
 Open access Journal Article DOI:10.1145/2362389.2362390

Equivalence checking of static affine programs using widening to handle
recurrences — Source link

Sven Verdoolaege, Gerda Janssens, Maurice Bruynooghe

Institutions: Katholieke Universiteit Leuven

Published on: 05 Nov 2012 - ACM Transactions on Programming Languages and Systems (ACM)

Topics: Formal equivalence checking, Affine transformation, Polytope model, Commutative property and
Graph (abstract data type)

Related papers:

 Verification of Loop and Arithmetic Transformations of Array-Intensive Behaviors

 Relational verification using product programs

 Automating regression verification

 Translation validation for an optimizing compiler

 Inference rules for proving the equivalence of recursive procedures

Share this paper:

View more about this paper here: https://typeset.io/papers/equivalence-checking-of-static-affine-programs-using-
12wbtkz4wf

https://typeset.io/
https://www.doi.org/10.1145/2362389.2362390
https://typeset.io/papers/equivalence-checking-of-static-affine-programs-using-12wbtkz4wf
https://typeset.io/authors/sven-verdoolaege-2bm7vb06lw
https://typeset.io/authors/gerda-janssens-55r1okcemv
https://typeset.io/authors/maurice-bruynooghe-wynp3u0r6a
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/journals/acm-transactions-on-programming-languages-and-systems-sjymo6nn
https://typeset.io/topics/formal-equivalence-checking-x404aatf
https://typeset.io/topics/affine-transformation-1soc8sl1
https://typeset.io/topics/polytope-model-17gb7dp0
https://typeset.io/topics/commutative-property-b3wohxfh
https://typeset.io/topics/graph-abstract-data-type-1ax3631y
https://typeset.io/papers/verification-of-loop-and-arithmetic-transformations-of-array-4hdy1iwvnp
https://typeset.io/papers/relational-verification-using-product-programs-72e5jwzsbf
https://typeset.io/papers/automating-regression-verification-4o7im35ewv
https://typeset.io/papers/translation-validation-for-an-optimizing-compiler-5f2zc13nyy
https://typeset.io/papers/inference-rules-for-proving-the-equivalence-of-recursive-j1qf9q0b2s
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/equivalence-checking-of-static-affine-programs-using-12wbtkz4wf
https://twitter.com/intent/tweet?text=Equivalence%20checking%20of%20static%20affine%20programs%20using%20widening%20to%20handle%20recurrences&url=https://typeset.io/papers/equivalence-checking-of-static-affine-programs-using-12wbtkz4wf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/equivalence-checking-of-static-affine-programs-using-12wbtkz4wf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/equivalence-checking-of-static-affine-programs-using-12wbtkz4wf
https://typeset.io/papers/equivalence-checking-of-static-affine-programs-using-12wbtkz4wf

Equivalence Checking of Static Affine Programs

using Widening to Handle Recurrences1

SVEN VERDOOLAEGE, GERDA JANSSENS and MAURICE BRUYNOOGHE

Department of Computer Science, Katholieke Universiteit Leuven, Belgium

Designers often apply manual or semi-automatic loop and data transformations on array and
loop intensive programs to improve performance. It is crucial that such transformations preserve

the functionality of the program. This paper presents an automatic method for constructing
equivalence proofs for the class of static affine programs. The equivalence checking is performed
on a dependence graph abstraction and uses a new approach based on widening to find the proper

induction hypotheses for reasoning about recurrences. Unlike transitive closure based approaches,
this widening approach can also handle non-uniform recurrences. The implementation is publicly
available and is the first of its kind to fully support commutative operations.

Categories and Subject Descriptors: D.2.4 [Software/Program Verification]: Correctness

proofs

General Terms: Verification
Additional Key Words and Phrases: Commutativity, equivalence checking, polytope model, re-
currences, widening

1. INTRODUCTION

Embedded processors for multimedia and telecom systems are severely resource
constrained. Developers apply aggressive loop and data transformations based on
a combination of automated analysis and manual interventions to reduce memory
requirements and power consumption (see, e.g., [Catthoor et al. 2002; Verma and
Marwedel 2007]). A crucial question is whether the transformed program is equiva-
lent to the original. We address this problem for the case of static affine programs,
i.e., programs with static control flow and piecewise affine expressions for all loop
bounds, conditions and array index expressions.
Our method works on a dependence graph abstraction of the program and rea-

sons backward. Using a pair of dependence graphs, the goal of showing that both
programs output the same data is reduced to subgoals between the corresponding
children of the dependence graphs. A subgoal is discharged as proved when reduced
to an equivalence between inputs. This success is also propagated forward in order
to compare what actually has been proved with what had to be proved. An induc-
tion hypothesis is generated when it is noticed that a subgoal depends on an earlier
iteration of a loop (a recurrence).
Generating an adequate induction hypothesis for recurrences is a major challenge

in the equivalence checking of static affine programs. In previous work of Barthou
et al. [2002], Alias and Barthou [2003], Shashidhar et al. [2005]2 and Shashidhar

1 c©ACM, (2012). This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version will be published in
ACM Transactions on Programming Languages and Systems
2Joint work with some of the current authors.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY, Pages 1–??.

2 · S. Verdoolaege et al.

[2008], the transitive closure operation [Kelly et al. 1996] provided by the Omega

library [Kelly et al. 1996] is used to derive the hypothesis from the base case obtained
from analyzing one iteration over the recurrence. This effectively restricts the
applicability of those techniques to programs containing only uniform recurrences.
Another challenge is posed by algebraic transformations, i.e., a transformation

that depends on algebraic properties of operations, e.g., associativity or commuta-
tivity. Of the above, only Shashidhar has a proposal for handling algebraic trans-
formations. Moreover, it is unable to handle transformations that only reorder the
arguments of an operation for some iterations of the loops in which the operation
appear, as is the case in the example of the next section.
Finally, we note that all the above approaches require both programs to be in

dynamic single assignment (DSA) form [Feautrier 1988], i.e., such that each array
element is written at most once. Also, none of the aforementioned implementations
are publicly available.
Like the previous approaches, we handle recurrences in both programs fully auto-

matically and we handle any per statement or per array piecewise quasi-affine loop
or data transformation, including combinations of loop interchange, loop reversal,
loop skewing, loop distribution, loop tiling, (partial) loop unrolling, loop splitting,
loop peeling and data-reuse transformations. However, unlike those approaches,
ours

—integrates dependence analysis such that the explicit conversion to dynamic sin-
gle assignment source code in a preprocessing step, as required by the other
approaches, can be avoided,

—handles both uniform and non-uniform recurrences by not relying on a transitive
closure operation but instead using a novel widening approach to find the proper
induction hypothesis for reasoning about recurrences, and

—has a publicly available implementation,

—with full support for associative and commutative operations with a fixed number
of arguments.

It should be noted that we only consider program transformations that change
the order of operations, change the location where intermediate results are stored
and/or exploit the associative and/or commutative properties of operations. In
particular, we do not consider transformations that replace a sequence of opera-
tions, e.g., x1 = x + 1; y = x1 + 1, by some other sequence of operations, e.g.,
y = x + 2, but instead treat operations as black boxes.
Our approach is shown to handle more cases than related approaches and is

shown to scale better on pairs of implementations of the USVD algorithm, which
is frequently used in wireless signal processing applications. Our approach has also
been instrumental in finding bugs in various optimizations in the CLooG [Bastoul
2004] polyhedral scanner. Our experiments show that other approaches would
not have been as useful as they are unable to prove equivalence on many inputs,
resulting in too many false positives.
This paper is a revision and extension of our earlier work [Verdoolaege et al.

2009]. In particular, the equivalence checking procedure has been formalized as a
pair of algorithms with proof of termination and soundness. The procedure has

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 3

1 A[0]=In[0];

2 for (i=1; i<N; ++i)

3 A[i]=f(In[i])+g(A[i-1]);

4 Out=A[N-1];
(a) Program 1, a program with a recurrence

1 A[0]=In[0];

2 for (i=1; i<N; ++i) {

3 if (i%2 == 0) {

4 B[i]=f(In[i]);

5 C[i]=g(A[i-1]);

6 } else {

7 B[i]=g(A[i-1]);

8 C[i]=f(In[i]);

9 }

10 A[i]=B[i]+C[i];

11 }

12 Out=A[N-1];
(b) Program 2, a program equivalent to

Program 1

Fig. 1. Two equivalent programs, assuming that + is commutative.

been validated on a larger set of examples and compared against two other proce-
dures. One is our own reimplementation of the approach of Barthou et al. [2002],
the original implementation not being available to us. The other is a simplified
variation of Barthou’s approach. We have also extended our work to handle more
general constructs such as data-dependent accesses in a separate paper [Verdoolaege
et al. 2010]. With minor modifications, the termination and soundness proof of the
present paper is also applicable to those extensions.
We start in Section 2 with a high level description of our method on the ba-

sis of a toy example. In Section 3 we introduce some background material and
define the dependence graphs which are used to represent the input programs. Sec-
tion 4 contains the description of our equivalence checking method. A recursive
algorithm propagates requirements for equivalence to base cases and then propa-
gates the results back. We explain our handling of commutative operations and
recurrences and we prove termination and soundness. In Section 5 we discuss some
implementation details, while in Section 6 we present some examples that highlight
the differences with other approaches and show the results of some experiments.
Finally, in Section 7, we discuss in more depth related work and we conclude in
Section 8.

2. ILLUSTRATIVE EXAMPLE

Figure 1 shows a contrived example designed to illustrate some key aspects of our
method. Both programs have the same input array In and output array Out and the
objective is to show that for any value of the input array(s), both programs produce
the same value for the output array(s). Note that in this particular example, there is
only one input and one output array and that this output array is zero-dimensional,
i.e., it is a scalar. The other arrays are called temporary arrays and we assume no
a priori relation between temporary arrays from different programs. Likewise, we
assume no a priori relation between any pair of loops in the two programs.

The example in Figure 1 involves both of the “challenges” in equivalence checking

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

4 · S. Verdoolaege et al.

of affine programs. Both programs have a recurrence, i.e., the computations in the
loops depend on previous iterations of the same computation. Such recurrences
render the representation of the values of the output arrays as a symbolic expression
in terms of only the input arrays, as advocated by some symbolic simulation based
techniques (e.g., [Matsumoto et al. 2007]) impractical, as the whole loop needs to
be effectively unrolled, or even impossible, if the number of iterations is unknown
at analysis time, as is the case in this example. Furthermore, the equivalence of the
two programs depends on the commutativity of the + operator, as the order of the
arguments has been reversed for each iteration of the loop with odd iterator value.

Let us now try to prove the equivalence of the two programs at an intuitive level.
The proof procedure will be formalized in the following sections. We assume that
both programs are given the same input in the array In and we want to show that
they produce the same value for the array Out. To show that Out in Program 1 is
equal to that of Program 2, we distinguish two cases. If N is equal to 1, then we need
to show that whatever value is copied in Line 1 of Program 1 is equal to the value
copied in Line 1 of Program 2. Otherwise, we need to show that whatever value is
computed by the + operator in Line 3 of Program 1 is equal to the value computed
by the same operator in Line 10 of Program 2. Note that these values happen to
be stored in A[0] and A[i], with i = N − 1, respectively, in both programs, but
these locations are irrelevant for the purpose of proving equivalence.

In the first case, i.e., when N = 1, we need to show that In[0] in one program is
equal to In[0] in the other program, but this is true by assumption. In the other
case, i.e., when N > 1, we again need to distinguish two cases depending on whether
i = N − 1 is odd or even. Let us consider the odd case. The values computed by
the + operators are certainly equal if the values of both arguments are equal, but
since + is commutative, the arguments need not be given in the same order. In this
(odd) case, we try to prove that the value computed by f in Line 3 of Program 1
is equal to that computed by the same function in Line 8 of Program 2, as we are
not able to prove that it is equal to the value computed by the (different) function
g in Line 7 of Program 2. Similarly, we try to prove that what is computed by g in
Line 3 of Program 1 is equal to what is computed by g in Line 7 of Program 2.

The proof obligation through f leads us to the input again and is easily seen to
hold. The proof obligation through g, however, leads us back to a proof obligation
on + in Line 3 and Line 10 respectively (assuming i = N − 1 6= 1). Specifically, we
originally had to prove equivalence for i1 = N − 1 = i2, with N ≥ 2 and now we
have to prove it for i1 = N − 2 = i2, with N = 2α ≥ 4, α ∈ Z. To avoid getting
into an infinite loop, we generalize (or “widen”) the union of these two relations
to i1 = i2, with 1 ≤ i1 ≤ N − 1. The equivalence proof for this widened relation
proceeds in the same way as that for the original relation, including a split into an
even and an odd case. In both cases, when we arrive back at operator + in Line 3
and Line 10 we apply induction and assume that equivalence has already been
proved for this pair of computations. After applying induction, there are no more
proof obligations. The induction hypothesis will be validated in a second phase,
as explained in the following sections. Note that the equivalence of the widened
relation implies equivalence for both the cases i = N − 1 odd and i = N − 1 even.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 5

3. PROGRAM MODEL

Two programs are considered to be equivalent if they produce the same output
values given the same input values. As we treat all operations performed inside
the programs as black boxes, this means that in both programs the same oper-
ations should be applied in the same order on the input data to arrive at the
output. For our equivalence checking, we therefore need to know which operations
are performed and how data flows from one operation to another. In this section,
we introduce a program model that captures exactly this information. Unlike the
approach of Shashidhar et al. [2005] and Shashidhar [2008], which works on an
array based representation and implicitly performs some dataflow analysis during
the equivalence checking, we separate the dataflow analysis from the equivalence
checking, the latter working on the output of the former. This separation allows us
to use either standard exact dataflow analysis [Feautrier 1991] or, in future work,
fuzzy dataflow analysis [Barthou et al. 1997]. The resulting dependence graph is
essentially a DSA representation of the program, but without rewriting the source
program in that form as required by Shashidhar et al. [2005] and Shashidhar [2008].
We first describe the kinds of sets and relations that we will use in our model. Then
we explain the restrictions we impose on the input programs. We continue with
a brief description of dataflow analysis and then formally define our dependence
graph abstraction. After describing a transformation of these dependence graphs
to handle associative operations, we finally define the concept of equivalence of
dependence graphs.

3.1 Sets and Relations

For modeling an input program and during the equivalence checking, we frequently
make use of subsets of Zd and of binary relations over such sets. Here, d is some
non-negative integer and Z is the set of integers. The integer tuples in these sets and
relations typically represent iterations of a loop or elements of an array. The pairs
of integer tuples in a relation are separated by either “→” or “↔”. The difference
between these two is purely cosmetic. In particular, we use “↔” for relations that
express equivalences and “→” for relations that are involved in composition and/or
application operations, as described below. In our notation, we usually annotate
the integer tuples with the name of the corresponding “computation” or array. For
the purpose of the present paper, these names carry no semantics and are only
meant to remind the reader to which object an integer tuple belongs. We require
that all sets and relations can be described using affine equalities and inequalities,
i.e., constraints of the form a0 +

∑

i ai xi = 0 or a0 +
∑

i ai xi ≥ 0, where the ai
are integer constants and the xi are integer variables. This requirement ensures
that all operations we need to perform on our sets and relations can be performed
reasonably efficiently. Note that any of our sets and relations can be described in
many different ways using affine constraints. However, all the operations we need
to perform are (semantically) independent of the chosen representation.
In particular, we need the following operations.

—The emptiness check determines whether a given set or relation has any elements.

—The intersection of two relations R1 and R2 is the relation R1 ∩ R2 = { i → j |
i → j ∈ R1 ∧ i → j ∈ R2 }. Similarly for sets.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

6 · S. Verdoolaege et al.

—The union of two relations R1 and R2 is the relation R1 ∪R2 = { i → j | i → j ∈
R1 ∨ i → j ∈ R2 }. Similarly for sets.

—The difference of two relations R1 and R2 is the relation R1 \R2 = { i → j | i →
j ∈ R1 ∧ i → j 6∈ R2 }. Similarly for sets.

—The product of two sets S1 and S2 is the relation S1 → S2 = { i1 → i2 | i ∈
S1 ∧ i2 ∈ S2 }. A similar product can also be defined using the ↔ operator. It
is also convenient to define a product operation on relations. The result of this
operation is a “second order” relation, i.e., one that maps relations to relations.
In particular, the product of two relations R1 and R2 is the relation R1 ↔ R2 =
{ (i1 ↔ i2) → (j1 ↔ j2) | i1 → j1 ∈ R1 ∧ i2 → j2 ∈ R2 }.

—The composition of two relations R1 and R2 is the relation R2 ◦ R1 = { i → j |
∃k : i → k ∈ R1 ∧ k → j ∈ R2 }.

—The application of the relation R to the set S is the set R(S) = { j | ∃i : i → j ∈
R ∧ i ∈ S }. The application of a second order relation to a (first order) relation
is similarly defined.

—The inverse of a relation R is the relation R−1 = { i → j | j → i ∈ R }.

—The domain of a relation R is the set domR = { i | ∃j : i → j ∈ R }.

—The identity relation on a set S is the relation 1S = { i → i | i ∈ S }.

—The integer affine hull of a relation is the smallest affine subspace containing the
relation, where an affine subspace is a relation described using only equalities.
That is, the integer affine hull of a relation is the relation of elements that satisfy
all affine equalities satisfied by all elements in the original relation.

The constraints describing the sets and relations may involve both parameters
and existentially quantified variables. The use of parameters allows us to process
several instances of the same (pair of) program(s) at the same time. For example,
the programs in Figure 1 contain a parameter N that determines the size of the
In, A, B and C arrays and the number of times the loops are executed. By keeping
track of this parameter, we can check the equivalence of both programs for any
value of N. The use of existentially quantified variables allows us to represent quasi-
affine constraints, i.e., constraints that are affine, but that may contain additional,
existentially quantified, variables. For example, the set of iterations (i.e., values of
the i-iterator) for which the statement in Line 7 of Figure 1(b) is executed, can be
represented as

D = {L7(i) | ∃α : 1 ≤ i < N, i = 2α+ 1 }. (1)

The L7 annotation on the tuples is used to clarify that these tuples represent iter-
ations of the statement in Line 7

3.2 Input Programs

Our equivalence checker takes two static affine programs [Feautrier 1996] or pro-
gram fragments as input. Here, static means that the control flow is static, i.e.,
the control flow is independent of the input to the programs. Affine means that
all iteration domains and all access relations can be represented using quasi-affine
constraints. An iteration domain is the set of iterator values for which a given state-
ment is executed. For example, the set D in (1) represents the iteration domain

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 7

of the statement in Line 7 of Figure 1(b). For simplicity, we assume that the con-
straints of the iteration domains can be copied directly from the loop bounds and
the conditions in the program. All these constructs therefore need to be quasi-affine
in terms of the parameters and outer loop iterators. Furthermore, the program is
not allowed to contain any breaks, continues, gotos or while loops. In princi-
ple, more general input programs can also be accepted by first applying abstract
interpretation techniques as in PIPS [Irigoin et al. 1991]. We assume that all loops
have upper bounds. If not, a fresh parameter can be introduced to act as the upper
bound of unbounded loops.
An access relation maps an iteration domain to an index space, i.e., the indices

of the elements of an array. For example, the access to the A array in the same
statement on Line 7 has access relation

{L7(i) → A(i− 1) }.

Note that this relation maps iterations of the statement in Line 7 (L7) to elements
of the A array. Similarly, the access to the A array in Line 12 has access relation

{L12() → A(N − 1) }.

Since the corresponding statement is not enclosed in any loops, it has a zero-
dimensional iteration domain. The single zero-dimensional element of this domain
is denoted “L12()”. The fact that we require quasi-affine access relations implies
that we do not allow pointer manipulations, unless they have been converted to
quasi-affine array accesses in a pointer conversion preprocessing step (see, e.g., [van
Engelen and Gallivan 2001; Franke and O’Boyle 2003]).
We assume that like-named functions called within both program fragments are

identical (or at least equivalent) and that they are pure. In particular, the program
fragments are not allowed to call themselves. That is, we do not allow recursion
in those parts of the programs that need to be checked for equivalence. If some
of the functions called have been transformed as well, then they should be inlined,
provided the inlined functions are also static affine. See, e.g., [Absar et al. 2005].

The programs may manipulate several arrays, where we treat scalars as zero-
dimensional arrays. These arrays come in three categories, input arrays, output
arrays and temporary arrays. The input and output arrays are assumed to have
the same names in both programs. The equivalence checker tries to prove that
given the same values for the input arrays, both programs produce the same values
for the output arrays. We make no assumption about any correspondence between
temporary arrays in both programs. The types of the arrays may be specified by
the user or they can be determined automatically. Prior to any such automatic
detection, we need to make sure that an input array is never written to since
input arrays are assumed to be equal while the two programs may write different
values. To ensure this property, we consider all arrays that appear in both programs
and (conceptually) create copies of them before the start of the program fragment
under investigation. The program text is then modified to refer to the copies. The
original arrays are treated as input arrays, while the copies as well as those arrays
that have not been copied are treated as either output or temporary arrays. In
particular, the output arrays are those that have elements that are written without
being subsequently read or overwritten. The detection of subsequent reads or writes

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

8 · S. Verdoolaege et al.

can be performed using dataflow analysis, which is explained in the next section.
Note that in practice, we do not actually perform the copying described above,
but instead use dataflow analysis to determine whether a given instance of a read
access reads from an input array or from an output or temporary array with the
same name.

3.3 Dataflow Analysis

In order for us to be able to check the equivalence of two programs, we need to
model how these two programs compute the output values from the input values.
In particular, for each value used in the program, we need to know where the
value was computed. This is the subject of dataflow analysis. In this paper, we
apply exact dataflow analysis [Feautrier 1991], meaning that for each of the uses
of a value in the program, we determine exactly where it was computed. Exact
dataflow analysis also requires static affine programs as input and therefore imposes
no further restrictions.
The output of dataflow analysis consists of a number of dependence relations.

Each of these dependence relations maps an element of an iteration domain that
reads some value to the unique element of the same or another iteration domain
that wrote the value. For example, the statement in Line 4 of Figure 1(a) reads
from the A array. Dataflow analysis determines that there are two cases. If N = 1,
then the value read in Line 4, was written in Line 1, with dependence relation

{L4() → L1() | N = 1 }. (2)

Otherwise, ifN > 1, then the value was written in the last iteration of the statement
in Line 3, with dependence relation

{L4() → L3(N − 1) | N ≥ 2 }. (3)

3.4 Dependence Graphs

The equivalence checking is performed on abstractions of the input programs that
model the computations and the data flow dependences between computations.
This program abstraction is formalized in a dependence graph. Our dependence
graphs differ slightly from those commonly used during the optimization of static
affine programs. Most notably, we keep track of the individual operations performed
in a statement to be able to match the operations in both programs.

Firstly, we describe the computations that are extracted from the program. They
are the vertices of the dependence graph. A computation represents one or more
instances of an operation f with arity r (the number of arguments of f). Each
computation has a fixed dimension d ∈ Z≥0 and each instance of f is identified
by an element of Z

d. The set D of all instances is called the iteration domain
of the computation. Finally, each computation has a “location” l that can be
used to distinguish different computations that perform the same operation. The
computations are extracted from a static affine program in the following way.

—for each operation in a line of the program text, a computation is constructed with
f and r determined by the operation, l identifying the location in the program
text (line and column), d equal to the number of enclosing loops and D equal to
the iteration domain of the statement in which the operation appears.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 9

—for each statement that does not perform any operation, but instead simply copies
an array element to some array element, a computation is constructed with a
special operation “id” of arity 1. The other properties are as in the previous
case.

—for each input array, an input computation is constructed with as operation the
name of the array and arity 0. The dimension is the dimension of the array and
the iteration domain is the set of array indices.

—a special one-dimensional input computation Z with iteration domain Z that,
conceptually, produces the number i in iteration i. This special input computa-
tion is only needed if the program contains a statement such as x = y + i inside
the body of a loop with loop iteration variable i, where the iteration variable i
is used as an operand.

—an output computation, with operation Out and arity 1. The dimension is the
dimension of the output array and the iteration domain is the set of array indices.
If there are multiple output arrays, then the program can be extended with
statements copying them into different parts of a single output array, hence we
can assume without loss of generality that programs have a single output array.

Input and output computations have a dummy location as there is no corresponding
line and column in the program.
Secondly, we describe the dependences that are extracted from the program.

They are the edges of the dependence graph. A dependence between two compu-
tations signifies that one computation iteration produces a value that is used as
input by another computation iteration. A dependence is characterized by the two
participating computations, an argument position p and a dependence relation M .
Dependences arise in four ways:

(1) The value produced by an operation f is used as argument p in an operation
g of the same statement. Let u and v be the corresponding computations.
As both computations originate from the same statement, they have the same
iteration domain D. The dependence relation of the dependence from v to u is
the identity relation on D, i.e., M = {v(i) → u(i) | i ∈ D}. The computation
v is the source of the dependence; u is the target computation.

(2) The value used as argument p by some iterations of an operation f is an el-
ement of an input array or an affine expression in the parameters and outer
loop iterators. The latter is handled as a read from the “Z” array. A depen-
dence is created from the computation performing f to the appropriate input
computation, with as dependence relation the access relation.

(3) The value used as argument p by some iterations of an operation f is last writ-
ten by some statement s. This statement writes the value to a temporary or
output array and the operation reads that value. Let v be the computation
corresponding to f and u the computation corresponding to the top-level op-
eration of statement s. The existence of a dependence between v and u as well
the corresponding dependence relation M is determined by dataflow analysis
as described in Section 3.3.

(4) An element of the output array is last written by a statement s. In this case, a
dependence is created from the output computation to the computation corre-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

10 · S. Verdoolaege et al.

sponding to the top-level operation of statement s. The argument position p is
1 and the dependence relation is the inverse of the access relation of the write
access to the output array restricted to those iterations that write an element
for the last time.

The computations and dependences form the basis of the dependence graph ab-
straction.

Definition 3.1 Dependence Graph. A dependence graph is a connected labeled
directed graph G = 〈V,E, s, t, λv, λe〉 with vertices V , called computations, and
edges E, called dependences. There is a designated output computation v0 ∈ V
with in-degree 0 and a set I ⊂ V of input computations, each with out-degree 0.
λv is a labeling function mapping computations to tuples 〈d,D, f, r, l〉 where

—d, the dimension of the computation, is a non-negative integer.

—D, the iteration domain of the computation, is a set of tuples of integers of
dimension d.

—f , the operation of the computation, is a symbol.

—r, the arity of the operation of the computation, is a non-negative integer.

—l, the location of the computation is a symbol.

The other elements s, t and λe(e) define functions on edges: s(e) is the source
computation and t(e) is the target computation of an edge; λe(e) is a labeling
function on edges. The label consists of:

—p, the argument position, is a positive integer between 1 and rs(e), the arity of
the source computation s(e).

—M , the dependence relation, is a relation from tuples of integers of dimension
ds(e) to tuples of integers of dimension dt(e).

Moreover, the following constraints are satisfied.

(1) The domains of the dependence relations of the dependences emanating from
a computation for a given argument position partition the domain of the com-
putation, i.e.,

∀u ∈ V, ∀x ∈ Du, ∀p ∈ [1, ru] : ∃! e ∈ E : u = s(e) ∧ pe = p ∧ x ∈ domMe.

(2) For any cycle in the graph, the composition of the dependence relations Me

along the cycle does not intersect the identity relation, i.e., no element of a
domain (indirectly) depends on itself.

(3) For any fixed value of the parameters, the iteration domains of all non-input
computations are finite.

Note that a dependence graph may have loops and parallel edges. The effect of a
dependence relation M associated to an edge e, with u = s(e) and v = t(e), is two-
fold. The dependence relation first selects part of the iteration domain Du of u, in
particular, Du ∩ domM , and then maps those elements from the iteration domain
of u to the iteration domain of v. Within the context of the present paper, where we
use exact dataflow analysis, the dependence relations are functions. Before arguing
that the above extraction procedure results in a dependence graph, i.e., that the
resulting graph satisfies the conditions of Definition 3.1, we first give an example.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 11

v11 : In/0{v11(i) | 0 ≤ i < N}

v12 : Line 1, id/1

{v12() → v11(i) | i = 0}

{v12()}

v13 : Line 3, f/1

{v13(i) → v11(i) | 1 ≤ i < N}

{v13(i) | 1 ≤ i < N} v14 : Line 3, g/1

{v14(i) → v12() | i = 1}

{v14(i) → v15(i− 1) | 2 ≤ i < N}

{v14(i) | 1 ≤ i < N}

v15 : Line 3,+/2

{v15(i) → v14(i) | 1 ≤ i < N}

p
(v15,v14)

=2{v15(i) → v13(i) | 1 ≤ i < N}
p
(v15,v13)

=1

{v15(i) | 1 ≤ i < N}

v16 : Line 4, id/1

{v16() → v15(N − 1) | N ≥ 2}

{v16() → v12() | N = 1}
{v16()}

v17 : Out/1

{v17() → v16()}

{v17()}

Fig. 2. Dependence graph G1 of the program in Figure 1(a). Computations are named from v11
to v17 with v11 the input and v17 the output computation. Each computation v is represented as
“v : l, f/r” (l is omitted for input and output computations). To avoid clutter, the dimension is

omitted, while the domain is shown next to the box with the vertex. The dependence relations
are shown next to the corresponding edges, while the argument position pe is only indicated on
edges emanating from vertex v15 (it is 1 on all other edges). Domains take as subscript the name
of the corresponding vertex and dependence relations the names of the begin and end vertex of

the corresponding edge.

Example 3.2. The dependence graph of the program in Figure 1(a) is shown in
Figure 2. The graph has one input and one output computation and five other
computations, one for the copy statement in Line 4 (v16), one for the addition (v15),
one for the computation of f (v13), and one for the computation of g (v14) (all
from Line 3) and finally one (v12) for the copy statement in Line 1. The input
computation v11 is one-dimensional because In is a one-dimensional array. The
output computation v17 is zero-dimensional because Out is a scalar.
Examples of intra-statement dependences in Figure 2 are the edges from the

addition (computation v15) to respectively the computations v13 and v14. As to edges
that result from dataflow analysis, the dependence relations M(v1

6,v
1
2)

and M(v1
6,v

1
5)

are those from Equations (2) and (3) in Section 3.3, respectively. Note that the
tuple names have been adjusted to refer to the computations. The output array
Out is only written in Line 4, with access relation {L4() → Out()}. The dependence
relation on the edge (v17, v

1
6) is therefore the (renamed) inverse of this access relation.

Figure 3 similarly shows the dependence graph for the program in Figure 1(b).

Below, the unique edge in G corresponding to a point x in the iteration domain
of node v and an argument position p is denoted eG(v,x, p).

Definition 3.3. Given a dependence graph G = 〈V,E, s, t, λv, λe〉 and a compu-
tation v ∈ V (with operation fv), the value of v at x, with x ∈ Dv is defined as

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

12 · S. Verdoolaege et al.

v21 : In/0

v22 : Line 1, id/1

v23 : Line 4, f/1

i = 2α

v24 : Line 5, g/1

i = 2α

v25 : Line 7, g/1

i = 2α+ 1
i=1

v26 : Line 8, f/1

i = 2α+ 1

v27 : Line 10,+/2

1

2 1

2

v28 : Line 12, id/1

N≥2

N=1

v29 : Out/1

{v21(i) | 0 ≤ i < N}
{v22()}
{v23(i) | ∃α : 1 ≤ i = 2α < N}
{v24(i) | ∃α : 1 ≤ i = 2α < N}
{v25(i) | ∃α : 1 ≤ i = 2α+ 1 < N}
{v26(i) | ∃α : 1 ≤ i = 2α+ 1 < N}
{v27(i) | 1 ≤ i < N}
{v28()}
{v29()}

{v22() → v21(0)}
{v25(1) → v22()}
{v25(i) → v27(i− 1) | i ≥ 3}
{v26(i) → v21()}
{v27(i) → v25(i) | ∃α : i = 2α}
{v27(i) → v26(i) | ∃α : i = 2α}
{v28() → v27(N − 1) | N ≥ 2}
{v28() → v22() | N = 1}
{v29() → v28()}

Fig. 3. Dependence graph G2 of the program in Figure 1(b) with some details omitted. The
edges emanating from v28 are annotated with the most salient constraints from their dependence
relations. Those emanating from v27 are annotated with their argument positions, while the target

computations are annotated with the most salient constraints from their domains. A complete list
of domains is shown on the bottom left of the figure, while a partial list of dependence relations
is shown on the bottom right.

follows.

—if v is the special input computation Z, then the value of v at x is x.

—if v is any other input computation, then the value of v at x is the value of array
fv at position x.

—if v is the output computation or a copy operation, then the value of v at x is
equal to the value of t(eG(v,x, 1)) at MeG(v,x,1)(x).

—if v is any other computation, then the value of v at x is the result of applying
fv to the values of t(eG(v,x, p)) at MeG(v,x,p)(x) for each p between 1 and rv.

Definition 3.4. A dependence graph G = 〈V,E, s, t, λv, λe〉 is a faithful repre-
sentation of a given program if for every non-input computation v and for every
x ∈ Dv, the value of v at x is equal to the value computed by iteration x of
operation fv at location lv in the input program.

We can now formulate the following lemma.

Lemma 3.5. The extraction procedure at the start of this section results in a
dependence graph that is a faithful representation of the input program.

Proof. To prove that the result is a dependence graph, it suffices to show that
the three constraints of Definition 3.1 are satisfied.

(1) To see that this property holds, first note that the edges that emanate from
a given computation with a given argument position are all of the same kind.
If the argument is another operation or an input array, then there is a single

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 13

dependence edge leaving the computation for that argument and the property
trivially holds. If the argument is a read from an array, then dependence
analysis ensures that the property holds. Indeed, there is exactly one write
iteration that last wrote to the memory location being read. Similarly, there
is exactly one write iteration that last writes to the output array and therefore
the property also holds for the edges leaving the output computation.

(2) This property holds because a statement iteration can only depend on a previous
iteration in the execution order of the input program.

(3) This property holds because the program is static affine.

To complete the proof, we have to show that the graph is a faithful representation
of the program. Clearly, a computation is faithful when its operands are input
arrays or the result of computations that are faithful. Hence faithfulness follows by
induction over the dataflow of the graph.

3.5 Associative Operations

Associative operators can be nested differently in the two programs. In order not
to have to worry about such possibly different nestings, we apply a normalizing
preprocessing step that “flattens” associative operators in the dependence graph.
This flattening step is similar to the approach of Shashidhar et al. [2005]. For
example, a nesting of two binary associative operators introduces a ternary operator
(possibly for only part of the domain of the outer node). Intuitively, an expression
+(a,+(b, c)) with a nesting of two binary operators is replaced by the ternary
expression +(a, b, c).
When flattening computations, we may need to split the iteration domains as the

nesting could in some cases only occur in part of the domain. The computation is
then replaced by two computations, one where flattening is applied and one where
it is not. In particular, we apply the following flattening procedure as long as we
can find two distinct nodes v and w in a dependence graph such that

—fv = fw = ⊕, with ⊕ some associative operator,

—there is an edge e ∈ E with s(e) = v and t(e) = w,

—v and w do not originate from the same operation in the program, i.e., lv 6= lw.

The last condition means that we do not flatten recurrences. Before applying the
procedure for the first time, the condition is equivalent to v 6= w, but after applying
the procedure one or more times, we may have several nodes corresponding to
the same operation in the program. If no pair can be found satisfying the above
conditions, then we are done. Otherwise, part of our dependence graph looks like
the fragment shown in Figure 4 and we want to combine v and w into a single
computation. However, we can only do this for that part of the iteration domain
of v that is actually mapped to w. We therefore replace the computation v by two
computations v1 and v2 with iteration domains

Dv1
= Dv \ domMv,w

Dv2
= Dv ∩ domMv,w,

where v2 corresponds to that part where flattening will be applied and v1 corre-
sponds to the other part. Now, v2 can safely be replaced by the combination of the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

14 · S. Verdoolaege et al.

t

x y w

⊕/rw, Dw

z

v ⊕/rv , Dv

pv,y=ipv,x<i pv,w=i pv,z>i

u

Fig. 4. Part of a dependence graph before applying the associativity transformation.

t

x y w z

v1

⊕/rv , Dv1 = Dv \ domMv,w

pv,y
pv,x pv,z

v2

⊕/rv + rw − 1, Dv2 = Dv ∩ domMv,w

pv,x

pv,w+pw,t−1

pv,z+rw−1

u

Fig. 5. The same dependence graph fragment of Figure 4, but after applying the associativity
transformation.

original v and w into a single computation. The edges leaving v2 are those leaving
w pulled back over the edge between v and w. That is, for any edge (w, t), a new
edge (v2, t) is created, with

M(v2,t) = (M(w,t) ◦M(v,w)) ∩
(

Dv2
→ Z

dt
)

.

Then the edges entering the original v are duplicated, i.e., every edge (u, v) is
replaced by two edges (u, v1) and (u, v2), with

M(u,v1) = M(u,v) ∩
(

Z
du → Dv1

)

M(u,v2) = M(u,v) ∩
(

Z
du → Dv2

)

.

Note that u may be v2 at this stage. Every edge (v, s) is also replaced by two
edges (v1, s) and (v2, s), with

M(v1,s) = M(v,s) ∩
(

Dv1
→ Z

ds
)

M(v2,s) = M(v,s) ∩
(

Dv2
→ Z

ds
)

,

except when p(v,s) = p(v,w). The edge (v, w) is dropped, while any other edge (v, s)
with p(v,s) = p(v,w) is replaced by an edge (v1, s). If there is no such edge, then the
node v1 and the edges entering or leaving v1 are not created. Note that the edge
(v, v), if it exists, is duplicated twice (if v1 is created).
The argument position of any edge leaving v1 or entering v1 or v2 is the same as

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 15

b[0] = a[0];

for (i = 1; i < N; ++i)

b[i] = b[i-1] + a[i];

out = b[N-1];

b[0] = a[N-1];

for (i = 1; i < N; ++i)

b[i] = a[N-1-i] + b[i-1];

out = b[N-1];

Fig. 6. Two programs for computing
∑

0≤i<N a[i].

the argument position of the edge from which it originates. For the edges leaving
v2, we have

p(v2,x) = p(v,x) if p(v,x) < p(v,w)

p(v2,t) = p(v,w) + p(w,t) − 1

p(v2,z) = p(v,z) + rw − 1 if p(v,z) > p(v,w).

Lemma 3.6. The flattening procedure transforms a dependence graph that is a
faithful representation of a given program into a dependence graph that is a faithful
representation of the same program.

Proof. It is sufficient to check that one iteration of the flattening procedure
preserves the required properties. Constraint 1 holds essentially because Dv1

and
Dv2

partition Dv. This ensures that the partitions in the input dependence graph
are at most further subdivided in the output dependence graph. Constraint 2 holds
because the dependence relations are simply partitioned and composed. These
operations cannot introduce cycles. The iterations domains of the new nodes are
subsets of those of the original nodes and therefore also constraint 3 is satisfied.
Faithfulness is preserved because of associativity of the operation to which the
procedure is applied.

Note that the fact that we do not flatten recurrences means that we cannot
detect the equivalence of the two programs in Figure 6 for computing

∑

0≤i<N a[i].
Following the proposal of Shashidhar [2008] would result in a complete unrolling
of the recurrences in these programs, leading to an infinite loop if N is a symbolic
parameter.

3.6 Equivalence of Dependence Graphs

The concept of the equivalence of two dependence graphs is defined inductively
and follows the intuitive definition of the equivalence of two programs at the start
of Section 3. We first inductively define what it means for two iterations of two
computations to be equivalent and then define equivalence of dependence graphs
in terms of equivalence of their output computations.

Definition 3.7 Equivalence of Computation Iterations. An iteration x1 ∈ Dv1
of

a computation v1 ∈ V1 in a dependence graph G1 is equivalent to an iteration
x2 ∈ Dv2

of a computation v2 ∈ V2 in a dependence graph G2 if one of the following
conditions holds

—v1 and v2 are input computations with fv1
= fv2

and x1 = x2,

—fv1
= id and iteration MeG1

(v1,x1,1)(x1) of t(eG1(v1,x1,1)) is equivalent to iteration
x2 of v2,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

16 · S. Verdoolaege et al.

—fv2
= id and iteration MeG2

(v2,x2,1)(x2) of t(eG2(v2,x2,1)) is equivalent to iteration
x1 of v1, or

—(fv1
, rv1

) = (fv2
, rv2

) and either
—for each p ∈ [1, rv1

], iteration MeG1
(v1,x1,p)(x1) of t(eG1(v1,x1,p)) is equivalent

to iteration MeG2
(v2,x2,p)(x2) of t(eG2(v2,x2,p)), or

—fv1
= fv2

is commutative and there exists a permutation π of the arguments
such that for each p ∈ [1, rv1

], iteration MeG1
(v1,x1,p)(x1) of t(eG1(v1,x1,p)) is

equivalent to iteration MeG2
(v2,x2,π(p))(x2) of t(eG2(v2,x2,π(p))),

Definition 3.8 Equivalence of Dependence Graphs. Two dependence graphs are
equivalent if the iteration domains of their output computations are identical and
if all iterations of these output computations are pairwise equivalent.

Proposition 3.9. If two dependence graphs constructed from input programs
using the extraction procedure of Section 3.4 and the flattening procedure of Sec-
tion 3.5 are equivalent, then the input programs are equivalent.

Proof. Two input computation iterations are only considered equivalent if they
refer to the same element of the same input array. By assumption, the input arrays
are equal and so equivalent input computation iterations have the same values. By
induction all other equivalent computation iterations also have the same values.
The values of the output computations correspond to the output arrays, which are
therefore also equal. This proves that the two programs are equivalent.

4. EQUIVALENCE CHECKING

In order to prove equivalence of two dependence graphs we basically follow Defini-
tion 3.7 and propagate from the output to the input what correspondences between
computation iterations we should prove. These correspondences are maintained
in an equivalence tree which is dynamically constructed as the equivalence proof
proceeds. Once we hit computations with zero out-degree (either input compu-
tations or constant functions), we propagate back to the output what we have
actually been able to prove. There are several reasons for this two-way propaga-
tion. Firstly, the discrepancy between what has to be proved and what is actually
proved helps in debugging when the equivalence proof fails; secondly, as will become
clear, propagating both ways will facilitate a better treatment of recurrences and
commutativity.
The remainder of this section explains our equivalence checking algorithm shown

in Algorithm 1. We first describe the equivalence tree. The main steps in our algo-
rithm are then described as handling nodes in this equivalence tree. In particular,
we first describe some easy cases (Section 4.2), followed by basic propagation (Sec-
tion 4.3), propagation over commutative operations (Section 4.4) and propagation
over recurrences (Section 4.5). After a more detailed comparison to Shashidhar
et al. [2005] (Section 4.6) and a note on tabling (Section 4.7), we conclude with a
proof of termination and soundness (Section 4.8).

4.1 The Equivalence Tree

The Rwant
n relation or what has to be proved. The propagation from output to

input constructs an equivalence tree. Each node n in the equivalence tree expresses

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 17

1 for (i=0; i<N; ++i)

2 t[N-1-i]=f(In[i]);

3 t[0]=g(t[0]);

4 for (i=0; i<N; ++i)

5 Out[i]=h(t[N-1-i]);
(a) Program A

1 for (i=0; i<N; ++i)

2 t[i]=f(In[i]);

3 t[0]=g(t[0]);

4 for (i=0; i<N; ++i)

5 Out[i]=h(t[i]);
(b) Program B

Fig. 7. Two programs that are almost equivalent.

a correspondence between a pair of computations, one from each dependence graph.
The two computations involved are denoted vn,1 and vn,2. More specifically, each
node n expresses that certain iterations of vn,1 should or have been proved to be
equivalent (as in Definition 3.7) to certain iterations of vn,2. The desired corre-
spondence between the iterations of both computations is captured by the Rwant

n

relation, a subset of the Cartesian product of the corresponding iteration domains,
Rwant

n ⊆ Dvn,1
↔ Dvn,2

. This particular annotation of an equivalence node remains
unaltered during the execution of the equivalence checker. The other annotations,
described below, may change when the equivalence node is processed.

The Rlost
n relation or what has not been proved. The final result of a node is stored

in the relation Rlost
n ⊆ Rwant

n , which contains the pairs of computation iterations
for which we have not been able to prove equivalence. The pairs of iterations that
have been proved equivalent is then given by the difference of the two relations, i.e.,
Rgot

n = Rwant
n \ Rlost

n . Note that the exposition of Verdoolaege et al. [2009] keeps
track of an Rgot relation instead of an Rlost relation. We prefer Rlost here because
in the ideal case, most Rlost relations are empty and therefore easier to manipulate.
Furthermore, the use of Rlost is required for some extensions of the basic algorithm
that are described by Verdoolaege et al. [2010].

Initialization of the equivalence tree. The initial equivalence tree consists of a
single root node n0 that models the equivalence to be proved between the output
arrays of both programs. For this root, we have Rwant

n0
= {u(i) ↔ v(i) | i ∈ D} with

D the domain of the output computation (i.e., the domain of the output array).
This relation expresses the intention to show that both arrays are identical. The
computation of Rlost

n0
typically requires the construction and handling of some child

nodes. These children, along with their descendants, are visited in depth-first order.
At the end of the equivalence checking procedure the Rlost

n0
relation of the root node

will be set. The proof is successful when Rlost
n0

= ∅.

Example 4.1. Figure 9 shows the equivalence tree for the pair of programs in
Figure 7. The second program is obtained from the first by applying a data trans-
formation on the temporary array t. However, the transformation has not been
applied to the statement calling g. The two programs are therefore not completely
equivalent. The dependence graph of the first program is shown in Figure 8. The
dependence graph of the second program is very similar. The only difference is in
the dependence relations. In particular, the second program has {vB3 () → vB2 (0)},
{vB4 (0) → vB3 ()} and {vB4 (i) → vB2 (i) | i ≥ 1}. Most of the equivalence tree will

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

18 · S. Verdoolaege et al.

vA1 : In/1{vA1 (i) | 0 ≤ i < N}

vA2 : f/1{vA2 (i) | 0 ≤ i < N}

{vA2 (i) → vA1 (i)}

vA3 : g/1{vA3 ()}

{vA3 () → vA2 (N − 1)}

vA4 : h/1{vA4 (i) | 0 ≤ i < N}

{vA4 (N − 1) → vA3 ()}

{vA4 (i) → vA2 (i) | i ≤ N − 2}

vA5 : Out/1{vA5 (i) | 0 ≤ i < N}

{vA5 (i) → vA4 (i)}

Fig. 8. Dependence graph GA of the program in Figure 7(a).

n1 : 〈Out ↔ Out〉
Rwant

n1
= {vA5 (i) ↔ vB5 (i) | 0 ≤ i ≤ N − 1}

Rlost
n1

= {vA5 (i) ↔ vB5 (i) | i = 0 ∨ i = N − 1}

n2 : 〈h ↔ h〉
Rwant

n2
= {vA4 (i) ↔ vB4 (i) | 0 ≤ i ≤ N − 1}

Rlost
n2

= {vA4 (i) ↔ vB4 (i) | i = 0 ∨ i = N − 1}

n3 : 〈f ↔ f〉
Rwant

n3
= {vA2 (i) ↔ vB2 (i) | 1 ≤ i ≤ N − 2}

Rlost
n3

= ∅
n5 : 〈f ↔ g〉

Rwant
n5

= {vA2 (0) ↔ vB3 ()}

n6 : 〈g ↔ f〉

Rwant
n6

= {vA3 () ↔ vB2 (N − 1)}

n7 : 〈g ↔ g〉

Rwant
n7

= ∅

n4 : 〈In ↔ In〉
Rwant

n4
= {vA1 (i) ↔ vB1 (i) | 1 ≤ i ≤ N − 2}

Rlost
n4

= ∅

Fig. 9. Equivalence tree for the programs in Figure 7. Each node is represented by its name and
the pair of operations involved in the computations. The computations themselves can be read
off from the Rwant annotations.

be explained in later examples. The root node n1 of the tree expresses the de-
sired equivalence of the output arrays. Since the output arrays are one-dimensional
arrays in this example, we have Rwant

n1
= {vA5 (i) ↔ vB5 (i) | 0 ≤ i ≤ N − 1}.

4.2 Trivial Cases

We first discuss a couple of trivial cases where the Rlost
n relation can be deter-

mined without the creation of any child nodes. These are the first three cases in
Algorithm 1. The remaining cases will be explained in later sections. If the cur-
rent node n has an empty Rwant

n , then there is nothing to prove and then also no
correspondence that cannot be proved. The Rlost

n relation is therefore empty. The
opposite conclusion holds if the computations of the node have different operations,
neither of which is the copy operation id. According to Definition 3.7, iterations of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 19

Algorithm 1: Try and handle node n in the equivalence tree

Input: dependence graphs Gi = 〈Vi, Ei, s, t, λv, λe〉, i = 1, 2; node n, with
computations v1 and v2 and relation Rwant

n

Output: relation Rlost
n

Modifies: node n
Throws: widen(a, Rwant), with a any ancestor of n

Initialize Rneed
n = ∅1

try2

if Rwant
n = ∅ then /* Empty */3

Set Rlost
n = ∅4

else if id 6= fv1
6= fv2

6= id then /* No-match */5

Set Rlost
n = Rwant

n6

else if both computations refer to the same input then /* Input */7

Set Rlost
n = Rwant

n \ {u(i) ↔ v(i)}8

else if there is a non-ancestor node s with svi
= nvi

and9

Rwant
n ∩Rwant

s 6= ∅ then /* Tabling */

Create a new child node n′ with same computations and10

Rwant
n′ = Rwant

n \Rwant
s

Try and handle n′ (Algorithm 1)11

Set Rlost
n = (Rlost

s ∩Rwant
n) ∪Rlost

n′12

else if there is an ancestor node a with avi
= nvi

and n is not marked13

then

let a be the closest ancestor of n with avi
= nvi

in14

if a is a narrowing node or Rwant
n ⊆ Rwant

a then /* Induction */15

Set Rlost
n = Rwant

n \Rwant
a16

Add Rwant
a ∩Rwant

n to Rneed
a17

else /* Widening */18

/* a is not a narrowing node and Rwant
n 6⊆ Rwant

a */

throw widen(a, Rwant
n)19

else20

Handle propagation node n (Algorithm 2)21

catch widen(n, Rwant) /* Widening */22

Remove all children of n23

Create a new child node n′ with same computations and24

Rwant
n′ = Rwant

n ∇Rwant

Mark n′ as widening25

Try and handle n′ (Algorithm 1)26

Set Rlost
n = Rlost

n′ ∩Rwant
n /* Backpropagation */27

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

20 · S. Verdoolaege et al.

such computations can never be equivalent and so we fail to prove anything that we
wanted to prove, i.e., Rlost

n = Rwant
n . Finally, if both computations of the node are

input computations with identical “operations” (in this case, input array names),
then, again according to Definition 3.7, we can only prove identical iterations (array
indices) to be equivalent.

Example 4.2. In the equivalence tree in Figure 9, node n7 has an empty Rwant,
while nodes n5 and n6 have conflicting operations. In node n4, both computations
refer to the same input array. Since Rwant

n4
is a subset of the identity mapping, we

are able to prove it completely.

4.3 Basic Propagation

Propagation is the main step in our equivalence checking algorithm. Given an
equivalence node n relating two computations with the same operation, this step will
propagate the Rwant

n relation over all pairs of edges with the same argument position
emanating from the two computations in their respective dependence graphs. For
each of these pairs of edges, a child node c is created with Rwant

c the result of this
propagation. These Rwant

c relations are constructed in such a way that equivalence
of all of them implies equivalence of the original Rwant

n . However, we may not be able
to prove equivalence for all of them completely and so we have to propagate back
what we actually have (not) been able to prove. That is, once the Rlost

c relations of
all the children have been computed, they are propagated back to compute Rlost

n of
the original equivalence node. The propagation algorithm is shown in Algorithm 2.
We first explain the standard propagation, starting at Line 6, and then the copy
propagation, starting at Line 1. The induction condition in Line 10 will be examined
in Section 4.5.
More precisely, let Tn,p1,p2

be the set of all pairs of edges leaving computations
vn,1 and vn,2 with argument positions p1 and p2, respectively, i.e.,

Tn,p1,p2
= { (e1, e2) ∈ EG1

× EG2
| s(e1) = vn,1, s(e2) = vn,2, pe1 = p1, pe2 = p2 },

and let Tn be the set of pairs of edges with the same argument positions, i.e.,

Tn =
⋃

1≤p≤rvn,1

Tn,p,p, (4)

then for each such pair of edges (e1, e2) ∈ Tn a child node ce1,e2 is created. We
are assuming here that fvn,1

= fvn,2
is a non-commutative operator. For handling

commutative operators, we refer to Section 4.4. The relation Rwant
ce1,e2

is obtained by

propagating Rwant
n over the dependence relations of both edges, i.e.,

Rwant
ce1,e2

= (Me1 ↔ Me2)R
want
n , (5)

with Me1 ↔ Me2 the cross product of Me1 : Dv1
→ Du1

and Me2 : Dv2
→

Du2
. Recall that the domains of the dependence relations M of all edges for a

given argument position partition the domain of a node. Hence, for each argument
position, Rwant

n is partitioned by the domains of the combined dependence relations,
i.e., each element of Rwant

n is mapped to an element of the Rwant
c of exactly one child

c corresponding to this argument position.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 21

Algorithm 2: Handle propagation node n

Input: Gi = 〈Vi, Ei, s, t, λv, λe〉, i = 1, 2; node n with computations v1 and v2
Output: relation Rlost

n

Modifies: node n
Throws: widen(a, Rwant), with a equal to n or any ancestor of n
Requires: —at least one computation of n is not an input

—one of the following conditions
—n is narrowing or widening
—there is no ancestor with the same computations

if at least one of the computations is a copy operation then /* Copy */1

let vi be the first copy operation in2

Add child nodes {cj}j for each edge ej emanating from vi3

Try and handle child nodes cj (Algorithm 1)4

Set5

{

Rlost
n =

⋃

j(M
−1
ej

↔ 1Dv2
)Rlost

cj
if i = 1

Rlost
n =

⋃

j(1Dv1
↔ M−1

ej
)Rlost

cj
if i = 2

else /* Propagation */6

Create child nodes {c(e1,e2)}(e1,e2) for each pair of edges (e1, e2) emanating7

from v1 and v2
Try and handle child nodes c(e1,e2) (Algorithm 1)8

Set Rlost
n according to formula (6) or (7) /* Backpropagation */9

if Rneed
n ∩Rlost

n 6= ∅ then10

Remove all children of n11

Reset Rneed
n = ∅12

if n is not narrowing then /* First Narrowing */13

Create child node n′ with same computations and Rwant
n′ = Rwant

n \Rlost
n14

Mark n′ as narrowing15

Try and handle n′ (Algorithm 1)16

Reset Rlost
n = Rlost

n ∪Rlost
n′ /* Finish Narrowing */17

else /* Second Narrowing */18

Reset Rlost
n = Rwant

n19

If any pair of iterations in Rwant
c in any of the children c could not be proved

equivalent, then the corresponding pair of iterations of Rwant
n cannot be proved

equivalent either. The Rlost
n relation is therefore simply the union of all Rlost

c rela-
tions mapped back to the original space (Line 9 of Algorithm 2), i.e.,

Rlost
n =

⋃

(e1,e2)∈Tn

(

M−1
e1

↔ M−1
e2

)

Rlost
ce1,e2

 ∩Rwant
n . (6)

Note that the union is taken both over all argument positions and over all edges
with a given argument position. The intersection with Rwant

n may seem redundant,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

22 · S. Verdoolaege et al.

and indeed it usually is. It is only needed in case this backpropagation is applied
to a node created not during propagation, but during widening, see Section 4.5.
If one or both of the computations of the equivalence node n refers to a copy

operation id, then propagation and backpropagation is only performed on the first
(or only) copy computation (Line 5 of Algorithm 2). In particular, assume compu-
tation vn,1 refers to a copy operation, then Tn only contains edges emanating from
vn,1 and Me2 in (5) and (6) is replaced by an identity mapping. The reason for
always picking the first computation to perform propagation on in case both refer
to a copy operation, is that this consistency will be advantageous for induction and
tabling, discussed below.

Example 4.3. Figure 10 shows a partial equivalence tree for the dependence
graphs in Figure 2 and Figure 3, which correspond to the programs in Figure 1.
The figure shows the tree in two stages of its lifetime, one before the widening
step explained in Section 4.5 and one after. Most of this tree will be explained
in later examples. The root node n1 expresses a correspondence between output
computation v17 in dependence graph G1 (Figure 2) and output computation v29
in dependence graph G2 (Figure 3), with Rwant

n1
= { v17() ↔ v29() }(not shown in

the figure). The output computations have one outgoing edge, hence one child is
created. Since the mappings on these edges are both identity mappings, we obtain
the child 〈(Line 4, id/1) ↔ (Line 12, id/1)〉 (as in the figure, we do not identify the
computation by its name, but by part of its label) with Rwant

n2
= {v16() ↔ v28()},

i.e., the copy operations in Line 4 of Program 1 and Line 12 of Program 2 should
compute the same value. Each of these computations has two outgoing edges,
but the constraints N = 1 and N ≥ 2 are pairwise incompatible, so two of
the four children have Rwant = ∅ and are therefore not shown in the figure.
Of the two other children, one is constrained with N = 1 and the other with
N ≥ 2. The correspondence of the latter, 〈(Line 3,+/2) ↔ (Line 10,+/2)〉, has
Rwant

n5
= {v15(N − 1) ↔ v27(N − 1) | N ≥ 2} expressing that the addition on Line 3

of Program 1 and the addition on Line 10 of Program 2 should compute the same
value in iteration N − 1 (when N ≥ 2).

Example 4.4. Consider once more the equivalence tree in Figure 9. Since nodes n5
and n6 refer to conflicting operations, their Rlost relations are equal to their Rwant

relations. Propagating these relations back to node n2 results in Rlost
n2

= {vA4 (i) ↔
vB4 (i) | i = 0 ∨ i = N − 1}.

4.4 Propagation over Commutative Operations

Propagation over commutative operations requires a bit more work. According to
Definition 3.7, a pair of iterations in the Rwant relation of an equivalence node
corresponding to commutative operations is considered equivalent if there is a per-
mutation of the arguments such that the arguments in one dependence graph are
equivalent to the permuted arguments in the other dependence graph. Since we do
not know in advance which of the permutations should be selected for which of the
elements in Rwant, we have to consider all permutations for all elements. That is,
we do not only create children for the pairs of edges in Tn (4), but instead for all
pairs of edges in ∪π∈ΠT

π
n , with Π the set of all permutations of the rvn,1

arguments

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 23

n1 : 〈Out ↔ Out〉

n2 : 〈(Line 4, id) ↔ (Line 12, id)〉

N≥2

. . . n5 : 〈(Line 3,+) ↔ (Line 10,+)〉 Rwant
n5

={v1
5(N−1)↔v2

7(N−1)|N≥2}

. . . n10 : 〈(Line 3, g) ↔ (Line 5, g)〉

N−1=2α

. . .

n11 : 〈(Line 3,+) ↔ (Line 10,+)〉 Rwant
n11

={v1
5(N−2)↔v2

7(N−2)|∃α:N−1=2α,N≥3}

(a) Before widening

n1 : 〈Out ↔ Out〉

n2 : 〈(4, id) ↔ (12, id)〉
N=1

N≥2

. . . n5 : 〈(3,+) ↔ (10,+)〉 Rwant
n5

={v1
5(N−1)↔v2

7(N−1)|N≥2}

n12 : 〈(3,+) ↔ (10,+)〉 Rwant
n12

={v1
5(i)↔v2

7(i)|1≤i≤N−1};Rlost
l =∅(Rneed

n12
=Rwant

n18
∪Rwant

n22
)∩Rlost

n12
=∅

. . . n17 : 〈(3, g) ↔ (5, g)〉

i=2α

Rwant
n10

⊂Rwant
n17

n19 : 〈(3, g) ↔ (7, g)〉

i=2α+1

n18 : 〈(3,+) ↔ (10,+)〉

Rwant
n18

={v1
5(i)↔v2

7(i)|∃α:i=2α+1,1≤i≤N−2}⊆Rwant
n12

n20 : 〈(1, id) ↔ (1, id)〉 n22 : 〈(3,+) ↔ (10,+)〉

Rwant
n22

={v1
5(i)↔v2

7(i)|∃α:i=2α,2≤i≤N−2}⊆Rwant
n12

n21 : 〈in ↔ in〉

Rwant
n21

={v1
1(0)↔v2

1(0)|N≥2};Rlost
n21

=∅

(b) After widening

Fig. 10. Partial equivalence tree for the dependence graphs in Figure 2 and Figure 3.

and Tπ
n the sets of pairs of edges with arguments permuted according to π, i.e.,

Tπ
n =

⋃

1≤p≤rvn,1

Tn,p,π(p).

Obviously, we cannot just apply (6) during backpropagation because a given pair
of iterations will in most cases only be proved equivalent for one particular permu-
tation of the arguments. The pairs of iterations that we cannot prove equivalent
are then those that cannot be proved equivalent using any permutation, i.e.,

Rlost
n =

⋂

π∈Π

⋃

(e1,e2)∈Tπ
n

(

M−1
e1

↔ M−1
e2

)

Rlost
ce1,e2

 ∩Rwant
n . (7)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

24 · S. Verdoolaege et al.

This approach may seem to lead to an explosion in the number of cases that need
to be considered, but usually the number of arguments of a commutative operator
is fairly small and there is only one permutation that applies to all elements of
Rwant. The other permutations then quickly lead to a contradiction. Our running
example is an exceptional case where different elements of Rwant do require different
permutations.

Example 4.5. In our running example, the +/2 computation of Program 1 (node
v15 of Figure 2) has one outgoing edge for each argument, while node v27 in Figure 3
(the dependence graph of Program 2) has two outgoing edges for each, yielding 8
possible combinations. However, combinations leading to nodes where one com-
putation has operator f and the other computation has operator g result in four
children with Rwant = Rlost = ∅. The other cases result in four children that
contribute to the proof, namely 〈(3, f/1) ↔ (4, f/1)〉 and 〈(3, g/1) ↔ (5, g/1)〉
with constraint i = 2α, and 〈(3, f/1) ↔ (8, f/1)〉 and 〈(3, g/1) ↔ (7, g/1)〉 with
i = 2α+ 1. One of these is shown as a child of node n5 in Figure 10. Once Rlost is
available in each of the children, backpropagation can update Rlost in this node n5.

4.5 Propagation in Presence of Recurrences

If there are any recurrences in both input programs, then a given pair of computa-
tions may (indirectly) depend on itself and this situation requires special care. Our
proof procedure will only terminate if the depth of the equivalence tree is finite.
This in turn means that any given pair of computations may only appear a finite
number of times on any branch of the tree. In this section, we describe how we
ensure that this property holds.

4.5.1 Induction. Let n be the current node under investigation. Assume there
is an ancestor of n with the same pair of computations and let a be the closest such
ancestor to n. In the most fortuitous case we have Rwant

n ⊆ Rwant
a , i.e., what we

want to prove in n is a subset of what we were already trying to prove in a. In
this case, there is no need to perform any propagation on node n as that would
only lead to duplicate work. Instead, we optimistically assume that we will be able
to prove the whole of Rwant

a and so we mark node n as being completely proved,
i.e., we set Rlost

n = ∅. Of course we later need to verify that this assumption was
justified. We use a Rneed relation, initialized to the empty relation, to collect all
such assumptions. In the case at hand, Rneed

a is extended with Rwant
n . The general

case of induction handling starts at Line 15 of Algorithm 1. Since Rwant
n ⊆ Rwant

a

in the case we are discussing here, we have Rlost
n = Rwant

n \ Rwant
a = ∅. Note

that induction is only applied when n is not marked, where a node can be marked
narrowing or widening. The condition ensures that n is a genuine new node resulting
from a propagation step and not a copy of its parent after performing a widening
or narrowing step as described further on in this section. Once we have computed
Rlost

a , we need to check if we have actually proved all our assumptions. This check
is performed in Line 10 of Algorithm 2. What happens when we have not been able
to prove all our assumptions is explained later in this section. Note that due to the
second constraint of Definition 3.1 there is no risk of circular reasoning (“unfounded
sets”) when applying induction. No individual iteration can (indirectly) depend on
itself, hence no pair of individual iterations can depend on itself.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 25

4.5.2 Widening. Now let us consider the case where Rwant
n 6⊆ Rwant

a . We cannot
simply perform propagation on node n as that could lead to an infinite sequence
of equivalence nodes with the same pair of computations. Note that for any fixed
value of the parameters, the iteration domains are bounded, but the values of the
parameters are typically not and so we may indeed end up with ever growing Rwant

relations. But even if the values of the parameters are bounded, then the sequence of
equivalence nodes may still be very long if we were to continue applying propagation,
as we would effectively be unrolling the loops containing the recurrences.

Instead, we draw inspiration from the widening/narrowing technique of abstract
interpretation [Cousot and Cousot 1992] and apply a widening operator ∇. Such a
widening operator turns a possibly infinite ascending chain, e.g., taking the union
with Rwant

n in each descendant with the same pair of computations, into an eventu-
ally stationary chain. As our widening operator, we will essentially use the integer
affine hull, but restricted to the respective iteration domains. That is, we intersect
the integer affine hull with Dvn,1

↔ Dvn,2
and use the resulting relation as Rwant

n′

of a newly created child n′ of node a, replacing the entire tree that was originally
rooted at a. Since the need for widening is detected while handling the descendant,
whereas it needs to be handled at the level of the ancestor, we use exception han-
dling to return directly to the ancestor. In particular, the descendant throws an
exception in Line 19 of Algorithm 1, which is caught by the try-catch block of the
ancestor in Line 22. Backpropagation on the child n′ is performed in essentially
the same way as before. Since the parent-child relation here is not based on any
edges in the dependence graphs, the mappings Me1 and Me2 in (6) are taken to be
identity mappings. In other words, (6) simplifies to

Rlost
a = Rlost

n′ ∩Rwant
a .

To see that taking the integer affine hull is indeed a widening operator, note that
the first time it is applied it sets Rwant

n′ to the intersection of D1 ↔ D2 with some
affine subspace. Any additional widening step is only performed when Rwant

d of a
descendant d of this n′ includes an element not in Rwant

n′ (but still in D1 ↔ D2) and
the widening operator will then increase the dimension of the affine subspace. So,
after a finite number of widening steps, Rwant = D1 ↔ D2, ensuring termination. If
any further equivalence node d′ with the same pair of computations is encountered,
then we will have Rwant

d′ ⊆ Rwant
a′ , with Rwant

a′ the result of the last widening step.
The affine hull not only ensures termination of the widening sequence, it is also a
reasonable heuristic as an affine program will only remain affine if it is transformed
using a (piecewise) affine transformation.

4.5.3 Narrowing. Finally, we need to consider what happens when it turns out
we have been overly optimistic in our induction hypothesis, i.e., when Rneed

n ∩Rlost
n 6=

∅ (Line 10 of Algorithm 2). In this case, the performed induction is not founded
by what we actually can prove. This means that Rwant

n , the current hypothesis,
is an over-approximation of the correct induction hypothesis, or at least of the
induction hypothesis that we are able to prove. In a second phase, we can still
attempt to prove some part of Rwant

n . However, as in the first phase, we need to be
careful not to end up in a possibly infinite sequence of (now) successive subsets of
Rwant

n . Similar to abstract interpretation, we therefore perform a (finite) number

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

26 · S. Verdoolaege et al.

of narrowing steps that decrease Rwant until it can be proved, which is definitely
the case when it becomes empty. Our narrowing operator is fairly simply. The first
time it is applied (Line 13), we replace the tree rooted at n by a new child node n′

and set Rwant
n′ = Rwant

n \ Rlost
n . Then, in any descendant d with the same pair of

computations, we unconditionally apply induction, setting Rlost
d = Rwant

d \ Rwant
n′

(see Line 15 of Algorithm 1). In particular, we do not allow any more widening
steps on this pair of computations. Note that nodes descending from n′ can still
be the subject of widening steps for a different pair of computations (within the
same or another recurrence). When propagation on a narrowing node n has been
performed and the resulting Rlost

n still intersects with its Rneed
n , then we perform a

second and final narrowing step and create a child n′ with the empty set as Rwant
n′ .

Actually, we need not create the child, we can simply set Rlost
n = Rwant

n (Line 18 of
Algorithm 2).

4.5.4 Example. We illustrate the handling of recurrences with an example.

Example 4.6. After applying propagation to node n10 of the equivalence tree in
Figure 10(a), we end up in node n11 which refers to the same pair of computations as
node n5. We haveRwant

n11
= { v15(N−2) ↔ v27(N−2) | ∃α : N−1 = 2α,N ≥ 3 }, while

Rwant
n5

= { v15(N−1) ↔ v27(N−1) | N ≥ 2 }, i.e., Rwant
n11

6⊆ Rwant
n5

. We therefore apply
widening and obtain Rwant

n12
= Rwant

n5
∇Rwant

n11
= { v15(i) ↔ v27(i) | 1 ≤ i ≤ N − 1 }.

The new node n12 replaces the entire tree rooted at n5, as shown in Figure 10(b).
We now have Rwant

n12
6⊆ Rwant

n5
, but n12 is marked (as widening) and therefore no

widening is applied to this node (Line 13 of Algorithm 1). Instead, we perform
propagation on n12 in much the same way as we did on n5 in Example 4.5. Another
propagation step on the resulting node n17 yields node n18, with the same pair of
computations as node n12. Since the condition Rwant

n18
⊆ Rwant

n12
in Line 15 holds, we

apply induction and set Rlost
n18

to ∅ and update Rneed
n12

. A very similar story happens
in node n22. After propagating the results back to node n12, we see that Rlost

n12
= ∅,

meaning that all the induction hypotheses have been validated and there is no need
for a narrowing phase.

4.6 Comparison to Shashidhar et al. [2005]

Like those of Barthou et al. [2002] and Alias and Barthou [2003], the approach of
Shashidhar et al. [2005] and Shashidhar [2008], essentially only propagates infor-
mation from output to input, whereas we propagate information in both directions.

Our approach for handling commutative operations is also different from the
solution proposed by Shashidhar et al. [2005] (without implementation). They
propose to consider all permutations of the arguments of the second computation
separately and to use a look ahead mechanism to figure out which permutation is
correct. However, this proposal would not work on our running example as neither
of the two possible permutations is correct on its own. One only holds for the even
values of i (i = 2α) and the other only for odd values of i (i = 2α + 1); the proof
attempt of Shashidhar et al. [2005] gets stuck.
Our recurrence handling differs substantially from that of Shashidhar et al. [2005].

The program model used in that work makes it non trivial to find the ancestor/de-
scendant pair over which both programs have performed the same computation.
They need an unfolding operation to identify the pair, then they compute the across

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 27

dependence relation that corresponds to the computation performed between ances-
tor and descendant and use that relation in a complex operation that involves the
calculation of the transitive closure (implemented in the Omega library) that yields
the equivalences to be proved for the edges leaving the recurrence. This computa-
tion requires the recurrences to be uniform while our method can also handle non
uniform recurrences. Furthermore, their representation of proof obligations only al-
lows an element of an output array to depend on a single element of another array
along any path in the program. In particular, if a program contains a loop with
body A[i] = A[i-1] + B[i], then they are unable to express that A[N] depends
on B[i] for all iterations i of the loop. After stepping over the recurrence, they
will therefore ignore all but one of these elements B[i].

4.7 Tabling

It is quite common for a program to reuse some of the data it has computed.
While checking for the equivalence of two such programs we may then end up in an
equivalence node that we have already (partially) proved equivalent. In such a case,
we want to avoid repeating the proof and instead also reuse the equivalence proof.
In particular, assume that the current node n has the same pair of computations
as some non-ancestor node s and that their Rwant relations overlap. We may then
simply copy the results obtained in s for the overlapping part. A new child n′ is
created for handling the possibly empty remainder of Rwant

n , i.e., Rwant
n \Rwant

s . In
Algorithm 1, tabling starts at Line 9.
Note that the results in s may depend on some induction hypotheses. In order

to ensure the validity of the copied results, we need to impose that the equivalence
tree is traversed in depth-first order. Let a be the closest common ancestor of n
and s. If the conclusions in s depend on induction steps performed with respect to
a node on the path between s and a, then these induction steps have already been
validated. Otherwise, the tree rooted at that node, including s, would have been
removed already. If there is a dependence on node a or any of its ancestors, then
these assumptions will still be validated. If they turn out to be unsubstantiated,
then the corresponding tree will again be removed and this tree includes both s
and n. In no case is an assumption then allowed to escape validation. Note that
the table used for tabling can also be used to detect recurrences.

4.8 Termination and soundness

We will now proceed to prove termination and soundness of our equivalence checking
procedure shown in Algorithm 1. Our procedure is not complete since the problem
of checking the equivalence of static affine programs is undecidable [Barthou et al.
2002]. For the purpose of the proofs, we will consider steps that cut away parts of
the equivalence tree as not actually removing any nodes, but just marking them as
having been deleted. For example, when we say the equivalence tree is finite, then
this means that the total number of nodes ever visited is finite and not just the
number of nodes that are left over at the end of the procedure. During our proofs we
will also use the convention that a relation (Rwant, Rlost, Rneed or any boolean com-
bination of these relations) evaluates to true iff each pair of computation iterations
in the relation computes the same value.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

28 · S. Verdoolaege et al.

Lemma 4.7. Algorithm 1 terminates. That is, given two finite dependence graphs
G1 and G2, the corresponding equivalence tree is finite.

Proof. There are four steps that create new children, at most |E1||E2| by For-
ward Propagation (Line 3 and Line 7 of Algorithm 2), with Ei the edges of Gi, one
by Widening (Line 24 of Algorithm 1), one by Narrowing (Line 14 of Algorithm 2)
and one by Tabling (Line 10 of Algorithm 1). Propagation and tabling create the
initial children of a node, while widening and narrowing create at most one addi-
tional child for any given node and are then never applied on the same node again.
The number of children of any node is therefore bounded by |E1||E2|+ 1.
Now let us consider the depth of the tree and let us first ignore tabling. If a

node n has the same pair of computations as an ancestor of n, then Propagation
is only applied if n is narrowing or widening (Line 13 of Algorithm 1). These
narrowing and widening nodes appear as direct children of other nodes with the
same pair of computations. Any pair of computations can therefore appear at most
1+d1+d2+1+1 times in any branch of the equivalence tree. The first is the initial
occurrence of the pair, immediately followed by at most d1 + d2 widening nodes,
with di the dimension of the iteration domain of computation vi, possibly followed
by one narrowing node and one leaf node. Since there is only a finite number of
computation pairs, the depth of the equivalence tree is finite. Tabling can increase
the number of nodes with the same pair of computations on a branch, but only by
a finite amount. The equivalence tree is therefore finite.

The following lemma expresses that equivalences between computations that the
algorithm derives in the nodes of the equivalence tree (Rwant

n \ Rlost
n) indeed hold

under the assumption that the equivalences expressed in the Rneed relation of the
ancestors of that node hold.

Lemma 4.8. For any undeleted and handled node n, any pair of iterations in the
relation Rwant

n \ Rlost
n computes the same value if every pair of iterations in Rneed

a

for any ancestor a of n computes the same value, i.e.,

∧

a∈A(n)

Rneed
a

 ⇒ Rwant
n \Rlost

n , (8)

with A(n) the set of ancestors of n.

Proof. First note that this property is stable, in the sense that once proved
at a certain point in the execution, it will remain true throughout the rest of
the execution because a node n is never changed after it has been handled and
further steps can only add elements to the Rneed

a and never remove elements from
these relations. The only exception is Line 12 of Algorithm 2, but this happens
immediately after any node that may depend on Rneed

n has been deleted. We will
proof this lemma by induction on the order in which handling of nodes is finished,
i.e., a depth-first postordering of the equivalence tree. We consider nine cases.

—Empty (Line 3 of Algorithm 1)
Rwant

n \Rlost
n = ∅, so (8) trivially holds.

—Input (Line 7 of Algorithm 1)
Rwant

n \Rlost
n = Rwant

n ∩ {u(i) ↔ v(i) } holds by Definition 3.7.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 29

—Tabling (Line 9 of Algorithm 1)
The induction hypothesis holds for both the non-ancestor s and for the child n′,
hence

∧

t∈A(s)

Rneed
t

 ⇒ Rwant
s \Rlost

s (9)

and

∧

t∈A(n′)

Rneed
t

 ⇒ Rwant
n′ \Rlost

n′ . (10)

Because we traverse the tree in depth-first order, any ancestor t of s that is not
also an ancestor of n, i.e., any node on the path (s, a), with a the closest common
ancestor of s and n, has been handled and therefore has Rneed

t ∩ Rlost
t = ∅,

i.e., Rneed
t ⊆ Rwant

t \ Rlost
t . (Either this condition already holds in Line 10 of

Algorithm 2, or it is made to hold in Line 12.) Let t1 be the parent of s, then
by applying the induction hypothesis to t1, R

need
t1

⊆ Rwant
t1

\Rlost
t1

on the lefthand
side of (9) can be replaced by the conjunction of Rneed

t for all ancestors t of t1.
Since A(t1) ⊂ A(s), this means we can simply drop Rneed

t1
. This process can be

continued for all nodes on the path between s and a, resulting in

∧

t∈A(a)

Rneed
t

 ⇒ Rwant
s \Rlost

s .

In this formula, a can safely be replaced by n, because this replacement only adds
extra conditions. Since n′ has the same pair of computations as n, n will never
be used as a closest ancestor during induction (Line 15 of Algorithm 1), so we
have Rneed

n = ∅ and n may be dropped from the antecedent in (10). Combining
these results, we have

∧

a∈A(n)

Rneed
a

 ⇒ (Rwant
s \Rlost

s) ∪ (Rwant
n′ \Rlost

n′) = Rwant
n \Rlost

n ,

as required.

—Induction (Line 15 of Algorithm 1)
We have Rwant

n \Rlost
n = Rwant

n ∩Rwant
a ⊂ Rneed

a and so the lemma trivially holds.

—Widening (Line 27 of Algorithm 1)
Since n′ has the same pair of computations as n, n will never be used as a closest
ancestor during induction (Line 15 of Algorithm 1), so we have Rneed

n = ∅. As in
the case of Tabling, we may therefore drop n from the antecedent of the results
of the lemma on node n′.

—First Narrowing (Line 13 of Algorithm 2)
By induction, the property holds for n′. Again n may be dropped from the
antecedent and we obtain

∧

a∈A(n)

Rneed
a

 ⇒ Rwant
n′ \Rlost

n′ = (Rwant
n \Rlost

n)\Rlost
n′ = Rwant

n \ (Rlost
n ∪Rlost

n′),

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

30 · S. Verdoolaege et al.

with Rlost
n the value before the update and Rlost

n ∪ Rlost
n′ the updated value of

Rlost
n .

—Second Narrowing (Line 18 of Algorithm 2)

In this case, Rwant
n \Rlost

n = ∅ and so the lemma trivially holds.

—Propagation (Line 6 of Algorithm 2)

If the condition in Line 10 holds, then we apply one of the narrowing steps
discussed before. Otherwise, we have Rneed

n ∩ Rlost
n = ∅. By induction, we also

have that (8) holds in all the children of n. Using Definition 3.7 and (6) or (7)
as appropriate, we conclude

∧

a∈{n}∪A(n)

Rneed
a

 ⇒ Rwant
n \Rlost

n .

To eliminate the extra Rneed
n in the antecedent, we appeal to a second induction

on essentially the execution order. By the second condition of Definition 3.1, no
element of an iteration domain depends on itself and therefore also no pair of
iterations can depend on itself. Fix a value for the parameters and take any fixed
element (i, i′) from Rneed

n ⊆ Rwant
n \Rlost

n for that value of the parameters. Repeat
the proof for this particular element without performing any widening. Since we
have fixed the value of the parameters, this is a finite process. If we can prove
equivalence without performing induction on this pair of computations, then the
(i, i′) can be dropped from the antecedent of the above formula. Otherwise, the
resulting Rneed only contains elements that are obtained through successive ap-
plications of the dependence relations and therefore does not contain the element
(i, i′). This process can be repeated on this resulting Rneed and no element will
ever reappear in any of the successive Rneed relations. Since the iteration domains
are finite for fixed values of the parameters (third condition of Definition 3.1),
this process terminates and we can drop (i, i′) from the antecedent also in this
case. By repeating for all values in Rneed

n and all values of the parameters, we
can drop the whole Rneed

n from the antecedent.

—Copy Propagation (Line 1 of Algorithm 2)

This case is proved in the same way as Propagation and thereby completes the
proof.

Theorem 4.9. If Rlost
n0

= ∅, with n0 the initial node in the equivalence tree, then
the two dependence graphs are equivalent.

Proof. After termination of the algorithm (Lemma 4.7), the initial node n0 has
been handled. Since n0 is the root node, it has no ancestors, i.e., A(n0) = ∅. By
Lemma 4.8, this in turn means that

Rwant
n0

\Rlost
n0

= Rwant
n0

holds.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 31

5. IMPLEMENTATION DETAILS

The proof procedure of Algorithm 1 has been implemented as part of our C++
isa (http://www.kotnet.org/~skimo/loop/isa-0.12.tar.bz2) prototype tool
set. The tool set contains a polyhedral model extractor [Verdoolaege and Grosser
2012] from C based on LLVM/clang and an exact dependence analysis tool.

As to the manipulation of integer sets and relations, it is important that any
library used to perform these manipulations should support parameters and exis-
tentially quantified variables. Previous approaches to equivalence checking of static
affine programs used the Omega library [Kelly et al. 1996] for this purpose, as it
provides the required functionality. Fu et al. [2006] later also identified this library
as being the only library available at the time that was suited for equivalence check-
ing. However, the library has been unmaintained for many years and suffers from
various unimplemented corner cases, rendering it unreliable. Only very recently,
some (possibly all) of these issues have been resolved in the Omega+ library [Chen
2009].

Instead, we use our own thread-safe C library called isl [Verdoolaege 2010],
which uses GMP to perform all its integer manipulations in exact integer arithmetic
and is available from http://freecode.com/projects/isl/. The interface of the
library is somewhat reminiscent of that of Omega, but the underlying implemen-
tation is completely different. The library provides several advanced operations
such as the integer affine hull needed for our widening operation and dependence
analysis [Feautrier 1991]. The implementation of the integer affine hull is based on
finding integer points using an integer linear feasibility solver based on generalized
basis reduction [Cook et al. 1991] and then computing the affine hull [Karr 1976].
An efficient integer linear feasibility solver is also crucial for our equivalence check-
ing procedure as it needs to check at many stages whether an integer set or relation
is empty.

Each set/relation is represented by a union of “basic sets”, each of which is de-
fined by a conjunction of linear inequalities. If an Rwant relation is a union of basic
sets, a node is created for each of its basic sets. All nodes with the same pair of
computations are kept in a list accessible through a hash table keyed on the given
pair, which is used both for tabling and detecting recurrences. The implemented
algorithm differs slightly from the exposition above. In particular, we never re-
move any node from the equivalence tree or restart a proof, but instead extend
the tree while keeping track of all the induction hypotheses that have been made.
The implementation also contains various other optimizations to avoid redundant
computations.

In order to be able to perform some experimental comparison with related work,
we have also implemented the technique of Barthou et al. [2002]. This technique
essentially constructs an automaton with states corresponding to pairs of nodes
from two dependence graphs and transitions between two states if equality of one
requires equality of the other. The initial state corresponds to equal outputs and
leaf states may be failures states or success states (i.e., equal inputs). The regu-
lar expression for all paths from the initial state to each leaf states are converted
into an accessibility relation by replacing concatenation by composition, branches
by union and cycles by transitive closures. In order to have equivalence, the ac-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

http://www.kotnet.org/~skimo/loop/isa-0.12.tar.bz2
http://freecode.com/projects/isl/

32 · S. Verdoolaege et al.

for (k=0; k <256; k++)

t1[k]=A[2*k]+f(B[k+1]);

for (k=10; k<138; k++)

t2[k]=B[k-8];

for (k=10; k<266; k++){

if(k >= 138)

t2[k]=B[k-8];

t3[k -10]=f(A[2*k -19])+ t2[k];

}

for (k=255; k>=0; k--)

C[3*k]=t1[k]+t3[k];

for (k=0; k <256; k++) {

t4[k]=f(A[2*k+1])+A[2*k];

t5[k]=B[k+2]+t4[k];

C[3*k]=f(B[k+1])+ t5[k];

}

Fig. 11. A pair of equivalent programs from Shashidhar et al. [2005].

cessibility relations should be empty for failure states and covered by equality of
input array indices for success states. In our implementation, we use VAUCANSON

[Lombardy et al. 2004] to compute regular expressions and isl to perform all re-
lation manipulations. It should be noted that an implementation based on Omega

would not be sound as Omega computes underapproximations of transitive closures
[Kelly et al. 1996, Section 6.4], meaning that some equivalence conditions may get
lost. The transitive closure operation of isl, on the other hand, computes over-
approximations, possibly resulting in spurious conditions, but never dropping any
required conditions. Our implementation has also been shown to be more accurate
than Omega’s on this type of inputs [Verdoolaege et al. 2011].
Besides the approach of Barthou et al. [2002] itself, we have also implemented a

simplified variation. In this variation, we do not compute a regular expression for
all paths in the automaton, but instead compute the accessibility relation directly
as the transitive closure of the pairs of dependence relations.
The tool of Shashidhar [2008] was developed outside of our university and we

were unable to obtain a working copy of the tool for performing a comparative
experiment. Given the fundamental problems of the technique of Shashidhar et al.
[2005] highlighted in Section 4.6, we did not feel it worthwhile to also reimplement
this technique.

6. EXAMPLES AND EXPERIMENTS

Figure 11 reproduces the motivating example of Shashidhar et al. [2005]. The
programs are only equivalent if the + operator is treated as both associative and
commutative. Figure 12 shows a pair of programs with output arrays out that are
not equivalent (unless N = 0) because b[0] is assigned a different value in the two
programs. However, Shashidhar [2008] will not detect this error (except for N = 1).
His equivalence checker will notice that the values of A[N] need to be equal, which
in turn (for values of N large enough) means that both the values of b[N-1] and
those of A[N-1] need to be equal. The first pair is easily seen to be equal. For the
second pair, the equivalence checker will detect a recurrence and move straight to
the base case, i.e., that the values of A[0] should be equal, completely ignoring the
fact the values of b[i-1] should also be equal for all values of i along the recurrence.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 33

if (N >= 0) {

a[0] = 5;

b[0] = 3;

for (i = 1; i <= N; ++i) {

a[i] = b[i-1] + a[i-1];

b[i] = in[i-1];

}

out = a[N];

}

if (N >= 0) {

a[0] = 5;

b[0] = 2;

for (i = 1; i <= N; ++i) {

a[i] = b[i-1] + a[i-1];

b[i] = in[i-1];

}

out = a[N];

}

Fig. 12. A pair of non-equivalent programs.

A[0] = in;

for (i = 1; i <= N; ++i)

A[i] = f(g(A[i/2]));

out = g(A[N]);

A[0] = g(in);

for (i = 1; i <= N; ++i)

A[i] = g(f(A[i/2]));

out = A[N];

Fig. 13. A pair of equivalent programs with a non-uniform recurrence.

sum = 0;

for (i = 0; i < N; ++i)

for (j = 0; j < i; ++j)

sum = sum + a[i][j];

out = sum;

Fig. 14. A program with a piecewise uniform recurrence.

Figure 13 shows a pair of programs that contain a non-uniform recurrence. The
approaches of Barthou et al. [2002] and Shashidhar et al. [2005] cannot handle such
non-uniform recurrences. Note that the A arrays of both programs store different
values, so our tool cannot prove the equivalence of A. It can, however, prove the
equivalence of the out arrays. Figure 14 shows a program with a piecewise uniform
dependence. That is, the first iteration of the inner loop depends on the previous
iteration of the outer loop, while the other iterations of the inner loop depend
on the previous iteration of this inner loop. Computing the transitive closure of
this dependence relation itself is fairly easy. However, the approaches of Barthou
et al. [2002] and Shashidhar et al. [2005] operate on pairs of dependence relations.
This means that the transitive closure should express that the same number of
steps are taken over both dependences. For this example, encoding this property
is impossible using only affine constraints. These approaches are therefore unable
to prove that the given program is equal to itself.
Figure 15 shows two versions of a program computing the function

∑n

i=0 i. In
the second version, the i-loop has been partially unrolled by a factor of two.
Rewriting the loops in terms of recursive calls results in two programs that are
essentially the same as those in the first example of an equivalence that the rules
of Godlin and Strichman [2008] cannot prove [Godlin and Strichman 2008, Sec-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

34 · S. Verdoolaege et al.

out = 0;

if (n >= 0) {

for (i=1; i<=n; ++i)

out = out + i;

}
(a) Original program

out = 0;

if (n >= 0) {

for (i=1; i<=n/2; ++i) {

out = out + (2*i-1);

out = out + 2*i;

}

if (n % 2 == 1)

out = out + n;

}
(b) After partial loop unrolling

Fig. 15. Partial loop unrolling.

tion 6]. Our proof procedure has no problem proving the equivalence of these
two programs. Incidentally, both programs are also equivalent to the program
“out = n >= 0 ? n * (n+1) / 2 : 0;”, but we currently do not handle this
transformation. In this particular case, weighted parametric counting [Verdoolaege
and Bruynooghe 2008] could be used to fairly easily prove this equivalence as well.

Table I shows some experimental results obtained using our tool. For each pair
of input programs, we list the number of statements in the programs, the number
of computations in the corresponding dependence graphs, the maximal dimension
of the iteration domains, the time taken by both the dependence analysis and
the equivalence checker, the number of widenings and the number of narrowings.
All experiments were performed on an Intel Xeon W3520 @ 2.66GHz, the server
equivalent of an i7 920. The first row refers to the motivating example. The next
few rows refer to the examples discussed above. The USVD kernel is often used in
embedded systems and is the most complicated case study of Shashidhar [2008]. For
this USVD kernel, we show the results of comparing the two input programs with
themselves and with each other. As can be seen from the results, we currently do
not take advantage of any syntactical equivalence between the two input programs.
In USVD 1, some loops have been partially unrolled, which explains the higher
number of statements and the higher running time.
For a more extensive experiment, we turned to the polyhedral scanner CLooG [Bas-

toul 2004], which previously used PolyLib to perform its iteration domain manip-
ulations, but now uses our own isl instead. Due to various differences in the
internals of these tools, the outputs for CLooG’s regression tests may not be tex-
tually identical, and we therefore want to verify that they are equivalent. Since
the original statements are not available for these tests, we instead verify that the
iterations of all statements are performed in the same order in both versions by

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 35

program 1 program 2 cases stats comps d da time ec time ∇ ∆

Program 1 Program 2 1 10 16 1 0.011 0.005 1 0

Figure 11 left Figure 11 right 1 8 18 1 0.005 0.004 0 0

Figure 12 left Figure 12 right 1 10 14 1 0.006 0.003 1 1

Figure 13 left Figure 13 right 1 6 12 1 0.005 0.003 1 0

Figure 14 Figure 14 1 6 10 2 0.009 0.003 2 0

Figure 15(a) Figure 15(b) 1 6 8 1 0.007 0.006 1 0

USVD 1 USVD 1 1 620 628 2 2.620 1.770 4 0

USVD 2 USVD 2 1 134 142 3 0.721 0.086 10 0

USVD 1 USVD 2 1 377 385 3 1.670 0.335 4 0

CLooG-isl 1 CLooG-PL 1 1 133 135 3 0.309 0.199 51 0

CLooG-isl 2 CLooG-PL 2 1 1090 1092 3 9.765 4.134 108 0

CLooG-isl 3 CLooG-PL 3 1 21 23 5 0.235 0.152 20 0

CLooG-isl 4 CLooG-PL 4 1 20 22 2 1.531 0.295 10 0

CLooG-isl CLooG-PL 113 3558 3804 5 23.540 8.584 923 0

CLooG-isl-c CLooG-PL-c 113 3558 3804 5 23.662 10.936 1017 0

CLooG-isl CLooG-PL’ 113 3975 4221 5 25.860 19.161 1528 102

CLooG-isl-c CLooG-PL’-c 113 3975 4221 5 25.788 20.671 1684 0

Table I. Experimental results of equivalence checking. Meaning of the columns: program 1 and 2:
input programs; cases: number of pairs of programs; stats: number of assignment statements;
comps: number of computations; d: maximal dimension of iterations domains; da time: depen-

dence analysis time (in seconds); ec time: equivalence checking time (in seconds); ∇: number of
widenings; ∆: number of narrowings.

passing around a token. Since each statement now writes to the same scalar, these
tests constitute true stress tests for both the dependence analysis and the equiva-
lence checking. In particular, using the original statements would result in a much
easier equivalence checking problem. The final four rows of the table summarize
the results of these experiments using CLooG-0.16.3. The first of these rows rep-
resents the case where we simply take the outputs of identical versions of CLooG,
but using different polyhedral libraries. The number of statements in these tests
ranges from 4 to 1090 with running times up to 4 seconds (all but one are well
below 1 second) and 9 seconds in total. The number of widening steps performed
ranges from 0 to 108, with a grand total of 923 widening steps. The preceding rows
show details of some individual test cases: reservoir/QR, swim, thomasset and
reservoir/liu-zhuge1. Of the 113 test cases, two cannot be proved equivalent.
The reason is that CLooG takes some constraints on the parameters as input. The
generated code is only valid for values of the parameters that satisfy these con-
straints, but the constraints are not explicitly available in the generated code. In
the second of the final four rows, we represent the results when these constraints on
the parameters are given as an extra argument to the equivalence checker. In this
case, all 113 test cases are proved to be equivalent. The final two rows compare
outputs where not only the polyhedral library used is different, but also different
options are used. In particular, in the primed version, the backtrack option is
turned on. In this case, 7 test cases are not equivalent for values of the parameters
not satisfying the extra parameter constraints.
Note that there is a fairly strong correlation between the dependence analysis

time and the equivalence checking time, showing that the equivalence checking
time is mostly dependent on the complexity of the dependence graph, rather than

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

36 · S. Verdoolaege et al.

Barthou et al. [2002] simplified
program 1 program 2 cases equivalent time (s) equivalent time (s)

Program 1 Program 2 1 0/1 0.004 0/1 0.011

Figure 11 left Figure 11 right 1 0/1 0.002 0/1 0.005
Figure 12 left Figure 12 right 1 0/1 0.012 0/1 0.016
Figure 13 left Figure 13 right 1 0/1 0.016 0/1 0.021
Figure 14 Figure 14 1 0/1 0.146 0/1 0.147
Figure 15(a) Figure 15(b) 1 1/1 0.011 1/1 0.013
USVD 1 USVD 1 1 0/0 N/A 1/1 12.246
USVD 2 USVD 2 1 0/0 N/A 0/0 N/A
USVD 1 USVD 2 1 0/0 N/A 1/1 7.292
CLooG-isl 1 CLooG-PL 1 1 0/1 6.979 1/1 7.189
CLooG-isl 2 CLooG-PL 2 1 0/0 N/A 0/0 N/A
CLooG-isl 3 CLooG-PL 3 1 0/0 N/A 0/0 N/A
CLooG-isl 4 CLooG-PL 4 1 0/0 N/A 0/0 N/A
CLooG-isl CLooG-PL 113 51/82 1838.893 55/77 4756.963

Table II. Experimental results of equivalence checking for transitive closure based methods. Mean-
ing of the columns: program 1 and 2: input programs; cases: number of pairs of programs; equiv-
alent: number of program pairs that could be proved equivalent over number of program pairs

that could be handled; time: time in seconds required for the handled pairs of programs.

the number of statements or the dimension of the iteration domains. Also note
that the only pairs of programs in Table I that require any narrowing are those
that are not actually equivalent. This shows that our widening operator is usually
fairly accurate and does not lead to an over-approximation. In other experiments,
not listed in the table, we have seen that the widening step may in rare cases
also perform an inappropriate generalization, from which it will then be difficult
to recover. In particular, this may occur in the presence of integer divisions more
intricate than those in Figure 13. We are investigating if delaying the widening by
one step or the use of more advanced widening or narrowing operators can solve
these problems.

Table II summarizes the results of applying our implementation of the approach
of Barthou et al. [2002] to the same tests in columns 4 and 5. A first observation is
that the equivalence checker does not always produce an answer, either because it
times out (after 1 hour) or because it runs out of memory (2 GB), as it does in 9,
respectively 22 out of 113 CLooG test cases. It should be noted that we have made
no attempt to optimize our implementation of this approach and that we may not
be using VAUCANSON in the most optimal way. The second and more important
observation is that of those cases that can be handled, many cannot be proved
equivalent. In the case of the program in Figure 12, this is the right conclusion.
In other cases, this is due to the limitations of this approach highlighted above.
Columns 6 and 7 present the results of the simplified variation on the approach of
Barthou et al. [2002]. Although this variation can correctly prove correctness in
more instances than the original approach, it appears to require more memory and
therefore also runs out of memory in more instances.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Equivalence Checking of Static Affine Programs · 37

7. RELATED WORK

Many approaches have been proposed for checking the equivalence of two pro-
grams, but few of these approaches handle non-trivial recurrences. Translation
validation (e.g., [Necula 2000]) checks the equivalence of the input and output of
compiler passes, but typically relies on compiler hints or heuristics. In particular,
the “permute” rule used by these approaches to prove equivalence of loops requires
a bijective function between loop iterations and this function is either assumed to
be provided by the compiler [Zuck et al. 2005] or inferred using a simple heuristic
[Kundu et al. 2009]. These approaches also require any reordered pair of state-
ment iterations that access the same memory to commute. By contrast, we use
array dataflow analysis and automatically derive the correspondences between iter-
ations of loops that have undergone any affine transformation, including all of the
simple loop transformations considered by Kundu et al. [2009]. Fractal symbolic
analysis [Mateev et al. 2001] takes two programs as input and applies a number of
simplification rules until the two programs can be proved equivalent by symbolic
analysis. Similarly to translation validation, the simplification rules are derived
from the transformation that has been applied to obtain one program from the
other. Furthermore, there is a risk of simplifying too much. SMT solvers such as
CVC3 [Barrett and Tinelli 2007], used by many approaches, do not perform induc-
tions. General theorem provers such as ACL2 [Kaufmann et al. 2000] can perform
induction, but even for the simple case of Figure 1 an encoding of the equivalence
problem by an expert required a manual specification of the induction hypothesis,
while we perform induction fully automatically.

The motivation for regression verification [Godlin and Strichman 2008; Godlin
and Strichman 2009] is similar to ours, but their approach is largely complementary.
They handle a larger class of programs, including programs with recursion, but they
do not handle loops, unless they have been converted to recursion in a preprocessing
step. However, because of the way they match functions in the different programs,
such a conversion precludes them from checking the equivalence of any pair of
programs that have undergone any non-trivial loop transformation. A very simple
such loop transformation, not handled by regression verification, was shown in
Figure 15. By contrast, loop transformations are the main focus of our work.

The most closely related approaches are those of Shashidhar et al. [2005] and
Barthou et al. [2002]. As explained before, both these approaches are based on
transitive closures and therefore require uniform recurrences, unlike our widening
based approach. Note that standard uniformization techniques [Manjunathaiah
et al. 2001] would only introduce an extra (easy) transitive closure, without resolv-
ing the original difficult transitive closure. These approaches also do not (fully)
handle associative or commutative operations and require the input programs to
be in DSA form. Neither of these approaches, including our own, supports data-
dependent or non-affine constructs. A limited form of data-dependent indexing is
supported by an extension of the work presented here [Verdoolaege et al. 2010].
Handling more general such constructs would require the use of fuzzy dataflow
analysis [Barthou et al. 1997] instead of exact dataflow analysis.

Another way of looking at our work is that we discover invariants between array
indices of two programs. Tuples satisfying the invariant identify equal array ele-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

38 · S. Verdoolaege et al.

ments. While the discovery is guided by the assumed invariant between program
outputs, non-trivial new invariants are induced when handling recurrences. Induc-
tion of variants —between scalars— is an active research area (e.g., [Müller-Olm
and Seidl 2004]).

8. CONCLUSION

We have presented a novel, fully automated, approach to the equivalence checking
problem of static affine programs that uses a widening operator instead of relying on
a transitive closure operator. Our method is not restricted to uniform recurrences,
supports commutative and associative operations with a fixed number of arguments
and has a publicly available implementation.
Our approach suffers some limitations. While some of these have been lifted in

our later work, some others still remain. In particular, our approach should be
extended to also handle reductions, i.e., associative operators with an unbounded
number of arguments. Although we have tackled a limited form of data depen-
dent index expressions in later work, further work is also needed to handle more
general data dependent and non-affine constructs. Part of the solution is likely to
involve a replacement of exact dataflow analysis by fuzzy dataflow analysis, but the
equivalence checking procedure will also have to be adapted accordingly.

Acknowledgements

We thank Louis-Noël Pouchet for showing us how to use VAUCANSON and the anony-
mous reviewers for their suggestions. This research was supported by FWO-Vlaan-
deren, project G.0232.06N.

REFERENCES

Absar, M. J., Marchal, P., and Catthoor, F. 2005. Data-access optimization of embedded
systems through selective inlining transformation. In Proceedings of the 2005 3rd Workshop on
Embedded Systems for Real-Time Multimedia, ESTImedia 2005, September 22-23, 2005, New
York Metropolitan Area, USA, M. Miranda and S. Ha, Eds. IEEE Computer Society, 75–80.

Alias, C. and Barthou, D. 2003. On the recognition of algorithm templates. In Int. Workshop
on Compilers Optimization Meets Compiler Verification. ENTCS, vol. 82. Elsevier Science,

Warsaw, 395–409.

Barrett, C. and Tinelli, C. 2007. CVC3. In Proceedings of the 19th International Conference

on Computer Aided Verification (CAV ’07), W. Damm and H. Hermanns, Eds. Lecture Notes
in Computer Science, vol. 4590. Springer-Verlag, 298–302. Berlin, Germany.

Barthou, D., Collard, J.-F., and Feautrier, P. 1997. Fuzzy array dataflow analysis. J.
Parallel Distrib. Comput. 40, 2, 210–226.

Barthou, D., Feautrier, P., and Redon, X. 2002. On the equivalence of two systems of
affine recurrence equations. In Euro-Par Conference. Lect. Notes in Computer Science, vol.
2400. Springer-Verlag, Paderborn, 309–313.

Bastoul, C. 2004. Code generation in the polyhedral model is easier than you think. In
PACT ’04: Proceedings of the 13th International Conference on Parallel Architectures and

Compilation Techniques. IEEE Computer Society, Washington, DC, USA, 7–16.

Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer, E., Kjeldsberg, P.,

Van Achteren, T., and Omnés, T. 2002. Data access and storage management for embedded
programmable processors. Kluwer Academic Publishers, Boston, USA.

Chen, C. 2009. Omega+ library. http://ctop.cs.utah.edu/downloads/omega.tar.gz.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

http://ctop.cs.utah.edu/downloads/omega.tar.gz

Equivalence Checking of Static Affine Programs · 39

Cook, W., Rutherford, T., Scarf, H. E., and Shallcross, D. F. 1991. An implementation
of the generalized basis reduction algorithm for integer programming. Cowles Foundation

Discussion Papers 990, Cowles Foundation, Yale University. Aug.

Cousot, P. and Cousot, R. 1992. Comparing the Galois connection and widening/narrow-
ing approaches to abstract interpretation. In Proceedings of the Fourth International Sympo-
sium on Programming Language Implementation and Logic Programming, M. Bruynooghe and
M. Wirsing, Eds. LNCS 631, Springer-Verlag, Leuven, Belgium, 269–295.

Feautrier, P. 1988. Array expansion. In ICS ’88: Proceedings of the 2nd international
conference on Supercomputing. ACM Press, 429–441.

Feautrier, P. 1991. Dataflow analysis of array and scalar references. International Journal
of Parallel Programming 20, 1, 23–53.

Feautrier, P. 1996. The Data Parallel Programming Model. LNCS, vol. 1132. Springer-Verlag,

Chapter Automatic Parallelization in the Polytope Model, 79–100.

Franke, B. and O’Boyle, M. 2003. Array recovery and high-level transformations for DSP

applications. ACM Transactions on Embedded Computing Systems 2, 2 (May), 132–162.

Fu, Q., Bruynooghe, M., Janssens, G., and Catthoor, F. 2006. Requirements for constraint

solvers in verification of data-intensive embedded system software. In Proceedings of the 1st
Workshop on constraints in Software Testing, Verification and Analysis, B. Blanc, A. Gotlieb,
and C. Michel, Eds. 46–57.

Godlin, B. and Strichman, O. 2008. Inference rules for proving the equivalence of recursive
procedures. Acta Inf. 45, 6, 403–439.

Godlin, B. and Strichman, O. 2009. Regression verification. In 46th Design Automation
Conference (DAC’09). 466–471.

Irigoin, F., Jouvelot, P., and Triolet, R. 1991. Semantical interprocedural parallelisa-
tion: An overview of the PIPS project. In ACM International Conference on Supercomputing,

ICS’91.

Karr, M. 1976. Affine relationships among variables of a program. Acta Informatica 6, 133–

151.

Kaufmann, M., Moore, J. S., and Manolios, P. 2000. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, Norwell, MA, USA.

Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., and Wonnacott, D. 1996.
The Omega library. Tech. rep., University of Maryland. Nov.

Kelly, W., Pugh, W., Rosser, E., and Shpeisman, T. 1996. Transitive closure of infinite
graphs and its applications. Int. J. Parallel Program. 24, 6, 579–598.

Kundu, S., Tatlock, Z., and Lerner, S. 2009. Proving optimizations correct using parame-
terized program equivalence. SIGPLAN Not. 44, 6 (June), 327–337.

Lombardy, S., Régis-Gianas, Y., and Sakarovitch, J. 2004. Introducing VAUCANSON.
Theor. Comput. Sci. 328, 1-2, 77–96.

Manjunathaiah, M., Megson, G. M., Rajopadhye, S. V., and Risset, T. 2001. Uniformiza-
tion of affine dependance programs for parallel embedded system design. In ICPP 2002, Pro-
ceedings, L. M. Ni and M. Valero, Eds. IEEE Computer Society, 205–213.

Mateev, N., Menon, V., and Pingali, K. 2001. Fractal symbolic analysis. In ICS ’01:

Proceedings of the 15th international conference on Supercomputing. ACM, New York, NY,
USA, 38–49.

Matsumoto, T., Seto, K., and Fujita, M. 2007. Formal equivalence checking for loop op-
timization in C programs without unrolling. In ACST’07: Proceedings of the third conference
on IASTED International Conference. ACTA Press, Anaheim, CA, USA, 43–48.

Müller-Olm, M. and Seidl, H. 2004. Precise interprocedural analysis through linear algebra.
In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2004. 330–341.

Necula, G. C. 2000. Translation validation for an optimizing compiler. SIGPLAN Not. 35, 5,
83–94.

Shashidhar, K. C. 2008. Efficient automatic verification of loop and data-flow transformations

by functional equivalence checking. Ph.D. thesis.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

40 · S. Verdoolaege et al.

Shashidhar, K. C., Bruynooghe, M., Catthoor, F., and Janssens, G. 2005. Verification
of source code transformations by program equivalence checking. In CC 2005, Proceedings.

Lecture Notes in Computer Science, vol. 3443. Springer-Verlag, Berlin, 221–236.

van Engelen, R. A. and Gallivan, K. A. 2001. An efficient algorithm for pointer-to-array

access conversion for compiling and optimizing DSP applications. In Innovative Archs. for
Future Gen. High-Perf. Processors and Systems. IEEE, 80–89.

Verdoolaege, S. 2010. isl: An integer set library for the polyhedral model. In Mathematical
Software - ICMS 2010, K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, Eds.
Lecture Notes in Computer Science, vol. 6327. Springer Berlin / Heidelberg, 299–302.

Verdoolaege, S. and Bruynooghe, M. 2008. Algorithms for weighted counting over para-
metric polytopes: A survey and a practical comparison. In The 2008 International Conference

on Information Theory and Statistical Learning, M. Beck and T. Stoll, Eds.

Verdoolaege, S., Cohen, A., and Beletska, A. 2011. Transitive closures of affine integer tu-

ple relations and their overapproximations. In Proceedings of the 18th international conference
on Static analysis. SAS’11. Springer-Verlag, Berlin, Heidelberg, 216–232.

Verdoolaege, S. and Grosser, T. 2012. Polyhedral extraction tool. In Second International

Workshop on Polyhedral Compilation Techniques (IMPACT’12). Paris, France.

Verdoolaege, S., Janssens, G., and Bruynooghe, M. 2009. Equivalence checking of static

affine programs using widening to handle recurrences. In Computer Aided Verification 21.
Springer, 599–613.

Verdoolaege, S., Palkovic, M., Bruynooghe, M., Janssens, G., and Catthoor, F. 2010.
Experience with widening based equivalence checking in realistic multimedia systems. Journal
of Electronic Testing 26, 2, 279–292.

Verma, M. and Marwedel, P. 2007. Advanced Memory Optimization Techniques for Low-
Power Embedded Processors. Springer Publishing Company, Incorporated.

Zuck, L. D., Pnueli, A., Goldberg, B., Barrett, C. W., Fang, Y., and Hu, Y. 2005. Trans-
lation and run-time validation of loop transformations. Formal Methods in System Design 27, 3,

335–360.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

