
LETTER Communicated by Geoffrey Hinton

Equivalence of Backpropagation and Contrastive Hebbian
Learning in a Layered Network

Xiaohui Xie
xhx@ai.mit.edu
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139, U.S.A.

H. Sebastian Seung
seung@mit.edu
Howard Hughes Medical Institute and Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Backpropagation and contrastive Hebbian learning are two methods of
training networks with hidden neurons. Backpropagation computes an
error signal for the output neurons and spreads it over the hidden neurons.
Contrastive Hebbian learning involves clamping the output neurons at
desired values and letting the effect spread through feedback connections
over the entire network. To investigate the relationship between these two
forms of learning, we consider a special case in which they are identical:
a multilayer perceptron with linear output units, to which weak feed-
back connections have been added. In this case, the change in network
state caused by clamping the output neurons turns out to be the same as
the error signal spread by backpropagation, except for a scalar prefactor.
This suggests that the functionality of backpropagation can be realized
alternatively by a Hebbian-type learning algorithm, which is suitable for
implementation in biological networks.

1 Introduction

Backpropagation and contrastive Hebbian learning (CHL) are two super-
vised learning algorithms for training networks with hidden neurons. They
are of interest, because they are generally applicable to wide classes of net-
work architectures. In backpropagation (Rumelhart, Hinton, & Williams,
1986b, 1986a), an error signal for the output neurons is computed and prop-
agated back into the hidden neurons through a separate teacher network.
Synaptic weights are updated based on the product between the error sig-
nal and network activities. CHL updates the synaptic weights based on the
steady states of neurons in two different phases: one with the output neu-
rons clamped to the desired values and the other with the output neurons
free (Movellan, 1990; Baldi & Pineda, 1991). Clamping the output neurons

Neural Computation 15, 441–454 (2003) c° 2002 Massachusetts Institute of Technology

442 X. Xie and H. Seung

causes the hidden neurons to change their activities, and this change con-
stitutes the basis for the CHL update rule.

CHL was originally formulated for the Boltzmann machine (Ackley,
Hinton, & Sejnowski, 1985) and was extended later to deterministic net-
works (Peterson & Anderson, 1987; Hinton, 1989), in which case it can be
interpreted as a mean-�eld approximation of the Boltzmann machine learn-
ing algorithm. However, this interpretation is not necessary, and CHL can
be formulated purely for deterministic networks (Movellan, 1990; Baldi &
Pineda, 1991). Compared to backpropagation, CHL appears to be quite dif-
ferent. Backpropagation is typically implemented in feedforward networks,
whereas CHL is implemented in networks with feedback. Backpropagation
is an algorithm driven by error, whereas CHL is a Hebbian-type algorithm,
with update rules based on the correlation of pre- and postsynaptic activi-
ties. CHL has been shown to be equivalent to backpropagation for networks
with only a single layer (Movellan, 1990), and there has been some other
work to relate CHL to the general framework of backpropagation (Hop-
�eld, 1987; O’Reilly, 1996; Hinton & McClelland, 1988). However, a direct
link between them for networks with hidden neurons has been lacking.

To investigate the relationship between these two algorithms, we con-
sider a special network for which CHL and backpropagation are equivalent.
This is a multilayer perceptron to which weak feedback connections have
been added and with output neurons that are linear. The equivalence holds
because in CHL, clamping the output neurons at their desired values causes
the hidden neurons to change their activities, and this change turns out to
be equal to the error signal spread by backpropagation, except for a scalar
factor.

2 The Learning Algorithms

In this section, we describe the backpropagation and CHL algorithms. Back-
propagation is in the standard form, implemented in a multilayer percep-
tron (Rumelhart et al., 1986b). CHL is formulated in a layered network with
feedback connections between neighboring layers of neurons. It is an ex-
tension of the typical CHL algorithm formulated for recurrent symmetric
networks (Movellan, 1990).

2.1 Backpropagation. Consider a multilayer perceptron with L C 1 lay-
ers of neurons and L layers of synaptic weights (see Figure 1A). The activities
of the kth layer of neurons are denoted by the vector xk, their biases by the
vector bk, and the synaptic connections from layer k ¡ 1 to layer k by the
matrix Wk. All neurons in the kth layer are assumed to have the same trans-
fer function fk, but this transfer function may vary from layer to layer. In
particular, we will be interested in the case where fL is linear, though the
other transfer functions may be nonlinear. In the basic de�nition, fk acts on
a scalar and returns a scalar. However, we will generally use fk to act on a

Backpropagation and Contrastive Hebbian Learning 443

Figure 1: Diagram on the network structures of the (A) multilayer perceptron
and the (B) layered network with feedback connections. Layer 0 is the input,
layer L is the output, and the others are hidden layers. The forward connections
are the same for both networks. In B, there exist feedback connections between
neighboring layers of neurons.

vector, in which case it returns a vector, operating component by component
by fk. f 0

k is the derivative of fk with respect to its argument. Similar to fk,
when f 0

k acts on a vector, it returns a vector as well, operated by f 0
k in each

component. We assume that fk is monotonically increasing.
Backpropagation learning is implemented by repeating the following

steps for each example in a training set of input-output pairs:

1. In the forward pass,

xk D fk (Wkxk¡1 C bk) (2.1)

is evaluated for k D 1 to L, thereby mapping the input x0 to the out-
put xL.

444 X. Xie and H. Seung

2. The desired output d of the network, provided by some teacher, is
compared with the actual output xL to compute an error signal,

yL D DL (d ¡ xL) . (2.2)

The matrix Dk ´ diagff 0
k (Wkxk¡1 C bk)g is de�ned by placing the com-

ponents of the vector f 0
k (Wkxk¡1 Cbk) in the diagonal entries of a matrix.

3. The error signal is propagated backward from the output layer by
evaluating

yk¡1 D Dk¡1WT
k yk (2.3)

for k D L to 2.

4. The weight update

DWk D gykxT
k¡1 (2.4)

is made for k D 1 to L, where g > 0 is a parameter controlling the
learning rate.

2.2 Contrastive Hebbian Learning. To formulate CHL, we consider a
modi�ed network in which, in addition to the feedforward connections
from layer k ¡ 1 to layer k, there are also feedback connections between
neighboring layers (see Figure 1B). The feedback connections are assumed
to be symmetric with the feedforward connections, except that they are
multiplied by a positive factor c . In other words, the matrix c WT

k contains
the feedback connections from layer k back to layer k ¡ 1.

CHL is implemented by repeating the following steps for each example
of the training set:

1. The input layer x0 is held �xed, and the dynamical equations

dxk

dt
C xk D fk (Wkxk¡1 C c WT

kC1xkC1 C bk) (2.5)

for k D 1 to L are run until convergence to a �xed point. The case k D L
is de�ned by setting xLC1 D 0 and WLC1 D 0. Convergence to a �xed
point is guaranteed under rather general conditions, to be shown later.
This is called the free state of the network and is denoted by Lxk for the
kth layer neurons.

2. The anti-Hebbian update,

DWk D ¡gc k¡L Lxk LxT
k¡1, (2.6)

is made for k D 1, . . . , L.

Backpropagation and Contrastive Hebbian Learning 445

3. The output layer xL is clamped at the desired value d, and the dynam-
ical equation 2.5 for k D 1 to L ¡ 1 is run until convergence to a �xed
point. This is called the clamped state and is denoted by Oxk for the kth
layer neurons.

4. The Hebbian update,

DWk D gc k¡L Oxk OxT
k¡1, (2.7)

is made for k D 1, . . . , L.

Alternatively, the weight updates could be combined and made after
both clamped and free states are computed,

DWk D gc k¡L (Oxk OxT
k¡1 ¡ Lxk LxT

k¡1) . (2.8)

This form is the one used in our analysis.
This version of CHL should look familiar to anyone who knows the con-

ventional version, implemented in symmetric networks. It will be derived
in section 4, but �rst we prove its equivalence to the backpropagation algo-
rithm.

3 Equivalence in the Limit of Weak Feedback

Next, we prove that CHL in equation 2.8 is equivalent to the backpropa-
gation algorithm in equation 2.4, provided that the feedback is suf�ciently
weak and the output neurons are linear.

In notation, xk, Oxk, and Lxk represent the kth layer activities of the feed-
forward network, the clamped state, and the free state, respectively. We
consider the case of weak feedback connections, c ¿ 1, and use ¼ to mean
that terms of higher order in c have been neglected and » to denote the
order.

The proof consists of the following four steps:

1. Show that the difference between the feedforward and free states is
of order c in each component,

d Lxk ´ Lxk ¡ xk » c , (3.1)

for all k D 1, . . . , L.

2. Show that in the limit of weak feedback, the difference between the
clamped and free states satis�es the following iterative relationship,

dxk ´ Oxk ¡ Lxk D c DkWT
kC1dxkC1 C O (c L¡kC1) , (3.2)

for k D 1, . . . , L ¡ 1, and dxL D d ¡ LxL.

446 X. Xie and H. Seung

3. Show that if the output neurons are linear, dxk is related to the error
signal in backpropagation through

dxk D c L¡kyk C O (c L¡kC1) . (3.3)

4. Show that the CHL update can be approximated by

DWk D gykxT
k¡1 C O (c) . (3.4)

In the CHL algorithm, clamping the output layer causes changes in the
output neurons to spread backward to the hidden layers because of the
feedback connections. Hence, the new clamped state differs from the free
state over the entire network, including the hidden neurons. Equation 3.2
states that dxk decays exponentially with distance from the output layer of
the network. This is because the feedback is weak, so that dxk is reduced
from dxkC1 by a factor of c .

Remarkably, as indicated in equation 3.3, the difference between the
clamped and free states is equivalent to the error signal yk computed in
the backward pass of backpropagation, except for a factor ofc L¡k, when the
output neurons are linear. Moreover, this factor annihilates the factor ofc k¡L

in the CHL rule of equation 2.8, resulting in the update rule equation 3.4.

3.1 Proof. To prove the �rst step, we start from the steady-state equation
of the free phase,

Lxk D fk (Wk Lxk¡1 C bk C c WT
kC1 LxkC1) , (3.5)

for k D 1, . . . , L ¡ 1. Subtracting this equation from equation 2.1 and per-
forming Taylor expansion, we derive

d Lxk ´ Lxk ¡ xk (3.6)

D fk (Wk Lxk¡1 C bk C c WT
kC1 LxkC1) ¡ fk (Wkxk¡1 C bk) (3.7)

D DkWkd Lxk¡1 C c DkWT
kC1 LxkC1 C O (kWkd Lxk¡1 C c WT

kC1 LxkC1k2) (3.8)

for all hidden layers, andd LxL D DLWLd LxL¡1 C O (kWLd LxL¡1k2) for the output
layer. In equation 3.7, the expansion is done around Wkxk¡1 C bk. Since the
zeroth layer is �xed with the input, d Lx0 D 0, under the above iterative
relationships, we must have d Lxk » c in each component, that is,d Lxk is in the
order of c , for all k D 1, . . . , L.

To prove equation 3.2, we compare the �xed-point equations of the
clamped and free states,

f ¡1 (Lxk) D Wk Lxk¡1 C bk C c WT
kC1 LxkC1 (3.9)

f ¡1 (Oxk) D Wk Oxk¡1 C bk C c WT
kC1 OxkC1, (3.10)

Backpropagation and Contrastive Hebbian Learning 447

for k D 1, . . . , L ¡ 1, where f ¡1 is the inverse function of f in each compo-
nent. Subtract them, and perform Taylor expansion around Lxk. Recall the
de�nition of dxk ´ Lxk ¡ Oxk. We have

Wkdxk¡1 C c WT
kC1dxkC1 D f ¡1 (Oxk) ¡ f ¡1 (Lxk) (3.11)

D Jkdxk C O (kdxkk2) , (3.12)

where the matrix Jk ´ diagf@f ¡1 (Lxk) /@Lxkg. Since Lxk ¡ xk » c , to the leading
order inc , matrix Jk can be approximatedby Jk ¼ diagf@f ¡1 (xk) /@xkg D D¡1

k ,
and Jkdxk D D¡1

k dxk C O (c kdxkk) . Substituting this back to equation 3.12,
we get

dxk D Dk (Wkdxk¡1 C c WT
kC1dxkC1) C O (c kdxkk) C O (kdxkk2) . (3.13)

Let us start from k D 1. Since the input is �xed (dx0 D 0), we have dx1 D
c D1WT

2dx2 C O (c kdx1k) , and therefore, dx1 D c D1WT
2dx2 C O (c 2kdx2k) .

Next, we check for k D 2, in which case dx2 D D2W2dx1 C c D2WT
3dx3 C

O (c kdx2k) . Substituting dx1, we have dx2 D c D2WT
3dx3 C O (c kdx2k) , and

therefore, dx2 D c D2WT
3dx3 C O (c 2kdx3k) . Following this iteratively, we

have

dxk D c DkWT
kC1dxkC1 C O (c 2kdxkC1k) , (3.14)

for all k D 1, . . . , L ¡ 1. Notice that dxL D d ¡ LxL D d ¡ xL C O (c) is of order
1. Hence, dxL¡1 D c DL¡1WT

LdxL C O (c 2) , and iteratively, we have

dxk D c DkWT
kC1dxkC1 C O (c L¡kC1) , (3.15)

for k D 1, . . . , L¡1. Therefore, equation 3.2 isproved.This equation indicates
that dxk » c dxkC1 and dxk » c L¡k in each component.

If the output neurons are linear, then yL D dxL C O (c) . Consequently,
dxk D c L¡kyk C O (c L¡kC1) for all k D 1, . . . , L.

Finally, the weight update rule of CHL follows:

DWk D gc k¡L (Oxk OxT
k¡1 ¡ Lxk LxT

k¡1) (3.16)

D gc k¡Ldxk LxT
k¡1 C gc k¡L LxkdxT

k¡1 C gc k¡LdxkdxT
k¡1 (3.17)

D gc k¡Ldxk LxT
k¡1 C O (c) (3.18)

D gykxT
k¡1 C O (c) . (3.19)

The last approximation is made because Lxk¡1 ¡ xk¡1 » c . This result shows
that the CHL algorithm in the layered network with linear output neurons
is identical to the backpropagation as c ! 0.

448 X. Xie and H. Seung

Remark. For nonlinear output neurons, dxL of CHL is different from yL
in equation 2.2 computed in backpropagation. However, they are within
90 degrees if viewed as vectors. Moreover, if the activation function for
the output neurons is taken to be the sigmoidal function, that is, fL (z) D
1/ (1 C exp(¡z)) , the CHL algorithm is equivalent to backpropagation based
on the cost function,

¡ dT log(xL) ¡ (1 ¡ d)T log(1 ¡ xL) , (3.20)

since in this case, yL D d ¡xL. In the above, function log acts on a vector and
returns a vector as well.

4 Contrastive Function

The CHL algorithm stated in section 2.2 can be shown to perform gradient
descent on a contrastive function that is de�ned as the difference of the
network’s Lyapunov functions between clamped and free states (Movellan,
1990; Baldi & Pineda, 1991).

Suppose E (x) is a Lyapunov function of the dynamics in equation 2.5.
Construct the contrastive function C (W) ´ E (Ox) ¡ E (Lx) , where Ox and Lx are
steady states of the whole network in the clamped and free phase, respec-
tively, and W ´ fW1, . . . , WLg. For simplicity, let us �rst assume that E (x)
has a unique global minimum in the range of x and no local minima. Ac-
cording to the de�nition of Lyapunov functions, Lx is the global minimum
of E and so is Ox, but under the extra constraints that the output neurons are
clamped at d. Therefore, C (W) D E (Ox) ¡ E (Lx) ¸ 0 and achieves zero if and
only if Lx D Ox, that is, when the output neurons reach the desired values.
Performing gradient descent on C (W) leads to the CHL algorithm. On the
other hand, if E (x) does not have a unique minimum, Lx and Ox may be only
local minima. However, the above discussion still holds, provided that Ox is
in the basin of attraction of Lx under the free phase dynamics. This imposes
some constraints on how to reset the initial state of the network after each
phase. One strategy is to let the clamped phase settle to the steady state �rst
and then run the free phase without resetting hidden neurons. This will
guarantee that C (W) is always nonnegative and constitutes a proper cost
function.

Next, we introduce a Lyapunov function for the network dynamics in
equation 2.5,

E (x) D
LX

kD1

c k¡L[1T NFk (xk) ¡ xT
k Wkxk¡1 ¡ bT

k xk], (4.1)

where function NFk is de�ned so that NF0
k (x) D f ¡1

k (x) . x ´ fx1, . . . , xLg repre-
sents the states of all layers of the network. Equation 4.1 is extended from

Backpropagation and Contrastive Hebbian Learning 449

Lyapunov functions previously introduced for recurrent networks (Hop-
�eld, 1984; Cohen & Grossberg, 1983).

For E (x) to be a Lyapunov function, it must be nonincreasing under the
dynamics equation 2.5. This can be shown by

PE D
LX

kD1

³
@E
xk

´T

Pxk (4.2)

D
LX

kD1

c k¡L[f ¡1
k (xk) ¡ Wkxk¡1 ¡c WT

kC1xkC1 ¡ bk]T Pxk (4.3)

D
LX

kD1

¡c k¡L[f ¡1
k (xk) ¡ f ¡1

k (Pxk C xk)]T[xk ¡ (Pxk C xk)] (4.4)

· 0, (4.5)

where the last inequality holds because fk is monotonic as we have assumed.
Therefore, E (x) is nonincreasing following the dynamics and stationary if
and only if at the �xed points. Furthermore, with appropriately chosen fk,
such as sigmoid functions, E (x) is also bounded below, in which case E (x)
is a Lyapunov function.

Given the Lyapunov function, we can form the contrastive function C (W)
and derive the gradient-descent algorithm on C accordingly.

The derivative of E (Ox) with respect to Wk is

dE (Ox)
dWk

D
@E

@Wk
C

X

k

@E
@Oxk

@Oxk

@Wk
(4.6)

D
@E

@Wk
(4.7)

D ¡c k¡L Oxk OxT
k¡1, (4.8)

where the second equality holds because @E/@Oxk D 0 for all k at the steady
states. Similarly, we derive

dE (Lx)

dWk
D ¡c k¡L Lxk LxT

k¡1. (4.9)

Combining equations 4.8 and 4.9, we �nd the derivative of C (W) with re-
spect to Wk shall read

dC
dWk

D
dE (Ox)

dWk
¡ dE (Lx)

dWk
D ¡c k¡L (Oxk OxT

k¡1 ¡ Lxk LxT
k¡1) . (4.10)

With a suitable learning rate, gradient descent on C (W) leads to the CHL
algorithm in equation 2.8.

450 X. Xie and H. Seung

5 Equivalence of Cost Functions

In section 3, we proved that the CHL algorithm in the layered network
with linear output neurons is equivalent to backpropagation in the weak
feedback limit. Since both algorithmsperformgradient descent on some cost
function, the equivalence in the update rule implies that their cost functions
should be equal, up to a multiplicative or an additive constant difference.
Next, we demonstrate this directly by comparing the cost functions of these
two algorithms.

The backpropagation learning algorithm is gradient descent on the
squared difference, kd ¡ xLk2 /2, between the desired and actual outputs
of the network.

For the CHL algorithm, the cost function is the difference of Lyapunov
functions between the clamped and free states, as shown in the previous
section. After reordering, it can be written as

C D
LX

kD1

c k¡L[1T (NFk (Oxk) ¡ NFk (Lxk)) ¡ dxT
k (Wk Lxk¡1 C bk) ¡ dxT

k¡1WT
k Oxk]. (5.1)

Recall that dxk » c L¡k. Therefore, the dxk term above multiplied by the
factor c k¡L is of order 1, whereas the dxk¡1 multiplied by the same factor is
of order c , and thus can be neglected in the leading-order approximation.
After this, we get

C D
LX

kD1

c k¡L[1T (NFk (Oxk) ¡ NFk (Lxk)) ¡ dxT
k (Wk Lxk¡1 C bk)] C O (c) . (5.2)

If the output neurons are linear (fL (x) D x), then NFL (x) D xTx/2 and
WL LxL¡1 C bL D LxL. Substituting them into C and separating terms of the
output and hidden layers, we derive

C D
1
2

(OxT
L OxL ¡ LxT

L LxL ¡ dxT
L LxL)

C
L¡1X

kD1

c k¡LdxT
k [f ¡1

k (Lxk) ¡ Wk Lxk¡1 ¡ bk] C O (c)

D
1
2

kd ¡ xLk2 C O (c) , (5.3)

where the second term with the sum vanishes because of the �xed-point
equations.

In conclusion, to the leading order in c , the contrastive function in CHL
is equal to the squared error cost function of backpropagation. The demon-
stration on the equality of the cost functions provides another perspective
on the equivalence between these two forms of learning algorithms.

Backpropagation and Contrastive Hebbian Learning 451

So far, we have always assumed that the output neurons are linear. If this
is not true, how different is the cost function of CHL from that of backprop-
agation? Repeating the above derivation, we get the cost function of CHL
for nonlinear output neurons,

C D 1T NFL (OxL) ¡ 1T NFL (LxL) ¡ dxT
L f ¡1

L (LxL) C O (c) (5.4)

D ¡1T NFL (xL) ¡dxT
Lf ¡1

L (xL) C 1T NFL (d) C O (c) . (5.5)

Withsigmoidal-type activation function for output neurons, NFL (z) D x log(z)
C (1 ¡ z) log(1 ¡ z) . Substituting this into equation 5.5, we �nd

C D ¡dT log(xL) ¡ (1 ¡ d) T log(1 ¡ xL) C 1T NFL (d) C O (c) , (5.6)

which is the same as the cost function in equation 3.20 in the small c limit,
except a constant difference.

6 Simulation

In this section, we use the backpropagation and the CHL algorithm to train
a 784-10-10 three-layer network to perform handwritten digit recognition.
The data we use are abridged from the MNIST database containing 5000
training examples and 1000 testing examples.

We use the sigmoidal function fk (x) D 1/ (1C exp(¡x)) for the hidden and
output layers. The backpropagation algorithm is based on the cost function
in equation 3.20. We simulate the CHL algorithm in the layered network
with three different feedback strengths: c D 0.05, 0.1, and 0.5.

The label of an input example is determined by the index of the largest
output. After each epoch of on-line training, the classi�cation and squared
error for both training and testing examples are computed and plotted in
Figure 2. The classi�cation error is de�ned as the percentage of examples
classi�ed incorrectly. The squared error is de�ned as the mean squared
difference between the actual and desired output for all training or testing
examples. The desired output is 1 on the output neuron whose index is the
same as the label and zero on the output neurons otherwise.

The learning curve of CHL algorithm is very similar to those of back-
propagation for c D 0.05 and 0.1, and it deviates from the learning curve
of backpropagation for c D 0.5 (see Figure 2). In the simulation, we �nd
the overall simulation time of the CHL algorithm is not signi�cantly longer
than that of the backpropagation. This is because the layered network tends
to converge to a steady state fast in the case of weak feedback.

7 Discussion

We have shown that backpropagation in multilayer perceptrons can be
equivalently implemented by the CHL algorithm if weak feedback is added.

452 X. Xie and H. Seung

Figure 2: Comparison of performance between the backpropagation and the
CHL algorithm. The two algorithms are used to train a 784-10-10 three-layer
network to perform handwritten digit recognition. The CHL algorithm is used
to train the three-layer network with feedback c D 0.05, 0.1, and 0.5 added. (A,
B) Classi�cation and squared errors for training examples. (C, D) Test examples.

This is demonstrated from two perspectives: evaluating the two algorithms
directly and comparing their cost functions. The essence behind this equiv-
alence is that CHL effectively extracts the error signal of backpropagation
from the difference between the clamped and free steady states.

The equivalence between CHL and backpropagation in layered networks
holds in the limitof weak feedback, which is true mathematically. This, how-
ever, does not imply that in engineering problem solving, we should sub-
stitute CHL for backpropagation to train neural networks. This is because
in networks with many hidden layers, the difference between the clamped
and free states in the �rst few layers would become very small in the limit of
weak feedback, and therefore CHL will not be robust against noise during
training. In practice, when CHL is used for training the layered networks
with many hidden layers, the feedback strength should not be chosen to
be too small, in which case the approximation of CHL to backpropagation
algorithm will be inaccurate.

Backpropagation and Contrastive Hebbian Learning 453

The investigation on the relationship between backpropagation and CHL
is motivated by research looking for biologically plausible learning algo-
rithms. It is believed by many that backpropagation is not biologically real-
istic. However, in an interesting study on coordinate transform in posterior
parietal cortex of monkeys, Zipser and Anderson (1988) show that hidden
neurons in a network model trained by backpropagation share very similar
properties to real neurons recorded from that area. This work prompted
the search for a learning algorithm, which has similar functionality as back-
propagation (Crick, 1989; Mazzoni, Andersen, & Jordan, 1991) and at the
same time is biologically plausible. CHL is a Hebbian-type learning algo-
rithm, relying on only pre- and postsynaptic activities. The implementation
of backpropagation equivalently by CHL suggests that CHL could be a
possible solution to this problem.

Mazzoni et al. (1991) also proposed a biologically plausible learning rule
as an alternative to backpropagation. Their algorithm is a reinforcement-
type learning algorithm, which is usually slow, has large variance, and de-
pends on global signals. In contrast, the CHL algorithm is a deterministic
algorithm, which could be much faster than reinforcement learning algo-
rithms. However, a disadvantage of CHL is its dependence on special net-
work structures, such as the layered network in our case. Whether either
algorithm is used by biological systems is an important question that needs
further investigation in experiments and theory.

Acknowledgments

We acknowledge helpful discussions with J. J. Hop�eld and S. Roweis. We
thank J. Movellan for suggesting the error function for nonlinear output
neurons.

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann Machines. Cognitive Science, 9, 147–169.

Baldi, P., & Pineda, F. (1991). Contrastive learning and neural oscillator. Neural
Computation, 3, 526–545.

Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern for-
mation and parallel memory storage by competitive neural networks. IEEE
Trans. on Systems, Man, and Cybernetics, 13, 815–826.

Crick, F. (1989). The recent excitement about neural networks. Nature, 337,
129–132.

Hinton, G. E. (1989). Deterministic Boltzmann learning performs steepest de-
scent in weight-space. Neural Computation, 1, 143–150.

Hinton, G. E., & McClelland, J. (1988).Learning representations byrecirculation.
In D. Z. Anderson (Ed.), Neural Information Processing Systems. New York:
American Institute of Physics.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^293L.526[aid=3867206]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29337L.129[aid=845508]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^291L.143[aid=217357]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^293L.526[aid=3867206]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29337L.129[aid=845508]

454 X. Xie and H. Seung

Hop�eld, J. J. (1984). Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA,
81, 3088–3092.

Hop�eld, J. J. (1987). Learning algorithms and probability distributions in feed-
forward and feed-back networks. Proc. Natl. Acad. Sci. USA, 84, 8429–8433.

Mazzoni, P., Andersen, R. A., & Jordan, M. I. (1991). A more biologically plausi-
ble learning rule forneural networks. Proc.Natl.Acad.Sci. USA, 88, 4433–4437.

Movellan, J. (1990). Contrastive Hebbian learning in the continuous Hop�eld
model. In D. Touretzky, J. Elman, T. Sejnowski, & G. Hinton (Eds.), Proceedings
of the 1990 Connectionist Models Summer School (pp. 10–17). San Mateo, CA:
Morgan Kaufmann.

O’Reilly, R. (1996). Biologically plausible error-driven learning using local ac-
tivation differences: The generalized recirculation algorithm. Neural Compu-
tation, 8, 895–938.

Peterson, C., & Anderson, J. (1987). A mean �eld theory learning algorithm for
neural networks. Complex Systems, 1, 995–1019.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Learning internal
representations by error propagation. In D. E. Rumelhart, & J. L. McClel-
land (Eds.), Parallel distributed processing: Explorations in the microstructure of
cognition. Vol. 1: Foundations (pp. 318–362). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Learning representa-
tions by back–propagating errors. Nature, 323, 533–536.

Zipser, D., & Andersen, R. A. (1988). A back-propagationprogrammed network
that simulates response properties of a subset of posterior parietal neurons.
Nature (London), 331, 679–684.

Received January 25, 2002; accepted August 1, 2002.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2981L.3088[aid=214562]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2988L.4433[aid=2000251]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29323L.533[aid=218149]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29331L.679[aid=213166]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2981L.3088[aid=214562]

