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ABSTRACT. By using Pslya's theorem of enumeration and de Bruijn's generalization of
Pélya's theorem, we obtain the numbers of various weak equivalence classes of func-
tions in RD relative to permutation groups G and H where RD is the set of all func-
tions from a finite set D to a finite set R, G acts on D and H acts on R, We present
an algorithm for obtaining the equivalence classes of functions counted in de Bruijn's
theorem, i.e., to determine which functions belong to the same equivalence class. We
also use our algorithm to construct the family of non-isomorphic fm—graphs relative

to a given group.
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1. INTRODUCTION.

Motivated by Carlitz's work in [1] on the invariantive properties over a finite

field K, Cavior ([2],[3]) and Mullen ([4],[5],[6]1,[7]) studied several families of
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equivalence relations of functions from K into K, These equivalence relations can be
described in more general forms as follows: Let D = {1,2,...,m}, R = {1,2,...0},
RD be the set of all functions from D into R, G be a permutation group acting
on D and H be a permutation group acting on R.
(1) Let f,g € RP. £ 1is said to be weakly equivalent to g relative to G
and H, if and only if there exist a 0 € G and a T ¢ H such that 1o = g,
i.e., T_lf(Od) = g(d) for every d € D. There are three subfamiljies:
(a) When H is the identity group, f 1is said to be right equivalent to g
relative to G, i.e., fo = g.

(b) When G is the identity group, f 1is said to be left equivalent to g
relative to H, i.e., L - g.

(c) When G =H and 0_1f0 =g, f 1is said to be similar to g relative to
G.

(II) Let f£f,g € RD. f 1is said to be strongly equivalent to g relative to G
and H, if and only if there exist a ¢ € G and T € H such that fo = g and
f = g.

Clearly, all of these relations above are equivalence relations. One of
Cavior's and Mullen's main results was to obtain the number of equivalence classes of
functions over K relative go symmetric groups, and to cyclic groups. Here by using
Pélya's theorem of enumeration and de Bruijn's generalization of Pblya's theorem, we
shall point out that the numbers of various weak equivalence classes of functions in
RD relative to G and H can be obtained. We shall present an algorithm for ob-
taining the equivalence classes of functions counted in de Bruijn's theorem, i.e., to
determine which functions belong to the same equivalence class. Our method is to
associate each function with its incidence matrix. Various weak equivalence re-
lations correspond to products of matrices, and from the entries of the incidence
matrices, equivalent functions can be obtained. Our algorithm does not use the
cycle indices of the permutation groups. We use our algorithm to construct the
family of non-isomorphic fm—graphs relative to a given group. The numbers of strong
equivalence classes do not appear to be obtainable from PSlya's and de Bruijn's

theorems. Cavior, in [2], obtained the number of strong equivalence classes relative
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to the symmetric groups. We apply our algorithm to strongly equivalent functioms.
With the help of PSlya's and de Bruijn's theorems, our algorithm enables us to deter-
mine the numbers of strong equivalence classes relative to some subgroups of the sym-

metric groups.

2. THEOREMS OF POLYA AND DE BRULJN.

Let G be a permutation group acting on a set D = {1,2,...,m}. Since every
permutation can be uniquely written as a product of disjoint cycles, the cycle index
of G 1is defined as the following polynomial in Q[xl,xz,...,xm] where Q 1s the
field of rational numbers and xixj = xjxi for i,j = 1,2,...,m:

b b b
PG(xl,xz,...,xm) = T%T oéc xll x22 ces xmm

where |G| 1s the order of G and b, is the number of cycles of length 1 in the

i
disjoint cycle decomposition of o for {1 = 1,2,...,m.

THEOREM 1. (Polya [8],[91,[10]). Let R® be the set of all functions from a
finite set D into a finite set R, G be a permutation group acting on D, w be
a function from R into R' where R' is a commutative ring with an identity con-
taining the rational numbers Q, and a relation -~ be defined on RD such that
f ~ g 1if and only if there exists a o € G with f(od) = g(d) for every d e D.
(This relation is an equivalence relation. Consequently, RD is partitioned into
disjoint equivalence classes {F}, where each F 1is called a pattern.) Then the
total patterns, denoted by z w(F), is

F
THm =2 (] w), I @i, I w5, w
F reR reR reR
where P is the cycle index relative to G. If w(r) =1 for every r € R, then

G

the number of total patterns is

|3 wm| = PG(IRI,IRI,...,IRI,...) (2
F

where |R| 1is the cardinality of R.

THEOREM 2. (de Bruijn [11],[12]). Let RD be the set of all functions from a
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finite set D into a finite set R, G be a permutation group action on D, H be
a permutation group acting on R, and a relation ~ be defined on RD such that

f ~ g if and only if there exist a 0 €6 G and a T ¢ H with f(od) = 1g(d) for
every d ¢ D. (This relation is an equivalence relation. Consequently, RD is par-
titioned into disjoint equivalence classes {F}, where each F is called a pattern.)

Then the number of total patterns is

z.tz, +... 2(z +z,+...) 3(z 2z, +..0)
P, 2, =2 yp(el 2 e 204 ,e 38 S 2 I &)
G oz oz 9z H 4
1 2 3
evaluated at Z; =2, = ... = 0.

If H is the identity group acting on R, then (3) is (2) in PSlya's theorem.

THEOREM 3. Let DD be the set of all functions from a finite set D whose
cardinality is m into itself, G be a permutation group acting on D, and a rela-
tion ~ be defined on .DD such that for every f and g € DD, f ~ g if and only
if there exists a 0 € G with c_lf(cd) = g(d) for every d € D. (This is an equi-
valence relation. Consequently, DD is partitioned into disjoint equivalence classes
{F}, where each F 1is called a pattern.) Then the number of total patterns is

Bl 1,1 ep't @
oeG i=1 jji
where ¢ is the number of cycles of lenght i in the disjoint cycle decomposition
of o for 1i=1,2,...,m.

The number of equivalence classes in DD is z (number of functions f

such that fo = of) and the number of f ¢ DD such that

n ey
fo=0f is T ( j ¢.) ~. For details, see [7].
i=1 31
3. AN ALGORITHM.
Let G and H be permutation groups acting on D = {1,2,...,m} and R =

{1,2,...,n} respectively. For convenience, we shall call the weak equivalence rela-
tion in Rp relative to G and H the G-H-relation, i.e., f and g in RD are

said to be G-H-related if and only if there exists a 0 € G and a t € H such that
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T_lf(cd) = g(d) for every d & D, Clearly, it is an equivalence relation, and P
is partitioned into disjoint classes each of which is called a G-H-class. Let G*
be the m X m permutation group corresponding to G, i.e., G*£2G, H* be the

n ¥ n permutation group corresponding to H, i.e., H**2 H, and I be the set of
all mxn (0,1)-matrices A = (aij) where each row of A consists of exactly one
1 and all ofrher entires are zero. Two matrices A and B are said to be G*-H*-
related if and only if there exist a P € G* and a Q & H* such that PAQ—1 = B.
Clearly, this relation is an equivalence relation called a G*-H*-relation, and I

is partitioned into disjoint equivalence classes each of which is called a G*-H*-
class.

Similar to Lemma 1 in [13], we have

THEROEM 4, Let n: RD + I be defined by n(f) = A where A = (aij) with
ai,f(i) =1 for i=1,2,...,m, and all other entries 0. Then
(1) n 1is a bijective map, and

(2) n preserves the G-H-relation in RD and the G*-H*-relation in I,

PROOF. (1) Clearly, n is well defined. Let n(f) = A = (aij) with ai,f(i)=
1 for i=1,2,...,m and all other entries 0, and n(g) =B = (bij) with

b =1 for i=1,2,...,m and all other entries 0. If A = B, then a; f(i)=

i,g(1)
bi g(i) for i=1,2,...,m, i.e., f =g. Hence, n is injective. Since
s
D m Py
IR I = ‘I‘ =n, n is bijective.

(2) Let f and g belong to the same G-H-class, i.e., there exist a

0eG anda T € H such that Tnlfc =g, n(f) = A= (aij) and n(g) =B = (bij)

i = = i = cae 0.
with ai,f(i) 1 and bi,g(i) 1 for i=1,2, ,m and all other entries
Then b _1 =1 for i=1,2,...,m and all other entries O.
i,t “f(oi)
Let P = (pij) and Q = (qij) be the permutation matrices corresponding to o

and T respectively. By using the properties of permutation matrices, we have

-1
(PAQ )ij =11 Pis?stlyt = PivPuvdyv T fuv T %oi,1j (5)
t s

for all 1 =1,2,.,.,m and j =1,2,...,n with oi=u and T1j = v. But since all
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aoi,‘rj = 0 except 351, £(o1) =1 for 1=1,2,...,m, 13 = f(oi), i.e., J =

T lE(o1) and (PAQ-l) 1 =1 for i=1,2,...,m and all other entries O.
i,t f(oi)

Hence, PAQ_l =B, and A and B belong to the same G*-H*-class.

Conversely, if A and B belong to the same G*-H*-class, then there exist a
PeGk and a Q € H* such that PAQ—l = B, Since n 1is bijective, 2t exists,

say n_lA = f and n_lB = g. Since by (5) (I’AQ-]')i all (PAQ-l)ij are

3 %o1,13°

0, except =1 for 1=1,2,...,m, i.e., T§ = £(od) or § = T lf(o1).

851, £(01)
Also, all the entries of B = (bij) are 0, except bi,g(i) =1 for i=1,2,,..,m.

Since (1>AQ’1)1j = (13)ij for 1=1,2,,..,m and j = 1,2,...,n, r'lf(oi) = g(1)

for 1=1,2,...,m, 1i.e., T-lfU =g, and f and g belong to the same G-H-class.

D

From our Theorem 4, we know that for each f € R° there exists a unique n(f) =

A= (aij) in I with ai,f(i)

is called the incidence matrix of f). Now for every o € G and every T € H,

=1 for 1=1,2,...,m and all other entries 0 (A

a =1 for 1=1,2,...,m and all other entries 0 determine a matrix

o_li,r-lf(i)
B in I, let P = (pij) and Q = (Qij) be the permutation matrices corresponding

to o and T respectively. Then PAQ_1 =B and A and B are G*-H*-related.

From Theorem 4, for each B € I there exists a unique n_l(B) =g in RD and f
and g are G-H-related. Consequently, we have the following algorithm for obtaining

all equivalence classes, i.e., for determining which functions are in the same equi-
valence class:

Step 1. Select any f ¢ RD and write

ALE) T 22,8 T 0t T fmim) T b
Step 2. For every o € G and every T € H, compute
a = a = ... = a = 1.
o-ll,r-lf(l) o_lz,t_lf(z) u'lm,t—lf(m)

Each computation determines a function in RD, and the equivalence class containing

f consists of these distinct functioms.

Step 3. Select a function in RD which is not a member of the equivalence class

obtained in Step 2. Repeat Steps 1 and 2. Continue the process until every function
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in RD appears in an equivalence class.
EXAMPLE 1, Let G = {cl = (), 0, = (23)} act on D= {1,2,3} and H=
{T1 =M, T, = (12)} act on R = {1,2}, Then the cycle indices of G and H are,

respectively,
P (x,,x, ,x,) == (x3 + x.x,) and
G1'72°73 2 1 1727
1,2
Pu(y1syp) =35 G + 5,

Therefore, by using (3), the number of weak equivalence classes in R’ is 3. 1If the

8 functions in RD are given as

then the algorithm can be used to determine the 3 classes so that

D
R = {f1,£8} v {fz, f3, f6’ f7} Y] {f4,f5}.
4, APPLICATIONS.
We consider the weak equivalence classes in RD relative to the groups G and H,

Let £ ¢ R and c(f) = {(o,7) € G x H; e = £, Clearly, C(f) 1is a subgroup

of the product group G x H,

THEOREM 5. The cardinality of the weak equivalence class f containing f in
RD relative to the groups G and H is equal to the index of C(f) in the product
group G x H, Hence, |F| divides |G|-[H].

The proof is not difficult and hence is omitted.

COROLLARY 5.1. The cardinality of the right equivalence class f containing f
in RD relative to the group G is equal to the index of the subgroup C(f) =

{c eG; fo = £} in G. Hence, |F| divides |G|.



752 C.Y. CHAO AND C.I. DEISHER

COROLLARY 5.2. The cardinality of the left equivalence class f containing f

in R° relative to the group H 1is equal to the index of the subgroup C(f) =

{reH; t0=¢} in H Hence, |E| divides |H].

COROLLARY 5.3. The cardinality of the similar class f containing f 1in RD

relative to the group G is equal to the index of the subgroup C(f) = {0 € G; U_lfc

= f} in G, Hence, [F| divides |[G|.

A. The cycle indices for many families of groups are known, e.g., see p. 36 in
[9). In particular, the cycle index of the cyclic group Cq of order g on p

points is
1 i
P, (xl,xz,...,xq) == } $(D)xy
q iiq

¥

where ¢(i) is the Euler's phi-function.

EXAMPLE 2. Let G = <(123...q)> be the cyclic group generated by (123...q)
acting on gq+k points. Then
g
1

1 ik
PG(xl’XZ"'°’xq’xq+l’°'"Xq+k) "3 i%q (¢(i)xi %) . (6)

Let G be the permutation group acting on D = {1,2,...,q,q+l,...,qtk = m} and H
be the identity group acting on R = {1,2,...,n}. Then, by using (3), the number ~
of the right equivalence classes in RD relative to G is:

n(z +z +...+zn+...)

) ] 9 172
N = [PGCEEI', 3;;-,..., 5;—9(e )]21=22=...=0
n
1
-1 } (o(D)nt 0. N
q 47,

In particular, if G, = <(1234)> acts on D = {1,2,3,4,5} and H is the iden-

tity group acting on R = D, then by (7) the number of right equivalence classes in

DD relative to G is 825.

1
We show the following:
(a) There are 25 right equivalence classes each of cardinality 1. By using our

algorithm, the function corresponding to
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is not changed for any o € G i=1,2,...,5 and j = 1,2,...,5.

1’
(b) There are 50 right equivalence classes each of cardinality 2. Applying

o = (1234), o2 = (13)(24), o> = (1432) and o = (1) to

814 T 834 T 834 T 844 T A5 T

for i+# 3, i,j=1,2,...,5 and k = 1,2,...,5, we have

L Bk

3, T 815 T 8y; T 235 a5 =1, ®
833 T 845 T 213 T 85 “ a5 7 L 9
a, = a3j =a,, = alj = ag, = 1, and (10)
a;; = aZj = a4 = a4j =ag = 1. (11)

Since (8) and (9) are the same as (10) and (11) respectively, there are
5 - Gééﬁ) = 50 right equivalence classes each of cardinality 2.

(¢) Since by Corollary 5.1 there is no right equivalence class of cardinality 3, the
number of right equivalence classes of cardinality 4 is 825-25-50 = 750. Our
results in this example with G, = <(1234)> coincide with the results on p. 113
in [12].

EXAMPLE 3. Let H = <(123...q)> be the cyclic group generated by (123...q)
acting on q+k points. Then the cycle index of H is the same as (6). Let G be
the identity group acting on D = {1,2,...,m} and H be the group <(12...q)> act-
ing on R = {1,2,...,q,q9+1,...,qtk = n}. Then, by using (3), the number N of the

left equivalence classes in Rp relative to H 1is given by

N=2 ™+ T e, (12)
q i[q
i>1
In particular, let G be the identity group acting on D = {1,2,...,5} and H1

be the group <(1234)> acting on R = D. Then the number of left equivalence classes
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in P relative to H, dis 782 by using (12), or by using (3) and (7).

1
We show the following: By using our algorithm, the function corresponding to

is in an equivalence class by itself. Now consider

= = = = =1
"1,3; T %2,3, T %335 7 %43, T 5,4
where jk are not all 5 for k= 1,2,...,5.
Then with 7t = (1234), we have
a 4 =a 4 =a =a =a =1,
a = a = a = a = a =1
2,-1 2,-1 2,-1 2,-1 2,-1 ’
L™, 26D, 3,6hT, seHTh, s T
a = a = a = a = a =1
- 3. - - - - ’
1,6, 2,6, nahT, s, sl
= = - = g =1,
1,3, %2,1, 3,14 %,1, #5,15

All of the functions corresponding to the above matrices are different and therefore,
the cardinality of the equivalence class is 4. Hence, there is only one equivalence
class of cardinality 1 and all the others are of cardinality 4, that is, there are
782 - 1 = 781 equivalence classes of cardinality 4. Our results in this example
thus coincide with the results on p. 353 in [4].

B. A labeled directed graph with m vertices is said to be an fm-graph if the
out-degree at every vertex is 1, Thus, the incidence matrix of an fm-graph belongs
to the gset of m X m matrices I. Conversely, every matrix fn I determines a uni-
que fm-graph. Let G be a permutation group acting on m points. Two fm-graphs
X, and X

1 2

that o maps the vertices of Xl onto the vertices of XZ, and o0 preserves the

are said to be G-isomorphic if and only if there exists a ¢ € G such

directed edges, i.e., [oa, ob] is a directed edge in X, if and only if [a,b] 1is

2

A G-isomorphism of X, onto itself is said to be an auto-

a directed edge in X 1

1°
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morphism of Xl. Let A1 and A2 be the incidence matrices of Xl and X2 re-

spectively, Then it is well known that X, and X2 are G-isomorphic if and only if
there exists a permutation matrix P corresponding to a ¢ € G such that PAII’—1 =

A,

1

Since the set of all functions from m points into itself is in one to one cor-
respondence with the set of all fm—graphs, we may use (4) to count the number of non-
isomorphic classes of fm—graphs relative to G, 1i.e., the number of nonisomorphic
classes of fm-graphs relative to G 1is

il }, 1 ep b (13)
geG 1=1 J|1i
where ¢, is the number of cycles of lenght i in the disjoint cycle decomposition

i

of o for 1=1,2,...,m,

EXAMPLE 4. Let G = <(123)> act on {1,2,3}. Then the number of nonisomorphic
classes of f4-graphs relative to G 1is, by using (13), %[(1~3)3 + (3'1)l + (3°1)1]
= 11, By using our algorithm, we have the following nonisomorphic f3—graphs relative

to G:

1 1 1

2 3 2 3
2 3 -0 6——‘—‘ 2 3
(1) (ii) (111) (iv)

N
= 4:’
w
[\
(=)
w
[
—
(¥}

) (vi) (vii) (viii)
1
2 3 3
(ix) (%) (x1i)

EXAMPLE 5. Replace G = <(123)> in Example 4 by the symmetric group S3 on
{1,2,3}. Then the number of nonisomorphic classes of f3-graphs relative to 83 is,

by using (13), %-[(1'3)3 + 3((1-1)1(1-1+2'1)1) + 2(3-1)1] = 7, and the nonisomorphic
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f3—graphs (relative to S3) are: (i), (di), (iv), (v), (vi), (viii) and (x), i.e.,
(ii) is isomorphic to (iii) by (23), (vi) is isomorphic to (vii) by (12), (viii) is
isomorphic to (ix) by (13), and (x) is isomorphic to (xi) by (23).
By applying (4), de Bruijn in [12] obtained the number N of similar equi-
valence classes relative to the symmetric group Sm as
m k k
No= T0m () 3kt e HT (14)
(k) i=1 j[i

where the first summation is over all m-tuples (kl’k2’°"’km) of non-negative in-
tegers k, which satisfy k

i 1

are given by N, = 1, N2 =3, N,=17, N, = 19, N, = 47, N6 = 130, Formula (14)

gives the answer to the problem posed by Cavior in [2, p. 128] concerning the number

+ 2k, + ... + mk_ = m. The first few values of N
2 n m

of similarity classes relative to the symmetric group.

C. On p. 129 in [2], Cavior obtained the number of strong equivalence classes
in D? relative to §, and S  where D = {1,2,...,m} and §, 1is the symmetric
group on D, Here, with the help from the theorems of PSlya and de Bruijn, we apply

our algorithm to obtain the following theorems.

THEOREM 6. Let D = {1,2,...,m} where m is an odd integer, R = {1,2}, G
be any permutation group acting on D and H be the group <(12)> acting on R.
Then every strong equivalence class in RD relative to G and H consists of only

m
one function, i.e., the number of strong equivalence classes is 2,

PROOF., Let f be any function in R’ and A, = (a,,) be the incidence matrix

£ ij
f with

41,1, 2,1, T 3,1

71 3

and all other entries 0 where ik is either 1 or 2 for k = 1,2,...,m. Then, by
using our algorithm, the right equivalence class relative to G containing f con-
sists of the functions corresponding to the set of matrices {Afo; o €G, and

a = a = a = e =a = 1 and all other entries 0}. The

-1 -1 .
o l,il g 2,1 o 3,1 o m,i

*T2

left equivalence class relative to H containing f consists of the set of matrices
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{Arf; TeH and a _ = a = a = ...=a =1 and all other
1,t 1 2,t i

entries 0}, Since m is odd, the set {T—lil,T_liz,...,T—lim} # {il,iz,...,im} for
T = (12). Hence, the intersection of the left equivalence class relative to G con-
taining f and the right equivalence class relative to H containing f is {f}.
Consequently, the number of strong equivalence classes relative to G and H is
[#] - =l P <om,

In [8], Theorem 5.3 states: Let Sn be the set of all one-to-one functions
from a finite set D = {1,2,...,n} onto itself, G be a permutation group acting on
the domain D, H be a permutation group acting on the range D and an equivalence
relation relative to G and H in Sn be defined as follows: f ~ g if and only

if there exist a 0 € 6 and a T € H such that t_lf(cd) = g(d) for every d e D,

Then the number of patterns (equivalence classes) is

3 a

9
[PG(5;~ s 322 0 oo yeoe) PH(zl,222,3z3,-..)] (15)
1 2 3
evaluated at Z) =2y =23 = ... = 0. (15) is also equal to
3 9 )
[PH('é"z‘— * 32 % Bz seee) PG(21,222,323,...)] (16)
1 2 3
evaluated at Z) =2y =23 ="...= 0.

Let p be a prime, G be the cyclic group Cp of order p generated by
(12 ... p) acting on D = {1,2,...,p}, and H be the identity group acting on D.
By using (15) and Corollary 5.1 restated for one-to-one functions, it can be shown
that there are (p-1)! right equivalence classes in Sp relative to Cp each of
order p. Similarly, the number of left equivalence classes in Sp relative to H =
Cp is (p-1)! and the cardinality of each equivalence class is p. These results

are in agreement with those concerning permutation polynomials over finite fields ob-

tained by Mullen in [6].

THEOREM 7, Let D = {1,2,...,p} and R = {1,2,...,q} where p is a prime and
q 1is an integer greater than 1, CP be the cyclic group of order p generated by
(12...p) acting on D, and Cq be the cyclic group of order q generated by

(12...q) acting on R.
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(a) If q 4is not a multiple of p, then every strong equivalence class in R’
relative to Cp and Cq consists of only one function, i.e., the number of
strong equivalence classes in RP relative to Cp and Cq is qp.

(b) 1f q=p (i.e., D=R and Cp = Cq), then the number of strong equivalence

D
clagses in D relative to Cp and Cp 1s pP - (p—l)z.

PROOF. (a) We claim that the number of weak equivalence classes relative to
Cp and Cq is % (qp-l + p - 1), and that there are -I:E-(qp_1

classes each having cardinality pq, and there is one weak equivalence class having

-1) weak equivalence

\ =1 (P
cardinality q. Since P, (xl,xz,...,xp) = (x1 + (p-l)xp) and Po (xl’x2""’xq)

1 q/1 P 1
" % ¢(1)xi , by (3), the number of weak equivalence classes |W| 1is
ilq
q(z+z,+...)
e PP 4D

z,=...=0 an

1.,9P 3
Wl = = [(*—+ (p-1))
P 3zP azp 2

1
where the function T does not involve zy and zp. The reason is that every non-

identity permutation in Cq has no fixed points and p and q are relatively prime.

Hence, (17) is equal to
1 -
|w] = ;%—(qp + (p-1q) = —p'(qp Ly p- 1. (18)

Applying our algorithm to the function f1 € RD corresponding to 849 = 8y =

897 ® 00 = ap1 = 1, we have the weak equivalence class ?I consisting of the ¢

functions corresponding to

849 = 8y) = a3y =T ... = apl =1,
319 T3y T a3 = e =2, =1,
(19)
813 T 859 T 834 % ... = ap3 =1,
alq = an = a3q T oiee = apq =1,

Not counting the weak equivalence class above, we still have
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o =

(qp-l +p-1-1= %-(qp'l - 1) weak equivalence classes. Since there are [RD|

qp functions and since each weak equivalence class can have its cardinality at

p-1

most pq, the cardinality of each of these % (q ~ 1) weak equivalence classes

is pq.

Now we show that every strong equivalence class in RD relative to Cp and Cq

consists of only ¢ne function. Clearly, applying our algorithm to each function in

f we have that each function belongs to a strong equivalence class consisting of

1’
only itself., Let f and g be strongly equivalent functions in RD and not in fl’

i,e,, there exist a c0e C anda T ¢ Cq such that fo = g and Tf = g. Assume

f 4 g. Then none of ¢ and T could be the identity, and we would have ey fo

and (I—l)_lfe in the same weak equivalence class in RD relative to Cp and C

1 q

where ey and e, are the identities of Cp and Cq respectively, Since f # fl'

the weak equivalence class containing f has cardinality pq, i.e., e _lfc ¢

2
-1,-1 -1 -1,-1
. = . ’ -
(™) fe1 But e, fo=g= (1) fel That is a contradiction, and the cardi

nality of every strong equivalence class in RD relative to Cp and Cq is 1,

i.e., the number of the strong equivalence classes in RD relative to Cp and Cq
15 |&°] = .

(b) First, we consider the set Sp of all one-to-one functions in DD. We
claim that if f belongs to normalizer of Cp in the group Sp, then the cardi-
nality of the strong equivalence class containing f relative to Cp and Cp is p.
The cardinality of any right equivalence class in Sp relative to Cp is p. Let
f and g be any two right equivalent functions relative to Cp. Then there exists
a o¢ Cp such that fo = g. Since f ¢ Sp, £l exists. Let 1t = fof ', Since
f is a nomalizer of C  and since G e C, TeC. Then tf = (g0 ) = f0 = g.
Consequently, the cardinality of the strong equivalence class containing f relative
to Cp and Cp is p. We note that if f is a normalizer of Cp in Sp, then fo
is also a normalizer of Cp in Sp for every o ¢ Cp.

We claim that if f ©belongs to Sp and f 1is not normalizer of Cp in Sp,
then the cardinality of the strong equivalence class containing f relative to CP
and C_ is 1. Let f and g be strongly equivalent functions, i.e., there exist

P
6 and T in Cp such that fo = g and Tf = g. Assume that f ¥ g. Then neither
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6 nor T is the identity, fo = tf and fcrf_1 = 1, Since o 1is not the identity,

foltt = ot H oD .. gof™) =t ec for i=1,2,...,p, i.e., f is a norm-

P
alizer of Cp in Sp' That is a contradiction. Hence, f = g, and the cardinality

of the strong equivalence class containing f relative to Cp and Cp is 1.
We claim that if f € DD and £ ¢ Sp’ then the cardinality of the strong equi-

valence class containing f relative to Gp and Cp is 1. First, we shall con-

sider the number |W| of weak equivalence classes in DD relative to Cp and Cp:

By using (3), we have

p(z.+z +...) plz +...)
172 + (p-De P )1z, =z

ST LN I e | -

fw] [p (azp + (p Dazp)(p (e )=ee
1

(20)

pp—Z +p -1,

Let ]§p| be the number of weak equivalence classes in Sp relative to CP and Cp'
By (15), we have
5, = 1 (;—1- + (p —1)~) (8 + (p-D) (pz )]z =2y, .m0

(21)

% (Gp-D! + (p-1D).

Since a one-to-one function can only be weakly equivalent to a one-to-one function and
since a non-one-to-one function can only be weakly equivalent to a non-one-to-one

= D
function, the number |N| of weak equivalence non-one-to-one functions in D re-

lative to C and C is
P P
[N = |w| - lS | = P2 +p-1D —% ((p-1)1 + (p-1)%). (22)

Applying our algorithm to the function f2 € DD corresponding to ay; = 8y =

= = apl = 1, we have the weak equivalence class fz consisting of p func-

tions corresponding to
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217 = 8y S @37 % ... = apl =1,
81y T 8y T 83y T e = ap2 =1,
(23)
a, =a, =a, =...=a_ =1,
1p  "2p “3p PP
Not counting the weak equivalence class above, we still have |ﬁ] -1 weak

equivalence classes of non-one-to-one functions in DD. Since there are ]DDI - ]Spl
= pP - p! non-one-to-one functions and since each weak equivalence class can have

its cardinality at most p2, the cardinality of each of these Iﬁ‘ - 1 weak equi-

valence classes is pZ, because
= -2 1 2
P+ pr(F|-D = p+ P[P 2 +p -1 - 2 -1t + -7 - p? = pP - pl.

Similar to the proof in (a) with q = p, we may conclude that every strong
equivalence class of non-one-to-one functions relative to Cp and Cp consists of
only one function.

We know that [DD[ = pp, ISPI = p! and the cardinality of the normalizer of
C in S_ is p(p-1) (see 2.3 on p. 12 in [14]). Since the cardinality of the

P P

strong equivalence class ¥ containing the normalizer f of Cp in Sp is p

and since every function in f is also a normalizer of Cp in Sp, there are p-1
strong equivalence classes each of which has cardinality p. Since every other

strong equivalence class has cardinality 1, the number of strong equivalence classes

in DD relative to Cp and Cp is

P - o) + (p! - p(p-1)) + (p-1) = pP = (p-17.
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