
Equivalence of Equilibrium Propagation

and Recurrent Backpropagation

Benjamin Scellier and Yoshua Bengio*

MILA, Université de Montréal

June 15, 2018

Abstract

Recurrent Backpropagation and Equilibrium Propagation are

supervised learning algorithms for fixed point recurrent neu-

ral networks which differ in their second phase. In the first

phase, both algorithms converge to a fixed point which corre-

sponds to the configuration where the prediction is made. In

the second phase, Equilibrium Propagation relaxes to another

nearby fixed point corresponding to smaller prediction error,

whereas Recurrent Backpropagation uses a side network to

compute error derivatives iteratively.

In this work we establish a close connection between these

two algorithms. We show that, at every moment in the second

phase, the temporal derivatives of the neural activities in Equi-

librium Propagation are equal to the error derivatives com-

puted iteratively by Recurrent Backpropagation in the side

network. This work shows that it is not required to have a side

network for the computation of error derivatives, and supports

the hypothesis that, in biological neural networks, temporal

derivatives of neural activities may code for error signals.

1 Introduction

In Deep Learning, the backpropagation algorithm used to

train neural networks requires a side network for the propaga-

tion of error derivatives, which is widely seen as biologically

implausible [Crick, 1989]. One fascinating hypothesis, first

formulated by Hinton and McClelland [1988], is that, in bio-

logical neural networks, error signals could be encoded in the

temporal derivatives of the neural activities. This allows for

error signals to be propagated in the network via the neuronal

dynamics itself without the need for a side network. Neu-

ral computation would correspond to both inference and error

back-propagation. The work presented in this paper also sup-

ports this hypothesis.

*Y.B. is also a Senior Fellow of CIFAR

In section 2, we present the machine learning setting we are

interested in. The neurons of the network follow the gradi-

ent of an energy function. At prediction time, the network

relaxes to a fixed point corresponding to a local minimum of

the energy function. This corresponds to the first phase of the

algorithm. The goal of learning is that of minimizing the cost

at the fixed point, called objective.

In section 3 we present Recurrent Backpropagation [Almeida,

1987, Pineda, 1987], a two-phase learning algorithm which

computes the gradient of the objective function. In the second

phase of Recurrent Backpropagation, an iterative procedure

computes error derivatives.

In section 4 we present Equilibrium Propagation [Scellier and

Bengio, 2017], another two-phase algorithm which computes

the gradient of the objective. In the second phase of Equi-

librium Propagation the dynamics of the network is slightly

perturbed and the network starts a second relaxation phase to-

wards a second but nearby fixed point which corresponds to

slightly smaller prediction error. The gradient of the objective

can be computed based on a contrastive Hebbian learning rule

at the first fixed point and second fixed point.

In section 5 (the main contribution of the present work), we

establish a close connection between Recurrent Backpropa-

gation and Equilibrium Propagation. We show that at every

moment in the second phase of Equilibrium Propagation, the

temporal derivative of the neural activities code (i.e. are equal

to) intermediate error derivatives which Recurrent Backprop-

agation computes iteratively. Our work shows that one does

not require a special computational path for the computation

of the error derivatives in the second phase - the same infor-

mation is available in the temporal derivatives of the neural

activities. Furthermore we show that, in Equilibrium Prop-

agation, halting the second phase before convergence to the

second fixed point is equivalent to Truncated Recurrent Back-

propagation.

1



2 Machine Learning Setting

We consider the supervised setting in which we want to pre-

dict a target y given an input x. The model is a network spec-

ified by a state variable s and a parameter variable θ. The

dynamics of the network are determined by two differentiable

scalar functions Eθ(x, s) and Cθ(y, s) which we call energy

function and cost function respectively. In most of the paper,

to simplify the notations we omit the dependence on x and

y and simply write Eθ(s) and Cθ(s). Furthermore we write
∂Eθ

∂θ
(s) and ∂Eθ

∂s
(s) the partial derivatives of (θ, s) 7→ Eθ(s)

with respect to θ and s, respectively. Similarly ∂Cθ

∂θ
(s) and

∂Cθ

∂s
(s) denote the partial derivatives of (θ, s) 7→ Cθ(s).

The state variable s is assumed to move spontaneously to-

wards low-energy configurations by following the gradient of

the energy function:

ds

dt
= −

∂Eθ

∂s
(s). (1)

The state s eventually settles to a minimum of the energy

function, written s0θ and characterized by 1

∂Eθ

∂s

(
s0θ
)
= 0. (2)

Since the dynamics in Eq. 1 only depends on the input x
(through Eθ(x, s)) but not on the target y, we call this re-

laxation phase the free phase, and the energy minimum s0θ is

called free fixed point.

The goal of learning is to adjust θ so as to minimize the cost

value of the fixed point. We introduce the objective function

(for a single data sample (x, y))

J(θ) := Cθ

(
s0θ
)
. (3)

Note the distinction between the cost function and the objec-

tive function: the cost function Cθ(s) is defined for any state

s whereas the objective function J(θ) is the cost at the fixed

point.

Several methods have been proposed to compute the gradi-

ent of J with respect to θ. Early work by Almeida [1987],

Pineda [1987] have introduced an algorithm called Recurrent

Backpropagation, which we present in section 3. In Scellier

and Bengio [2017] we proposed another algorithm - at first

sight very different - which we present in section 4. In section

5 we will show that there is actually a profound connection

between these two algorithms.

1In general, the fixed point defined by Eq. 2 is not unique, unless further

assumptions are made on Eθ(s) (e.g. convexity). The fixed point depends

on the initial state of the dynamics (Eq. 1), and so does the objective function

of Eq. 3. However, for ease of presentation, we shall avoid delving into these

mathematical details here.

3 Recurrent Back-Propagation

In this section we present Recurrent Backpropagation, an al-

gorithm introduced by Almeida [1987], Pineda [1987] which

computes the gradient of J (Eq. 3). The original algorithm

was described in the discrete-time setting and for a general

state-to-state dynamics. Here we present it in the continuous-

time setting in the particular case of a gradient dynamics

(Eq. 1). A direct derivation based on the adjoint method can

also be found in LeCun et al. [1988].

3.1 Projected Cost Function

Let S0

θ (s, t) denote the state of the network at time t ≥ 0
when it starts from an initial state s at time t = 0 and follows

the free dynamics (Eq. 1). In the theory of dynamical systems

S0

θ (s, t) is called the flow. We introduce the projected cost

function

Lθ(s, t) := Cθ

(
S0

θ (s, t)
)
. (4)

This is the cost of the state projected a duration t in the fu-

ture, when the networks starts from s and follows the free

dynamics. For fixed s the process (Lθ(s, t))t≥0
represents the

successive cost values taken by the state of the network along

the free dynamics when it starts from the initial state s. For

t = 0, the projected cost is simply the cost of the current state:

Lθ(s, 0) = Cθ (s). As t → ∞ the dynamics converges to the

fixed point S0

θ (s, t) → s0θ, so the projected cost converges to

the objective Lθ(s, t) → J(θ). Under mild regularity condi-

tions on the functions Eθ(s) and Cθ(s), the gradient of the

projected cost function converges to the gradient of the objec-

tive function as t → ∞, i.e.

∂Lθ

∂θ
(s, t) →

∂J

∂θ
(θ). (5)

Therefore, if we can compute ∂Lθ

∂θ
(s, t) for a particular value

of s and for any t ≥ 0, the desired gradient ∂J
∂θ

(θ) can be

obtained by letting t → ∞. We show next that this is what the

Recurrent Backpropagation algorithm does in the case where

the initial state s is the fixed point s0θ.

3.2 Process of Error Derivatives

We introduce the process of error derivatives (St,Θt)t≥0, de-

fined as

St :=
∂Lθ

∂s

(
s0θ, t

)
, t ≥ 0, (6)

Θt :=
∂Lθ

∂θ

(
s0θ, t

)
, t ≥ 0. (7)

2



The processes St and Θt take values in the state space (space

of the state variable s) and parameter space (space of the pa-

rameter variable θ) respectively. The Recurrent Backpropaga-

tion algorithm computes St and Θt iteratively for increasing

values of t.

Theorem 1 (Recurrent Backpropagation). The process of er-

ror derivatives (St,Θt) satisfies

S0 =
∂Cθ

∂s

(
s0θ
)
, (8)

Θ0 =
∂Cθ

∂θ

(
s0θ
)
, (9)

d

dt
St = −

∂2Eθ

∂s2

(
s0θ
)
· St, (10)

d

dt
Θt = −

∂2Eθ

∂θ∂s

(
s0θ
)
· St. (11)

Theorem 1 offers us a two-phase method to compute the gra-

dient ∂J
∂θ

(θ). In the first phase, the state variable s follows

the free dynamics (Eq. 1) and relaxes to the fixed point s0θ.

Reaching this fixed point is necessary for evaluating the Hes-

sian ∂2Eθ

∂s2

(
s0θ
)

which is required in the second phase. In the

second phase, St and Θt are computed iteratively for increas-

ing values of t thanks to Eq. 8, Eq. 9, Eq. 10 and Eq. 11. As a

consequence of Eq. 5, the desired gradient ∂J
∂θ

(θ) is obtained

as t → ∞ since

Θt →
∂J

∂θ
(θ). (12)

From the point of view of biological plausibility, the require-

ment to run a new dynamics for St and Θt to compute the

gradient ∂J
∂θ

(θ) is not satisfying. It is not clear what the quan-

tities St and Θt would represent in a biological network. This

issue is adressed in sections 4 and 5.

4 Equilibrium Propagation

In this section, we present Equilibrium Propagation [Scel-

lier and Bengio, 2017], another algorithm which computes

the gradient of the objective function J (Eq. 3). At first

sight, Equilibrium Propagation and Recurrent Backpropaga-

tion share little in common. However in section 5 we will

show a profound connection between these algorithms.

4.1 Augmented Energy Function

The central idea of Equilibrium Propagation is to introduce

the augmented energy function

E
β
θ (s) := Eθ(s) + β Cθ(s), (13)

where β ≥ 0 is a scalar which we call influence parameter.

The free dynamics (Eq. 1) is then replaced by the augmented

dynamics

ds

dt
= −

∂E
β
θ

∂s
(s) (14)

= −
∂Eθ

∂s
(s)− β

∂Cθ

∂s
(s). (15)

When β > 0, in addition to the usual term −
∂Eθ

∂s
(s), an ad-

ditional term −β ∂Cθ

∂s
(s) nudges s towards configurations that

have lower cost values. As t → ∞ the augmented dynamics

converges to a fixed point s
β
θ , i.e. an energy minimum of E

β
θ

characterized by

∂E
β
θ

∂s

(
s
β
θ

)
= 0. (16)

Unlike the free fixed point s0θ which only depends on x

(through Eθ(x, s)) but not on y, the fixed point s
β
θ also de-

pends on y (through Cθ(y, s)).

4.2 Gradient Formula

The Equilibrium Propagation algorithm estimates the gradient
∂J
∂θ

(θ) based on measures at the fixed points s0θ and s
β
θ .

Theorem 2 (Equilibrium Propagation). The gradient of the

objective function with respect to θ can be estimated thanks

to the formula

∂J

∂θ
(θ) = lim

β→0

1

β

(
∂E

β
θ

∂θ

(
s
β
θ

)
−

∂E0

θ

∂θ

(
s0θ
)
)
. (17)

Theorem 2 offers another way to estimate the gradient of

J(θ). As in Recurrent Backpropagation, in the first phase (or

‘free phase’), the network follows the free dynamics (Eq. 1).

The network relaxes to the free fixed point s0θ, where ∂Eθ

∂θ

(
s0θ
)

is measured. In the second phase which we call nudged phase,

the influence parameter takes on a small positive value β & 0,

and the network relaxes to a new but nearby fixed point s
β
θ

where
∂E

β

θ

∂θ

(
s
β
θ

)
is measured. The gradient of the objective

function is estimated thanks to the formula in Eq. 17.

At the beginning of the second phase, the network is initially

at the free fixed point s0θ. When the influence parameter takes

on a small positive value β & 0, the novel term −β ∂Cθ

∂s
(s) in

the dynamics of the state variable perturbs the system. This

perturbation propagates in the layers of the network until con-

vergence to the new fixed point s
β
θ .

In the next section, we go beyond the analysis of fixed points

and we show that, at every moment t in the nudged phase, the

temporal derivative ds
dt

encodes the error derivative of Eq. 6.

3



5 Temporal Derivatives Code for Er-

ror Derivatives

In this section we are interested in the dynamics of the net-

work in the second phase, from the free fixed point to the

nudged fixed point. Recall that S0

θ (s, t) is the state of the net-

work at time t ≥ 0 when it starts from an initial state s at time

t = 0 and follows the free dynamics (Eq. 1). Similarly we

define S
β
θ (s, t) for any value of β when the network follows

the augmented dynamics (Eq. 14).

In Equilibrium Propagation, the state of the network at the

beginning of the nudged phase is the free fixed point s0θ. We

choose as origin of time t = 0 the moment when the second

phase starts: the network is in the state s0θ and the influence

parameter takes on a small positive value β & 0. With our

notations, the state of the network after a duration t in the

nudged phase is S
β
θ

(
s0θ, t

)
. As t → ∞ the network’s state

converges to the nudged fixed point S
β
θ

(
s0θ, t

)
→ s

β
θ .

5.1 Process of Temporal Derivatives

Now we are ready to introduce the process of temporal deriva-

tives (S̃t, Θ̃t)t≥0, defined by

S̃t := − lim
β→0

1

β

∂S
β
θ

∂t

(
s0θ, t

)
, (18)

Θ̃t := lim
β→0

1

β

(
∂E

β
θ

∂θ

(
S
β
θ

(
s0θ, t

))
−

∂E0

θ

∂θ

(
s0θ
)
)
. (19)

Like St and Θt, the processes S̃t and Θ̃t take values in the

state space and parameter space respectively. The process

S̃t is simply the temporal derivative ds
dt

in the second phase,

rescaled by 1

β
(so that its value does not depend on the partic-

ular choice of β & 0).

Theorem 3 (Temporal Derivatives as Error Derivatives). The

processes of temporal derivatives and error derivatives are

equal: for every t ≥ 0 we have

St = S̃t, (20)

Θt = Θ̃t. (21)

In essence, Eq. 20 says that in the second phase of Equilib-

rium Propagation, the temporal derivative ds
dt

(rescaled by 1

β
)

encodes the error derivatives of Eq. 6.

Also, note that the formula of Eq. 21 entails the gradient for-

mula of Equilibrium Propagation (Theorem 2). As t → ∞ in

Eq. 21, one gets the formula of Eq. 17. Interestingly, Eq. 21

shows that, in Equilibrium Propagation, halting the second

phase before convergence to the nudged fixed point corre-

sponds to Truncated Recurrent Backpropagation.

6 Conclusion

Our work establishes a close connection between two algo-

rithms for fixed point recurrent networks, namely Recurrent

Backpropagation and Equilibrium Propagation. The temporal

derivatives of the neural activities in the second phase of Equi-

librium Propagation are equal to the error derivatives which

Recurrent Backpropagation computes iteratively. Thereby,

our work supports the hypothesis that, in biological networks,

temporal changes in neural activities may represent error sig-

nals for supervised learning from a machine learning perspec-

tive.

Furthermore, we have shown that halting the second phase be-

fore convergence in Equilibrium Propagation is equivalent to

Truncated Recurrent Backpropagation. This provides a new

justification for saving time by stopping the second phase of

Equilibrium Propagation early.

Acknowledgments

The authors would like to thank NSERC, CIFAR, Samsung

and Canada Research Chairs for funding.

References

L. B. Almeida. A learning rule for asynchronous perceptrons

with feedback in a combinatorial environment. volume 2,

pages 609–618, San Diego 1987, 1987. IEEE, New York.

F. Crick. The recent excitement about neural networks. Na-

ture, 337(6203):129–132, 1989.

G. E. Hinton and J. L. McClelland. Learning representations

by recirculation. In D. Z. Anderson, editor, Neural Infor-

mation Processing Systems, pages 358–366. American In-

stitute of Physics, 1988.

Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski. A theo-

retical framework for back-propagation. In Proceedings of

the 1988 connectionist models summer school, pages 21–

28. CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988.

F. J. Pineda. Generalization of back-propagation to recurrent

neural networks. 59:2229–2232, 1987.

B. Scellier and Y. Bengio. Equilibrium propagation: Bridg-

ing the gap between energy-based models and backpropa-

gation. Frontiers in computational neuroscience, 11, 2017.

4



Appendix

A Recurrent Backpropagation - Proof

Proof of Theorem 1. First of all, by definition of L (Eq. 4) we

have Lθ(s, 0) = Cθ(s). Therefore the initial conditions (Eq. 8

and Eq. 9) are satisfied:

S0 =
∂Lθ

∂s

(
s0θ, 0

)
=

∂Cθ

∂s

(
s0θ
)

(22)

and

Θ0 =
∂Lθ

∂θ

(
s0θ, 0

)
=

∂Cθ

∂θ

(
s0θ
)
. (23)

It remains to show Eq. 10 and Eq. 11. We omit temporarily

to write the dependence in θ to keep notations simple. As a

preliminary result, we show that for any initial state s and time

t we have 2

∂L

∂t
(s, t) +

∂L

∂s
(s, t) ·

∂E

∂s
(s) = 0. (24)

To this end note that (by definition of L and S0) we have for

any t and u

L
(
S0(s, u), t

)
= L(s, t+ u). (25)

The derivatives of the right-hand side of Eq. 25 with respect

to t and u are clearly equal:

d

dt
L(s, t+ u) =

d

du
L(s, t+ u). (26)

Therefore the derivatives of the left-hand side of Eq. 25 are

equal too:

∂L

∂t

(
S0(s, u), t

)
=

d

du
L
(
S0(s, u), t

)
(27)

= −
∂L

∂s

(
S0(s, u), t

)
·
∂E

∂s

(
S0(s, u)

)
.

(28)

Here we have used the differential equation of motion (Eq. 1).

Evaluating this expression for u = 0 we get Eq. 24.

Now we are ready to show that St = ∂L
∂s

(
s0, t

)
satisfies the

differential equation in Eq. 10. Differentiating Eq. 24 with

respect to s, we get

∂2L

∂t∂s
(s, t) +

∂2L

∂s2
(s, t) ·

∂E

∂s
(s) +

∂L

∂s
(s, t) ·

∂2E

∂s2
(s) = 0.

(29)

2Eq. 24 is the Kolmogorov backward equation for deterministic processes.

Evaluating this expression at the fixed point s = s0 and using

the fixed point condition ∂E
∂s

(
s0
)
= 0 we get

d

dt

∂L

∂s

(
s0, t

)
= −

∂2E

∂s2

(
s0
)
·
∂L

∂s

(
s0, t

)
. (30)

Therefore St =
∂L
∂s

(
s0, t

)
satisfies Eq. 10.

We prove Eq. 11 similarly. Differentiating Eq. 24 with respect

to θ, we get

∂2Lθ

∂t∂θ
(s, t) +

∂2Lθ

∂s∂θ
(s, t) ·

∂Eθ

∂s
(s)

+
∂Lθ

∂s
(s, t) ·

∂2Eθ

∂s∂θ
(s) = 0. (31)

Evaluating this expression at the fixed point s = s0θ we get

d

dt

∂Lθ

∂θ

(
s0θ, t

)
= −

∂2Eθ

∂θ∂s

(
s0θ
)
·
∂Lθ

∂s

(
s0θ, t

)
. (32)

Hence the result.

B Equilibrium Propagation - Proof

In this Appendix we prove Theorem 2. The same proof was

already provided in Scellier and Bengio [2017].

Since the data point (x, y) does not play any role, its depen-

dence is omitted in the notations. We assume that the energy

function Eθ(s) and the cost function Cθ(s) (and thus the aug-

mented energy function E
β
θ (s)) are twice differentiable and

that the conditions of the implicit function theorem are satis-

fied so that the fixed point s
β
θ is a continuously differentiable

function of (θ, β).

Proof of Theorem 2. Recall that we want to show the "gradi-

ent formula"

∂J

∂θ
(θ) = lim

β→0

1

β

(
∂E

β
θ

∂θ

(
s
β
θ

)
−

∂E0

θ

∂θ

(
s0θ
)
)
. (33)

The gradient formula Eq. 33 is a particular case of the follow-

ing formula 3, when evaluated at the point β = 0:

d

dθ

∂E
β
θ

∂β

(
s
β
θ

)
=

d

dβ

∂E
β
θ

∂θ

(
s
β
θ

)
. (34)

3The notations
∂E

β
θ

∂θ
and

∂E
β
θ

∂β
are used to mean the partial derivatives

with respect to the arguments of E
β
θ

, whereas d
dθ

and d
dβ

represent the total

derivatives with respect to θ and β respectively (which include the differen-

tiation path through s
β
θ

). The total derivative d
dθ

(resp. d
dβ

) is performed for

fixed β (resp. fixed θ).

5



Therefore, in order to prove Eq. 33, it is sufficient to prove

Eq. 34.

First, the cross-derivatives of (θ, β) 7→ E
β
θ

(
s
β
θ

)
are equal:

d

dθ

d

dβ
E

β
θ

(
s
β
θ

)
=

d

dβ

d

dθ
E

β
θ

(
s
β
θ

)
. (35)

Second, by the chain rule of differentiation we have

d

dβ
E

β
θ

(
s
β
θ

)
=

∂E
β
θ

∂β

(
s
β
θ

)
+

∂E
β
θ

∂s

(
s
β
θ

)
·
∂s

β
θ

∂β
(36)

=
∂E

β
θ

∂β

(
s
β
θ

)
. (37)

Here we have used the fixed point condition

∂E
β
θ

∂s

(
s
β
θ

)
= 0. (38)

Similarly we have

d

dθ
E

β
θ

(
s
β
θ

)
=

∂E
β
θ

∂θ

(
s
β
θ

)
. (39)

Plugging Eq. 37 and Eq. 39 in Eq. 35, we get Eq. 34. Hence

the result.

C Temporal Derivatives Code For Er-

ror Derivatives - Proof

Proof of Theorem 3. In order to prove Theorem 3, we have to

show that the process (S̃t, Θ̃t) satisfies the same differential

equations as (St,Θt), namely Eq. 8, Eq. 9, Eq. 10 and Eq. 11

(Theorem 1). We will conclude by using the uniqueness of

the solution to the differential equation with initial condition.

First of all, note that

∂2S
β
θ

∂β∂t

∣∣∣∣∣
β=0

(
s0θ, t

)

= lim
β→0

1

β

(
∂S

β
θ

∂t

(
s0θ, t

)
−

∂S0

θ

∂t

(
s0θ, t

)
)

(40)

= lim
β→0

1

β

∂S
β
θ

∂t

(
s0θ, t

)
. (41)

The latter equality comes from the fact that S0

θ

(
s0θ, t

)
= s0θ

for every t ≥ 0, implying that
∂S0

θ

∂t

(
s0θ, t

)
= 0 at every mo-

ment t ≥ 0. Furthermore

d

dβ

∣∣∣∣
β=0

∂E
β
θ

∂θ

(
S
β
θ

(
s0θ, t

))

= lim
β→0

1

β

(
∂E

β
θ

∂θ

(
S
β
θ

(
s0θ, t

))
−

∂E0

θ

∂θ

(
S0

θ

(
s0θ, t

))
)

(42)

= lim
β→0

1

β

(
∂E

β
θ

∂θ

(
S
β
θ

(
s0θ, t

))
−

∂Eθ

∂θ

(
s0θ
)
)
. (43)

Again the latter equality comes from the fact that S0

θ

(
s0θ, t

)
=

s0θ for every t ≥ 0. Therefore

S̃t = −
∂2S

β
θ

∂β∂t

∣∣∣∣∣
β=0

(
s0θ, t

)
, ∀t ≥ 0, (44)

Θ̃t =
d

dβ

∣∣∣∣
β=0

∂E
β
θ

∂θ

(
S
β
θ

(
s0θ, t

))
, ∀t ≥ 0. (45)

Now we prove that S̃t is the solution of Eq. 8 and Eq. 10. We

omit to write the dependence in θ to keep notations simple.

The process
(
Sβ
(
s0, t

))
t≥0

is the solution of the differential

equation

∂Sβ

∂t

(
s0, t

)
= −

∂Eβ

∂s

(
Sβ
(
s0, t

))
. (46)

with initial condition Sβ
(
s0, 0

)
= s0. Differentiating Eq. 46

with respect to β, we get

d

dt

∂Sβ

∂β

(
s0, t

)
=−

∂2Eβ

∂s∂β

(
Sβ
(
s0, t

))

−
∂2Eβ

∂s2

(
Sβ
(
s0, t

))
·
∂Sβ

∂β

(
s0, t

)
.

(47)

Evaluating at β = 0 and using the fact that S0
(
s0, t

)
= s0,

we get

d

dt

∂Sβ

∂β

∣∣∣∣
β=0

(
s0, t

)
=−

∂C

∂s

(
s0
)

−
∂2E

∂s2

(
s0
)
·
∂Sβ

∂β

∣∣∣∣
β=0

(
s0, t

)
.

(48)

Since at time t = 0 the initial state of the network

Sβ
(
s0, 0

)
= s0 is independent of β, we have

∂Sβ

∂β

(
s0, 0

)
= 0. (49)

6



Therefore, evaluating Eq. 48 at t = 0, we get the initial con-

dition (Eq. 8)

S̃0 = −
∂2Sβ

∂t∂β

∣∣∣∣
β=0

(
s0, 0

)
=

∂C

∂s

(
s0
)
. (50)

Moreover, differentiating Eq. 48 with respect to time we get

d

dt

∂2Sβ

∂t∂β

∣∣∣∣
β=0

(
s0, t

)
= −

∂2E

∂s2

(
s0
)
·
∂2Sβ

∂t∂β

∣∣∣∣
β=0

(
s0, t

)
.

(51)

Hence Eq. 10:

d

dt
S̃t = −

∂2E

∂s2

(
s0
)
· S̃t. (52)

Now we prove the result for Θ̃t (Eq. 9 and Eq. 11). First we

differentiate
∂E

β

θ

∂θ

(
S
β
θ

(
s0θ, t

))
with respect to β:

d

dβ

∂E
β
θ

∂θ

(
S
β
θ

(
s0θ, t

))
=

∂E
β
θ

∂θ∂β

(
S
β
θ

(
s0θ, t

))

+
∂E

β
θ

∂θ∂s

(
S
β
θ

(
s0θ, t

))
·
∂S

β
θ

∂β

(
s0θ, t

)
.

(53)

Again we evaluate at β = 0 and we use the fact that

S0

θ

(
s0θ, t

)
= s0θ. We get

d

dβ

∣∣∣∣
β=0

∂E
β
θ

∂θ

(
S
β
θ

(
s0θ, t

))
=
∂Cθ

∂θ

(
s0θ
)

+
∂Eθ

∂θ∂s

(
s0θ
)
·
∂S

β
θ

∂β

∣∣∣∣∣
β=0

(
s0θ, t

)
.

(54)

Evaluating Eq. 54 at time t = 0 and using Eq. 49 we get the

initial condition (Eq. 9)

Θ̃0 =
d

dβ

∣∣∣∣
β=0

∂E
β
θ

∂θ

(
S
β
θ

(
s0θ, 0

))
=

∂Cθ

∂θ

(
s0θ
)
. (55)

Moreover, differentiating Eq. 54 with respect to time we get

d

dt

d

dβ

∣∣∣∣
β=0

∂E
β
θ

∂θ

(
S
β
θ

(
s0θ, t

))
=

∂Eθ

∂θ∂s

(
s0θ
)
·
∂2S

β
θ

∂t∂β

∣∣∣∣∣
β=0

(
s0θ, t

)
.

(56)

Hence Eq. 11:

d

dt
Θ̃t = −

∂Eθ

∂θ∂s

(
s0θ
)
· S̃t. (57)

This completes the proof.

7


