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The goal of this paper is to compare the performance of the linear minimum mean square error (MMSE) detector for a class of
code division multiple access (CDMA) systems in time and frequency selective channels. Specifically, we consider direct sequence
(DS)-CDMA, multicarrier (MC)-CDMA, and the MC-DS-CDMA systems. Two key tools are used in our development. First, a
general time-frequency framework that includes the different CDMA systems as special cases. Second, the duality between time
and frequency domains that is used to derive equivalences between the different CDMA systems operating over purely frequency
selective and purely time selective channels. We then combine the insights obtained from these special cases to assess the perfor-
mance of CDMA systems over time and frequency selective channels. We provide sufficient conditions for the codes employed by
the CDMA systems for the equivalences to hold. Numerical results are presented to illustrate the results.
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1. INTRODUCTION

CDMA has emerged as a promising wireless technology for
meeting the physical layer challenges of modern communi-
cation networks. This is due to the multiple access capability
of CDMA systems as well as their robustness against fading.
Many signaling schemes have been proposed for CDMA sys-
tems. Three important CDMA systems are DS-CDMA, MC-
CDMA, and the hybrid MC-DS-CDMA. The key to under-
standing and relating these systems is how these signaling
schemes interact with the channel.

Denote the symbol duration with T and its essential two-
sided bandwidth with B. The time-bandwidth product is de-
noted by N ≈ TB which is also the dimension of the signal
space. A CDMA system with such time-bandwidth product
can support up to N users by employing signature codes of
length N . In general, the signature code is transmitted over a
set of basis waveforms, each of which has a duration To and
essential two-sided bandwidth Bo. The different signaling
schemes differ in how To and Bo are chosen. In DS-CDMA
[1], the basis waveforms are generated via time shifts of a nar-

row time pulse with duration To = T/N and bandwidth Bo =
B. The transmitter and the distributions of signature code in
time and frequency domains are shown in Figures 1a and 2a,
respectively. In MC-CDMA [2, 3, 4], the basis waveforms are
generated via frequency shifts of a narrowband pulse with
duration To = T and bandwidth Bo = B/N . The transmit-
ter and the distributions of signature code in time and fre-
quency domains for this system are shown in Figures 1b and
2b, respectively. MC-DS-CDMA [2, 5, 6] is a hybrid system
where Nt × N f basis waveforms (N = NtN f ) are used. The
basis functions are generated via the time-frequency shifts of
a pulse of duration To = T/Nt and bandwidth Bo = B/N f .
Notice that the DS-CDMA (MC-CDMA) system is a special
case of the MC-DS-CDMA system when N f = 1, Nt = N
(N f = N, Nt = 1). The MC-DS-CDMA transmitter and
the distributions of signature code in time and frequency do-
mains are shown in Figures 1c and 2c, respectively.

The effect of the channel on the three CDMA systems
is determined by two factors: channel selectivity and chan-
nel dispersion. The channel is frequency (time) selective if the
transmitted signal exhibits different fading coefficients across
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Figure 1: The transmitter structure for different CDMA systems. (a) DS-CDMA system where qk[p] is the pth entry of the kth user signature
code. (b) MC-CDMA system where q̃k[n] is the nth entry of the kth user signature code. (c) MC-DS-CDMA system where q̂k[p, n] is the
(p, n)th entry of the kth user signature code.
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Figure 2: Time-frequency distribution of (a) signature code in DS-CDMA system, (b) signature code in MC-CDMA system, (c) signature
code in MC-DS-CDMA system, and (d) channel coherence time and bandwidth.

its bandwidth (duration). More specifically, for any signaling
scheme, the channel is frequency (time) selective if the over-
all bandwidth (duration) B > ∆ fc (T > ∆tc).1 The channel is
time and frequency selective (TFS) if T > ∆tc and B > ∆ fc

1As clarified in Section 2.2, ∆ fc (∆tc) is the coherence bandwidth

(time)—that is, the frequency (time) span over which the channel is strongly

correlated.

(see Figure 2d). The channel is dispersive in time if it is fre-
quency selective (FS) per basis waveform (i.e., Bo > ∆ fc), dis-
persive in frequency if it is time selective (TS) per basis wave-
form (i.e., To > ∆tc), and dispersive in time and frequency if it
is TFS per basis waveform (i.e., Bo > ∆ fc and To > ∆tc). If the
channel is nondispersive for a particular signaling scheme,
we say that this scheme diagonalizes the channel—that is, the
basis functions serve as eigenfunctions of the channel such
that when they are transmitted through the channel they do
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not interfere (this will be elaborated later). In this paper, we
consider purely FS channels, purely TS channels, and general
TFS channels. The basis functions in different CDMA signal-
ing schemes serve as eigenfunctions for certain types of chan-
nels. The DS-CDMA basis waveforms are the eigenfunctions
of TS channels. On the other hand, the MC-CDMA basis
waveforms are the eigenfunctions of FS channels. For proper
choice of To and Bo, the MC-DS-CDMA basis waveforms di-
agonalize TFS channels [7, 8]. The performance of these sig-
naling schemes for single-user scenario has been analyzed in
several papers (see, e.g., [2] and the references therein). How-
ever, a unified treatment of the performance of these systems
in multiuser scenarios and for different types of channels is
lacking.

In this paper, we compare the performance of the above
three systems in the context of multiuser detection in the up-
link case. The comparison is based on linear MMSE receivers.
We show that, for certain channel conditions, the different
systems can perform in a near identical fashion via appro-
priate choice of signature codes. To develop these results, we
first introduce a general framework that includes the three
CDMA systems as special cases. Furthermore, we use the no-
tion of duality between time and frequency domains to de-
velop equivalences between the different systems that allow
us to relate their performance under different channel con-
ditions.

Section 2 introduces the notations used in this paper as
well as the channel model considered. In Section 3, we dis-
cuss CDMA systems in TFS channel as well as the effect of
channel selectivity on the received signal. In Section 4, we lay
the foundation for the analysis in the following sections by
discussing the duality between time and frequency domains.
In Section 5, we derive expressions for signal-to-interference-
and-noise ratio (SINR)2 and probability of error (Pe) for the
different system receivers which are used to derive sufficient
conditions for the different systems to perform equivalently
in FS, TS, and TFS channels. In Section 6, we illustrate our
results through some numerical examples. Concluding re-
marks are provided in Section 7.

2. PRELIMINARIES

This section introduces the notation adopted throughout as
well as the channel model under consideration.

2.1. Notation

Boldface lower case letters are used to denote (column) vec-
tors and boldface upper case letters are used to denote matri-
ces. The following conventions are used throughout the pa-
per:

⌊x⌋ denotes the largest integer smaller than x;
⌈x⌉ denotes the smallest integer larger than x;
xT is the transpose of vector x;
xH is the conjugate transpose of vector x;

2The SINR is defined to be the ratio of the energy in the desired signal to
the energy in noise plus interference in the received decision statistics.

x(l) is an l-shifted version of the vector x, that is,

x(l) =
[

0 · · · 0
︸ ︷︷ ︸

l

x[0] x[1] · · · x[N − l − 1]
]T

(1)

and x[n] is the nth entry of vector x. If l < 0, the shift is to
the left,

A⊙B is the Hadamard product between A and B, that is,
point-wise multiplication between the different elements of
A and B;

diag{x} is a diagonal matrix whose entries are those of
vector x;

A(n1 : n2) is the submatrix built by the (n1)th through
n2th column of A;

IN is the identity matrix of dimension N ;

1N is an N × 1 vector with unity entries;

0N is an N × 1 vector with zero entries;
E[·] is the expected value;
Rx,y is E[xyH].

2.2. Channel model

We assume that all users have identical channel statistics;
however, different users encounter independent channel re-
alizations. We adopt the wide sense stationary uncorrelated
scattering (WSSUS) channel model [1, 9] which is charac-
terized by a randomly time-varying impulse response ck(t, τ)
for user k. For fixed τ, ck(t, τ) is a complex WSS Gaussian
process in t. The process for different values of τ is uncor-
related (independent). The time-varying transfer function of
the channel is

c̃k(t, f ) =
∫∞

−∞
ck(t, τ)e− j2π f τ dτ. (2)

Under the WSSUS assumption, c̃k(t, f ) is a WSS process in
both t and f . The statistics of c̃k(t, f ) are characterized by the
spaced-time, spaced-frequency correlation function defined as
φ(∆t,∆ f ) = E[c̃k(t, f )c̃∗k (t − ∆t, f − ∆ f )] and is assumed
the same for all users. Under the assumption that the spaced-
time correlation function φ∆t(∆t) = E[c̃k(t, ·)c̃∗k (t − ∆t, ·)]
is fixed for every path (i.e., independent of τ or equivalently
independent of f ), φ(∆t,∆ f ) becomes separable [10], that is,

φ(∆t,∆ f ) = φ∆t(∆t)ψ∆ f (∆ f ), (3)

where ψ∆ f (∆ f ) = E[c̃k(·, f )c̃∗k (·, f − ∆ f )] is the spaced-
frequency correlation function which is independent of time.

The duration over which the channel is strongly corre-
lated is called the coherence time, ∆tc. Define the Doppler
power spectrum function to be

Φ(θ) =
∫∞

−∞
φ∆t(∆t)e

− j2π∆tθd∆t. (4)

The support of Φ(θ) is called the Doppler spread 2Bd of
the channel; Φ(θ) = 0, |θ| > Bd. The coherence time and
Doppler spread are inversely related, ∆tc ≈ 1/2Bd.

The channel power at different values of τ is called the
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multipath intensity profile, Ψ(τ) = E[|ck(·, τ)|2]. The support
of Ψ(τ) is called the multipath spread of the channel and
is denoted by Tm; Ψ(τ) = 0 for τ < 0 or τ > Tm. The
spaced-frequency correlation function is the Fourier trans-
form of Ψ(τ), that is, ψ∆ f (∆ f ) =

∫∞
−∞Ψ(τ)e− j2π∆ f τ dτ. The

frequency span over which the channel is strongly correlated
is called the coherence bandwidth, ∆ fc. Coherence bandwidth
and multipath spread are inversely related, ∆ fc ≈ 1/Tm.

The FS channel corresponds to B > ∆ fc and T ≪ ∆tc, the
TS channel corresponds to B ≪ ∆ fc and T > ∆tc, and the
general TFS channel corresponds to B > ∆ fc and T > ∆tc.
The diversity order due to frequency selectivity (multipath
diversity) is L+ 1 where L = ⌈BTm⌉, while the diversity order
due to time selectivity (Doppler diversity) is 2M + 1 where
M = ⌈BdT⌉ [11].

3. CDMA SYSTEMS

In this section, we briefly describe the DS-CDMA, MC-
CDMA, and the MC-DS-CDMA systems in a general TFS
channel (the different systems in FS and TS channels are spe-
cial cases) under the assumption of synchronous reception
for simplicity of exposition.

3.1. DS-CDMA system

In a DS-CDMA system, the prototype basis waveform is the
chip waveform υTc(t) = 1/

√

Tc, 0 ≤ t ≤ Tc (assumed rect-
angular for simplicity) which has a duration Tc = To = T/N
and a bandwidth Bo = B = 1/Tc. Each user is assigned a
signature waveform that is generated from time shifts of the
prototype basis waveform as

qk(t) =
N−1∑

p=0

qk[p]up(t) =
N−1∑

p=0

qk[p]υTc

(

t − pTc

)

, (5)

where {up(t) = υTc(t − pTc), p = 0, 1, . . . , N − 1} are the
set of basis functions used in transmission and the length N
signature code of user k {qk[p]} serves as the expansion co-
efficients. The transmitted signal for user k can be written as

sk(t) =
∞∑

i=−∞
bk,iqk(t − iT), (6)

where bk,i is the ith bit corresponding to user k. We assume
that T ≫ Tm and B ≫ Bd so that the intersymbol inter-
ference (ISI) is negligible and a one shot detector suffices.
Hence, without loss of generality, we focus on the detection
of b1,0 (0th bit for user 1) and drop the index 0 for simplicity.

Now we derive the form for the sampled received signal
for a TFS channel (the FS and TS channels are special cases).
A DS-CDMA system over a TFS channel is dispersive in time
(Bo = B > ∆ fc) but typically nondispersive in frequency
since To < ∆tc (see Figures 2a and 2d). The noise-free re-
ceived signal for user k in TFS channel can be written as

xk(t) = bk

N−1∑

p=0

L∑

l=0

hk[p, l]qk[p]υTc

(

t − pTc − lTc

)

, (7)

where

hk[p, l] =
∫ Tm

0
ck

((

p +
1

2

)

Tc, τ

)

sinc(l − Bτ)e jπ(l−Bτ)dτ

(8)

is the channel coefficient corresponding to the lth path and
pth chip of the kth user. In (7), the kth user-transmitted
power is absorbed in hk[p, l], a convention that is used
throughout the paper. The time dispersion (multipath) is
clear in (7) since the information transmitted over a particu-
lar chip is dispersed into the adjacent chips. The overall mul-
tiuser received signal is

r(t) =
K∑

k=1

xk(t) + v(t), (9)

where v(t) is complex additive white Gaussian noise
(AWGN) with power spectral density σ2. Front-end process-
ing at the receiver corresponds to projecting onto the basis
waveforms. Assuming the receiver to be synchronized to the
first path (l = 0) in (7), projecting over up(t), we get

r[p] =
〈

r, up

〉

= 1
√

Tc

∫ (p+1)Tc

pTc

r(t)dt

=
K∑

k=1

bk

L∑

l=0

hk[p − l, l]qk[p − l] + v[p],

(10)

where 〈r, up〉 =
∫

r(t)u∗p (t)dt and v[p] is the pth noise sam-
ple. For convenience of notation, we express {r[p]} in a vec-
tor form as

r =
[

r[0] r[1] · · · r[N − 1]
]T

= b1Q1h1 +
K∑

k=2

bkQkhk + v (11)

= b1g1 +
K∑

k=2

bkgk + v, (12)

where Qk =
[

Qk(0) · · · Qk(L)
]

and has a dimension
N × N(L + 1), Qk(l) = diag{qk(l)} and has a dimension
N × N , qk is the N × 1 signature code vector of kth user,

hk =
[

hT
k,0 · · · hT

k,L

]T
and has a dimension N(L + 1) × 1,

hk,l =
[
hk[−l, l] · · · hk[N − 1− l, l]

]T
and has a dimen-

sion N × 1,3 v is zero mean N-dimensional Gaussian noise
vector with covariance matrix σ2IN , and gk = Qkhk. Note
that, in (11) and (7) due to time selectivity, the channel varies
over the symbol duration—for a given path l, the different
chips may encounter different fading coefficients.

For FS channels (no time selectivity T < ∆tc), hk[p, l]
is constant over p within a symbol duration, that is,

3Negative l indices correspond to those channel coefficients from pre-
vious symbols due to ISI. These samples are ignored in the analysis since
typically N ≫ L.
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hk[p, l] ≈ hk[0, l], p = 0, 1, . . . , N − 1. Hence, Qk(l)hk,l =
hk[0, l]Qk(l)1N = hk[0, l]qk(l). Now, we can rewrite (11) re-
placing Qk(l) by qk(l) in the definition of Qk, and hk,l with
hk[0, l] in the definition of hk. Notice that, in this case, Qk is
Toeplitz due to multipath dispersion. On the other hand, for
TS channels (no frequency selectivity, Bo = B < ∆ fc), L = 0.
Hence, Qk reduces to Qk(0) and hk reduces to hk,0. The diag-
onal structure of the system is evident in this case form (11).4

3.2. MC-CDMA system

In an MC-CDMA system, the prototype basis waveform is
the complex exponential υT(t)e j(2π(1/2)/T) which has a dura-
tion To = T and bandwidth Bo = B/N = 1/T . Each user
is assigned a signature waveform that is generated from fre-
quency shifts of the prototype basis waveform as

q̃k(t) =
N−1∑

n=0

q̃k[n]ũn(t), (13)

where {ũn(t) = υT(t)e j(2π(n+1/2)/T), n = 0, 1, . . . , N − 1} are
the set of basis functions used in transmission and q̃k[n] is
the nth entry of the kth user signature code. The transmitted
signal for user k is

s̃k(t) = bk

N−1∑

n=0

q̃k[n]υT(t)e j(2π(n+1/2)t/T). (14)

Comparing Figures 2b and 2d, we can see that the typically
MC-CDMA system is frequency dispersive over a TFS chan-
nel since To = T > ∆tc but nondispersive in time since
Bo < ∆ fc. Using the model in [12], the noise-free received
signal for user k in a TFS channel can be written as

x̃k(t) = bk

N−1∑

n=0

M∑

m=−M
q̃k[n]h̃k[m,n]

× υT(t)e j2πmt/Te j(2π(n+1/2)t/T),

(15)

where M = ⌈BdT⌉. The frequency dispersion is clear in (15)
since the information transmitted over a particular subcar-
rier is dispersed into the adjacent 2M subcarriers due to
Doppler dispersion. In (15),

h̃k[m,n]

=
∫ Bd

−Bd

C̃k

(

θ,
n + 1/2

T

)

sinc(m− θT)e− jπ(m−θT)dθ
(16)

is the channel coefficient corresponding to the nth subcar-
rier and mth Doppler shift of the kth user, and C̃k(θ, f ) =
∫

c̃k(t, f )e− j2πθtdt where c̃k(t, f ) is defined in (2). The overall
received signal for all users is

r̃(t) =
K∑

k=1

x̃k(t) + v(t). (17)

4Recall that a DS-CDMA system diagonalizes TS channels.

Projecting over ũn(t), we get

r̃[n] =
〈

r̃, ũn
〉

= 1√
T

∫ T

0
r(t)e− j(2π(n+1/2)t/T) dt

=
K∑

k=1

bk

M∑

m=−M
h̃k[m,n−m]q̃k[n−m] + ṽ[n].

(18)

The sampled received vector can be written as

r̃ = b1Q̃1h̃1 +
K∑

k=2

bkQ̃kh̃k + ṽ (19)

= b1g̃1 +
K∑

k=2

bkg̃k + ṽ, (20)

where Q̃k =
[

Q̃k(−M) · · · Q̃k(M)
]

and has a dimension
N ×N(2M + 1), Q̃k(m) = diag{q̃k(m)} and has a dimension
N × N , q̃k is the N × 1 signature code of the kth user, h̃k =
[

h̃T
k,−M · · · h̃T

k,M

]T
and has a dimension N(2M + 1) × 1,

h̃k,m =
[

h̃k[m, 0] · · · h̃k[m,N − 1]
]T

and has a dimension

N × 1, and g̃k = Q̃kh̃k. Note that, in (19) due to frequency
selectivity for a given Doppler shift m, fading coefficients
change over different subcarriers.

In FS channels (no time selectivity, To = T < ∆tc),
M = 0. Hence, in this case, Q̃k reduces to Q̃k(0) and h̃k re-
duces to h̃k,0. The diagonal structure of the system is evident
in this case.5 On the other hand, in TS channel (no frequency
selectivity, B,∆ fc), h̃k[m,n] ≈ h̃k[m, 0], n = 0, 1, . . . , N − 1.
Parallel to the argument in Section 3.1, in this case, h̃k =
[

h̃k[−M, 0] · · · h̃k[M, 0]
]T

and Q̃k(m) reduces to q̃k(m) so

that Q̃k becomes Toeplitz (due to Doppler dispersion).

3.3. MC-DS-CDMA system

In an MC-DS-CDMA system, the prototype basis waveform
is υTo(t)e

j(2π(1/2)/To) which has a duration To = T/Nt and
bandwidth Bo = B/N f . Each user is assigned a signature
waveform that is generated from time-frequency shifts of the
prototype basis waveform as

q̂k(t) =
N f −1
∑

n=0

Nt−1
∑

p=0

q̂k[p, n]ûp,n(t), (21)

where {ûp,n(t) = υTo(t − pTo)e j(2π(n+1/2)/To)} are the set
of basis functions used in transmission and q̂k[p, n] is the
(p, n)th entry of the kth user’s spreading code transmitted
over ûp,n(t). The transmitted signal for user k can be written
as

ŝk(t) = bk

N f −1
∑

n=0

Nt−1
∑

p=0

q̂k[p, n]υTo

(

t − pTo

)

e j(2π(n+1/2)t/To).

(22)

5Recall that MC-CDMA system diagonalizes FS channels.
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Table 1: Summary of the possible MC-DS-CDMA cases in regard to interaction with the channel.

Case 1 Case 2 Case 3 Case 4

Dispersion in time only Dispersion in frequency only No dispersion Dispersion in time and frequency
Bo > ∆ fc, To ≪ ∆tc Bo ≪ ∆ fc, To > ∆tc Bo ≪ ∆ fc, To ≪ ∆tc Bo > ∆ fc, To > ∆tc

Comparing Figures 2c and 2d, depending on the choice of Nt

and N f , the effect of the channel can be categorized into four
cases that are summarized in Table 1.

3.3.1 Case 1

In this case, the channel affects each time-frequency basis
function in an FS fashion—that is, there is dispersion in time
but not in frequency. The noise-free received signal for user
k is

x̂k(t) = bk

N f −1
∑

n=0

Nt−1
∑

p=0

Lo∑

l=0

hk[p, n; l]q̂k[p, n]υTo

×
(

t − pTo − lTo

)

e j(2π(n+1/2)t/To),

(23)

where Lo = ⌈TmBo⌉ and analogous to (8),

hk[p, n; l] =
∫ Tm

0
c

((

p +
1

2

)

To, τ

)

× sinc
(

l − Boτ
)

e j2π(n+1/2)(l−Boτ) dτ.

(24)

The overall received signal for all users is

r̂(t) =
K∑

k=1

x̂k(t) + v(t). (25)

The projection on ûp,n(t) is

r̂[p, n] =
〈

r̂, ûp,n

〉

= 1
√

To

∫ (p+1)To

pTo

r̂(t)e− j(2π(n+1/2)t/To) dt

=
K∑

k=1

bk

Lo∑

l=0

hk[p − l, n; l]q̂k[p − l, n] + v̂[p, n],

(26)

and the sampled received vector is

r̂ = b1Q̂
( f )
1 ĥ

( f )
1 +

K∑

k=2

bkQ̂
( f )
k ĥ

( f )
k + v̂ (27)

= b1ĝ
( f )
1 +

K∑

k=2

bkĝ
( f )
k + v̂, (28)

where

Q̂
( f )
k =












Q̂
( f )
k (0) 0 · · · 0

0 Q̂
( f )
k (1) · · · 0

...
. . .

. . .
...

0 · · · 0 Q̂
( f )
k

(

N f − 1
)












(29)

and has a dimension N ×N(Lo + 1),

Q̂
( f )
k (n) =

[

Q̂
( f )
k (n, 0) · · · Q̂

( f )
k

(

n, Lo
)
]

(30)

and has a dimension Nt ×Nt(Lo + 1),

Q̂
( f )
k (n, l) = diag

{

q̂
( f )
k,n (l)

}

(31)

and has a dimension Nt ×Nt ,

q̂
( f )
k,n =

[

q̂k[0, n] · · · q̂k
[

Nt − 1, n
]]T

,

ĥ
( f )
k =

[

ĥ
( f )T

k,0 · · · ĥ
( f )T

k,N f −1

]T
(32)

and has a dimension N(Lo + 1)× 1,

ĥ
( f )
k,n =

[

ĥ
( f )T

k,n,0 · · · ĥ
( f )T

k,n,Lo

]T
(33)

and has a dimension Nt(Lo + 1)× 1,

ĥ
( f )
k,n,l =

[

hk[−l, n; l] · · · hk
[

Nt − 1− l, n; l
]]T

(34)

and has a dimension Nt × 1, and

ĝ
( f )
k = Q̂

( f )
k ĥ

( f )
k . (35)

The superscript f stands for frequency domain since q̂
( f )
k,n

corresponds to part of the signature code corresponding to
all time shifts of the nth frequency (nth row in Figure 2c).

Note that the DS-CDMA system in TFS channels is a spe-
cial case of this system when N f = 1 (hence, Nt = N and
Lo = L).

3.3.2 Case 2

In this case, the channel affects each time-frequency basis
function in a TS fashion—that is, there is dispersion in fre-
quency but not in time. The noise-free received signal is

x̂k(t)

= bk

N f−1
∑

n=0

Nt−1
∑

p=0

Mo∑

m=−Mo

h̃k[p, n;m]q̂k[p, n]υTo

×
(

t − pTo

)

e j(2πmt/To)e j(2π(n+1/2)t/To),

(36)

where Mo = ⌈BdTo⌉ and

h̃k[p, n;m] =
∫ Bd

−Bd

C̃k

(

θ,
n + 1/2

To

)

sinc
(

m− θTo

)

× e− j2π(p+1/2)(m−θTo) dθ.

(37)
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In this case, r̂[p, n] becomes

r̂[p, n] =
K∑

k=1

bk

Mo∑

m=−Mo

h̃k[p, n−m;m]q̂k[p, n−m] + v̂[p, n],

(38)

and the received vector is

r̂ = b1Q̂
(t)
1 ĥ

(t)
1 +

K∑

k=2

bkQ̂
(t)
k ĥ

(t)
k + v̂ (39)

= b1ĝ
(t)
1 +

K∑

k=2

bkĝ
(t)
k + v̂, (40)

where

Q̂
(t)
k =











Q̂
(t)
k (0) 0 · · · 0

0 Q̂
(t)
k (1) · · · 0

...
. . .

. . .
...

0 · · · 0 Q̂
(t)
k

(

Nt − 1
)











(41)

and has a dimension N ×N(2Mo + 1),

Q̂
(t)
k (p) =

[

Q̂
(t)
k (p,−Mo) · · · Q̂

(t)
k (p,Mo)

]

(42)

and has a dimension N f ×N f (2Mo + 1),

Q̂
(t)
k (p,m) = diag

{

q̂
(t)
k,p(m)

}

(43)

and has a dimension N f ×N f ,

q̂
(t)
k,p =

[

q̂k[p, 0] · · · q̂k
[

p,N f − 1
]]T

,

ĥ
(t)
k =

[

ĥ
(t)T

k,0 · · · ĥ
(t)T

k,Nt−1

]T
(44)

and has a dimension N(2Mo + 1)× 1,

ĥ
(t)
k,p =

[

ĥ
(t)T

k,p,−Mo
· · · ĥ

(t)T

k,p,Mo

]T
(45)

and has a dimension N f (2Mo + 1)× 1,

ĥ
(t)
k,p,m =

[

h̃k[p, 0;m] · · · h̃k
[

p,N f − 1;m
]]T

(46)

and has a dimension N f × 1, and

ĝ
(t)
k = Q̂

(t)
k ĥ

(t)
k . (47)

The superscript t stands for time domain since q̂
(t)
k,p corre-

sponds to all frequency shifts of the pth time shift (pth col-
umn in Figure 2c).

Note that MC-CDMA system over TFS channel is a spe-
cial case of this system when Nt = 1 (hence, N f = N and
Mo =M).

3.3.3 Case 3

In this case, the channel affects each time-frequency basis
function in a nonselective fashion in both time and frequency
domains. That is, the effective channel matrix is diagonal
in this case. This interesting signaling scheme is discussed
in details in [7, 12], and we call it a TF-CDMA system. It
was shown that the conditions on N f and Nt necessary for
this case to hold can be met for underspread channels, that
is, TmBd ≪ 1 [13]. Basically, the conditions in this case
are equivalent to having Tm ≪ To and Bd ≪ Bo. That is,
TmBd ≪ ToBo = 1 which is the condition for underspread
channels. The noise-free received signal in this case is given
by [7]

x̂k(t) = bk

N f−1
∑

n=0

Nt−1
∑

p=0

ĥk[p, n]q̂k[p, n]

× υTo

(

t − pTo

)

e j(2π(n+1/2)t/To),

(48)

where

ĥk[p, n] =
∫ (p+1)To

pTo

∫ (n+1)Bo

nBo

c̃k(t, f )df dt

≈ c̃k

((

p +
1

2

)

To,

(

n +
1

2

)

Bo

)

.

(49)

The approximation in (49) is due to the fact that, for proper
choice of To and Bo, c̃k(t, f ) is almost flat over the basis func-
tion’s time and frequency support. In this case, r̂[p, n] in (26)
is

r̂[p, n] =
K∑

k=1

bkĥk[p, n]q̂k[p, n] + v̂[p, n] (50)

from which the diagonal nature of the system is evident. The
received vector is given by (27) with the following definitions:

Q̂
( f )
k = diag

{

q̂
( f )
k

}

,

q̂
( f )
k =

[

q̂
( f )T

k,0 · · · q̂
( f )T

k,N f −1

]T
,

ĥ
( f )
k =

[

ĥ
( f )T

k,0 · · · ĥ
( f )T

k,N f−1

]T
,

(51)

where ĥ
( f )
k,n =

[

ĥk[0, n] · · · ĥk[Nt − 1, n]
]T

. The sampled
received vector can be also written as (39) with the following
definitions:

Q̂
(t)
k = diag

{

q̂
(t)
k

}

,

q̂
(t)
k =

[

q̂
(t)T

k,0 · · · q̂
(t)T

k,Nt−1

]T
,

ĥ
(t)
k =

[

ĥ
(t)T

k,0 · · · ĥ
(t)T

k,Nt−1

]T
,

(52)

where ĥ
(t)
k,p =

[

ĥk[p, 0] · · · ĥk[p,N f − 1]
]T

.
The MC-CDMA system over an FS channel is a special

case of this system when Nt = 1 (hence N f = N) and Bd = 0.
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Time domain Frequency domain

Time nonselective
channel

Frequency selective

channel

qk[0] qk[1] qk[N−1]

hk[0, 0]

hk[0, 1]

hk[0, L]Tc

T B

DS-CDMA

MC-CDMA
1/T

BT

q̃k[0] q̃k[1] q̃k[N−1]

h̃k[0, 0] h̃k[0, 1] h̃k[0, N−1]

· · ·

. . .

Figure 3: DS-CDMA and MC-CDMA systems in an FS channel. The DS-CDMA basis waveforms experience multipath dispersion in time
due to frequency selectivity. The MC-CDMA system is diagonal since each subcarrier encounters nonselective fading in the frequency do-
main.

Also, the DS-CDMA system over a TS channel is a special
case of this system when N f = 1 (hence Nt = N) and Tm = 0.

3.3.4 Case 4

In this case, the channel affects each basis function in a TFS
fashion—that is, there is dispersion in time and in frequency.
The conditions above imply that To < Tm and Bo < Bd ⇒
TmBd > ToBo = 1. This is the case of overspread channels and
is not addressed in this paper since typical wireless channels
are underspread [1].

3.3.5 Some remarks on special cases

Cases 1, 2, 3, and 4 discuss MC-DS-CDMA system behav-
ior over TFS channels. The MC-DS-CDMA system in an FS
(TS) channel experiences Case 1 (Case 2) since the channel
is FS (TS) per basis waveform (so that the basis functions en-
counter multipath (Doppler) dispersion), and Case 3 where
the channel is nonselective per basis waveform. The system
cannot experience Case 2 (Case 1) in an FS (TS) channel due
to the absence of time (frequency) selectivity. In the sequel,
whenever we address the MC-DS-CDMA system over an FS
(TS) channel, we only consider Cases 1 and 3 (2 and 3). The
following special cases hold.

(1) Case 1 in the MC-DS-CDMA system over an FS
channel is a special case of that in Section 3.3.1 since Bd =
0, and thus, T ≪ ∆tc (as opposed to the less strin-
gent condition To ≪ ∆tc in Section 3.3.1). In this case,

hk[p, n; l] ≈ hk[0, n; l], p = 0, 1, . . . , Nt − 1, Q̂
( f )
k (n) be-

comes a Toeplitz matrix constituted from q̂
( f )
k,n , and ĥ

( f )
k,n =

[
hk[0, n; 0] · · · hk[0, n;Lo]

]T
.

(2) Case 2 in the MC-DS-CDMA system in TS channel
is a special case of that in Section 3.3.2 when Tm = 0, and
thus, B ≪ ∆ fc (as opposed to Bo ≪ ∆ fc in Section 3.3.2).
In this case, h̃k[p, n;m] ≈ h̃k[p, 0;m], n = 0, 1, . . . , N f − 1,

Q̂k(p) becomes Toeplitz matrix constituted from q̂k,p, and

ĥk,p =
[

h̃k[p, 0,−Mo] · · · h̃k[p, 0;Mo]
]T

.
(3) Case 3 in the MC-DS-CDMA system in an FS channel

is a special case of that in Section 3.3.3 when Bd = 0, that is,

ĥk[p, n] ≈ ĥk[0, n], p = 0, 1, . . . , Nt − 1. In this case,

Q̂
( f )
k =











q̂
( f )
k,0 0 · · · 0

0 q̂
( f )
k,1 · · · 0

...
. . .

. . .
...

0 · · · 0 q̂
( f )
k,N f −1











,

h
( f )
k =

[

ĥk[0, 0] · · · ĥk
[

0, N f − 1
]]T

.

(53)

(4) Case 3 in the MC-DS-CDMA system in a TS channel
is a special case of that in Section 3.3.3 when Tm = 0, that is,

ĥk[p, n] ≈ ĥk[p, 0], n = 0, 1, . . . , N f − 1. In this case,

Q̂
(t)
k =










q̂
(t)
k,0 0 · · · 0

0 q̂
(t)
k,1 · · · 0

...
. . .

. . .
...

0 · · · 0 q̂
(t)
k,Nt−1










,

h
(t)
k =

[

ĥk[0, 0] · · · ĥk
[

Nt − 1, 0
]]T

.

(54)

4. TIME-FREQUENCY DUALITY

As shown in Section 3 (and illustrated in Figure 3), in an FS
channel, each basis function in a DS-CDMA system encoun-
ters FS fading since Bo > ∆ fc. Consequently, the transmitted
signal encounters multipath dispersion and a RAKE receiver
is needed for multipath combining. To avoid multipath dis-
persion, the MC-CDMA system uses basis waveforms that
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Time domain Frequency domain

Time selective channel Frequency nonselective channel

qk[0] qk[1] qk[N−1]

hk[0, 0] hk[1, 0] hk[N−1, 0]

Tc

T

DS-CDMA

B

MC-CDMA

T

1/T

q̃k[0] q̃k[1] q̃k[N−1]

h̃k[−M, 0]

q̃k[0] q̃k[1] q̃k[N−1]

h̃k[0, 0]

q̃k[0] q̃k[1] q̃k[N−1]

h̃k[M, 0]

B

· · ·

· · ·

· · ·

. . .

. . .

Figure 4: DS-CDMA and MC-CDMA systems in a TS channel. The MC-CDMA basis waveforms experience multiple Doppler dispersion
in frequency due to time selectivity. The DS-CDMA system is diagonal since each basis waveform (chip) encounters nonselective fading in
the time domain.

are narrowband subcarriers with Bo ≪ ∆ fc. Hence, each ba-
sis function encounters nonselective fading and the resultant
channel matrix is diagonal. The diversity due to frequency se-
lectivity is exploited via L+1 multipath in DS-CDMA system
and via L+ 1 subcarriers separated by ∆ fc in the MC-CDMA
system. The diversity order in both systems is L + 1, which is
equal to the rank of the channel matrix for both systems, that
is, rank(Rhk ,hk ) = rank(Rh̃k ,h̃k

) = L + 1.

The behavior of the two systems in TS channels is com-
pletely analogous to that discussed above for FS channels
except for interchanging time and frequency domains and
DS-CDMA and MC-CDMA systems. Specifically, in a DS-
CDMA system in a TS channel, the channel matrix is diag-
onal as long as To ≪ ∆tc—each basis function (chip) en-
counters nonselective fading. On the other hand, each MC-
CDMA system basis function suffers TS fading since To =
T > ∆tc. This is manifested as multiple Doppler compo-
nents, as illustrated in Figure 4, analogous to multipath com-
ponents in a DS-CDMA system in an FS channel. Conse-
quently, the MC-CDMA system over a TS channel requires
a frequency domain RAKE receiver to do multiple Doppler
combining. The order of diversity in both systems is the same
and is equal to 2M + 1—the channel covariance matrix for
both systems has a rank of 2M + 1. This duality between
MC-CDMA and DS-CDMA as well as between TS and FS
channels, will be used in Section 5 to derive equivalences be-

tween different systems.

Using the previous discussion, we can deduce in-
tuitive insights about diagonalizing the TFS channel in
Section 3.3.3. We define the notion of block fading (BF) for

an MC-CDMA system in an FS channel and a DS-CDMA
system in a TS channel. For an MC-CDMA system, if the
whole bandwidth is divided into N f subbands, where N f is
chosen sufficiently larger than L + 1, then under BF assump-
tion, the Nt subcarriers in the same subband (corresponding
to ∆ fc) encounter identical fading coefficients.6 More pre-
cisely, if the set of indices of subcarriers in the ith coherence

subband is Ω
( f )
i , i = 0, 1, . . . , N f −1, then, under BF assump-

tion (recall (16)), h̃k[m,n1] ≈ h̃k[m,n2] for all n1, n2 ∈ Ω
( f )
i .

A similar definition holds for a DS-CDMA system in a TS
channel. If the whole symbol duration is divided into Nt

time slots, where Nt is chosen sufficiently larger than 2M + 1,
then, under BF assumption, the N f chips in the same time
slot (corresponding to ∆tc) encounter identical fading co-
efficients.7 That is, if the set of indices of chips in the ith

coherence time slot is Ω
(t)
i , i = 0, 1, . . . , Nt − 1, then, un-

der BF assumption (recall (8)), hk[p1, l] ≈ hk[p2, l] for all

p1, p2 ∈ Ω
(t)
i .

Now, consider an MC-CDMA system in a TFS channel.
Divide the bandwidth into N f coherence subbands such that
BF holds for the Nt subcarriers per subband. Now, per sub-
band, the channel is frequency nonselective but may be TS.
That is, each subband resembles a TS channel and multiple
Doppler components are generated. Hence, to diagonalize

6Note that N f sufficiently larger than L+1 is equivalent to Bo sufficiently
smaller than ∆ fc .

7Note that Nt sufficiently larger than 2M + 1 is equivalent to To suffi-
ciently smaller than ∆tc .
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the system (analogous to DS-CDMA system over a TS chan-
nel), we need to choose basis waveforms that are narrower
in time so that each encounters nonselective fading. This is
precisely the case with the basis waveforms of the TF-CDMA
system in Section 3.3.3. Compared to an MC-CDMA system,
the symbol duration is decreased by a factor of Nt, that is,
To = T/Nt and, consequently, the bandwidth increases Nt

times to Bo = BNt/N = B/N f . Since Bo equals the subband
bandwidth, flat fading in the frequency domain is still pre-
served. A dual way of looking at the TF-CDMA system in
Section 3.3.3 is via a DS-CDMA systems in a TFS channel. In
this case, T is divided into well-chosen Nt slots such that BF
holds in time. Per time slot, the N f time samples encounter
FS but time nonselective fading. To diagonalize the system,
we need to decrease the bandwidth of each basis waveform
by a factor of N f and increase the time duration by the same
factor to achieve nonselective fading. This idea is illustrated
in Figures 5 and 6.

5. EQUIVALENCES

In this section, we derive the sufficient conditions for the
CDMA systems in Section 3 to be equivalent. We say that two
systems are equivalent if both attain the same SINR for any
given set of channel realizations for all users. We can easily
deduce that, if two systems are equivalent, then both also at-
tain the same Pe. Before introducing the equivalence results,
we derive the linear MMSE detector, the expression for SINR,
and Pe.

We can note from (12), (20), and (28) that the sampled
received vector for a given system x is

rx = b1g
(x)
1 +

K∑

k=2

bkg
(x)
k + vx

= b1g
(x)
1 + ix + vx = g

(x)
1 + ǫx,

(55)

where g
(x)
k = Q

(x)
k h

(x)
k , Q(x) is a matrix that is a function of the

kth user signature code for system x, h(x) is the correspond-
ing channel coefficient vector, ix is the MAI vector affecting
the desired signal component, vx is the noise vector, and ǫx
is the noise plus interference vector. The linear MMSE detec-

tor for user 1 takes the form b̂1 = sign{real[wMMSEH

x rx]} and
wMMSE
x is chosen to solve

wMMSE
x = min

w
E
[∣
∣wHrx − b1

∣
∣

2
]

. (56)

The solution is the well-known Wiener filter

wMMSE
x = R−1

rx ,rxg
(x)
1 . (57)

The SINR can be written as [14]

SINR(x) = g
(x)H

1 R−1
ǫx ,ǫxg

(x)
1 , (58)

where Rǫx ,ǫx = ∑K
k=2 g

(x)
k g

(x)H

k + σ2IN . There is no closed
form expression for the receiver Pe in the presence of MAI.

However, parallel to the discussion in [15], we note that, for
sufficiently large N , the Gaussian approximation of the inter-
ference at the output of the MMSE is fairly accurate. In this

case, the conditional Pe given h
(x)
1 , . . . ,h

(x)
K can be approxi-

mated as

P(x)
e

(

h
(x)
1 , . . . ,h

(x)
K

)

= Q

(√

2g1
(x)H R−1

ǫx ,ǫx g
(x)
1

)

, (59)

where Q(x) = (1/
√

2π)
∫∞
x e−x

2/2 dx. To find the average Pe,

we need to average (59) over the distribution of h
(x)
1 , . . . ,h

(x)
K .

However, under the assumption of treating the MAI term at
the output of the MMSE detector as Gaussian noise, we only

need to average (59) over h
(x)
1 (or equivalently over g

(x)
1 ). Re-

calling that g
(x)
1 is a complex Gaussian vector, the average P

(x)
e

over the distribution of g
(x)
1 is [1]

P(x)
e = E

[

Pe
(

h
(x)
1

)]

=
D∑

l=1

πl
2

[

1−
√

µl
1 + µl

]

, πl =
D∏

i=1, i �=l

µl
µl − µi

,
(60)

where µl, l = 1, 2, . . . , D, are the nonzero eigenvalues of
R−1
ǫx ,ǫx Rg

(x)
1 ,g

(x)
1

. For the numerical results in Section 6, we adopt

this Gaussian approximation and use the SINR and Pe ex-
pressions in (58) and (60), respectively.

Recalling that two systems are equivalent if both attain
the same SINR, from the expression in (58), we note that a
sufficient condition for systems x and y to be equivalent is to
have

g
(y)
k = Fg

(x)
k , k = 1, 2, . . . , K, (61)

where F is an N × N unitary transformation, that is, FFH =
FHF = IN . From (12), (20), and (28) or (40), we note that we

can always write g
(x)
k as

g
(x)
k = Q

(x)
k h

(x)
k = H

(x)
k q

(x)
k , (62)

where the multiplication order in the first equality is flipped
in the second one using the appropriate N ×N channel ma-

trix H
(x)
k . Now, (61) becomes

H
(y)
k q

(y)
k = FH

(x)
k q

(x)
k . (63)

If q
(y)
k = Fq

(x)
k , then condition (63) for equivalence becomes

H
(x)
k = FHH

(y)
k F. (64)

Note that H(x) and H(y) have identical statistics since F is uni-
tary.

In Sections 5.1, 5.2, and 5.3, we implicitly solve the fol-

lowing problem. Given q
(x)
k , H

(x)
k , and H

(y)
k , find an F such

that q
(y)
k = Fq

(x)
k and (64) is satisfied. In other words, for

the same channel, realization systems x and y have identical

performance when q
(x)
k and q

(y)
k are chosen as the signature
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Figure 5: Diagonalizing a TFS channel via a TF-CDMA system starting from an MC-CDMA system. The bandwidth is divided into N f

subbands, each containing Nt subcarriers that fade similarly. To diagonalize TFS channel, each basis waveform duration is reduced by Nt

and its bandwidth is increased by Nt so that the new basis waveforms encounter nonselective fading in time and frequency. (a) MC-CDMA
system. (b) TF-CDMA system.

codes. We start by finding sufficient conditions for equiva-
lences in an FS channel. Using the duality relations described
in Section 4, in conjunction with necessary additional proofs,
we show the equivalence conditions for the TS and TFS chan-
nels in Sections 5.2 and 5.3, respectively.

5.1. Equivalences in an FS channel

We first recall from Section 3.3.5 that, in an FS channel,
the MC-DS-CDMA system only exhibits Cases 1 and 3. In
Proposition 1, we state the sufficient conditions for a DS-
CDMA system to be equivalent to an MC-CDMA system.
In Proposition 2, we state the equivalence conditions for
an MC-CDMA system and an MC-DS-CDMA system. The
equivalence conditions for a DS-CDMA system and an MC-
DS-CDMA system will then follow.

Proposition 1. DS-CDMA system is equivalent to an MC-
CDMA system in an FS channel if the following condition is
satisfied:

q̃k = DNqk , (65)

where DN is the N ×N discrete Fourier transform (DFT) ma-
trix with Dn,m = (1/

√
N)e− j(2πnm/N).

Proof. Recall that Qk and hk are the signature code matrix
and channel vector for the DS-CDMA system and Q̃k and h̃k

are the corresponding quantities in the MC-CDMA system.
As discussed in Section 3.1, Qk is a Toeplitz matrix in an FS
channel. In Appendix A, we show that

h̃k = DN (1 : L + 1)hk (66)
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Figure 6: Diagonalizing TFS channel via TF-CDMA system starting from a DS-CDMA system. The symbol duration is divided into Nt time
slots, each containing N f time samples that fade similarly. To diagonalize the TFS channel, each basis waveform bandwidth is reduced by N f

and its duration is increased by N f so that the new basis waveforms encounter flat fading in time and frequency. (a) DS-CDMA system. (b)
TF-CDMA system.

so that DN (L + 2 : N)H h̃k = 0. Hence, using (12),

gk = QkDN (1 : L + 1)H h̃k = Q̄kDH
N h̃k, (67)

where Q̄k =
[

Qk X
]

for any appropriately sized arbitrary
matrix X. We note that, in general, L≪ N so that Qk can be
approximated with a circulant matrix. We can then choose X

so that Q̄k is circulant and multiply gk by DN to get

DNgk ≈ DN Q̄kDH
N h̃k = ¯̃Qkh̃k = ¯̃gk , (68)

where ¯̃Qk = diag{DNqk} since the DFT matrix diagonalizes
circulant matrices. We can see that g̃k = Q̃kh̃k in (20) for
an FS channel is equal to ¯̃gk = ¯̃Qkh̃k in (68) provided that
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q̃k = DNqk. The proof then follows from our definition of
equivalences in (61).

Proposition 2. The MC-DS-CDMA system in Cases 1 and 3 is
equivalent to an MC-CDMA system provided that the follow-
ing condition is satisfied:

q̃k = D̄Nt q̂
( f )
k , (69)

where

D̄Nt =









DNt 0 · · · 0
0 DNt · · · 0
...

. . .
. . .

...
0 · · · 0 DNt









(70)

and q̂
( f )
k =

[

q̂
( f )T

k,0 · · · q̂
( f )T

k,N f −1

]T
of dimension N × 1.

Proof. We first prove Proposition 2 for the MC-DS-CDMA
system in Case 1. We recall that, in an FS channel, each sub-
band n in the MC-DS-CDMA system in Case 1 encounters
multipath dispersion. The proof of this proposition is then
obtained by applying the proof of Proposition 1 per subband

n. We start with writing ĝ
( f )
k in (28) as

ĝ
( f )
k =

[

ĝ
( f )T

k,0 · · · ĝ
( f )T

k,N f −1

]T
, (71)

where ĝ
( f )
k,n = Q̂

( f )
k (n)ĥ

( f )
k,n . Following the proof in Appendix

A, we can show that

h̃k,n = DNt

(

1 : Lo + 1
)

ĥ
( f )
k,n , (72)

where h̃k,n =
[

h̃k[0, nNt] · · · h̃k[0, (n + 1)Nt − 1]
]

is the

nth segment of h̃k of lengthNt . Recall from Section 3.3.5 that,

in an FS channel, Q̂
( f )
k (n) is Toeplitz constituted from q̂

( f )
k,n .

Hence, using (72) and following the proof of Proposition 1,
we can show that

DNt ĝ
( f )
k,n ≈ DNt Q̂

( f )
k (n)DNt

(

1 : Lo + 1
)H

h̃k,n

= ¨̃Qk,nh̃k,n,
(73)

where ¨̃Qk,n = diag{DNt q̂
( f )
k,n}. That is,

D̄Nt ĝ
( f )
k ≈ ¨̃Qkh̃k = ¨̃gk , (74)

where ¨̃Qk = diag{D̄Nt q̂
( f )
k }. We can see that g̃k in (20), for the

FS channel, is equal to ¨̃gk in (74) provided that q̃k = D̄Nt q̂
( f ).

The proof for Case 1 MC-DS-CDMA system then follows.
The proof of Proposition 2 for an MC-DS-CDMA system

in Case 3 is a special case of the proof above when Lo = 0 (so
that each subband encounters frequency nonselective fad-
ing). To see this, we first recall that, in this case, the BF as-
sumption is valid since Bo ≪ ∆ fc. From Section 4, under BF
assumption, h̃k can be written as

h̃k ≈
[

h̃k[0, 0]1T
Nt
· · · h̃k

[

0, N f − 1
]

1T
Nt

]T

(75)

≈
[

ĥk[0, 0]1T
Nt
· · · ĥk

[

0, N f − 1
]

1T
Nt

]T

, (76)

that is, h̃k,n = h̃k[0, n]1Nt . In (76), we used the fact that

h̃k[0, n] = ĥk[0, n] for FS channels. To recognize this fact,
substitute c̃k(t, f ) = c̃k(0, f ) and C̃k(θ, f ) = c̃k(0, f )δ(θ) in
(16) and (49), respectively, where δ(·) is the Dirac delta func-
tion. Now, starting from (53), using (75) and (76), and par-
allel to the first part of this proof, we can easily prove (74) for
a Case 3 MC-DS-CDMA system.

We note that Case 3 MC-DS-CDMA system is equivalent
to an MC-CDMA system over an FS channel for any

F̄Nt =









FNt 0 · · · 0
0 FNt · · · 0
...

. . .
. . .

...
0 · · · 0 FNt









, (77)

where FNt is any Nt × Nt unitary transformation. An easy
way to recognize this fact is to consider (64). In this case, the
channel matrices for Case 3 MC-DS-CDMA system and MC-
CDMA system are

Ĥk =










ĥk[0, 0]INt 0 · · · 0

0 ĥk[0, 1]INt · · · 0
...

. . .
. . .

...

0 · · · 0 ĥk
[

0, N f − 1
]

INt










,

H̃k =










h̃k[0, 0]INt 0 · · · 0

0 h̃k[0, 1]INt · · · 0
...

. . .
. . .

...

0 · · · 0 h̃k
[

0, N f − 1
]

INt










,

(78)

respectively. It is then clear that Ĥk = F̄H
Nt

H̃kF̄Nt for any F̄Nt .
An interesting special case of F̄Nt is IN , that is, the MC-DS-
CDMA and the MC-CDMA systems are also equivalent if

q̃k = q̂
( f )
k .

The results obtained in this section are summarized in
Table 2. Note that the third column in Table 2 is obtained by
combining the results in the first two columns.

5.2. Equivalences in a TS channel

Building on the intuition in Section 4, a similar set of re-
sults analogous to those in Section 5.1 can be obtained for
a TS channel. We recall from Section 3.3.5 that, in a TS chan-
nel, the MC-DS-CDMA system exhibits only Cases 2 and 3.
In this case, Proposition 1 in Section 5.1 still holds for a TS
channel. Parallel to Proposition 2, Proposition 3 shows the
equivalence conditions for a DS-CDMA system and an MC-
DS-CDMA system over a TS channel. The conditions for an
MC-CDMA system to be equivalent to an MC-DS-CDMA
system then follow.
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Table 2: Summary of equivalence results for an FS channel. Bo refers to the basis waveform bandwidth in an MC-DS-CDMA system.

MC-DS-CDMA MC-CDMA DS-CDMA

� � �
MC-CDMA DS-CDMA MC-DS-CDMA

q̃k =







D̄Nt q̂
( f )
k , Bo > ∆ fc,

F̄Nt q̂
( f )
k , Bo ≪ ∆ fc

qk = DH
N q̃k q̂

( f )
k =







D̄H
Nt

DNqk , Bo > ∆ fc,

F̄H
Nt

DNqk , Bo ≪ ∆ fc

Proposition 3. The MC-DS-CDMA system in Cases 2 and 3 is
equivalent to a DS-CDMA system provided that the following
condition is satisfied:

qk = D̄H
N f

q̂
(t)
k , (79)

where D̄N f is defined as D̄Nt in (69) with Nt replaced by N f ,

and q̂
(t)
k =

[

q̂
(t)T

k,0 · · · q̂
(t)T

k,Nt−1

]T
of dimension N × 1.

The proofs of Proposition 1 for a TS channel and
Proposition 3 are analogous to the proofs of Proposition 1
for an FS channel and Proposition 2 in Section 5.1, respec-
tively, under the following substitutions: MC-CDMA → DS-
CDMA, MC-DS-CDMA Case 1 → MC-DS-CDMA Case 2,

qk → q̃k, q̃k → qk, q̂
( f )
k → q̂

(t)
k , h̃k,n → hk,p, where hk,p =

[

h̃k[pN f , 0] · · · h̃k[(p + 1)N f − 1, 0]
]

is the pth segment
of hk of length N f , Nt → N f , N f → Nt, l → m, L → 2M + 1,

Lo → 2Mo + 1, x( f ) → x(t) for any quantity x, DN → DH
N ,

DNt → DH
N f

, D̄Nt → D̄H
N f

, F̄Nt → F̄H
N f

.
Table 3 summarizes the equivalence results in a TS chan-

nel. Again, the third column in the table is obtained by com-
bining the results in columns one and two.

There is a subtle point that needs to be explained when
proofs analogous to those in Section 5.1 are derived in the
case of TS channel. In an FS channel, l only takes positive
values and the one-sided DFT operation was used in the ob-
tained results. In a TS channel, as stated above, l maps to m
which takes symmetric values around 0 as seen in (16) and
(37). Now, using a single-sided DFT operation, as done in the
proofs in Section 5.1, will imply a phase shift. We can easily
show that the equations analogous to (66) and (72) are

DH
N (1 : 2M + 1)h̃k = hk ⊙ eM,N , (80)

DH
N f

(

1 : 2Mo + 1
)

ĥ
(t)
k,p = h̃k,n ⊙ eMo ,N f , (81)

respectively, where eM,N=
[

1 e j(2πM/N) · · · e j(2π(N−1)M/N)
]T

.

We note that the presence of phase shift does not change
the equivalence conditions since it does not affect the SINR

value and the eigenvalues of g
(x)
1 that governs Pe. Starting

from this point, the phase shift will thus be ignored in the
analysis.

5.3. Equivalences in a TFS channel

In this section, we prove the equivalence conditions for the
general case of a TFS channel. In TFS channel, the MC-DS-
CDMA system has the three cases described in Section 3.3. In

this case, Propositions 1, 2, and 3 still hold as shown in the
sequel.

5.3.1 Proof of Proposition 1

Before proving Proposition 1 for TFS channel, we first intro-
duce the following lemma.

Lemma 1. The channel coefficient defined in (8) is given by

hk[p, l] =
M∑

m=−M
Hk[m, l]e j(2πm(p+1/2)/N), (82)

where

Hk[m, l] =
∫ Tm

0

∫ Bd

−Bd

Ck(θ, τ) sinc(m− θT) sinc(l − Bτ)

× e− jπ(m−θT)e− jπ(l−Bτ) dθ dτ,

(83)

where Ck(θ, τ) =
∫

ck(t, τ)e− j2πθt dt.

Proof. See Appendix B.

Now, recalling (11) and (12), we write gk as

gk =
L∑

l=0

Qk(l)hk,l (84)

=
L∑

l=0

Qk(l)
M∑

m=−M
Hk[m, l]em,N (l) (85)

=
M∑

m=−M

L∑

l=0

Hk[m, l]
(

qk(l)⊙ em,N (l)
)

(86)

=
M∑

m=−M
Q́k,mh́k,m, (87)

where in (85) we used Lemma 1, in (86) (recall that Qk(l) in
(11) is diagonal) we replaced Qk(l)em,N (l) by qk(l)⊙ em,N (l),
and in (87)

Q́k,m =
[

qk(0)⊙ em,N (0) · · · qk(L)⊙ em,N (L)
]

(88)

(recall that Q́k,m is Toeplitz) and

h́k,m =
[

Hk[m, 0] · · · Hk[m,L]
]T

. (89)
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Table 3: Summary of equivalence results for a TS channel. To refers to the duration of the basis waveform in an MC-DS-CDMA system.

MC-DS-CDMA DS-CDMA MC-CDMA

� � �
DS-CDMA MC-CDMA MC-DS-CDMA

qk =







D̄H
N f

q̂
(t)
k , To > ∆tc,

F̄H
N f

q̂
(t)
k , To ≪ ∆tc

q̃k = DNqk q̂
(t)
k =







D̄N f
DH

N q̃k , To > ∆tc,

F̄N f
DH

N q̃k , To ≪ ∆tc

Table 4: Summary of equivalence results for a TFS channel—Part 1. To and Bo refer to the duration and bandwidth of MC-DS-CDMA basis
waveforms.

MC-DS-CDMA MC-CDMA DS-CDMA

� � �
MC-CDMA DS-CDMA MC-DS-CDMA

q̃k =







D̄Nt q̂
( f )
k , Bo > ∆ fc, To ≪ ∆tc,

D̄Nt q̂
( f )
k , Bo ≪ ∆ fc, To ≪ ∆tc

qk = DH
N q̃k q̂

( f )
k =







D̄H
Nt

DNqk , Bo > ∆ fc, To ≪ ∆tc,

D̄H
Nt

DNqk , Bo ≪ ∆ fc, To ≪ ∆tc

Using the same approach as in Appendix A, we can show
that

h́k,m = DH
N h̃k,m, (90)

where h̃k,m is given in (19). Using (90) in (87), then

DNgk =
M∑

m=−M
DN Q́k,mDH

N h̃k,m (91)

=
M∑

m=−M

¯̃Qk(m)h̃k,m = ¯̃gk, (92)

where ¯̃Qk(m) = diag{DN [qk ⊙ em]} = diag{[DNqk](m)},
and the second equality is obtained from the properties of
DFT [16]. We can see that ¯̃gk in (92) is g̃k in (20) for a TFS
channel provided that q̃k = DNqk. Hence, Proposition 1 is
proved for a TFS channel.

5.3.2 Proof of Proposition 2

Starting with an MC-DS-CDMA system in Case 1, we note
from Section 3.3.1 that, per subband, there exists Lo multi-
path components due to frequency selectivity, and, per path,
different chips fade differently due to time selectivity. This
scenario per subband is similar to that in Section 5.3.1. The
proof is obtained by mimicking the proof in Section 5.3.1
per subband. This is similar to what was done in Section 5.1
when Proposition 2 was proved by mimicking the proof of
Proposition 1 per subband.

To prove the equivalence for the MC-DS-CDMA system
in Case 3, we start with an MC-CDMA system in a TFS chan-
nel and note that, since Bo ≪ ∆ fc, the BF assumption holds.
Under this assumption, the noise-free received signal in (15)

can be written as

x̃k(t) ≈ bk

N f −1
∑

i=0

M∑

m=−M
h̃k[m, i]

×
∑

n∈Ωi

q̃k[n]υT(t)e j2πmt/Te j(2π(n+1/2)t/T).
(93)

In view of (93), the MC-CDMA system in a TFS channel
encounters multiple Doppler components per subband. Re-
calling the proof of Proposition 2 in Section 5.1, going from
MC-DS-CDMA to MC-CDMA, the increase in To does not
cause frequency dispersion due to absence of time selectiv-
ity. However, it causes Bo < ∆ fc eliminating the time dis-
persion. Similar scenario is experienced in this case per sub-
band except for interchanging time and frequency domains.
In particular (as discussed in Section 4), to diagonalize the
system, we increase Bo, and that does not cause time dis-
persion (due to the BF assumption per subband) and de-
crease To such that To < ∆tc to eliminate frequency dis-
persion so that the resulting TF-CDMA basis waveforms en-
counter nonselective fading. After drawing this analogy, we
can see that the proof of Proposition 2 for MC-DS-CDMA
system in Case 3 over a TFS channel is analogous to that of
Proposition 2 for MC-DS-CDMA system in Case 1 over an
FS channel except for interchanging time and frequency do-
mains and the same condition q̃k = D̄Nt q̂

( f )
k for equivalence

holds.

5.3.3 Proof of Proposition 3

The proof in this case is analogous to that in Section 5.3.2 by
using the substitutions in Section 5.2.

The equivalence results for a TFS channel are summa-
rized in Tables 4 and 5. In both tables, the last column is ob-
tained by combining the results in the first two columns.
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Table 5: Summary of equivalence results for a TFS channel—Part 2. To and Bo refer to the duration and bandwidth of MC-DS-CDMA basis
waveforms.

MC-DS-CDMA DS-CDMA MC-CDMA

� � �
DS-CDMA MC-CDMA MC-DS-CDMA

qk =







D̄H
N f

q̂
(t)
k , To > ∆tc, Bo ≪ ∆ fc,

D̄H
N f

q̂
(t)
k , To ≪ ∆tc, Bo ≪ ∆ fc

q̃k = DNqk q̂
(t)
k =







D̄N f
DH

N q̃k , To > ∆tc, Bo ≪ ∆ fc,

D̄N f
DH

N q̃k , To ≪ ∆tc, Bo ≪ ∆ fc

5.3.4 Important remarks

For the sake of completeness, it is necessary to make the fol-
lowing remarks.

Remark 1. In a TFS channel as opposed to an FS (TS) chan-
nel, not any F̄Nt (F̄N f ) unitary transformation satisfies equiv-
alence. The reason is that, in a TFS channel, the channel ma-
trix in MC-CDMA (DS-CDMA) system is no longer diag-
onal but rather Toeplitz due to time (frequency) selectivity.
Hence, there will always be a DFT operation between the
channel coefficients of MC-DS-CDMA system in Case 3 and
those of an MC-CDMA (DS-CDMA) system.

Remark 2. From Tables 4 and 5, given qk, we have two pos-
sible conditions for MC-DS-CDMA system in Case 3 to be
equivalent to DS-CDMA system

(1) q̂
( f )
k = D̄H

Nt
DNqk;

(2) q̂
(t)
k = D̄N f qk.

We can show that both unitary transformations F1 = D̄Nt DN

and F2 = D̄N f satisfy (64) when systems x and y are MC-
DS-CDMA in Case 3 and DS-CDMA, respectively. A similar
argument holds for an MC-DS-CDMA in Case 3 and an MC-
CDMA systems.

Remark 3. Even though prior literature touched on the con-
nections between different CDMA systems in FS channels
(and, to a lesser extent, TS channel), we note that such con-
nections in TFS were not well studied and are not as clear
as the simple case of FS channels. Moreover, most of the re-
sults in the prior works address single user scenarios. Propo-
sitions 1, 2, and 3 extend the connections between the dif-
ferent CDMA systems to TFS channels building on the time-
frequency duality as explained in Section 4. In addition, all
the results address multiuser scenarios where MMSE detec-
tion is used at the receiver.

We also note that, from an implementational point of
view, the available hardware may favor one system over the
other. For instance, the problem of peak-to-average ratio in
MC-CDMA system may make implementing DS-CDMA sys-
tem easier. Similarly, the difficulty in implementing RAKE
receivers in high data rate systems may make implementing
MC-CDMA system easier. We showed in Propositions 1, 2,
and 3 that all the systems can perform as well provided that
the sufficient conditions are met. We again emphasize that

the equivalent conditions were not clear in prior literature
for TFS channels.

6. NUMERICAL RESULTS

In this section, we illustrate the results obtained in Section 5.
We show the near identical performance of the different
CDMA systems when using the sufficient conditions in
Propositions 1, 2, and 3 even after relaxing the assumptions
used in their proofs.8 The goal is to emphasize the validity of
these assumptions and hence the equivalent conditions. We
consider a system of K = 20 users and a WSSUS channel
model with L + 1 = 4 resolvable paths. We use the separa-
bility assumption in (3). We also choose (recall Section 2.2)

Φθ(θ) = 1/4πBd

√

1− (θ/Bd)2, |θ| < Bd and 0 elsewhere [17]
and set Ψ(τ) to be constant over τ. Each user employs a
distinct Gold code of length N = 329 for signal spreading
and the receiver employs an MMSE detector. We use SINR
and Pe, defined in Section 5, as measures for performance
and adopt the equivalence conditions stated in Tables 1, 2, 3,
and 4.

Figures 7a and 7b show the performance of the different
CDMA systems in an FS channel. We show the performance
of MC-DS-CDMA system for its two cases. For Case 1, we
choose N f = 2 so that Lo + 1 = 2. For Case 3, two different
values of N f are considered N f = 8, 16. Figure 7a shows the
SINR for the different systems as well as the signal-to-noise
ratio (SNR) in the absence of interference which is an upper
bound on the SINR. Figure 7b shows the Pe for the different
systems. As expected from Propositions 1 and 2, the perfor-
mance of the different systems is virtually indistinguishable.

Figures 8a and 8b show the SINR and Pe, respectively,
for the MC-CDMA, DS-CDMA, and MC-DS-CDMA Case
3 systems in TFS channel with BdT = 0.2. For the MC-DS-
CDMA Case 3 system, we take N f = 8 and ideally assume
that, under this choice, every time-frequency basis waveform
encounters nonselective fading in time and frequency—that
is, we ignore the relatively negligible dispersion effects that

8Basically, any assumption that was made on the signaling matrices Q
(x)
k

(such as approximating Toeplitz matrices by circulant ones) is relaxed in the
expressions of SINR and Pe in (58) and (60), respectively.

9The Gold code length is 31, and an additional common bit is added to
every signature code to have an overall length of 32.
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Figure 7: Performance of various equivalent systems over an FS
channel for K = 20 users as a function of SNR. (a) SINR. (b) Pe.

still remain in an MC-DS-CDMA system. Again, the perfor-
mance of the three systems is virtually identical.

7. CONCLUSION

In this paper, we have studied linear MMSE multiuser detec-
tion for a class of CDMA systems in FS, TS, and TFS chan-
nels. We discussed a time-frequency duality between various
systems operating over TFS channels. The time-frequency
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Figure 8: The performance of MC-CDMA, DS-CDMA, and TF-
CDMA (MC-DS-CDMA) systems over a TFS channel (BdT = 0.2)
for K = 20 users as a function of SNR. (a) SINR. (b) Pe.

duality exposes the channel conditions under which differ-
ent systems are ideal (diagonalize the channel matrix) DS-
CDMA systems are ideal in TS channels, MC-CDMA in FS
channels, and MC-DS-CDMA (TF-CDMA) in TFS channels.
We use this duality to develop equivalences between systems
operating over a TFS channel and systems operating either
over FS or TS channels. Building on the time-frequency du-
ality and the equivalences, we derive sufficient conditions re-
lating the signature codes of the different systems for them to
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perform in a near-identical fashion in FS, TS, and TFS chan-
nels. Numerical results are provided to support the analy-
sis. The results of this paper relating the various systems in
different channel conditions enable cross-leveraging of de-
sign insights for the widely used DS-CDMA, MC-CDMA,
and MC-DS-CDMA systems.

APPENDICES

A. PROOF OF (66)

Recall from (16) that, in FS channel, (i.e., M = 0 in (15)),
h̃k(0, n) = C̃k(0, (n + 1/2)/T). For (66) to hold, it suffices
to prove that h̃k(0, n) is the nth component of the DFT of
{hk(0, l), l = 0, 1, . . . , L}, which we show as follows:

L∑

l=0

hk[0, l]e− j(2πln/N)

=
L∑

l=0

e− j(2πln/N)

∫ Tm

0
ck(0, τ) sinc(l − Bτ)e jπ(l−Bτ)dt

=
∫ Tm

0
ck(0, τ)e− jπBτ

L∑

l=0

sinc(l − Bτ)e− j2πl(n/N+1/2)dt

=
∫ Tm

0
ck(0, τ)e− jπBτe− j2π(n/N+1/2)Bτdt

=
∫ Tm

0
ck(0, τ)e− j(2πnτ/T)dt

= C̃k

(

0,
n

T

)

= h̃k(0, n)

(A.1)

B. PROOF OF LEMMA 1

Starting with the right-hand side of (82)

M∑

m=−M
Hk[m, l]e j(2πm(p+1/2)/N)

=
∫ Tm

0

∫ Bd

−Bd

Ck(θ, τ) sinc(l − Bτ)e− jπ(l−Bτ)e jπ(θT)

×
M∑

m=−M
sinc(m− θT)e− jπme j(2πm(p+1/2)/N) dθdτ

(B.1)

=
∫ Tm

0

∫ Bd

−Bd

Ck(θ, τ) sinc(l − Bτ)e− jπ(l−Bτ)e jπ(θT)e jπM

× e− j(2πM(p+1/2)/N)
2M∑

v=0

sinc(v −M − θT)

× e− jπve j(2πv(p+1/2)/N)dθdτ
(B.2)

=
∫ Tm

0

∫ Bd

−Bd

Ck(θ, τ) sinc(l − Bτ)e− jπ(l−Bτ)e jπ(θT)e jπM

× e− j(2πM(p+1/2)/N)e j2π((p+1/2)/N−1/2)(M+θT)dθdτ

=
∫ Tm

0

∫ Bd

−Bd

Ck(θ, τ) sinc(l − Bτ)e− jπ(l−Bτ)

× e j2πθT((p+1/2)/N) dθdτ

=
∫ Tm

0
ck
(

(p + 1/2)Tc, τ
)

sinc(l − Bτ)e− jπ(l−Bτ) dτ

= hk[p, l],

(B.3)

where in (B.2), we did a change of variables v = m + M.
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