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Abstract. Let µA be the law of the Ornstein-Uhlenbeck process that solves the equation

dξt = Aξt dt + dW (t), ξ0 = 0 almost surely,

where A is a generator of a C0−semigroup on a Banach space B and W (t), t > 0, is a
cylindrical Wiener process on a Hilbert subspace H of B. For two ’drift’ operators A0

and A1 we study sufficient and necessary conditions for the measures µA0
and µA1

to be
equivalent.

1. Introduction

Suppose S0 = {S0(t)}t>0 and S1 = {S1(t)}t>0 are two C0−semigroups of bounded linear
operators on a separable real Hilbert space H , which is continuously embedded into some
real Banach space B. Let ξ0 = {ξ0

t }t>0 and ξ1 = {ξ1
t }t>0 be B−valued Ornstein-Uhlenbeck

processes with drifts S0 and S1, respectively; see Section 4 for the definition. One could
think of a B−valued Ornstein-Uhlenbeck process with drift S as a B−valued solution of
the stochastic differential equation (SDE)

dξt = Aξt dt+ dWt, ξ0 = 0 almost surely,

where A is the generator of S and dW is H−valued white noise.
In this paper we study the problem under which conditions the processes ξ0 and ξ1 are

‘equivalent’. In order to give the notion of ‘equivalence’ a precise mathematical meaning, we
use the concept of an Ornstein-Uhlenbeck measure. A probability measure ν on the product
space B[0,T ] will be called a Ornstein-Uhlenbeck measure with drift S if the canonical process

on (B[0,T ], ν) defined by

ξt(ω) = ω(t) (t ∈ [0, T ], ω ∈ B[0,T ]),

is a B−valued Ornstein-Uhlenbeck process with drift S . To every B−valued Ornstein-
Uhlenbeck process with drift S there corresponds a unique canonical Ornstein-Uhlenbeck
process with drift S , and thus a unique Ornstein-Uhlenbeck measure ν on B [0,T ]. We now
define two Ornstein-Uhlenbeck processes ξ0 and ξ1 to be equivalent if the corresponding
Ornstein-Uhlenbeck measures ν0 and ν1 are equivalent, i.e. if ν0 and ν1 are absolutely
continuous with respect to each other.

Denoting by D(A) the domain of an operator A, and by ‖ · ‖L2(H) the Hilbert-Schmidt
norm of an operator on H , our main results can be formulated as follows:
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Theorem 1.1. Let ξ0 and ξ1 be two B−valued Ornstein-Uhlenbeck processes, with drifts

S0 and S1 respectively, and let ν0 and ν1 be the associated Ornstein-Uhlenbeck measures on

B[0,T ]. Consider the following three conditions:

(i) D(A0) = D(A1), for each t ∈ (0, T ] the linear operator h 7→ (A0 −A1)S0(t)h, defined

on the common domain of A0 and A1, extends to a bounded operator on H, and
∫ T

0

‖(A0 − A1)S0(s)‖
2
L2(H) ds <∞;

(ii) D(A0) = D(A1), for each t ∈ (0, T ] the linear operator h 7→ (A1 −A0)S1(t)h, defined

on the common domain of A0 and A1, extends to a bounded operator on H, and
∫ T

0

‖(A1 − A0)S1(s)‖
2
L2(H) ds <∞;

(iii) The measures ν0 and ν1 are equivalent.

Then (i) and (ii) are equivalent and imply (iii).

In the converse direction, with the same notation as in Theorem 1.1 we have:

Theorem 1.2. If ν0 and ν1 are equivalent, then D(A0) = D(A1). If furthermore for each

t ∈ (0, T ] the operator (A0 − A1)S0(t), defined on the common domain of A0 and A1, has a

bounded extension to H, such that
∫ T

0

‖(A0 − A1)S0(t)‖ dt <∞,

then for each t ∈ (0, T ] the operators (A0 − A1)S0(t) and (A1 − A0)S1(t) extend to Hilbert-

Schmidt operators on H and
∫ T

0

‖(A0 − A1)S0(s)‖
2
L2(H) ds <∞ and

∫ T

0

‖(A1 − A0)S1(s)‖
2
L2(H) ds <∞.

For certain selfadjoint elliptic operators, equivalence of Hilbert space-valued Ornstein-
Uhlenbeck semigroups was first studied by Kozlov [5]. His work was extended by Peszat [9],
who considered the case where B = H , assuming that

∫ T

0

‖Sj(t)‖
2
L2(H) dt <∞ (j = 0, 1),

along with somewhat stronger integrability conditions on the semigroups S0 and S1; see
also [3, Chapter 10]. Equivalence of B−valued Ornstein-Uhlenbeck processes corresponding
to generators of analytic semigroups has been considered by Röckle [11].

Theorems 1.1 and 1.2 are proved in Section 4 and depend on some perturbation results
for C0−semigroups and equivalence results for Gaussian measures, which are presented in
Sections 2 and 3 respectively.

2. A perturbation result

In this preliminary section we will prepare two perturbation results for C0−semigoups that
will be needed later on. The first of these, which was also used in [9], may be found in [4,
Theorem 3.4.1, p. 399; Corollary 1, p. 400, Theorem 13.5.2, p. 409]. We assume the reader
to be familiar with the elementary concepts of semigroup theory as can be found in e.g. [8],
[4].

Proposition 2.1. Suppose that A0 and A1 are the generators of C0−semigroups S0 and S1

on a Banach space X such that the following three conditions hold:
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(i) D(A0) = D(A1);
(ii) For each t ∈ (0, T ] the linear operator (A0 −A1)S0(t) has a bounded extension to X;

(iii)

∫ T

0

‖(A0 − A1)S0(t)‖ dt <∞,

Then, symmetrically, we have

(ii)′ For each t ∈ (0, T ] the linear operator (A1 −A0)S1(t) has a bounded extension to X;

(iii)′
∫ T

0

‖(A1 − A0)S1(t)‖ dt <∞.

Moreover, we have the following ‘variation of constants’ formula:

(2.1) S1(t)x = S0(t)x+

∫ t

0

S0(t− s)(A1 −A0)S1(s)x ds, x ∈ X.

Let X be a Banach space and let I ⊂ Λ(X) be an operator ideal, i.e. I is a linear
subspace of Λ(X) which is a Banach space with respect to a norm ‖ · ‖I which is stronger
than the operator norm on Λ(X), such that

‖S0TS1‖I 6 ‖S0‖ ‖T‖I ‖S1‖, S0, S1 ∈ Λ(X), T ∈ I .

Proposition 2.2. Suppose A0 and A1 are generators of C0−semigroups S0 and S1 on a

Banach space X such that D(A0) = D(A1). Let I be an operator ideal in Λ(X). Then the

following assertions are equivalent:

(i) For each t ∈ (0, T ] the operator (A0 − A1)S0(t) extends to an element of I and we

have
∫ T

0

‖(A0 − A1)S0(t)‖
2
I dt <∞;

(ii) For each t ∈ (0, T ] the operator (A0 − A1)S1(t) extends to an element of I and we

have
∫ T

0

‖(A0 − A1)S1(t)‖
2
I
dt <∞.

Proof. We prove that (i) implies (ii); the converse implication follows by symmetry. By
(i), the fact that ‖ · ‖I is stronger than the operator norm and by the Cauchy-Schwartz
inequality,

∫ T

0

‖(A0 −A1)S0(s)‖ ds <∞.

Hence by Proposition 2.1,
∫ T

0

‖(A0 −A1)S1(s)‖ ds <∞.

Therefore, by [4, Lemma 13.3.5, p. 395] for all t ∈ [0, T ] and x ∈ X we have

(A0 − A1)

∫ t

0

S0(t− s)(A1 − A0)S1(s)x ds =

∫ t

0

(A0 −A1)S0(t− s)(A1 −A0)S1(s)x ds.

By this identity, (2.1), and the Young inequality,
∫ T

0

‖(A1 −A0)(S1(t) − S0(t))‖
2
I
dt

6

∫ T

0

(
∫ t

0

‖(A1 −A0)S0(t− s)‖I ‖(A1 −A0)S1(s)‖ ds

)2

dt

6

∫ T

0

‖(A1 −A0)S0(s)‖
2
I ds

(
∫ T

0

‖(A1 − A0)S1(s)‖ ds

)2

<∞.
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By combining this estimate with (i), condition (ii) immediately follows. �

3. Equivalence of Gaussian measures

In this section we briefly recall some well-known facts concerning (cylindrical) Gaussian
measures. For more details we refer to [14], [15], [12], [13], [6].

Let E be a real locally convex topological vector space, with topological dual E ′. A
subset C of E is said to be a cylindrical set if it is contained in the algebra C (E) of sub-
sets of E generated by all sets of the form {x ∈ E : (〈x, x′1〉, . . . , 〈x, x

′
n〉) ∈ B} for some

n > 1, x′1, . . . , x
′
n ∈ E ′, and Borel set B ⊂ R

n. A centered cylindrical Gaussian mea-

sure on E is a finitely additive set function µ on C (E), whose images under the maps
x 7→ (〈x, x′1〉, . . . , 〈x, x

′
n〉) are σ−additive Gaussian measures on R

n.
If F is another real locally convex topological vector space, and if T : E → F is a

continuous linear transformation, then the image T (µ) := µ ◦ T−1 of a centered cylindrical
Gaussian measure on E is a centered cylindrical Gaussian measure on F .

Let H be a real Hilbert space. By γH we denote the standard centered cylindrical Gaussian

measure on H , i.e. the centered cylindrical Gaussian measure on H whose image under any
of the maps g 7→ ([g, h1]H , . . . , [g, hn]H) is the standard Gaussian measure on R

n.

A continuous linear operator Q ∈ Λ(E ′, E) is called positive if 〈Qx′, x′〉 > 0 for all x′ ∈ E ′,
and symmetric if 〈Qx′, y′〉 = 〈Qy′, x′〉 for all x′ ∈ E ′ and y′ ∈ E ′. To every positive symmetric
operator Q ∈ Λ(E ′, E) one can associate a real Hilbert space HQ in the following way. On
the range of Q one has a well-defined inner product [·, ·]H given by

[Qx′, Qy′] := 〈Qx′, y′〉 (x′, y′ ∈ E ′).

Denote by HQ the Hilbert space completion of rangeQ with respect to this inner product;
this Hilbert space is called the reproducing kernel Hilbert space (RKHS) associated with Q.
If E is qusi-complete, then the inclusion mapping from rangeQ into E has a continuous
extension to an injective linear map i : HQ → E. In this way, the pair (i, HQ) becomes a
Hilbert subspace of E. Moreover, upon identifying HQ with its dual in the natural way, we
then have the operator identity Q = i ◦ i′.

Conversely, if (i, H) is a real Hilbert subspace of E (i.e. i is a continuous injective linear
map from some real Hilbert space H into E), then Q := i ◦ i′ ∈ L (E ′, E) is positive and
symmetric, and its RKHS equals H .

The relationship between centered cylindrical Gaussian measures and positive symmetric
operators in described in the following well-known result.

Proposition 3.1. Let E be a real locally convex topological vector space.

(i) Let H be a real Hilbert space and let T ∈ Λ(H,E). The image cylindical measure

µ := T (γH) is a centered cylindrical Gaussian measure on E, whose Fourier transform

is given by
∫

E

exp(i〈x, x′〉) dµ(x) = exp

(

−
1

2
〈T ◦ T ′x′, x′〉

)

(x′ ∈ E ′).

Moreover, the RKHS HQ associated with the positive symmetric operator Q = T ◦T ′ ∈
Λ(E ′, E) is the orthogonal complement in H of the kernel of T . As such, HQ can be

identified with rangeT , the inner product being given by

[Tg, Th]HQ
= [Pg, Ph]H,

where P is the orthogonal projection in H onto (kerT )⊥.
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(ii) If E is quasi-complete and Q ∈ Λ(E ′, E) is positive and symmetric, and if µ is a

centered cylindrical Gaussian measure on E with Fourier transform
∫

E

exp(i〈x, x′〉) dµ(x) = exp

(

−
1

2
〈Qx′, x′〉

)

(x′ ∈ E ′),

then µ = i(γH), where H is the RKHS of Q and i : H →֒ E is the natural embedding.

Let E be a real locally convex topological vector space. A measure µ on the σ−algebra
σ(C (E)) generated by the algebra C (E) is called a (centered) Gaussian measure on E if for
all x′ ∈ E ′ the image measure 〈µ, x′〉 := µ ◦ (x′)−1 is a (centered) Gaussian Borel measure
on R . A continuous linear operator T ∈ Λ(H,E) is said to be γH−radonifying (or, if no
confusion is possible, radonifying) if the image cylindrical measure T (γH) has a (necessarily
unique) countably additive extension to a Gaussian measure on E.

If E is separable, then σ(C (E)) is just the Borel σ−algebra of E, but in general σ(C (E))
is much smaller.

The following three examples of radonifying operators will be of importance:

• If µ is a centered Gaussian measure on E with RKHS H , then the inclusion map
i : H → E is radonifying, and we have i(γH) = µ.

• If H and E are Hilbert spaces, then T ∈ Λ(H , E) is radonifying if and only if T is
a Hilbert-Schmidt operator.

• If G and H are Hilbert spaces and S ∈ Λ(G,H) and T ∈ Λ(H,E) are continuous
linear operators, then T ◦ S is radonifying whenever T is radonifying [1], [10].

Two measures µ0 and µ1 defined on the same σ−algebra are said to be equivalent, notation
µ0 ∼ µ1, if they are absolutely continuous with respect to each other, i.e. if µ0 ≪ µ1

and µ1 ≪ µ0. They are said to be singular, notation µ0 ⊥ µ1, if there exist disjoint
measurable sets B0 and B1 such that µ0(B0) = µ1(B1) = 1. Two Gaussian measures on
a real locally convex topological vector space E are either equivalent or singular. This
result is due Vakhania and Tarieladze [14], who also give necessary and sufficent conditions
for equivalence. In case both µ0 and µ1 arise as images under radonifying operator, their
characterization assumes the following form.

Proposition 3.2. Let H be a quasi-complete real Hilbert space, let E be a real locally convex

topological vector space E, and let T0, T1 ∈ Λ(H,E) be radonifying. Let µj be the centered

Gaussian measure on E which extends Tj(γH) (j = 0, 1). Let Qj = Tj ◦ T
′
j be the covariance

ooperator of µj and let Hj denote its RKHS. Then µ0 ∼ µ1 if and only if the following two

conditions hold:

(i) As subsets of E we have H0 = H1;

(iii) The map Q0x
′ 7→ Q0x

′ − jH1,H0
Q1x

′ (x′ ∈ E ′) extends to a Hilbert-Schmidt operator

on H0; here jH1,H0
: H1 → H0 is the identity map.

4. Equivalence of Ornstein-Uhlenbeck processes

Throughout the rest of the paper, B is a separable real Banach space, H is real Hilbert
subspace of B.

Consider a C0−semigroup S = {S(t)}t>0 of bounded linear operators on H , with gener-
ator A. We assume that for t > 0 the linear operator S(t) maps H into B. The resulting
operator will be denoted by SB(t). We suppose that

∫ T

0

‖S∗

B(t)x∗‖2
H dt <∞, ∀x∗ ∈ B∗.
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A B−valued stochastic process ξ = {ξt}t∈[0,T ] on some probability space (Ω, P ) is called
an B−valued Ornstein-Uhlenbeck process (with drift S ) if for all t, s ∈ [0, T ] and x∗, y∗ ∈ B∗

(the Banach space dual of B) we have

E (〈ξt, x
∗〉〈ξs, y

∗〉) =

∫ t∧s

0

[S∗(t− u)i∗x∗, S∗(s− u)i∗x∗]H du.

Notice that some authors call a process with this property a B−valued Ornstein-Uhlenbeck
process with drift A.

Associated with S is a positive symmetric operator QT ∈ Λ(H) defined by

QTh :=

∫ T

0

S(s)S∗(s)h ds (h ∈ H).

The RKHS associated with QT will be denoted by HT , and the inclusion mapping of HT into
H by iT . Thus, QT = iT ◦ i∗T . We assume that HT ⊂ B and denote by jT the corresponding
inclusion map of HT into B.

It is easy to see (cf. Proposition 2.3 in [2]) that the existence of a B−valued Ornstein-
Uhlenbeck process with drift S implies that the inclusion map jT : HT →֒ B is radonifying.
By the results in [2] this implies the existence of an Ornstein-Uhlenbeck measure ν with drift

S on the product σ−algebra of the (quasi-complete) product space B [0,T ], i.e. a probability
measure ν such that the canonical process ω 7→ ω(t) on the probability space (B [0,T ], ν)
is a B−valued Ornstein-Uhlenbeck process with drift S . It turns out that the measure
ν arises as the image under the (radonifying) map k ◦ Φ : L2([0, T ];H) → B[0,T ], where
k : C0([0, T ], B) → B[0,T ] is the natural inclusion map and Φ : L2([0, T ];H) → C0([0, T ], B)
is the convolution operator defined by

(4.1) (Φf)(t) =

∫ t

0

SB(t− s)f(s) ds (t ∈ [0, T ], f ∈ L2([0, T ];H)).

It is further shown in [2] that the process ξ has a continuous version if S is an analytic
semigroup. In this case, the Ornstein-Uhlenbeck measure ν associated with ξ may be realized
on C0([0, T ];B) as well. Moreover, in this case HT is equal to the real interpolation space
DA(1

2
, 2) = (D(A), H) 1

2
,2), with equivalent norms.

In order to capture the general case and the analytic case in one framework, throughout
the rest of this section we will make the following

Assumption 4.1. Let H and B be as before. Given are two C0−semigroups S0 and S1 on
H satisfying the assumptions listed earlier in this section, a real quasi-complete locally convex
topological vector space E, and an injective continuous linear map κ from C0([0, T ];B) into
E such that the operators κ ◦ Φ0 and κ ◦ Φ1 are radonifying.

Here, Φj : L2([0, T ];H) → C0([0, T ];B) is the convolution operator associated with Sj , as
defined by (4.1).

Example 4.2. From the above discussion we see that Assumption 4.1 is fulfilled in the
following situations:

(i) If the inclusion jT : HT →֒ B is radonifying we may take E = B [0,T ] and κ = k, the
natural inclusion map from C0([0, T ];B) into B[0,T ].

(ii) If S is analytic and the inclusion DA(1
2
, 2) →֒ B is radonifying we may take E =

C0([0, T ];B) and κ = I, the identity operator on C0([0, T ];B). Alternatively one may
take E = L2([0, T ], B) with κ : C0([0, T ];B) →֒ L2([0, T ], B) the inclusion map.
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(iii) If H = B and Sj(t) is Hilbert-Schmidt for all t ∈ (0, T ], with
∫ T

0

‖Sj(t)‖
2
L2(H) dt <∞, j = 0, 1

then Φ0 and Φ1 are Hilbert-Schmidt operators on L2([0, T ];H) and hence radonifying.
We then may take E = L2([0, T ];H) and κ = I, the identity mapping on L2([0, T ];H).
This is the situation considered by Peszat [9].

We define νj := (κ ◦ Φj)(γL2([0,T ];H)) (j = 0, 1). Being centered Gaussian measures on
E, ν0 and ν1 are either equivalent or singular. Recalling [3, Appendix B] that Φ0 and Φ1

are injective, we have the following necessary and sufficient conditions for equivalence of the
measures ν0 and ν1:

Theorem 4.3. We have equivalence ν0 ∼ ν1 if and only if the following two conditions hold:

(i) range Φ0 = range Φ1;

(ii) The operator Φ−1
1 Φ0 − (Φ−1

0 Φ1)
∗ is Hilbert-Schmidt on L2([0, T ];H).

Proof. Let Rj denote the covariance operator of the measure νj . By Proposition 3.1 the
RKHS Hj of Rj equals range (κ ◦ Φj). By the injectivity of κ we therefore have H0 = H1 if
and only if range Φ0 = range Φ1.

It remains to prove that, under the assumption range Φ0 = range Φ1, the operator V
defined by R0φ 7→ R0φ− R1φ (φ ∈ E ′) is Hilbert-Schmidt on H0 (note that we identify H0

and H1 in order to simplify notation) if and only if Φ−1
1 Φ0 − (Φ−1

0 Φ1)
∗ is Hilbert-Schmidt on

L2([0, T ];H). To see this, notice that for all φ ∈ E ′ we have

V (κΦ0Φ
∗

0κ
∗φ) = V (R0φ) = R0φ− R1φ

= κΦ0Φ
∗

0κ
∗φ− κΦ1Φ

∗

1κ
∗φ

= κΦ0(I − Φ−1
0 Φ1(Φ

−1
0 Φ1)

∗)Φ∗

0κ
∗φ

= κΦ0(Φ
−1
0 Φ1(Φ

−1
1 Φ0 − (Φ−1

0 Φ1)
∗))Φ∗

0κ
∗φ

Now κ ◦ Φ0 is unitary as a map from L2([0, T ];H) onto H0 = range (κ ◦ Φ0). Moreover,
(κ ◦Φ0)

∗ has weak∗−dense range in L2([0, T ];H) (being the adjoint of an injective operator)
and hence dense range in L2([0, T ];H) (by reflexivity and the Hahn-Banach theorem). From
this we see that V is Hilbert-Schmidt if and only if the map

f 7→ (Φ−1
0 Φ1(Φ

−1
1 Φ0 − (Φ−1

0 Φ1)
∗))f

is Hilbert-Schmidt on L2([0, T ];H). But Φ−1
0 Φ1 is an isomorphism from L2([0, T ];H) onto

L2([0, T ];H), so that we finally obtain that V is Hilbert-Schmidt if and only if Φ−1
1 Φ0 −

(Φ−1
0 Φ1)

∗ is Hilbert-Schmidt on L2([0, T ];H). �

In view of this result it will be important to find conditions under which we have range Φ0 =
range Φ1, and to obtain explicit expressions for the operators Φ−1

1 Φ0 and Φ−1
0 Φ1. This will

be achieved in a series of lemmas.
The first of these extends [9, p. 272] and [3, Remark 10.9].

Lemma 4.4. If range Φ0 ⊂ range Φ1, then D(A0) ⊂ D(A1).

Proof. By assumption for every f ∈ L2([0, T ];H) there exists a function g ∈ L2([0, T ];H)
such that Φ1g = Φ0f in C0([0, T ];B). Taking Laplace transforms, this is equivalent to the
statement that for every f ∈ L2([0, T ];H) there exists a function g ∈ L2([0, T ];H) such that

(4.2) R(λ,A1)
(

Λg(λ) − e−λT Φ1g(T )
)

= R(λ,A0)
(

Λf(λ) − e−λT Φ0f(T )
)
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for all large enough positive real numbers λ; here Λ denotes the Laplace transform. Fix
M > 0 and ω ∈ R such that max{‖S0(t)‖, ‖S1(t)‖} 6 Meωt for all t > 0, and fix λ0 > ω

such that
M

λ0 − ω
< T.

For α ∈ R and h ∈ H let fα,h ∈ L2([0, T ];H) be defined by fα,h(t) = eαt ⊗ h. If α satisfies
ω < α < λ0, then

Λfα,h(λ0) − e−λ0T Φ0fα,h(T ) =
1 − e−(λ0−α)T

λ0 − α

(

h− e−(λ0−α)T λ0 − α

1 − e−(λ0−α)T

∫ T

0

e−αtS0(t)h dt

)

=:
1 − e−(λ0−α)T

λ0 − α
(I − Lα)h.

Since
∥

∥

∥

∥

∫ T

0

e−αtS0(t)h dt

∥

∥

∥

∥

6 M‖h‖

∫ T

0

e−(α−ω)t dt = M‖h‖
1 − e−(α−ω)T

α− ω
,

the choice of λ0 shows that the operator I − Lα is invertible if λ0 − α is small enough.
It follows that

{

R(λ,A0)
(

Λf(λ) − e−λT Φ0f(T )
)

: f ∈ L2([0, T ];H), λ > ω
}

= D(A0).

Hence, in view of 4.2 for all h ∈ D(A0) there exists g ∈ L2([0, T ];H) such that

R(λ,A1)
(

Λg(λ) − e−λT Φ1g(T )
)

= h.

As the left-hand side defines an element of D(A1), this proves that D(A0) ⊂ D(A1). �

The following lemma gives a partial representation of the operator Φ−1
1 Φ0.

Lemma 4.5. Suppose D(A0) ⊂ D(A1) and let f ∈ C([0, T ];D(A0)). Then for all t ∈ [0, T ],

Φ0f(t) − Φ1f(t) =

(

Φ1

∫

·

0

(A0 − A1)S0(· − s)f(s) ds

)

(t).

Proof. A direct computation gives
(

Φ1

∫

·

0

(A0 − A1)S0(· − s)f(s) ds

)

(t)

=

∫ t

0

∫ τ

0

S1(t− τ)(A0 − A1)S0(τ − s)f(s) ds dτ

=

∫ t

0

∫ t

s

S1(t− τ)(A0 − A1)S0(τ − s)f(s) dτ ds

=

∫ t

0

∫ t

s

(

d

dτ
S1(t− τ)S0(τ − s)

)

f(s) dτ ds

=

∫ t

0

(S0(t− s) − S1(t− s))f(s) ds

= Φ0f(t) − Φ1f(t).

�

From this we obtain the following converse of Lemma 4.4:
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Lemma 4.6. Suppose D(A0) ⊂ D(A1). If the operator

f 7→

∫

·

0

(A0 − A1)S0(· − s)f(s) ds, f ∈ C([0, T ];D(A0))

extends to a bounded linear operator from L2([0, T ];H) into itself, then range Φ0 ⊂ range Φ1.

Proof. Denote the bounded extension by Λ. Then by Lemma 4.5, Φ0 = Φ1(I + Λ) on the
dense subspace C([0, T ];D(A0)) of L2([0, T ];H). Therefore this identity extends to all of
L2([0, T ];H), which gives the result. �

We are now in a position to prove Theorem 1.1:

Theorem 4.7. The conditions

(i) D(A0) = D(A1) and

∫ T

0

‖(A0 − A1)S0(s)‖
2
L2(H) ds <∞

(ii) D(A0) = D(A1) and

∫ T

0

‖(A1 − A0)S1(s)‖
2
L2(H) ds <∞

are equivalent and imply

(iii) ν0 ∼ ν1.

Proof. The equivalence of (i) and (ii) follows from Proposition 2.2.
Assume now that (i) (and therefore also (ii)) holds. In view of Theorem 4.3, in order to

prove that ν0 ∼ ν1 it is enough to show that range Φ0 = range Φ1 and that both Φ−1
1 Φ0 − I

and Φ−1
0 Φ1 − I are Hilbert-Schmidt on L2([0, T ];H).

The finiteness of the integrals in (i) and (ii) implies that
∫ T

0

‖(A0 −A1)S0(s)‖ ds <∞ and

∫ T

0

‖(A1 −A0)S1(s)‖ ds <∞,

and therefore by Young’s inequality the operators

f 7→

∫

·

0

(A0 −A1)S0(· − s)f(s) ds and f 7→

∫

·

0

(A1 −A0)S1(· − s)f(s) ds

are bounded on L2([0, T ];H). Now Lemma 4.6 shows that range Φ0 = range Φ1.
For all f ∈ L2([0, T ];H) and almost all t ∈ [0, T ] we have

(Φ−1
1 Φ0f − f)(t) =

∫ t

0

(A0 − A1)S0(t− s)f(s) ds.

Indeed, for f ∈ C([0, T ];D(A0)) this follows from Lemma 4.5 and the general case follows
from this by a density argument. We conclude that the operator Φ−1

1 Φ0−I can be represented
as an integral operator on L2([0, T ];H) with operator-valued kernel K(s, t) = (A0−A1)S0(t−
s). Since by (i),

∫ T

0

∫ T

0

‖K(s, t)‖2
L2(H) ds dt <∞,

the operator-valued version of Mercer’s theorem [7] now implies that Φ−1
1 Φ0 − I is Hilbert-

Schmidt. The same argument shows that also Φ−1
0 Φ1 − I is Hilbert-Schmidt. �

Theorem 4.7 admits a partial converse, for which we need the following simple observation.

Lemma 4.8. Suppose φ : (0, T ) → R + is a measurable function with the following property:

there exists a constant M > 0 such that for all s, t ∈ (0, T ) with s 6 t we have φ(s) > Mφ(t).
If

∫ T

0

∫ t

0

φ(s) ds dt <∞,
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then also
∫ T

0

φ(s) ds <∞.

Proof. By the finiteness of the double integral, there exists δ ∈ (0, T ) such that
∫ δ

0
φ(s) ds <

∞. But from
∫ T

0

∫ t

0

φ(s) ds dt >

∫ T

δ

∫ t

0

φ(s) ds dt > M

∫ T

δ

∫ t

0

φ(t) ds dt > δM

∫ T

δ

φ(t) dt

we conclude that also
∫ T

δ
φ(t) dt <∞. �

Now we are in a position to prove Theorem 1.2:

Theorem 4.9. If ν0 ∼ ν1, then D(A0) = D(A1). If furthermore for each t ∈ (0, T ] the

operator (A0 − A1)S0(t) has a bounded extension to H such that

(4.3)

∫ T

0

‖(A0 − A1)S0(t)‖ dt <∞,

then for each t ∈ (0, T ] the operators (A0 − A1)S0(t) and (A1 − A0)S1(t) extend to Hilbert-

Schmidt operators on H and

(4.4)

∫ T

0

‖(A0 −A1)S0(s)‖
2
L2(H) ds <∞ and

∫ T

0

‖(A1 −A0)S1(s)‖
2
L2(H) ds <∞.

Proof. By Theorem 4.3, ν0 ∼ ν1 implies that range Φ0 = range Φ1. Hence equality of the
domains D(A0) = D(A1) follows from Lemma 4.4.

By (4.3), Young’s inequality and Lemma 4.5, for all f ∈ L2([0, T ];H) we have

Φ−1
1 Φ0f − f =

∫

·

0

(A0 − A1)S0(· − s)f(s) ds.

Further, by (4.3) and Proposition 2.1, every operator (A1−A0)S1(t) has a bounded extension
to H and we have

∫ T

0

‖(A1 − A0)S1(t)‖ dt <∞.

Using this, it is easy to check that

(Φ−1
0 Φ1)

∗f − f =

∫ T

·

((A1 −A0)S1(· − s))∗f(s) ds

for all f ∈ L2([0, T ];H). Hence,
(

Φ−1
1 Φ0 − (Φ−1

0 Φ1)
∗
)

f(t)

=

∫ T

0

χ(0,t)(s) (A0 − A1)S1(t− s)f(s) + χ(t,T )(s) ((A1 − A0)S1(t− s))∗f(s) ds

for almost t ∈ [0, T ] and all f ∈ L2([0, T ];H). Since Φ−1
1 Φ0 − (Φ−1

0 Φ1)
∗ is Hilbert-Schmidt

by Theorem 4.3, Mercer’s theorem implies that
∫ T

0

∫ T

0

χ(0,t)(s)‖(A0 − A1)S1(t− s)‖2
L2(H) + χ(t,T )(s) ‖((A1 − A0)S1(t− s))∗‖2

L2(H) ds dt<∞.
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Clearly, this holds if and only if both
∫ T

0

∫ T

t

‖((A1 −A0)S1(t− s))∗‖2
L2(H) ds dt =

∫ T

0

∫ T−t

0

‖(A0 − A1)S0(s)‖
2
L2(H) ds dt

=

∫ T

0

∫ t

0

‖(A0 −A1)S0(s)‖
2
L2(H) ds dt <∞

and
∫ T

0

∫ t

0

‖(A0 − A1)S1(s)‖
2
L2(H) ds dt <∞.

By Lemma 4.8 applied to the functions

φj(s) := ‖(A0 − A1)Sj(s)‖
2
L2(H),

taking Mj := sups∈[0,T ] ‖Sj(s)‖
2, these two conditions are equivalent to (4.4). �

Theorems 4.7 and 4.9 can be summarized as follows:

Corollary 4.10. The following are equivalent:

(i) D(A0) = D(A1) and

∫ T

0

‖(A0 − A1)S0(s)‖
2
L2(H) ds <∞;

(ii) D(A0) = D(A1) and

∫ T

0

‖(A1 − A0)S1(s)‖
2
L2(H) ds <∞;

(iii) ν0 ∼ ν1 and
∫ T

0
‖(A0 − A1)S0(s)‖ ds <∞;

(iv) ν0 ∼ ν1 and
∫ T

0
‖(A1 − A0)S1(s)‖ ds <∞.

If A0 = 0, then this reduces to:

Corollary 4.11. If A0 = 0 the following assertions are equivalent:

(i) A1 is bounded and Hilbert-Schmidt;

(ii) ν0 ∼ ν1.

Remarks.

(i) We have only considered equivalence of centered Ornstein-Uhlenbeck measures ν on
E. These measures can be thought of as representing Ornstein-Uhlenbeck processes
starting at 0. In a similay way an Ornstein-Uhlenbeck processes starting at some
h ∈ H can be represented by a Gaussian measure νh on E with mean κ(S(T )h)
and whose covariance equals the covariance of the corresponding centered Ornstein-
Uhlenbeck measure. As in [9] it is easy to see that equivalence ν0 ∼ ν1 implies

ν
(h)
0 ∼ ν

(h)
1 for all h ∈ H . In fact, by (2.1) we have

S1(T )h− S0(T )h =

∫ T

0

S(T − s)ψ(s) ds,

where ψ := (A1 − A0)S1(·)h ∈ L2([0, T ];H) by (4.4). Hence by [3, Corollary B.7],

κ(S1(T )h − S0(T )h) belongs to the common RKHS of the measures ν
(h)
0 and ν

(h)
1 ,

which shows that condition (ii) of Proposition 3.2 is satisfied.
(ii) Notice that the conditions for equivalence we have obtained are intrinsic, in the sense

that they do not refer to the space B but only to H and the semigroups S0 and S1.
Furthermore they are independent of T .
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