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In digital image correlation (DIC), to obtain the displacements of each point of interest, a correlation
criterion must be predefined to evaluate the similarity between the reference subset and the target sub-
set. The correlation criterion is of fundamental importance in DIC, and various correlation criteria have
been designed and used in literature. However, little research has been carried out to investigate their
relations. In this paper, we first provide a comprehensive overview of various correlation criteria used in
DIC. Then we focus on three robust and most widely used correlation criteria, i.e., a zero-mean normal-
ized cross-correlation (ZNCC) criterion, a zero-mean normalized sum of squared difference (ZNSSD) cri-
terion, and a parametric sum of squared difference (PSSDab) criterion with two additional unknown
parameters, since they are insensitive to the scale and offset changes of the target subset intensity
and have been highly recommended for practical use in literature. The three correlation criteria are ana-
lyzed to establish their transversal relationships, and the theoretical analyses clearly indicate that the
three correlation criteria are actually equivalent, which elegantly unifies these correlation criteria for
pattern matching. Finally, the equivalence of these correlation criteria is further validated by numerical
simulation and actual experiment. © 2010 Optical Society of America
OCIS codes: 100.4999, 120.6650.

1. Introduction

Digital image correlation (DIC) [1–6] is a noncontact,
full-field optical metrology for accurate measure-
ments of two-dimensional (2D) and three-
dimensional (3D) deformation and shape from digital
images of test object surface recorded at different con-
figurations. In recent years, DIC has acquired more
andmore attention and been increasingly used in var-
ious scientific fields and engineering applications,
due to its advantages of simple experimental setup
and specimen preparation, low requirements onmea-
surement environment, and wide range of measure-
ment sensitivity and resolution [6].

In essence, DIC is an optical method based on di-
gital image processing and numerical computing. It
takes advantage of the artificial speckle pattern or
natural surface texture on the test object surface
as a carrier of deformation information, and it tracks
the motion of each concerned pixel of the reference
image in the deformed image. To this end, a reference
subset containing sufficient local intensity variations
centered at the interrogated pixel is selected first.
Then, by means of a predefined criterion and a cer-
tain optimization algorithm [4–8], the DIC technique
searches the deformed image for the target (or de-
formed) subset, whose intensity pattern is of maxi-
mum similarity (or minimum difference) with the
reference subset. The predefined criterion can be a
cross-correlation criterion or a sum of squared differ-
ence criterion [6]. Since the matching process of DIC
cannot be fulfilled without a predefined criterion, the
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correlation criterion (or matching criterion) is of fun-
damental importance in DIC. As pointed out in a
recent book, “the digital image correlation method
owes its name to the use of the normalized cross-
correlation criterion” [5], thus it can be seen that
the significance of correlation criterion in DIC tech-
nique is self-evident.

In literature, various criteria, including cross-
correlation (CC) criterion, sum of absolute difference
(SAD), sum of squared difference (SSD), and para-
metric sum of squared difference (PSSD) have been
designed and used [4,6,9–17]. It should be empha-
sized here, first, that the selection of correlation cri-
terion for matching is not an important issue if the
intensity of each pixel does not change in the de-
formed image (though the position of the same pixel
changes due to external loading). Recently, an evalua-
tion of four SSD criteria for displacement and strain
mapping was carried out by W. Tong [11], and the re-
sult shows that various correlation criteria almost
yield the same results under the condition that the in-
tensity value of each pixel remains unchanged in the
deformed image. However, this ideal condition hardly
holds true in practical experiments, where the inten-
sity of the deformed imagemay undergo potential un-
desired changes. In certain cases, the local intensity
within the target image may differ significantly with
that of the reference image, and the intensity changes
between images may be induced by various reasons.
For example, the illumination lightingmaybeuneven
and fluctuate with time. The reflectivity of the test
specimen surface may also change due to an increase
of surface roughness accompanying the increasing
strain. In particular, in 3D DIC based on the stereo-
vision principle, the same specimen surface image
captured by different cameras may differ with each
other due to different imaging orientations [5]. Addi-
tionally, in the correlation of projected speckle pat-
terns, the different reflectance of the reference
plane and the test object’s surfacemay also lead to no-
table variations in the recorded images [18]. In all the
above situations, a robust correlation criterion must
be used to accommodate the variations in the inten-
sity of the deformed image, otherwise significant dis-
placement measurement errors may occur due to the
mismatch of intensity change model [11,16,17].

Based on the consideration of compensating for
or eliminating the errors associated with intensity
change of the target subset, a zero-mean cross-
correlation criterion (ZNCC), a zero-meannormalized
sum of squared difference (ZNSSD) criterion, and a
parametric sumof squared difference (PSSDab) criter-
ion with two additional unknown parameters (com-
pared with a conventional SSD criterion) have been
highly recommended for matching the same subsets
located in the reference image and the deformed
image, as they are insensitive to the potential scale
and offset changes of the target subset intensity. The
mathematical expressions of the above-mentioned
three correlation criteria are fully different, though
these three correlation criteria have the same perfor-

mance against the offset and scale changes in the de-
formed subset intensity. Accordingly, understanding
the transversal relationships among them is un-
doubtedly an interesting and meaningful issue and
also useful to the optimal use of these matching
criteria.

In this work, we first provide a comprehensive
overview of the various correlation criteria used in
DIC for quantitatively evaluating the similarity or
difference between the reference subset and the tar-
get subset. Then, we focus on the three robust and
most widely used correlation criteria, i.e., the ZNCC
criterion, the ZNSSD criterion, and the PSSDab cri-
terion. The three correlation criteria are analyzed to
establish their transversal relationships, and the
analysis clearly indicates that the three correlation
criteria are indeed equivalent, which elegantly uni-
fies these popular correlation criteria for pattern
matching. Finally, both numerical and actual experi-
ments were carried out to validate the correctness of
the theoretical derivations, and the results show
good agreement with theoretical predictions.

2. Basic Principle of Digital Image Correlation

The basic principle of DIC is the tracking (or match-
ing) of the same image points located in the two di-
gital images of the test specimen surface recorded
before and after deformation [6]. It should be noted
first that the test specimen surface must be covered
with a random speckle pattern in the DIC technique,
which serves as a carrier of deformation information
[19–21]. As can be seen from Fig. 1, in order to com-
pute the displacements of a point of interest Pðx0; y0Þ,
a square reference subset ofN ×N pixels centered at
the interrogated point P from the reference image is
chosen and used to track its corresponding location
in the deformed image. To accurately track the

Fig. 1. (Color online) Example of tracking the reference subset in
the deformed image using DIC. The center position of the target
subset is obtained through searching the peak position of the
distribution of the correlation coefficient.
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position of the reference subset in the deformed im-
age, a criterion must be established to evaluate the
similarity or difference between the selected refer-
ence subset and the target subset. By sliding the re-
ference subset in the searching area of the deformed
image and computing the correlation coefficient
at each location, a correlation coefficient map is
obtained as schematically illustrated in Fig. 1. Sub-
sequently, the matching procedure is completed
through searching for the peak position of the distri-
bution of correlation coefficient using certain optimi-
zation algorithm. Once the correlation coefficient
extreme is detected, the position of the deformed sub-
set can be determined. The differences of the posi-
tions of the reference subset center and the target
subset center yield the in-plane displacement vector
at the point P. The same procedure is repeated for
other pixels of interest to obtain the full-field
displacement.

3. Overview of Various Correlation Criteria for Digital
Image Correlation

To evaluate the similarity (or difference) degree be-
tween the reference subset and its deformed counter-
part, correlation criteria must be defined in advance,
which plays a critical role in DIC. Generally speak-
ing, the various correlation criteria can be classified
into the following four categories, according to their
mathematical definitions, i.e., cross-correlation (CC),
sum of absolute difference (SAD), sum of squared dif-
ference (SSD), and parametric sum of squared differ-
ence (PSSD) [14–17]. In this paper, we will focus on
CC, SSD, and PSSD criteria and neglect SAD criter-
ia, as SAD criteria are less practical and seldom used
in comparison with the other three types of correla-
tion criteria. As we know, the correlation coefficient is
computed between the reference subset and target
subset. For a square subset containing nð¼ N ×NÞ
discrete pixels, let f ðxi; yiÞ and gðx0i; y0iÞ denote the
gray values of the ith pixel of the reference subset
and the target subset, respectively. For the purpose
of notation brevity and clarity, the gray values of
f ðxi; yiÞ and gðx0i; y0iÞ are further simplified as f i and
gi. The lower and upper bounds of summation are
also omitted in all the following derivations for the
same purpose.

A. Cross-Correlation Criteria

Basically, the commonly used CC criteria can be
further categorized into four types, according to their
performance against the possible intensity changes
presented in the target subset. All the CC criteria
involve maximizing the corresponding cross-
correlation coefficients.

The direct CC coefficient is defined as

CCC ¼
X

f igi: ð1Þ

It is necessary to note that the computation of a CC
coefficient can be performed either in the spatial do-
main or in the Fourier space by using FFT [22–24].

By subtracting the mean value of the subset
intensity, the zero-mean cross-correlation (ZCC)
coefficient is of the following form:

CZCC ¼
X

½ðf i − �f Þðgi − �gÞ�; ð2Þ

where �f ¼ 1
n

P
n
i¼1 f i and �g ¼ 1

n

P
n
i¼1 gi denote the en-

semble averages of the reference and target subsets,
respectively. Since the mean value of the subset
intensity has been removed, the ZCC criterion is tol-
erant of the offset change of the deformed image.

Similarly, by dividing the root-sum-square of the
subset intensity, the normalized cross-correlation
(NCC) coefficient is defined as

CNCC ¼
P

f igiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
f 2i

P
g2i

q : ð3Þ

It is worth mentioning that 1 − CNCC has also been
used in literature instead of CNCC [4,7].

Finally, combining the advantages of ZCC and
NCC criteria, the zero-mean normalized cross-
correlation (ZNCC) coefficient can be given as

CZNCC ¼
P �f i�giffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP �f 2i

P
�g2i

q ; ð4Þ

where �f i ¼ f i − �f and �gi ¼ gi − �g. It is clear that the
computation complexity of Eq. (4) is greater than
other CC criteria. Recently, research has also been
conducted to speed the calculation of the ZNCC
criterion [25–27].

The ZNCC criterion is highly recommended for
practical use, as it is insensitive to the offset and
scale changes in the intensity of the target subset
and provides the most accurate and reliable displa-
cement estimations compared with other CC criteria
[11,28]. In other words, if a linear transformation of
the target subset gray intensity has been made ac-
cording to function g0i ¼ a × gi þ b, the resulting
ZNCC coefficient remains unchanged.

B. Sum of Squared Difference Criteria

Mathematically, maximization of the above CC cri-
teria is actually equivalent to the minimization of
the corresponding SSD criterion. That is to say, sub-
set matching can be intuitively achieved by minimiz-
ing the difference between the reference and target
subsets. For instance, the direct SSD criterion (which
corresponds to the direct CC criterion) involves mini-
mizing the following formulation:

CSSD ¼
X

ðf i − giÞ2: ð5Þ

It is noteworthy that a slightly different SSD
criterion, in the form of

Pðf i − giÞ2=
P

f 2i , has been
used in Refs. [4,11,29–32]. However, because the
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denominator
P

f 2i is a constant for each reference
subset, it can be directly neglected without any con-
sequence. Therefore, we do not consider that correla-
tion criterion as a new one in this work.

The zero-mean sum of squared difference (ZSSD)
criterion (which corresponds to the ZCC criterion),
which is insensitive to the offset change of the inten-
sity of the target subset, is to minimize the following
coefficient:

CZSSD ¼
X

½ðf i − �f Þ − ðgi − �gÞ�2: ð6Þ

The coefficient of the normalized sum of squared
difference (NSSD) criterion (which corresponds to
the NCC criterion), which is insensitive to scale
change of the intensity of the target subset, can be
expressed as

CNSSD ¼
X�

f iffiffiffiffiffiffiffiffiffiffiffiP
f 2i

q −
giffiffiffiffiffiffiffiffiffiffiffiP

g2i

q �
2
: ð7Þ

Last, the coefficient of the ZNSSD criterion (which
corresponds to the ZNCC criterion), which is insen-
sitive to both offset and scale changes of the intensity
of the target subset [11,28], is defined as

CZNSSD ¼
X� �f iffiffiffiffiffiffiffiffiffiffiffiP �f 2i

q −
�giffiffiffiffiffiffiffiffiffiffiffiP

�g2i

q �
2
: ð8Þ

C. Parametric Sum of Squared Difference Criteria

As described previously, the direct SSD criterion is a
very simple and intuitive approach for subset match-
ing, but its limitation is the incapability of coping
with the change of the intensity of the target subset.
To solve this problem and accommodate the intensity
change of the target subset, a few different kinds of
SSD criteria that incorporate additional parameters
into the coefficient definition have been developed
[5,14–17]. These criteria are referred to as para-
metric sum of squared difference (PSSD) criteria in
this work.

When an unknown parameter b is incorporated
into the SSD coefficient to account for the offset
change of the intensity of the target subset [5,14–
17], the new criterion is named the PSSDb criterion
hereafter. The PSSDb coefficient is expressed as

CPSSDb ¼
X

ðf i þ b − giÞ2: ð9Þ

It is worth noting that the above coefficient has
been used by Vendroux and Knauss [31], in the form
of

Pðf i þ b − giÞ2=
P

f 2i , to measure the submicrom-
eter deformation by combining DIC and a scanning
tunnelingmicroscope (STM) where b denotes a global
offset in height between the two scans of the STM.

In a similar manner, the PSSDa criterion incorpo-
rates an unknown parameter a to account for the
scale change of the intensity of target subset

[5,16,17], and the coefficient is defined as

CPSSDa ¼
X

ðaf i − giÞ2: ð10Þ

The generalized PSSDab coefficient considers two
unknown parameters a and b to account for both
the offset and scale changes of the intensity of the
target subset [5,14–17], and it is given as

CPSSDab ¼
X

ðaf i þ b − giÞ2: ð11Þ

All of the above PSSD coefficients can be normal-
ized to a certain extent by dividing

P
f 2i . However, as

mentioned previously, this manipulation does not im-
prove the convergence characteristics of the criteria,
since the denominator

P
f 2i for a subset remains

constant.

4. Equivalence of Correlation Criteria Used for Pattern
Matching

In the text below, the relationships among the ZNCC,
ZNSSD, and PSSDab criteria are described. It should
be noted that the derivations can also be easily ap-
plied to other simpler correlation criteria, and simi-
lar relationships can be established.

A. From ZNSSD Criterion to ZNCC Criterion

It is easy to show that the ZNSSD coefficient is
directly related to the ZNCC coefficient [11,28] as
follows:

CZNSSD ¼
X� �f iffiffiffiffiffiffiffiffiffiffiffiP �f 2i

q −
�giffiffiffiffiffiffiffiffiffiffiffiP

�g2i

q �
2

¼
X� �f 2iP �f 2i

− 2
�f i�giffiffiffiffiffiffiffiffiffiffiffiP �f 2i

q ffiffiffiffiffiffiffiffiffiffiffiP
�g2i

q þ �g2iP
�g2i

�

¼ 2 − 2

P �f i�giffiffiffiffiffiffiffiffiffiffiffiP �f 2i

q ffiffiffiffiffiffiffiffiffiffiffiP
�g2i

q ¼ 2ð1 − CZNCCÞ: ð12Þ

In practice, because the optimization of the ZNSSD
coefficient is relatively easier than that of the ZNCC
coefficient, the ZNSSD criterion is usually employed.
However, in certain DIC approaches, such as the re-
cently developed reliability-guided digital image
correlation (RG-DIC) method [33–35], the ZNCC
coefficient is preferred for intuitively showing the ef-
fect and reliability of subset matching because it falls
into a range of ½−1; 1�, whereas the ZNSSD coefficient
has a range of [0, 4]. In this case, the ZNSSD criterion
can be employed for subset correlation optimization,
after which the corresponding ZNCC coefficient can
be calculated according to the following equation of
CZNCC ¼ 1 −

CZNSSD
2 to guide the DIC calculation path.

B. From PSSDab Criterion to ZNCC Criterion

Although the PSSDab coefficient defined by Eq. (11)
has a substantially different form from the ZNCC
coefficient defined by Eq. (4), we will show below that
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the PSSDab criterion is equivalent to the ZNCC
criterion.

By minimizing the PSSDab coefficient with
respect to a and b, we have

�
∂CPSSDab

∂a ¼ 0
∂CPSSDab

∂b ¼ 0
⇒

� 2
P½ðaf i þ b − giÞf i� ¼ 0

2
Pðaf i þ b − giÞ ¼ 0

: ð13Þ

Solving Eq. (13), the optimal estimates for a and b
are determined as

a ¼
P½ðgi − bÞf i�P

f 2i
; ð14Þ

b ¼
Pðgi − af iÞP

1
¼

Pðgi − af iÞ
n

¼ �g − a�f : ð15Þ

Substituting Eq. (15) into Eq. (14), the unknown
parameter a can be determined as

a ¼
P½ðgi − �gþ a�f Þf i�P

f 2i
⇒ a

X
f 2i

¼
X

½ðgi − �gþ a�f Þf i� ⇒ a ¼
P½ðgi − �gÞf i�P½ðf i − �f Þf i�

¼
P

�gif iP �f if i
:

ð16Þ

It is easy to prove that
P

�gif i ¼
P

�gi�f i andP �f if i ¼
P �f 2i , thus a and b can be further expressed

as

a ¼
P

�gi�f iP �f 2i
; ð17Þ

b ¼ �g −

P
�gi�f iP �f 2i

�f : ð18Þ

By substituting Eqs. (15) and (17) into Eq. (11), the
PSSDab coefficient now can be further denoted as

CPSSDab ¼
X

ðaf i þ b − giÞ2 ¼
X

ðaf i þ �g − a�f − giÞ2

¼
X

ða�f i − �giÞ2 ¼
X�P

�gi�f iP �f 2i
�f i − �gi

�
2

¼
X��P

�gi�f iP �f 2i

�
2
�f 2i − 2

P
�gi�f iP �f 2i

�f i�gi þ �g2i

�

¼ −
ðP �gi�f iÞ2P �f 2i

þ
X

�g2i

¼
X

�g2i

�
1 −

ðP �gi�f iÞ2P
�g2i

P �f 2i

�
¼

X
�g2i ð1 − C2

ZNCCÞ:

ð19Þ
Although the PSSDab criterion does not have a lin-

ear relationship with the ZNCC criterion as expli-
citly shown in Eq. (19), mathematic deduction will
show that their partial derivatives with respect to
the desired deformation parameter vector has a sim-
ple linear relationship, considering if we take

P
�g2i as

constant. Besides, upon a successfully subset match-
ing using either the PSSDab or the ZNCC criteria, the
value of

P
�g2i can be readily determined by virtue ofa

certain interpolation scheme (e.g., a bicubic interpo-
lation [36]). Consequently, the PSSDab and ZNCC
coefficients can be obtained from each other with
Eq. (19) or the following formula:

CZNCC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

CPSSDabP
�g2i

s
: ð20Þ

Fig. 2. (Color online) Reference image (left), deformed image (middle), and deformed image after artificially adjusted with 20% increase
in brightness and 20% decreases in contrast (right) and their histograms. The rectangle of the reference image indicates the specified
region of interest, and the two small squares denote the subset used for calculation.
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In the RG-DIC technique, the ZNCC coefficient is ty-
pically employed to guide the DIC calculation path.
With the PSSDab criterion, we can also convert the
PSSDab coefficient to the ZNCC coefficient easily
using Eq. (20) after each optimization to determine
the calculation path using ZNCC coefficients.

5. Verification by Numerical Simulation

A. Computer-Simulated Speckle Images

In this section, computer-simulated speckle patterns
with controllable deformation are used to verify the
presented mathematical derivations. First, a refer-
ence image with a resolution of 300 × 200 pixels
and apixel depth of 8 bit gray scale is generatedusing
the simulation algorithm in Ref. [8]. The detailed
parameters used in simulation are the speckle gran-
ule radius R ¼ 4 pixels and the total number of
speckle granules s ¼ 1000. Then, the reference
speckle pattern is numerically stretched in the x di-
rection with parameter ux ¼ 0:005 and other displa-
cement parameters being 0 to get the deformed
image. Furthermore, to simulate less ideal experi-
mental conditions with illumination intensity varia-
tions, the intensity of the deformed image is
artificially adjustedwith a 20% increase in brightness
and a 20% decrease in contrast. Figure 2 shows the
reference speckle image, the deformed speckle image,
and the final speckle image with artificially changed
intensity. The corresponding histograms are also

shown in the figure, fromwhich the induced intensity
variations can be clearly seen.

To verify the equivalence and investigate the com-
putational efficiency of the three robust DIC criteria,
the x directional displacement field of the aforemen-
tioned deformed image (i.e., the right-side images of
Fig. 2) is computed through optimizing the ZNSSD
criterion and PSSDab criterion, respectively, using
the Newton–Raphson algorithm with the first-order
shape function. During optimization, bicubic interpo-
lation is adopted to reconstruct the intensity and
intensity gradients at subpixel locations. Here, it
should be noted that the DIC technique employing
certain interpolation schemes, including the bicubic
interpolation, will usually give rise to periodic bias
error in the determined displacements [37,38].
Detailed implementation algorithms for the ZNSSD
criterion and PSSDab criterion can be found in our
previous works [28,17]. Since the ZNCC criterion
has a simple linear relationship with the ZNSSD cri-
terion, implementation of the ZNCC criterion will
not be provided below. In the following analysis,
the displacements are calculated with a subset of
31 × 31 pixels and a grid step (the distance between
two adjacent pixels being computed) of five pixels be-
tween consecutive calculation points.

B. Equivalence of ZNSSD and PSSDab Criteria

The resulting u-field displacements and ZNCC coef-
ficient distributions, converted from the ZNSSD

Fig. 3. (Color online) Computed u-field displacements by using the ZNSSD criterion (a) and the PSSDab criterion (b) for a simulated
uniaxial tensile test.

Fig. 4. (Color online) Computed ZNCC coefficients by using the ZNSSD criterion (a) and the PSSDab criterion (b) for a simulated uniaxial
tensile test.
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coefficient according to Eq. (12) and the PSSDab coef-
ficient according to Eq. (20), are shown in Figs. 3 and
4, respectively. Although the intensity distribution of
the deformed image is substantially changed from
the reference image, the measured displacements
are in good agreement with the imposed theoretical
values, which clearly demonstrate the robustness
of the ZNSSD and PSSDab criteria. Meanwhile, the
displacement results and the ZNCC coefficients ob-
tained from two criteria are identical, and no differ-
ences can be observed. The experimental results
clearly verify the correctness of the above derivations
and the equivalence of the three correlation criteria.

C. Computational Efficiency of ZNSSD and PSSDab

Criteria

As can be seen from Eq. (8), the mean value (i.e., �f i
and �gi) and root-sum-square of subset intensity var-

iations (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiP �f 2i

q
and

ffiffiffiffiffiffiffiffiffiffiffiP
�g2i

q
) must be provided

during the optimization of the ZNSSD criterion. As
a consequence, the optimization of PSSDab is much
easier than that of the ZNSSD criterion, despite that
the PSSDab criterion involves two more unknown
parameters (i.e., a and b). Let us take the simulated
experiment in Section 5.B as an example. Totally,

861ð¼ 21 × 41Þ points in the reference image were
calculated using a DIC program written in C++
and a Dell Vostro 1520 laptop computer (2:40 GHz
Intel Core 2 Duo processor and 4 GB memory).
The whole computation times for the ZNSSD criter-
ion and PSSDab criterion are 3.2 and 1:5 s, respec-
tively. The results show that the computational
efficiency of PSSDab is higher than that of the
ZNSSD criterion. However, it is important to point
out that the computation time shows only the rela-
tive performance of one algorithm versus the other
and is not an absolute time, which depends on a num-
ber of factors, such as programming efficiency, hard-
ware performance, use of program language and
subpixel interpolation scheme, and the problem
itself.

6. Verification by Actual Experiment

A three-point bending test was also performed to ver-
ify the correctness of the mathematical derivation.
The specimen was made of polymethyl methacrylate
(PMMA) material with Young’s modulus E ¼
4:0 Gpa and Poisson’s ratio v ¼ 0:35. Its geometry
and loading condition are schematically shown in
Fig. 5. Figure 5 also illustrates the reference image
recorded before loading and a deformed image ac-
quired after exerting a 700 N load. The recorded di-
gital images are of 768 × 576 pixels in resolution and
256 gray levels in color depth.

A rectangular area in the middle of the reference
image is chosen to be the region of interest. The
displacements were calculated at a mesh of 36 × 60
points (which corresponds to an area of 350 pixels
× 590 pixels) with a subset size of 39 × 39 pixels
and a grid step of 10 pixels. Totally, the displacement
components of 2160 discrete points were analyzed
and computed through optimizing the ZNSSD criter-
ion and PSSDab criterion, respectively, using the
same DIC code. The computed u-displacement field,
v-displacement field, and ZNCC coefficient distribu-
tion by optimizing the ZNSSD criterion and PSSDab
criterion are shown in Figs. 6 and 7, respectively. It is
seen that there are no discernable differences be-
tween the two results. A quantitative comparison be-
tween two computations shows that the absolute

Fig. 5. Schematic of a three-point bending experiment (top) and
the captured reference and deformed images (bottom).

Fig. 6. (Color online) Computed u-displacement (left), v-displacement (middle), and ZNCC coefficient distribution (right) by optimizing
the ZNSSD criterion for a three-point bending test.
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maximum differences in the u-displacement, v-
displacement, and ZNCC correlation coefficient are
0.016, 0.015, and 0.0005 pixels, respectively. The
minor differences may be caused by the different cal-
culation scheme used and are acceptable in most cal-
culations. As for the computation efficiency, we draw
a similar conclusion under the same computation
conditions. The computation times for the ZNSSD
criterion and PSSDab criterion are 14.9 and 9:3 s,
respectively.

7. Conclusion

Various correlation criteria used in DIC for evaluat-
ing the intensity pattern similarity (or difference) be-
tween the reference subset and the target subset are
reviewed, and these criteria are classified into four
types to provide the users of DIC a clear image of
their mathematical definitions and mutual relation-
ships. Among these correlation criteria, the ZNCC
criterion, the ZNSSD criterion, and the PSSDab
criterion with two additional unknown parameters
have been strongly recommended for practical use,
since they are insensitive to the scale and offset
changes of the deformed image. In this work, their
transversal relationships are established through
rigorous mathematical derivation and verified by
computer simulation and actual experiment. It is in-
dicated that the three correlation criteria are actu-
ally equivalent and are thus elegantly unified for
pattern matching. However, a comparison of compu-
tational times in this work shows that the PSSDab
criterion with two additional unknown parameters
is a little faster than the other correlation criteria.
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11002012, and the Science Fund of State Key
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grant KF10041.
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