first term in Equation (17) can alterna-
inely be optimized with a compositional algorithm.



1998, Dellaert and Collins, 1999, Shum and Szeliski, 2000 rithm of [Hager and Belhumeur, 19PBut uses the compo-

If only the Hessian were a constant, it could just be pre- sitional formulation rather than the additive one. The proof

computed and then re-used. Each iteration of the algorithmof equivalence follows in the next section, but the result is

would then just consist of an image warp (Step 1), an imagethat the algorithm minimizes:

difference (Step 2), a collection of image “dot-products”

(Step 6), and the update to the parameters (Step 7). All > [T(W(x;Ap)) — I(W(x;p))]° (20)

of these operations are very simple and can easily be per- x

formed at (close to) frame-ratBellaert and Collins, 1999
Unfortunately the Hessian is, in general, a function of

p in both the additive and the compositional formulations.

with respect toAp. (Note that the roles of andT are
reversed.) Performing a first order Taylor expansion gives:

Although various approximate solutions can be used (such oW 2

as only updating the Hessian every few iterations and ef- Z [T(W(x; 0)) + VI'—Ap — I(W(x;p))
ficiently approximating the HessialShum and Szeliski, x op

200d) these approximations are all inelegant, and it is of- (21)

ten hard to say how good approximations they really are. It/ ASSUMIng again without loss of generality that(x; 0) is
would be far better if the problem could be reformulated in the identity, the solution to this least-squares problem is:
an equivalent way in which the Hessian is exactly constant.

= g vr®™] i - .
3.1 Inverse Additive Image Alignment Ap = XX:H [VT 8p] [T6) ~I(W(xip)]

The key to efficiency is switching the role of the image and . : L (22)
the template, as ifHager and Belhumeur, 19880 yield whereH is the Hessian matrix witti replaced byr":

the inverse additivealgorithm. There, the authors change awW1T W

variablesy = W(x;p) orx = W(y;p) . Because the H = Z [VT—] [VT—] (23)
summation in Equation (1) is a discrete approximation to x op op

an integral, the Jacobian (with respectytp of the warp W ) .
W (y; )~ has to be incorporated when the change of vari- and the JacobiadY is evaluated ax; 0). Since there is

ables is performed. Equation (1) therefore becomes: nothing in the Hessian that depends uganit is constant
across iterations and can be pre-computed. The algorithm

. [I(y) —T(W(y; p)_l)]Z (19) then becomes iterating the following four steps until the pa-
y

rameterg converge:
where the summation is over the sub-regiod tffiat corre- 1. WarpI with W (x; p) to computel (W (x; p));
sponds to the templaf@ warped withW (x; p), : ] _ i
Much of[Hager and Belhumeur, 1998 concerned with 2. Compute the error imagdW (x; p)) — T'(x);
the Jacobiar?‘g’T_l. Hager and Belhumeur have to assume 3. ComputeAp using Equation (22);
that this Jacobian has a special form to proceed, namely that .
the product of it with the other Jacobidh (see Equa- 4. UpdateW (x; p) < W(x;p) o W(x; Ap) .

tion (20) in[Hager and Belhumeur, 19h&an be factored g aigorithm is much more efficient than the forwards al-

into a component that only depends uge(and which can - gqithms. Steps (3-5) of the forwards algorithms need only

be moved out of the summation and dealt with later), and e performed once as a pre-computation, rather than once

a second component that only depends updwhich be- o jteration. The only extra cost is invertin (x; Ap)

comes an iteration independent weighting factor.) and composing it wittW (x; p). This typically requires a
The full details of the inverse additive algorithm are out- ,5+rix inversion and a matrix multiplication on smalx 3

side the scope of this paper. But, it is this assumption aboutiy, he homography) matrices. Potentially these two steps
the product of the two Jacobians that results in the inverse.qi1d be more involved as we will see in Section 4. The in-

additive algorithm only being applicable to a small num- orse compositional algorithm is almost exactly as efficient
ber of warps: 2D translations, 2D similarity transforms, 2D 55 the inverse additive algorithfidager and Belhumeur,
affine warps, and a small number of more esoteric warps. 1994. It can, however, be applied to any warps that form
. . a group, including homographies and 3D rotations, rather
3.2 Inverse Compositional Image Alignment than only to a small collection of warps. The group prop-
The main focus of this paper is thieverse compositional  erty is required to perform Step 4 of the algorithm.
algorithm, and its extension to FAMs. The inverse compo-  Note that a restricted version of the inverse composi-
sitional algorithm is derived in a similar way to the algo- tional algorithm was proposed (for homographies only) in

oW1
oy




[Dellaert and Collins, 1999 We have shown that the algo- composing it with the current estimate in Step 4, the two

rithm can be applied to a much wider class of warps. Also algorithms take the same steps to first ordgs.in

note that the appearance variation extension in Section 2.4 SinceW (x; p) is in general non-linear, we strictly need

also applies to the inverse compositional algoritiBaker to point out thatW (x; Ap)~! = W(x; —Ap) to first or-

et al, 2001. The only change needed to the algorithm is der in Ap to fully complete the proof of equivalence. (See

projectingVT% into span(A4;)= in Equations (22—-23). Section 4.1 for a derivation.) The value Afp that is es-
timated by the inverse compositional algorithm is therefore

3.3 Equivalence to the Forwards Algorithm the negative of what the forwards compositional algorithm

. . . . im . This val hen gives the inverse warp.
Showing that the inverse compositional algorithm takes theESt ates s value dip then gives the inverse warp

same steps, to a first order approximation, as the forward . L
compositional algorithm is quite different to showing that 33'4 Experimental Validation
the two forwards algorithms are equivalent. As mentioned We have proved that the two forwards algorithms and the
in passing above, the first step is to note that the summasinverse compositional algorithm take the same steps to first
tions in Equations (7) and (20) are discrete approximationsorder in Ap. (The inverse additive algorithm was shown
to integrals. Equation (7) is the discrete version of: to be equivalent ifHager and Belhumeur, 19P8 The
following experiment was performed to validate the proof.
/ [I(W(W (x; Ap);p)) — T'(x)]* dx (24) We _experiment with_homographies to highlight the _fact that
T the inverse compositional algorithm can be used with them.
The inverse additive algorithm cannot be used on homo-
graphies, although efficient non gradient descent algorithms
have been proposéleicher, 1997F.
We started with a 10& 100 pixel sub-image of a larger
image. (SedBakeret al, 2001 for the image.) We ran-
dy domly perturbed the four corners of the sub-image with 2D
(25) Gaussian translations and then solved for the homography

where the integration is now performed over the image of between the perturbed corners and the originals. We next

T under the warpW (x; Ap) which we denoteW (T) = warped the original image to generate an input image for
y € {W(x;Ap) |x € 7T} BecauseW (x; 0) is' assumed the algorithms. The three algorithms were then run with that

to be the identity warp, we have: image. As an error metric, we measured the RMS distance
' ' between the four corners of the sub-image as predicted by

where the integration is performed over the templatSet-
tingy = W(x; Ap), or equivalentlyx = W(y; Ap)~1,
and changing variables, Equation (24) becomes:

OW-1
oy

/ [I(W(y;p)) — T(VV(}’;AP)_l)]2
W(T)

OW 1 the computed homography and their known positions in the
‘ oy | = 1+ O0(Ap). (26)  original image. These steps were repedt@ed times with
different random translations and the results averaged.
The region over which integration is perform®d(7) = Figure 1 shows the convergence of the algorithms. We

{W(x; Ap)|x € T} is equal tol = {W(x;0)|x € T} plot the RMS distance error in the locations of the four cor-

to a zeroth order approximation also. Since we are ignoring ners of the sub-image, averaged first over the four corners,

higher order terms id\p, Equation (25) simplifies to: and then over the 1000 iterations. The error is plot against
the number of iterations taken by the algorithm. (The error

for 0 iterations is the error in the input data.) The results in
Figure 1 show that the three algorithms all converge at al-
most exactly the same rate validating the fact that they take
Here we assume tha@(W(y; Ap) ') — I(W(y;p)), of  approximately the same steps in each iteration. The com-
equivalentlyI'(y) — I(W (y; p)), isO(Ap). (Thisassump-  putational cost of the inverse compositional algorithm is of

tion is equivalent to the assumption madétager and Bel-  course substantially less than that of the other algorithms.
humeur, 1998that the current estimate of the parameters is

approximately correct.) The first order terms in the Jacobian4 Fitting Flexible Appearance Models
and the area of integration can therefore be ignored. Equa-

tion (27) is then the continuous version of Equation (20) Our motivation for developing a framework for image align-
except that the teriW (x; Ap) is inverted. The estimate mentwas to help develop algorithms for fitting Flexible Ap-
of Ap that is computed by the inverse compositional algo- pearance ModelgFAMs) [Cooteset al, 1999 and Active
rithm gives an estimate GN(X; p) that is the inverse of the 2By Flexible Appearance Models we mean models where the shape

warp computed _b_y the ComPOSiti_Ona| algorithm. Since the 4ng appearance eigenspaces are independent, that is as opposed to the
inverse compositional algorithm inverW (x; Ap) before closely related concept @fctive Appearance Mode({#AMs) [Cooteset

/T[T(W(y;AP)‘l)—I(W(y;p))]2dY- (27)




_ Validation of Equivalence the affine warp between these two triangleffine;, .

12 : — . .
i & Inverse Compositional The third component of the FAM is an appearance
Forward Additive . ., . .
Forward Compositional | eigenspacg 4;(x) | 7 = 1,...,d}. As discussed in Sec-

tion 2.4, the appearance eigenspace can be used to model
either illumination variation or more general appearance
variation. The final component of an FAM is a shape
eigenspace. The shape eigenspace is defined by a set of
n orthonormal shape eigen-vectas Each shape eigen-
vectors; is a column vector witt2 x m components, one

for each pair oft andy mesh vertex coordinates. The space
of allowed deformations of the flexible mesh is defined by:

RMS Error

0 5 10 15 20

Number of Iterations T  — _ _ T "
Figure 1: To validate the equivalence of the algorithms we con- (¥1,¥1>-- > Zm,Ym) = (T, 1, -+ Ty U +D_pisi

ducted an experiment on how fast they converge. A large number =1

: : . : (28)

of example images were generated by warping an image with ran- .

domly generated homographies. The error in the estimate of theT_he sh_ape p_arameteps: (P, ... ’p”)T then def|ne.the

homography is plotted against the number of iterations of the algo- Piecewise affine warV (x; p) between the two coordinate

rithm. The speed of convergence of the three algorithms is approx-frames. SeéMatthews and Baker, 200or an example of

imately the same, validating their equivalence. The computational@n FAM and a description of how FAMs are constructed.

cost of each iteration is far greater for the forwards algorithms. Unlike most warps used in computer vision, such as ho-
mographies and 3D rotatiod§Shum and Szeliski, 2000

Blobs [Sclaroff and Isidoro, 1998 Both Flexible Appear- e set of piecewise affine warps (onto a fixed mesh) unfor-
ance Models (FAMs) and Active Blobs are based on a com-ynately does not form a group and so the inverse composi-

bination of piecewise affine warps and appearance variation o4 algorithm cannot be use isto fit FAMs. We now
Previously, the users of FAMS, AAMS, and Active Blobs gytenq the algorithm so that it can be used to fit FAMs. The
have had to resort to “non gradient descent” algorithms 10 455r6ach is to develop first order approximations to the in-
obtain efficiency. Developing a gradient descent algorithm o .ca of a warp and the composition of two warps. Since
for FAMs demonstrates the utility of our framework. these approximations are correct to first order (the usual ap-

FAM fitting algorithms usually assume that there is a proximation) the extended algorithm is also correct.
constantinear relationship between the error image and the

additiveupdate to the parameters. This assumption (which4 1 Inverting the Incremental Warp
is equivalent to assuming that there is an efficient addi-
tive algorithm for FAMSs) is incorrect. SeléMatthews and
Baker, 2001 for a counter-example. Difference decompo-
sition [Gleicher, 1997 is generally used for Active Blobs, OW OW
although it is also often used erroneously in the additive for- W(x;Ap) = W(x; 0)+EAP = x+¥AP' (29)
mulation. See Equation (19) [Casciaet al., 2004.

An FAM or Active Blob consists of four components.

Deriving a first order approximation t& (x; Ap) ! is
straightforward. A Taylor expansion gives:

We therefore have:

The first component is a template imafi¢x). Typically oW oW
T is an “average” image. The second component consists™W (X; Ap)oe W (x; —Ap) = X+%Ap_%Ap =X
of a pair of triangular meshes. The first mesHixed in (30)

the coordinate frame dF. Suppose the fixed mesh has to first order inAp. Note that the two Jacobians in Equa-

vertices{(z;,7;) | ¢ = 1,...,m}. The second mesh is tion (30) are not evaluated at exactly the same location but

flexibleand can move in the coordinate frame of the input the results are equal to zeroth ordeAp. Since the differ-

image!(x) and has vertice§(z;,y;) | i = 1,...,m}. ence is multiplied byAp we can ignore the first and higher
When combined, the two meshes defingiacewise  order terms. We therefore have (to first orde/Aip):

affine warp betweerl’ and I. The vertices of any pair .

of corresponding triangles uniquely define an affine warp W(x;Ap) " = W(x; —Ap). (31)

between that pair of triangles. Denote ti& triangle

ti = (j,k,1), wherej, k,l € {1,...,m} andt; = (j,k,l) 4.2 Composing the Incremental Warp

corresponds to fixed vertic€s;, v,), (zx, ¥y,), and(z:,7;),

and flexible vertice$z;, y;), (21, yx), and(z, y). Denote We derive a first order approximation to the composition of

two warps by working with the mesh vertices and approxi-
al., 1999 where the allowed shape and appearance variation are coupled. mating the destination of the fixed mesh vertices under the
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Figure 3:The error in the final FAM fit plotted across the entire
236 frame sequence. The inverse compositional algorithm is able

to fit the FAM far better, resulting in a much lower RMS error.

4.3 Experimental Results

RMS Error
= N
ol o

=
o

There are two differences between our FAM fitting algo-

rithm and previous ones: (1) our algorithm is an analytically

derived gradient descent algorithm, rather than using nu-

merical techniques such hsear regressior{Cooteset al,,

1999, finite differencegCootes and Taylor, 20010r dif-

combined warp. If the combined warp is approximately cor- ference decompositidleicher, 1997, Cascét al., 2004,

rect for the vertices (to first order iAp), it will also be and (2) we update the new estimate of the warp using the

approximately correct in the triangle interiors. inverse compositional algorithm rather than simply adding
We wish to approximate the destination of the fixed mesh the parameter increments. As we showefMatthews and

vertices(Z;,7;) underW(x; p) o W(x; Ap) !. Denote  Baker, 200] (and was mentioned in passing[@Bleicher,

the destination ofz;, ;) underW (x; Ap) ! by (z;,7;) + 1997) the naive additive approach is provably wrong.

(Az;, Ay,;). SinceW (x;Ap)~! = W(x; —Ap), Equa-

tion (28) simplifies to give:

(c) Overlaid FAM Fit (d) Reconstructed Model
Figure 2:0ne image from a 236 frame movie (see the movie file
on the CD-ROM for the complete sequence), with the results of
FAM fitting using the inverse compositional algorithm.

4.3.1 Comparison with other FAM Fitting Algorithms

We first compare our algorithm with the original regression-
based AAM algorithm[Cooteset al, 1999 (applied to
FAMSs), on a sequence of 236 frames. One example input
frame, the FAM, the converged FAM overlaid on the input,
We next compute the change to the destinatiokmefy;) and the result of fitting are shown in Figure 2. (A movie of
underW (x; p) o W(x; Ap)~!; i.e. the change from un- the FAM being fit over the entire sequence is contained on
derW (x; p). Denote this chang@\z;, Ay;). To compute  the CD-ROM version of the proceedings.)

(A_xlaA_yla"'aA_xmaA_ym)T = Z_Apisi- (32)
i=1

(Az;, Ay;) from (Az;, Ay;), the motion of the fixed ver- Figure 3 plots the RMS pixel error between the final

tices(Az;, Ay,) is simply warped with an affine warp: FAM fit and the input image, for each of the 236 frames
- in the sequence. Although the models used are exactly the

(Az;, Ay;) = Affine¢(Az;, Ay;). (33) same, the inverse compositional algorithm is able to fit far

) ] ] better. The error in the fit (which is partly due to the fact
The trianglet to use here is the triangle that the vector 4 the model may not completely explain the data anyway)
(Azi, Ay;) lies in. (See[Matthews and Baker, 200 for is far lower for the inverse compositional algorithm than for
the details of this step which are omitted for lack of space.) e regression-based algorithm Gooteset al, 1994. The
The motions of the flexible verticdg\z;, Ay;) are then  effect of this improved fitting on the movie on the CD-ROM
projected into the shape eigenspace using: is that the model fit looks far smoother across time.

Ap; = (Azy,Ayy,...,Azp, Ayy)s; (34)  4.3.2 Comparison with the Naive Additive Algorithm

whereAp' is the modified vector of parameter increments To demonstrate the importance of the compositional frame-
that when added tp givesp + Ap’ as the parameters of Work, we compared the inverse compositional algorithm

W (x; p)oW (x; Ap)~L. In summary, Equations (32), (33) with another gradient descent algorithm that is identical ex-
and (34) can be used to compute the paramgtersAp’ cept that it naively updates the warp by adding the param-
of W(x; p) o W(x; Ap)~! from p andAp. The compu- eter increments rather than using the inverse compositional
tational cost of this step ©(nm) which is negligible com- algorithm. The evaluation is on a task in the automatic con-
pared to Steps (1-3) of the inverse compositional algorithm, Struction of FAMs outlined iiMatthews and Baker, 2001
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Convergence Comparison Table 1:Gradient descent image alignment algorithms can either

Z—‘ ‘ be additive or compositional and eithefforwardsor inverse Our
framework leads immediately to two new algorithms, itheerse

n compositionaklgorithm and its extension for fitting FAMs.

ol
§5— Algorithm Can be Applied To| Efficient?
L4t Forwards Additive Any No

3 Inverse Additive Simple Linear 2D + Yes

ol Forwards Compositional] Any Semi-Group No

1t Inverse Compositional Any Group Yes

ok - . - - - - FAM Fitting Algorithm Piecewise Affine Yes

Number of Iterations

Figure 4:A demonstration of the importance of using the inverse Refe rences

compositional algorithm on a task in the automatic construction

of FAMs. Naively adding the parameter updates (assuming a con-[Bakeret al, 2001 S. Baker, F. Dellaert, and I. Matthews.
stant Hessian) rather the composing the incremental warp results ~ Aligning images incrementally backwards. Technical
in much slower convergence and a worse final fit. Report CMU-RI-TR-01-03, CMU Rob. Institute, 2001.
[Bergenet al, 1994 J.R. Bergen, P. Anandan, K.J. Hanna,
and R. Hingorani. Hierarchical model-based motion es-
timation. InProc. of ECCV pages 237-252, 1992.

ack and Jepson, 1999M. Black and A. Jepson. Eigen-

Figure 4 contains a plot of the error in the FAM fit against
the number of iterations. The figure demonstrates that with
the inverse compositional algorithm, both the convergenceg,
rate is faster, and the final converged fit is better. With- tracking: Robust matching and tracking of articulated
out using the compositional framework, the algorithm does objects using a view-based representatiaternational
converge, albeit slowly, because naively updating the pa- Journal of Computer Visiar86(2):101—130, 1998.
rameters additively corresponds to taking gradient desce”TCasciaet al. 2000 M. La Cascia, S. Sélaroff, and
steps in a_ppro_ximgtel)_/ the right direction, but not quite the =\, athitsos. Fast, reliable head tracking under vary-
optimal direction; i.e. it converges “by chance”. The con- g jjlumination: An approach based on registration of
vergence rate is almost twice as fast. The naive algorithm texture-mapped 3D modeltEEE PAMY, 22, 2000.
takes over 6 iterations to reach the same degree of fit thajcootes and Taylor, 2001T.F. Cootes and C.J. Taylor. Sta-

the inverse compositional algorithm reaches in 3. tistical models of appearance for computer vision. World
) ) Wide Web Publication, February 2001. (Available from
5 Discussion http://www.isbe.man.ac.uk/bim/refs.html).

We have presented a framework (see Table 1) for gradientCootesetal, 1998 T.F. Cootes, G.J. Edwards, and C.J.
descentimage alignment. Algorithms can eitheabditive Talylor. 2Act|ve apfgjrig;eln;ggels' Foc. of ECCV

or compositionaland eithefforwardsor inverse The for- volume 2, pages 464-490, ' _
wards :Edditive algorithrfLucas and Kanade, 19R1he in- [Dellaert and Collins, 1999F. Dellaert and R. Collins.
verse additive algorithiiHager and Belhumeur, 19h&nd Fast image-based tracking by selective pixel mtegraﬂon.
the forwards compositional algorithiS8hum and Szeliski, In Proc. of the ICCV Wkshp on Frame-Rate Visib899.

2004 have all been studied before. The inverse composi-[Gﬁﬁggrhigzzx}n@ggygg l;:gi:e(;tlfvg\;g?qlsltge;t;on with
tional algorithm and its extension to piecewise affine warps [Hager and Belhumepur 19]983 D Hager and PN. Bel-
follow directly from the framework. humeur. Efficient region tracking with parametric mod-

Due to lack of space, we are unable to present the full els of geometry and illuminatiolEEE PAMJ, 20, 1998,
details of our experiments in this paper. More details can [Lucas and Kanade, 19BB. Lucas and T. Kanade. An it-

be found in the associated technical reffatthews and erative image registration technique with an application
Baker, 2001 We are also currently conducting an extensive to stereo vision. IProc. of IJCA| pages 674-679, 1981.
evaluation of FAM and AAM fitting algorithms. [Matthews and Baker, 2001. Matthews and S. Baker. Fit-
ting flexible appearance models. Technical Report
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