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1. Introduction. The question of the measure theoretic equivalence of one
stochastic process with respect to another has been studied in several contexts.
For example, A. V. Skorokhod [16], [17] has considered the equivalence of Markov
processes defined by means of stochastic differential equations, L. A. Shepp [15]
has obtained criteria for the equivalence of Gaussian processes and the Wiener
process, and E. B. Dynkin [7] has obtained a global criterion for the absolute
continuity of one Markov process with respect to another in terms of multiplicative
functional.

In this paper we investigate the equivalence of Hunt processes from a local
point of view. After introducing the basic notation and definitions in §2 we discuss
three special cases in §3 which motivate and illustrate the general theory which is
to be developed. In §4 a class of martingales is associated with a Markov process ;
this leads to the proof of an extended Markov property in §5. The extended Markov
property is central in proving our results on the equivalence of Hunt processes.
§§6 and 7 are concerned with certain technical results which lead to the statement
and proof of the main results in §§8 and 9. In §8 it is shown that if two Hunt
processes arising from Feller semigroups are not equivalent then at least one of
four basic types of singularity must occur. The four basic types of singularity are :
singularity on the germ field, singularity on the tail field, local singularity at a
stopping time and jump singularity at a stopping time. §9 contains a deeper study
of local singularities. In particular, if the processes have the additional property
which we call local smoothness then the existence of local singularities at a stopping
time is equivalent to the existence of singularities on the germ field. Finally, in
§10 the property of local smoothness is characterized in potential theoretic terms.

The author would like to thank Professer P. A. Meyer and an anonymous
referee for several very useful comments.

2. Notation and definitions. In this section we introduce the basic notation and
review the important definitions. For a more complete discussion of the standard
material refer to E. B. Dynkin [7] and P. A. Meyer [13]. A summary of the basic
definitions in the theory of Markov processes is also found in R. K. Getoor [8].
Basic results of measure theory are often used without explicit reference; such
material is found in the basic texts of J. Neveu [14] and P. R. Halmos [9].
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2.1. The state space. Let (E, S) be a measurable space such that E is a locally
compact separable metric space with metric p(- , •) and S is the a-field of Borel
subsets of E. Note that each open subset and each closed subset in such a space is a
countable union of compact sets. Hence every set in the algebra generated by the
open (or compact) subsets is the countable union of compacts. Moreover all finite
Borel measures are inner regular. Let A be the point at infinity if E is not compact
or an isolated point if E is compact. Let EA = Eu {A} and c?A be the a-field of Borel
subsets of EA.

2.2. The basic measure space. Let O be the set of all functions, co(-), from [0, oo]
to EA which are right continuous, have left-hand limits on [0, oo), have the property
that if w(t) = A, then üj(í) = A for all s^t, and satisfy co(oo) = A. coA represents the
element of Q. defined by o>A(r) = A for all t e [0, oo]. If m e Í2, the mapping t ~~> Xt(oS)
= X(t, oj) = aj(t) is called the path of w. For t e [0, oo), lrf(cu) = lims^i Xs(cu). For
t e [0, oo ] let J^ be the a-field of subsets of Q. generated by sets of the form
{co : Xs(<o) e T} with s e [0, t] and T e êA and for t e [0, oo) let Jit = P\*>t &»
Ji'K=^ra3. Ji0 is known as the germ field.

Proposition 2.2.1. For any s e [0, oo], ̂  is generated by a countable algebra of
sets.

Proof. Let j/s be the algebra of subsets of E generated by sets of the form
{co : Xr(w) e Y,) with r a rational in [0, s] and T¡ an element of the countable base
{Tj : j = 1,2,3,...} of open sets for E. It suffices to show that a set of the form
{co : XT(o¡) e T} with r an irrational number in [0, s] and T an open subset of E is
contained in o(jrfs), the a-field generated by ¿fs. But the right continuity of the
paths implies that

(2.2.1) {co : A» e T} = U  Ü  fl W : ^r» 6 T,}
Jefí n = l fc = n

where {rn} is a sequence of rationals which decrease to r and ß={j: Y¡<=- Y}. Since
Uíe^ U"=i HkU {«u : *,„(">) e r;} e a«), the proof is complete.

A mapping T: Q -> [0, oo] is a stopping time with respect to the a-fields (Jit)teio.<»i
if for every t e [0, oo], {T< t} e Jit. If T is a stopping time, then JiT denotes the
sub-CT-field of sets A e J^ such that A n {T-¿ t} e Jit for every t e [0, oo].

If £(co) a inf {r : ¿'¡(co) = A}, then £ is a stopping time and is called the lifetime
of the path.

If the mapping 7(-,.):([0,i]xQ,f[OJ)xi'l)->(f, J) where (F, 3F) is a
measurable space and 38l0¡tt is the a-field of Borel subsets of [0, /] is measurable for
every t e [0, oo), then the stochastic process Y( ■, ■ ) is said to be progressively
measurable.

Proposition 2.2.2. (i) ^(co) is a progressively measurable stochastic process.
(ii) If T is a stopping time, then XT is JiT-measurable.

Proof. See P. A. Meyer [13, Chapter 4, §3].
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2.3. Definition of a Markov process. The system -n=(Çi, J5«, (Px)xeEA, (Xùteio.mi)
is a strong Markov process with respect to the o-fields (J?t)teio,<*>i >f;

(2.3.1) Px(X0 = x) = 1 for each x e EA,
(2.3.2) the mapping x~~>PX(A) is <f ¿-measurable for A e J^, and
(2.3.3) for any stopping time T, F e i A and s e [0, oo),

Px(XT+seF\JiT) = Pxm(XseF),

TValmost surely for each x e EA.
Ex denotes the expectation with respect to the measure Px. The Markov process

is said to be continuous if the paths are continuous on [0, £), TValmost surely for
each x e E. It is said to be uninterrupted if for every xe E, Px(l = co) = 1.

2.4. The semigroup. Given an <f ¿-measurable bounded function, /, let

PJ(x) = ^f(y)Px(Xtedy).

C0(EA) designates the set of continuous functions,/, on EA such that hmy^Af(y)=0
and/(A)=0. The semigroup {Pt : íSO} is a Feller semigroup if:

(2.4.1) for every function fe C0(EA) and r>0, Ptfe C0(EA), and
(2.4.2) for every function fe C0(EA), \\Ptf-f\\ -> 0 as t -* 0 where

llffll = sup{|g(x)| : xeE}.
The following result is well known.

Proposition 2.4.1. If{Pt : t^O} is a Feller semigroup, then
(i) iffe C0(EA), Ptf(x) is jointly continuous in t and x on [0, oo) x EA, and

(ii) Px(i = 0) = 0for each xeE.

2.5. Definition of a Hunt process. The strong Markov process -n is said to be
quasi-left continuous if for any increasing sequence of stopping times {Tn} with
limit T, X(Tn) -> X(T), TValmost surely on {T < co} for each x e E. A strong
Markov process as described in 2.3 which is quasi-left continuous is known as a
Hunt process. In the remainder of this paper the term Hunt process refers to a
quasi-left continuous strong Markov process in the canonical form described in
2.2 and 2.3 with a Feller semigroup.

2.6. The translation operators. For t e [0, oo] the translation operator dt : Q. —> D is
defined by

(6ta>)(s) = w(s+t),       t < oo,

dxoj = wA   for every co.

If 7: D ->• [0, oo] is a stopping time, 6T: Q. -=► Q. is defined by

(6Tw) = 0na)(u>).

It is easy to verify the following result (cf. P. Courrège and P. Priouret [5] and
E. B. Dynkin [7]).
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Proposition 2.6.1. (i) 0t: (Q., J^+s) -> (rl, ^s) is measurable, that is, 0f 1^rsc^rt+s-
(ii) 0t: (D, J/t+s) -» (Q, ^#s) is measurable, that is, 9t-1Jis<^Jit+s.

(iii) If T is a stopping time, 9T: (Q, J/T + s) -*■ (D, J^) is measurable, that is,
0ï1&rs^JiT + s- Also 6f1Jis^JiT+s.

2.7. 27ie zero-one law. The following zero-one law is well known.

Proposition 2.7.1. If (Q.,^, (Px)x<¡Ea, (Xdteio.m) is a strong Markov process
with respect to the o-fields (Jft)teio,<vi and A eJi0, then for each xeEA, PX(A) is
either zero or one.

Proof. Refer to E. B. Dynkin [7, Theorem 3.1]. It should also be noted that two
zero-one measures on a a-field which are equivalent are in fact identical.

2.8. The completed o-fields. For any finite measure p on (EA, <fs), PH is a measure
on (Q, J5"«,) defined by P„(A) = J Px(A)p(dx). &£ is defined to be the intersection of
all the Pu-completions of J5^. Each measure Pu can be extended to J5^. If ^ is a
sub-a-field of ßrcc, y* is defined to be such that A e ^n if for each p there exists a
set Au e <§ such that A-Au and Aß-A are in J^ and Pu(A-All)=Pu(All-A)=0.
It can be shown that 77 is also a strong Markov process with respect to the a-fields
G^tOteto,*) (E. B. Dynkin [7, Theorem 3.12]). In the literature it is customary to
replace the a-fields (J?t)teio,aoi by (Jit)tew,<>oi- However, since if nx and 7r2 are not
equivalent Ji? 1 and Jif2 need not be identical, we avoid this convention unless it
is explicitly stated to the contrary. However the following result is very useful.

Proposition 2.8.1. Let T be an (Jit)teio,x,rStopping time. Then for each p there is
a (Jiùtm.nrstopping time T" such that PU(T ± Tu) = 0.

Proof. Refer to E. B. Dynkin [7, Lemma 3.4].
If T is an cf-measurable set and

Tr a inf {t : Xt(a>) e Y} if {t : Xt(w) e Y} ¿ 0,
= +00   otherwise,

then Tr is an (^?)fe[o,œ]-stopping time (P. A. Meyer [13, Chapter 4, T 52]. Note
that if T is compact, then XTr e Y on {Tr < 00} and if Tfi is an (^^^[o^j-stopping
time such that Pß(Tr^Tf)=0, then AV» e Y, P„-almost surely on {F^<oo}.

2.9. Classification of stopping times. Let us briefly review P. A. Meyer's classifi-
cation of stopping times [12], [13]. Let tt be a Hunt process. A stopping time Tis
said to be totally inaccessible in the weak sense at xQ on a set A, x0 e E, A e ¿Fx, if
for every increasing sequence {Tn} of stopping times which converge to T,

(2.9.1) PXo({Tn < T   for all n,   T < 00} n A) = 0.

A stopping time Fis said to be accessible at x0 on a set A, x0e E, Ae ^a>, if there
is an increasing sequence of stopping times {Tn}, with Tn ̂ Tfor all n, and such that

(2.9.2) lim Tn = T
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TV-almost surely on A, and

(2.9.3) Tn < T      for all «,

7V-almost surely on A n {7>0}. Note that every stopping time T is accessible on
{T=oo}. The definitions are usually stated in terms of (^f)(e[0|00]-stopping times.
However in view of Proposition 2.8.1 this difference is inconsequential. The
following result is of great importance.

Proposition 2.9.1. The stopping time T is accessible at x0 on A if and only if
t ~~> Xt is continuous at T, PX(j-almost surely on A (~\{T < oo}.

Proof. Refer to P. A. Meyer [12].
2.10. The definitions of equivalence. In the sequel ttx = (Q, J5^, (Px)xsEa, (Xt)tel0tCCl)

and tt2 = (£1, IFX, (Px)xeEA, (Xt)t<=io.«>i) designate a pair of Hunt processes. nx and
7r2 are said to be equivalent if for each x e EA and AelF„, Px(A) = 0 if and only if
P2(A) = 0. irx and 7r2 are equivalent infinite time if for each x e EA, t < oo and A e Jit,
A^{i>t}, Px(A) = 0 if and only if P2(A) = 0; if this is true even if A${l>t}, irx
and 772 are strongly equivalent in finite time. A set A e^x such that Px(A) = 0,
PX(A) > 0 is said to be a (-¡rx, -n2, x)-singularity.

3. Three examples.
Example 1. Let77 = (Q, ¡Fx, (7x)xsBi,(Zt)ts[0|0O]) be the standard one-dimensional

Brownian motion. Let trx = (il, ßraa, (Px)xe¡¡A, (Xt)teWtXl) and tt2 = (£1, J^, (P2)xsEa,
(^i)ie[o,oo]) be a pair of one-dimensional continuous strong Markov processes
represented in the canonical form of 2.3 which are induced by the solutions of the
stochastic integral equations :

(3.1) Xx(t)

and

(3.2) X2(t)

where the stochastic integrals are evaluated with respect to the Brownian motion.
In order to insure existence and uniqueness we also assume that

(3.3) flj(-) and crt(-),     i = 1, 2, are continuous and <t4(-) > 0,     i = 1,2,

and

there exists a constant K > 0 such that
(14) (ax(x))2 + (a2(x))2 + (ox(x))2 + (*2(x))2 S K(l + x2).

In the terminology of K. Itô and H. P. McKean [11], the solutions Xx(t) and
X2(t) are nonstandard descriptions of ttx and ir2.

A. V. Skorokhod [16], [17] has shown that trx and tt2 are strongly equivalent in

= ^(0)4- Çax(Xx(s))ds+ Í ax(Xx(s)) dX(s),
Jo Jo

= X2(0)+ f a2(X2(s)) ds+ f a2(X2(s)) dX(s)
Jo Jo
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finite time to the continuous strong Markov processes 7r3 and ir4 which are induced
by the unique solutions of the stochastic integral equations

(3.5) X3(t) = X3(0) + f ox(X3(s)) dX(s),
Jo

and

(3.6) X,(t) = X,(0) + £ a2(A-4(5)) dX(s)

respectively. A result originally due to V. A. Volkonskii (refer to K. Itô and H. P.
McKean [11]) states that nonstandard descriptions of 7r3 and 7r4 are

Xx(sx) = XVx-^Sx)),       i = 3,4,

where Sx=fi(t, m), i=3, 4, are the additive functionals defined by

h(t,oS)= f ox2(X(s,o))ds   and   f,(t, co) =  f o22(X(s, a>)) ds
Jo Jo

where X(s) represents the standard Brownian motion. In particular this implies
that for any real number a

MliVoup(2tiTio7ih'2 = a)^1
if and only if

P   Aim sun   A,^~1^^~x°   = a\ = 1        i = 3 4
x°\ tl0p(2tlogiogi/ty2   a)    l> J'4-

Proposition 3.1.

pi4liVoup (2t logiog 11 ty2 = ai{Xo))= h    ' " 3'4-

Proof. Recall that the classical law of the iterated logarithm for Brownian
motion states that

^Kyg,&-1)-1-
Hence it suffices to show that if w0 is such that

(3.7) lim sup n X.(S' "o)T*01/2 = 1,no    (2íloglogl/í)1/2
then

Because of the right continuity of paths, (3.8) is equivalent to

(3.9) lim sup -pr—7--m    T°   11 °it-vors = CTi(*o)>       i = 3, 4.v no    (2s¡(t, co0) log log 1/í¡(í, coq))1'2
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Hence we must show that for 1 > e > 0,

(3.10) X(t, <o0) -X0> ff,(x0)(l - *)(2Si(t, cü0) log log l/Si(t, 6ü0))1/2

for arbitrarily small t, and

(3.11) X(t, w0)-x0 < ff,(jc0)(l + e)(2st(t, w0) log log l/jt(i, wo))1'2

for all sufficiently small t. We prove (3.10), (3.11) is proved in an analogous manner.
Because of (3.7) we can assume that for arbitrarily small values of t,

(3.12) X(t, w0)-x0 > (l-«/2)(2< log log I//)1'3.

Hence it suffices to show that for any p satisfying 1 > p > 0,

.. (2t log log I//)1« „,    ,   V1     v        .     » ,
lim /-,   ,,      mi//  (t-^î72 = ai(x0)(i-p),        I = 3,4.uo (2^0, cu0) log log l/jj(r, cuq))1'2

For 0<?;i< 1/ct,2(x0) let r0 be chosen so that for tSt0,

\o-r2(X(Si(t, oj0)))-or2(x0)\ < r,¡,       i = 3, 4.

But then if tSt0, 0<t/of(x0)-riitSSi(t, w0)St/o?(x0) + r¡it. But then

(2r log log I/O1«
" o (2Si(t, w0) log log l/Si(t, coo))1'2

(2r log log I/O1'2
uo (2(r/a?(*o) + ij,0 log log (l/O/ajW-V)))1'2

at(x0) ,.     / loglogl/i \1's
fS(ï(14-W^o))1'2 no \log log l/r(l/a2(xo)-^)/

=_ZiC^o)_ . = 3 4
(1+W^o))1'2

^ (1 — p)ct((x0)       if ^¡, (i = 3, 4), are chosen to be sufficiently small.

The last limit indicated above is found by a double application of De l'Hôpital's
rule. Hence (3.10) follows and the proof is complete.

Corollary. nx and tt2 are equivalent infinite time if and only if they are instan-
taneously equivalent.

Proof. Since

{
X(t)-X(0)

hVoUP(2tloglogl/ty'2 = a^'

the proposition implies that if irx and 7r2 are instantaneously equivalent, then
ox(x) = c2(x) for all x. On the other hand if ox(x) = (j2(x) for all xeE, then the
results of A. V. Skorokhod imply that nx and 7r2 are strongly equivalent in finite
time.

Remarks. 3.1. It can be shown that if ax(x)^a2(x) + c for all x e E where c is a
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constant, then irx and 7t2 are not equivalent on J2^ even when ox(x) = o2(x) for ail
xe E.

3.2. In the above proposition it is shown that for a one-dimensional diffusion
the measures restricted to the germ fields actually determine the diffusive part of
the infinitesimal generator and thus determine the equivalence class (in finite time)
of the process. However the extension of this result to higher dimensions has not
yet been established. Nevertheless one would expect the extension to be valid and
our results on equivalence lend support to this supposition.

The following two examples show that instantaneous equivalence does not always
imply equivalence in finite time and illustrate two of the types of singularities
which are discussed in §8.

Example 2. An example of a pair of strong Markov processes which are
instantaneously equivalent but not equivalent in finite time is furnished by the
pair of deterministic processes :

(3.13) *i(0 a Xx(0) + t,
and
(3.14) X2(t) a X2(0) + t-n(t + X2(0)) + n(X2(0)),

where n(t) designates the greatest integer less than or equal to t. Note that the second
process defined by (3.14) is not quasi-left continuous.

Example 3. Let 7r = (í2, !Fm, (Px)xeEí, (Xt)mQ¡w¡) be a Hunt process such that
for some x0 e Eand t0<co,PXo({,<t0)>0. Let EA,A- = E \J {A} u {A'} where A' is an
isolated point and A' £ E u {A}. Let £2' be the set of right continuous functions,
w(-), from [0, co] to 2?AiA. such that:

(3.15) co(-) has left-hand limits on [0, oo),

(3.16) if co(i) = A,   then    w(s) = A        for all j è t,

(3.17) if co(i) = A',   then   w(s) = A'       for all s Ê t,   and

(3.18) co(oo) g {A} u {A'}.

Let &á be the a-field generated by the random variables (Xt)teí0¡x]. The measures
(Px)XeE can be extended to (Q', J5^) by defining PX(A)=PX(A n Q) for A e J5^.
Let ^(Q', yw (P¿Wa, Wieto.oo]). Let <D: D' -> Q' be defined by:

®(o))(s) = io(s) if co(s) e E,
0(co)(i) = A' if w(s) = A,

and
<D(co)(i) = A if w(s) = A'.

For Ae#Z, let P%(A)=PX(<S>-\A)) and let 7r2 = (Ü',^,(P2)xeBlía,(Xt)tel0^).
Then rrx and n2 are instantaneously equivalent and even equivalent in finite time.
However they are not strongly equivalent in finite time, in fact PXo(Xto = A)>0,
/>»,(*«„ = A)=0.
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4. The stochastic processes YA(t, ■). In this section we assign to each Hunt
process ^=(0,^,, (Px)xeEA, (Xt)tel0¡aiy) and set A e &œ a stochastic process YA(t, ■).
These processes are introduced in order to formulate an extended Markov property
in §5. The extended Markov property implies that YA(t, •) is for each xeE, a
version of the martingale Px(A\Jit).

Before introducing the processes YA(t, - ) it is necessary to review some useful
notation and results due to P. Courrège and P. Priouret [5]. If T7: Q -> [0, oo] is
measurable, an equivalence relation RH on O is defined by:

co ~ oj'(Rh) if and only if TT(cu) = H(w') and
Xs(cü) = X,(o>') for all s S H(w).

A second equivalence relation RH+ is defined by:
w~oj'(Rh+) if and only if H(w) = H(w) and there exists an e>0 such that

Xs(w) = Xs(w') for all s S H(w) + e.

Proposition 4.1. (i) J^ is the sub-a-field of sets of^ which are saturated for Rt.
(ii) Jit is the sub-a-field ofsets of IF«, saturated for Rt + .

(iii) IfTis an (Ji ^-stopping time, then JiT is the sub-a-field of sets oflFx saturated
for RT+.

The following version of Galmarino's lemma will also be required.

Proposition 4.2. In order that T: Q -> [0, co] be an (Ji^-stopping time it is
necessary and sufficient that T be ^-measurable and that for each t e [0, oo],
w e D, co' e Ü, T(w)<t and w'~w(Rt) implies that T(w') = T(a>).

Proof. Refer to P. Courrège and P. Priouret [5].
Let AelFx and weil. Then for t e [0, oo),

(4.1) A*(t, w) = {co' :cj'eA,u>'~ to(Rt)},

and

(4.2) A(t, co) = 6tA*(t, co) = {(?,«/ : co' e A*(t, co)}

and for r = oo,

(4.3) A(oo, co) = 0 if a> $ A,

and
A(<x>, co) = {coA}        if CO g A.

The fact that A(t, co) e J^, is verified in the following proposition.

Proposition 4.3. (i) If A e IFS and t<s, then for each weD., A(t, w) e J^_t.
(ii) (U"-i 4X', »)-Ui"-i Ait, w)for each weil.

(iii) (0.°°=! A)(t, w) = nr=i Ait, w)for each co e 0.
(iv) Ac(t, w) = (A(t, co))c n {co' : X0(w') = Xt(w)} for each w e Ü.
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Proof.
(¡O (Ur-i Ax)(t, co) = ö([(Ur=i Ax)*(t, co)] = 9t[{J?=x A*(t, co)] = U,"., etA*(j, co)

= ur=i^^,to).
(¡¡o (nr=i Ax)(t, W)=ôt[(nr.i 4)*e. «oi = ̂ nr-i -*?(*, «)] = nr-iM.*(*, «o

=nr=i^,to).
(iv) /lc(r, W) = flt(^°'(/, co)) = í?i[(^(*(í, "))c n {co' : *t(w') = *i(«)}] = (^(/, co))c n

{co' : *„(«') = JSr((co)}.
To prove (i) it thus suffices to show that A(t, co) e ^_f when

A = {co : Jr» e ri5 JT((co) e r2, Xu(œ) e T3}

where Tj, T2, T3 are in S and v<t<u^s. But then

/((/, co) = {co' : *„(«,') = A», Z„_t(«>') s r3}       if Xv(w) e Yx, xt(w) e Y2,
= 0       if XJw) i Yx or Xt(oS) i Y2.

Hence A(t, to) e ¿Fs_t and the proof is complete.
For AeSF^ and Hunt process tt = (Q, J^,, (Px)xeEe¡, (Xt)tEl0iœl) the real-valued

stochastic process (Í2, &«>, (Ps)xsEíí, (YA(t))tel0¡xl) is defined as follows:

(4.4) YA(t, co) = PX{t,Mt, co))       for í e [0, oo], co e Q.

Note that Fn(i, co)=l.

Proposition 4.4. (i) 7/^4 n 5=0, rAe« FAuB(r, co)= F^r, co)+ Fs(r, w)for each
co e D fl«c7 r £ [0, oo].

(ii) If Ax\ A or Ax\A, then  YA(t, co) = lim¡_00 7Al(r, co)/or eac/î co e £2 and
t e [0, oo].

(iii) If A eS^x, then YA(t, ■) is measurable with respect to ^t.

Proof, (i) By Proposition 4.3, (ii) and (iv), if A n B=0, then

YA^B(t, co) = Pxu.a)((A u 7i)(f, co))
= Pz<t.M*, <")) + Pxu.a)(B(t, «)) = **(', û))+ yfl(/, co).

(ii) We prove (ii) for At f .4, the proof for At^A is similar. If Ax f A, then by
Proposition 4.3. (i), A¡(t, co) f A(t, co). But then

YAl(t, t") = Px(t.miAi(t, co)) f P«t(M)(^(i, co)) = FA(r, to).

In view of (i) and (ii) it suffices to prove (iii) for a set of the form

A = {X(tx) eYx,..., X(tx) e Tt, X(t) e Y0, X(ti+X) eYi + x,..., X(tn) e Yn}

where r¡ eS, i=0,..., n and tx<t2< ■ ■ ■ <ti<t<ti + x< ■ ■ ■ <tn. But then

A(t, co) = {X(ti + x-t) eYi + x,...,X(tn-t)e Yn} n {X(0) = Z((co)}
if co e {X(tx) er,.X(tt) e Yt, X(t) e Y0},

= 0        if co £ {X(tx) eYx,..., X(tx) e Yt, X(t) e Y0}.
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Hence

Px{t,o)(A(t, co)) = X{x«1)er1.x(í()er,,x(t)er0)

■Rxu.o,ÁX(ti + x-t) eFi + x,...,X(tn-t)e Fn),

where xk(-) designates the indicator function of the set K. The result then follows
since

Px«,coÁX(ti + i-t) eFi + x,...,X(tn-t)e Fn)

is a composition of the ^¿-measurable mapping w ~»* Xt(w) and the measurable
mapping y~~+Py(X(U + x-t)e Fi + X,..., X(tn-t)e Fn).

Proposition 4.5. If AeIFx, then YA(- , •) is progressively measurable.

Proof. Proposition 4.4 implies that the class of sets A, for which YA(- , ■) is
progressively measurable is closed under the operations of taking complements,
disjoint unions and monotone limits. Since E is a locally compact separable metric
space, it suffices to show that YA( ■ , ■ ) is progressively measurable for a set of the
form

(44) A={X(tx)eFx,...,X(tm)eFm}

with Fx,..., Fm compact and tx<t2< ■ ■ ■ <tm. For r(_1^j<r

YA(s, co) = XixuoW • • XiX'tt-oert-o-Pxis.coiX^i-s) eT,,..., X(tm-s) e Fm).

Since the r¡, /= 1,..., « are compact, for each i there is a sequence {/"} of C0(E)
functions such that f¡n(x) j xr,(x) as « -> co (P. R. Halmos [9, Chapter 10]). But
then

Pw.Mti-s) 6T,,..., X(tm-s) e Fm)
= lim Em¡a)(/nX(ti-s))-fi\x(X(ti + x-s))- ■ -tt(X(tm-s)))

n-* co

=   lim P^.jUTiyd- ■ ■(Ptn-tn-JMMX^, CO)).
n-+ co

But Proposition 2.4.1 implies that P^-AMyd • -{P^-u-xMyxMy) is jointly
continuous with respect to s and y for s e [tt_x, rf) and y e E. Since A^s, co) is a right
continuous function of s for each co, Pti-S(f?(yù- ■ ■(Ptm-tm.Jm(ym))){X(sw)) is
therefore right continuous for s e [tt_ x, tt) for each co. Hence YA(• , • ) is progressively
measurable (cf. P. A. Meyer [13, Chapter 4, T 47]).

We now introduce the concept of a relative stopping time. Let T be a stopping
time and let t S 7(to0), co0 e Û. Note that if co e D and X0(w) = ^(coq) then there is a
path co'e D such that co'~co0(T?¡) and such that w = 9tw'. In this case define
T'(w)=T(w')-t. If X0(w)¿Xt(w0) let 7"(co)= 4-co. 7" is called the (T, w0, t)-
relative stopping time.

Proposition 4.6. The (T, w0, t)-relative stopping time is a stopping time.
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Proof. It is easy to verify that T' is a measurable mapping from Q to [0, oo]. In
particular, for s<co, {T'<s} = {X(Q) = X(t, co0)} n {T<s+t}(t, co). The result then
follows from Proposition 4.3 which implies that {T<s + t}(t, w) e Jis.

5. The extended Markov property. In this section the extended Markov property
is established. However, before doing this it is necessary to introduce a new class
of a-fields.

Given a stopping time T, Ji% is the a-field Of 1J5á, which is a sub-a-field of ^
(Proposition 2.6.1). It is easy to verify that Ji% is the a-field generated by the
random variables (XT+S)sè0.

Proposition 5.1. For any (Jit)-stopping time T, JiTy Ji%, the o-fieldgenerated
by JiT and Ji* is identical to ¡Fx-

Proof. Clearly JiTv Ji$<=&«,. Hence it suffices to show that {Xt e Y} for r^O
and T an open subset of E is measurable with respect to JiTvJi*.

For YeS,

{Xt e Y} = ({T £t}n {Xt e r» u ({T < t} n {Xt e Y}).

But {Fa t} n {Xt eY}e JiT. Hence it suffices to show that {T< t} n {Xt eY}e Ji%.
Note that Fn = 2r=o Xn/nSr<«+»/n](0*+1)/«)» «= 1, 2, 3,..., is a decreasing sequence
of stopping times with limit T. Then if r¡n a (T+1 - Tn +1 /n) V T, r¡n -» t v T, and the
■nn,n = l,2,3,..., are measurable with respect to JiT. Hence the rjn, n = 1,2, 3,...,
are stopping times (P. A. Meyer [1, Chapter 4, T 38]). The right continuity of the
paths and the fact that Y is open imply that

co co

{XteY}n{T<t}=  \J   \J   f) «T < t} n {Xnn e V,})
iefl k = l n = k

where the Y¿,j= 1, 2, 3,..., and ß are chosen exactly as in the proof of Proposition
2.2.1. But for each n and j,

{T<t}n {Xnn e Y,} = \J ({T < t} n {XVn e Yf} n {Tn = i/n})
i =0

= Ü ({T < t} n {X(T+t-(i- l)/n) e Y,} n {Tn = l/n}).
i = 0

Since t£(i- 1)/h on {T<t} n {Tn = i/n}, therefore

{T < t} n {X(T+(t-(i- l)/n)) e Y,) n {Tn = i/n} e Jif.

Hence {T< t} n {Xt eY}e Ji% and the proof is complete. The following corollary
has also been proved.

Corollary. For any stopping time T the events of the form {XT + te Y} with Y e S
andt^O and{Xt eY}n {T^t} with YeS andt^O generate the o-field3FX.
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Theorem 5.1 (The Extended Markov Property). For any stopping time T,
A e lFœ, B e JiT and any xeE,

PX(A nB) = f PXiT)(A(T(w), co)) dPx(w)
Jb

(5.1) =  f  YA(T(w),w)dPx(w)
Jb

= Ex(xb(")-Ya(T(w),w)).

In other words for every xeE, YA(t, •) is a version of the martingale Ex(xA\Jit)
for which the optional sampling theorem is valid.

Proof. PX(A n B)=PX(A n B n {T<cc})+PX(A n B n {7=oo}). But

PX(A n B n {T = co}) = f y^Fa(coa) 77»
Jbc\{T= oo)

= 7,^(xsn<r=oo>- F¿(T(co), co)).

Hence it suffices to prove (5.1) in the case in which 7?<={T<oo}. Note that since
YA(- , •) is progressively measurable, y,,(T(co), co) is measurable with respect to
JiT and hence the integral on the right-hand side of (5.1) is well defined.

We first show that the class of sets A for which (5.1) is satisfied is closed under
disjoint unions and monotone limits. If A n C= 0 and both A and C satisfy (5.1),
then

PX(B n(Au O) = PX(A n B)+PX(C n B)

=  [  YA(T(w),w)dPx(w)+\  Yc(T(w), co) dPx(w)
Jb Jb

= i  YAuC(T(w), co) dPx(w)   by Proposition 4.4,

and therefore Avj C satisfies (5.1). If A¡ j A as i'-> oo and Ax, i=l, 2, 3.
satisfy (5.1), then

TV/1 ni) = lim P^, n B) = lim f  7^(7X0»), «) c77,(co)
Í-» CO Í-» CO   Jß

/,
lim 7^((7(co), co) dPx(w)    by the monotone convergence theorem

B ¡->oo

= Í   YA(T(w), co) dPx(w)   by Proposition 4.4.

Therefore A satisfies (5.1).
Hence in view of Proposition 5.1 it suffices to prove (5.1) for sets of the form

(5.2) A0 = C n {X(T+ tx) e rj n • • • n {Z(7-f in) e rn},

where 0 ̂  ?! < i2 • • • < r„, T, e ^, / = 1,..., «, and C 6 ^#r. In fact in view of the
Corollary to Proposition 5.1, it suffices to consider sets C of the form

C = {X(sx) eAx,..., X(sm) e Am} n {sm S T < sm + x},
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14 D. A. DAWSON [April

where 0 á sx < ■ ■ ■ < sm+x and AxeS, i = 1,..., m. In this case it is easy to verify
that the strong Markov property implies that

(5.3) PX(A0 nB) = f     PKT(UX(.h) er,.., X(tn) e Yn) dPx(w),
Jbhc

(cf. E. B. Dynkin [7, Theorem 3.11]). Hence it suffices to show that if A0 is defined
by (5.2) then

(5.4) f     Pxmm»(X(ti) 6 rlf..., X(tn) e rB) dPM = f  YAo(T(oS), co) dPx(w).
Jßnc Jb

Let H={XT=XT}n{T<K>} and F={Xt ¥=XT} n {T<œ}. For k=l, 2,3,...,
define

/£(•) = o,
/í + 1(co) = inf {s : s > /*(«), p(Xs(oj), X;(w)) > l/k},

= +00       if the above set is empty.

Since the paths possess limits from the left on [0, oo) and are right continuous,

F - [( kQx nQ0 &=^})u (F n v-ö)]n ^ < <*>}•

Note that {T=J*} e Ji¡* n ^#r for any & and n.lfojeü. and if co~co'(7?/j;), then
./¿(tu'WÏH.

We now prove (5.1) for the case T=J% for some k and n. If A0 is defined by (5.2)
(with 7W£), then

¿otöH, co) = {X(tx) erjn-n {ATin) 6 I\J n {*(0) = *(/»»)}   if co e C
=  0 if CO £ C,

and therefore

l^oG/ï(«), «) = Xc-PxuïmAWi) 6 rlf..., *(/„) e rn).
Therefore

f    ^»»WO e Ti, ..., jf(/„) e rn) ¿p» = f r^c/SH, «) ¿p».

Since we have shown that (5.4) implies (5.1), therefore for any Ae^m, BeJijk
and xeE,

PX(A n B) - J" M(co), co) dP».

In particular for an arbitrary stopping time T,

(5.5) PX(F = /*) =   f ^T^JíWítu), co) dP»
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and therefore

(5.6) YlT„j*}(J*(a>), co) = 1,   TValmost surely on {T = /*}.

We now proceed to prove (5.4) for an arbitrary stopping time 7 when B^F.
If co 6 {T=Jt}, then

(5.7) A0(J«n(w), w) = (A0 n{T = J*W*(w), w) + (A0 O {T > J*})(Jkn(w), co).

Then (5.6) implies that

YAo(T(w), co) = Pxmm(A0 n {7 = /*})(/*(«.), co)

= PxmUX(h) er,,.., X(tn) e Fn)-Xc,

F^-almost surely on {T=J*}. A similar result holds for {T=£} n 7. Hence it is
easy to verify that

f Pxm»ÂX(h) er,..., X(tn) e Fn) dPx(w) = f      F^0(7(co), co) dPx(w).
jBnenF jBnF

Proposition 2.9.1 implies that there is an increasing sequence of stopping times
{Sn}, SnSTfor all «, such that:

(5.8) if Q = SSn < 7 for all «, lim Sn = T\,   then PX(Q n H) = PX(H).

Let 5œ = limn_M Sn and 0'={5„<5IX) for all «}.
We next prove (5.1) for the case T=Sœ. If weQ' and co'~co(T?Soo), then

Sn(co') = Sn(co) for all « (cf. Proposition 4.2) and consequently 50O(co') = S0O(co). If
we Q' and if A0 is defined by (5.2) (with 7=5^), then

A0(Sa(w), co) = {ZÍA) er„..„ X(tn) e Fn} n {JV(0) = A(5M(co))}       if co e C
= 0        if co £ C,

and therefore

y^(S.(a,), co) = PX{S„m)(X(tx) er,,..., AT(ÍB) e Tn)Xc.

Hence it is easy to verify that for any set A e^m and any set B e Jis a and any x
such that TVTi n o')=Px(Ti), then

(5.9) T\(T3 nA) = f  y^(Sœ(co), co) d/>».

In particular for an arbitrary stopping time 7, if Px({T=Sœ} n ô') = 7x({7=5„o}),
then

7Ä({7 = ¿U) = f y,r=Soo7S=», co) dPx(w)

and therefore

(5.10) 7x(Sco(w))({7 = ÍcoKSb.H, co)) = 1,   7x-almost surely on {7 = Sœ}.
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We are now ready to prove (5.4) for an arbitrary stopping time T when B^H.
Let {Sn} be chosen to satisfy (5.8). For co e Q let T'a() be the (T, to, S«, (correlative
stopping time. Then (5.10) implies that PX(Soo(co))(F¿(-) = 0) = 1, Px-almost surely
on 77. For co e Q. let T'¿( ■ ) be the (T, a>, F(co))-relative stopping time. If we Q, then
Sx(co) = T(oj) and therefore

(5.11) Px(t(w»(FÛ() = 0) = 1,   P^-almost surely on H.

But if AQ is defined by (5.2) and if co e Q, then

a0(t(w),co) = {x(tx)er,,..., x(tn)e rn}
,. .~ n{K(-) = 0}n {X(0) = X(F(co))}
K      ' vA'n{T¿(-) > 0}       if co EC

= A"r\{T'¿(-) > 0}       if to íC

for some A' e i5"« and A" e J^. Thus (5.11) implies that

7^0(F(co), co) = XcPxmUnh) eYx,..., X(tn) e Yn),

P*-almost surely on H. Hence for A0 defined by (5.2),

f      YAo (T(oj), co) dPx(co) = f PxmUnti) 6T,,..., X(tn) £ Fn) dPx(w)
JßnH JcnBnH

and the proof is complete.

Corollary 1. If AeJiT+t, then except for a set of co of Px-probability zero
A(T(oj), (d)=>B(oj) such that B(oj) e Jit and such that Px<.t(oiÁA(T(oj), co)-5(co)) = 0.

Proof. The proof follows immediately from (5.6), (5.7), (5.11), and (5.12).

Corollary 2. If t<T(oj0), then YA(t, to0)=J" YA(T(w'), w') dP$ittiäo)(w'), where
P*i.t,a0) is the measure on J^ defined by

P&.»0¿4) 3 Px<t.»0iAit, tuo)),       A e ya.

Proof. Let T' be the (T, co0, r)-relative stopping time. Then Theorem 5.1 implies
that

Px«,a0)(A(t, w0)) = J YMttiao)(T'(a»'), co') dPm¡0¡0)(o)')

= |^(7,(tu'),to')c7P#(í,rao)(to').

The last equality is an immediate consequence of the definitions of 7" and
Px{t,a0y

Remarks 5.1. Since the a-fields (Jit) are right continuous, the process YA+(t, co)
= limsli YA(s, co) is a right continuous modification of the martingale YA(t, ■)
(refer to P. A. Meyer [13, Chapter 6, T 4]). In fact Professer P. A. Meyer has
proved in a private communication that YA(- , ■) is actually well measurable [13,
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Chapter 8] and therefore [13, Chapter 8, T 20] it is easy to verify that YA(- ,w) =
YA+(- , co) TValmost surely for each x. However we make no use of this property
in this paper.

5.2. From another point of view y.(r, ■) can be interpreted as a regular con-
ditional probability with respect to the a-field Jit. The fact that Y.(t, w) is a regular
conditional probability, that is, for each we D, Y.(t, w) is a probability measure,
follows from Proposition 4.4.

5.3. If A is a set of the form {XT+S e F}, F ei, säO, then Theorem 5.1 reduces
to the usual statement of the strong Markov property. If A e Ji%, then Theorem
5.1 reduces to a result of E. B. Dynkin [7, Theorem 3.11]. Hence Theorem 5.1 can
be thought of as an extension of the usual strong Markov property to sets which
need not belong to Ji%. Theorem 5.1 is also analogous to the Fubini theorem for
product measures (applied to indicator functions of sets) and thus could also be
interpreted as a Fubini-Markov theorem.

6. Nonequivalent pairs of Markov processes.   Let

ttx = (Q., ^o, (Px)xeEA, (Xt)te[0¡x¡i)   and   772 = (D, ^o, (Px)xeEA, (Xt)tel0¡aol)

be a pair of Hunt processes which are instantaneously equivalent. It is assumed
that for some x0e E and A0 eJ^, PXo(A0) = 0, P2o(A0) = a0>0, that is, A0 is a
(trx, tt2, X0) singularity. Y\(- , ■) and y?(- , •) denote the martingales defined in §5
for 77! and 772 respectively. For any real number s, let 0ts={r—s : r^s, r rational}.

Proposition 6.1. For each s e [0, oo) and Ae¿Fx,

Ti(co) = inf {t : t e &n Y\(t, w) > 0}
= 4-00       if {t : te0ts, Y\(t, co) > 0} = 0.

Then for each s e [0, co), 7j(-) is a stopping time.

Proof, {co : 7j(co)<0=Ureto,t)n«s {<« : Y\(r, co)>0}. But Proposition 4.4 im-
plies that {co : YA(r, co) > 0} e Jit if r < t and therefore 7j is a stopping time with
respect to the a-fields (y#¡)¡E[o,coj-

Proposition 6.2. For any s e [0, oo) and A e ¡Fm,
(i) ifPx(A) = 0, then 7¿(7j<oo) = 0, and

(ii) ifPx(A)>0,then Px(U = 0)= I.

Proof, (i) Since {7i < oo} = \Jre®s {Y\(r, co)>0}, 7¿(7i<oo)>0 implies that for
some r e 3ts, Px( Y\(r, co) > 0) > 0. But then Theorem 5.1 implies that PX(A) > 0.

(ii) If Px(TA=0)=0, then for a sequence {r¡} of elements of !MS such that r¡ j 0 as
i -> oo, Theorem 5.1 implies that for each /'

PX(A) = El(Y\(ri, ■)) S Px(n S rt).

Since Pl(TsA Srt)^0 as i -> oo, therefore PX(A)=0. Since {7^=0} e Ji0, the result
then follows from the zero-one law (Proposition 2.7.1).
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Remarks. 6.1. For s=0 we let T° = TA. Since ttx and 772 are assumed to be
instantaneously equivalent and PXo(Ao) = 0, then Proposition 6.2 implies that
^o(^o=o)=n,(^o=o)=o.

6.2. Let S be a stopping time and let A e Jis. It is easy to verify that for each
co e Q either TA(w) S S(w) or TA(w) = oo. In fact if oo > / > S(w), then A(t, w) is either
flor 0 depending on whether co e A or not (cf. Proposition 4.1).

We next state and prove three technical results which are used in §8.

Proposition 6.3. 7er S be an (Ji ^-stopping time such that SSTAo and such that
P2X0(A0 n {S<TAo})=P2Xo(A0). Then P20(A0 n {yi0(S(co), co)>0}) = 0.

Proof. If YA-a(S(w),w)>0, then PXiS^n(A0(S(w), w))>0 and Proposition 6.2
implies that />x(s(eo))(7fó(s«B),a)) = 0) = l. Since -nx and 772 are instantaneously equiv-
alent, this implies that P!(S<ffl,,(n$(B)iia)=0)= 1. If y]0(S(co), «) = 0, then
Px(siu»(AQ(S(w), co)) = 0 and Proposition 6.2 implies that

("•I) °x(S(M))(7i40™S((1)),ia)   >   0)   = PX(.S(.a>))(TA0C(S(.a>-),a»   >   0)   =   1.

If w'~w(Rsm), then Proposition 4.2 implies that S(co')^S(co). Therefore
{TAo > S}(S(w), €»)<={«' : 7l^i(ra)>M)(co')>0}. But Theorem 5.1 implies that

P2Xo(A0) = PlMo n {Tao > S})

= jP^mliTAo > S}(S(w),w)].p%iS(a))(A0(S(w),w))dP20(w)

á ¡PimJfl&w.mJ!»') > 0]-P2XiSla))(MS(o>), co)) dP20(w)

= P20(A0n{Y1Ao(S(), 0 = 0})       by (6.1).

Hence P%0(A0 r\ {Y\a(S(-), -)>0})=0 and the proof is complete.

Proposition 6.4. P20(A0 n Ti0)=720L40) where B0 = {Y\0(TAo(-), ■)>0}.

Proof. As in the proof of Theorem 5.1 let

TT = {XrAo = XTJ O {TAo < co}   and   F = {XjAo * XTJ O {TAa < co}.

It is easy to verify that P20(B0 n A0 n {TAo = oo})=P2o(A0 n {TAo = oo}). To prove
that P2Xo(B0 nA0n F)=P20(A0 n F) it suffices to show that

720(7?o n A0 nFn{TAo = £}) = P20(A0 nFn{TAo = £})

and that P20(B0 n AQ n {7Ao=7í})=720(yf0 n {7^-/*}) for fc, « = 1, 2, 3,...,
where the J£ ; /:, « = 1, 2, 3,..., are defined as in the proof of Theorem 5.1. Noting
that {TAo >7£}(J£(co), co) e Ji0, we can easily verify that Theorem 5.1 implies

PIM*n F«, = '») = f      , PfoUMJft»), «))
•nub0&TM = 7ï}(JÏ(co), co)).7720(co).
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But Proposition 6.2 and the instantaneous equivalence of ttx and n2 imply that for
tue{F^0=/í},

Pxu^({TAo = JÏ}(J£(o>), cu)) = Pxu«ia))({TAo = /£}(./„», to)) = XBo.

Hence P20(A0 n {TAb=J$)=P2Xo(A0 n B0 n {r„0 =./£}). A similar result may be
obtained for (T= Q n F.

To prove that P20(^0 ni0n H)=P20(A n 77), note that the proof of Theorem
5.1 (in particular (5.11)) implies that there is a set ße^ such that

PÍe(HnQ) = PÍ(H)
and such that Pl(r^o(a)))(Flo"(or<")(cl))>(1))=0) = 1 for each co e g. But Proposition 6.2 and
the instantaneous equivalence of nx and tt2 imply thatP|(Ti4o(üJ))(rJo'1(0r<™)((<))iü))=0)= 1
if and only if Y\o(TAo(w),w)>0. Hence it follows that P2Xo(A0 n B0 n 77) =
PI0G40 n 77).

Remark 6.3. It is easy to verify that PXQ(B0) = 0, P20(50)^ a0 and that B0 e JiT/i0.
Furthermore, P20(A0-BQ)=PXo(A0 — Bo) = 0. Finally, Theorem 5.1, Corollary 2
implies that TBo^TAo. Remark 6.2 implies that either TBqSTAo or TBo = co, and
therefore

FBo(co) = TAo(a>)       if YAo(TAo(v), to) > 0

= oo if F^», to) = 0.

Proposition 6.5. There is a set B'0=>A0, B'0 e JÍTa<¡, such that TAo = Tb;¡.

Proof. For any rational r e [0, l/n], let T?, n = 1, 2, 3,..., be the stopping time
defined by

00

Tr   =     2    X{r + i;nS^0<r + Ci + l)/n)-('- + 0'+l)/«) + X(ril0 = .o)-(=O).
la -1

Note that TAo + l/n^T?^TAo and that the definition of TAo implies that

A,c       U      {Fl0(rrn(co),co)>0} = /in.
re[0.1/n]n^0

Hence A0<=B'0=r\kv=x\J^=k Bn. But since Bn eJiTAo+xln, B'0eJiTA¡¡. Finally,
Remark 6.2 implies that TB¡¡STAo or = +00 and Theorem 5.1, Corollary 2 implies
that TBi)^TAo; in fact for t<TAo(u>), F¿ó(í, co)>0 if and only if Y\0(t, co)>0. But
the definition of B'0 implies that if TAo(co)<00 then TB-0<a)<oo so that TAo = TBi¡.
Note that this implies that PXo(B'0)=0.

7. The canonical singularities. Let ttx and 7r2 be a pair of Hunt processes. For
/>0and0<agl let

K? = {xeE: for some C e 9{, PX(C) = 0, P2(C) ^ a}.

For a fixed value of a, Kf decreases as t decreases.

Proposition 7.1. For each 0<<x^ 1 and t>0, Kta is an ^-measurable set.
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Proof. Proposition 2.2.1 implies that there exists a countable algebra c€t of sets
which generates !Ft, say <ift={Bm : m= 1, 2, 3,...}. If

*?•" =  Ü {x : Pl(Bm) < 1/2", P2(Bm) ̂  a- 1/2"},   then *?■» e /.
m = l

It is easy to verify that Kf c(~)n = i Kt'n by the approximation theorem for measures.
On the other hand if x e f) "= x Kt,n, then for each n there is a set An e IFt such that
Px(An)< 1/2" and P2(An)^a-1/2". But then 7^(0"=i U"=* ̂ „)=0.,and

(CO CO \

(c = l n = fc        /

so that x e K?. Hence *y=fln-i *?,n and therefore TCf e cf.

Proposition 7.2. -nx and ir2 are instantaneously equivalent if and only if
C\t> o Kt = 0 /<"" eac« a > 0.

Proof. If x e P|t>o ^va> then for any positive integer « there is a set An e 3Px¡n
such that Pl(An)=0 and 72(^n)^o!. But then A = C}kc=x \J%=k An eJi0 and
Px(A) = 0 and 7|L4)2ïa. Hence 7Ti and tt2 are not instantaneously equivalent. On
the other hand if 77, and 772 are not instantaneously equivalent then there is a set
A e Ji0 and x e E such that PX(A) = 0, P2(A) = 1 and therefore x e Kf for all r > 0
and a£l.

To each set K", t>0, 0<aS 1, we now construct a canonical singular event K".
For Tim e "^t, «i = 1, 2, 3,..., and each positive integer «, let

K£s{x: Px(Bm) < 1/2", 72(7?m) ä a-1/2"} n JÇ?,

and

k« = ({JST(0) e ATi1} n 1^) u ({*(0) e Kl - Kl} n TJ2) u • • •

u (|z(0) e (*» -Ü A,»)} n 5r) U - • -,

and let TC(a = n"=i U£U ^n- Since for each «î, Px(Bm) is measurable (cf. 2.3.2), it
is easy to verify that K? e SFt. Moreover Px(Kn) S 1/2" for each x e E and Pl(Kn)
a«-1/2" for each xeK?. Hence Px(K?) = 0 for each xeE and Px(K?)^a for
each x e TCf.

8. Classification of singularities. In this section we classify the types of singu-
larities which can occur for a pair (77, 772) of Hunt processes.

8.1. Types of singularities. An event Ae&^isa (ttx, tt2, X0) germ field singularity
if A e Ji0, PX0(A)=0 and P20(A) > 0.

Ae^m is a (ttx,tt2, x0) singularity of tail type if PXo(A)=0, P2o(A)>0 and
y](0=0, 720-almost surely for all t e [0, 00).

A e IFK is a (trx, tt2, x0) tail field singularity if A belongs to the tail field
&£=■ C\t>o &t*, and A is a (iru n2, x0) tail type singularity.

A e3Fx is a (ttx, tt2, x0) jump singularity at 7 if:
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(i) F is a stopping time which is totally inaccessible in the weak sense on A
with respect to P20 and A e JiT,

(ii) for any stopping time S such that P20(A n {S<T})=P20(A),  YA(S) = 0,
P20-almost surely on A, and

(iii)P^)=0,P2o(/l)>0.
A e 3FX is a (ttx, tt2, x0) pseudo local singularity at T if T is a stopping time and

there is an increasing sequence of stopping times {Tn} such that :
(i) Tn<T<co for every n, P20-almost surely on A,

(ii) lim,,^,,, Tn = T, P20-almost surely on A,
(iii) A eJiT, P¿0G4)=0, P*20G4)>0 and
(iv) for every n, Fi(Fn)=0, P20-almost surely on A. In such case it is easy to

verify that TA(w) is either F(co) or co, P20-almost surely on A.
Let {Tn} be an increasing sequence of stopping times, such that TnST for each n.

The a-field JiiTn),T is defined to be Pl"=i ^*n n ~^t-
A e J5^ is said to be local at a stopping time T with respect to P20 if there is an

increasing sequence of stopping times {Tn} such that Tn^T for each n and such
that:

(i) F„<Ffor each n and limn_œ Tn = T<ao, both P20-almost surely on a set B
which contains A,

(ii) Fn+i is measurable with respect to Ji*n, and
(iii) A belongs to the local a-field Ji{Tny,T-
Remark 8.1.1. It can be shown that the P20-completion of the a-field JiiTn).T

restricted to the set B is independent of the choice of the sequence {Tn} as long as
{Tn} satisfies (i) and (ii). JilTn),T is known as the local a-field at T with respect to
P20. Loosely speaking, events in Jíít„).t depend only on the behavior of the paths
near T.

A e ¡Fm is a (irx, 7T2, x0) local singularity at T if A is a local event at the stopping
time T with respect to P20 and A is a (ttx, tt2, x0) pseudo local singularity at T.

8.2. A property of pseudo local singularities. Let G be a (ttx, n2, x0) pseudo local
singularity such that P20(G) = a>0. Then there is an increasing sequence of stopping
times {Tn} such that Tn<TG<co for all n and lim,,^ Tn = TG, both P20-almost
surely on G. Without loss of generality the sequence of stopping times {Tn} can be
chosen so that for a given e, 0<e<a/2, P20(G n {Ta^Tn+l/n})<e/2n. Let
Gn = {Ta<Tn+l/n} n G. Then GneJiTn+xln (refer to P. A. Meyer [13, Chapter 4,
T 39]). Corollary 1 of Theorem 5.1 implies that there is a set ge^, such that
Px0(G n Q)=P20(G) and such that for every n and co e Q,

(8.2.1) Gn(Fn(co),co)3Gn+(co)   with   Gn+(co)e^1/n,

and such that P.i(r„to))(G-„(Fn(co), co)-G^(co)) = 0. Then we have the following
result.

Proposition 8.2.1. P20(G n (p|"-i {X(TJ e K$,n}))Zb where b = (a-e)/2.
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Proof. If Go, = n"=i Gn, then P20(GX)^a-e. Consider

N(w) = min{n : F02„(Fn(co), co) í b}

= +00     if {« : y0a.(7;(cü), w)^b} = 0.

Let F(co) = FN(m) where Tx(w) = Ta(<a). Since

{T<t}=  Ü {Tn < t} n{Y2JTn) Í b, Y^(Tn_x) >b,..., Y2JTX) > b},
n = l

it follows that {f<t} eJit and therefore f is a stopping time. But Theorem 5.1
implies that

2b ï P20(GX) = ^Py{m»(G„(f(oS), co)) dP20(u>)

= 1" P|<r<m>,(G4F(co),co))c7P20(co)
J{T=T0y

+   f Pl(r(m,)(GM(f(co), co)) dP20(w)
J(f <T0)

=   f FG2jf(to),co)t/P|0(co)
■J{ra„W«¡».«»<M

+   f Ff„(f(co),co)c/P|0(co).

But then /{r8jp(f(a))_0)Sw y3B(l\«), co) dP20(a>)^b and therefore

P*0(g„ n jß ^„(7», co) ̂  i}) ^ Z>.

Since for each n

P$0(G„ n {F^(7n(co), co) ^ *}) = 0,

then in view of (8.2.1)

P2X0(g„ n (ß {X(Tn) £ Kb2lSj) ^ b

and the proof is complete.

Corollary. There exist compact sets K2/n <= K2ln such that

P|„(cM n (¿{TOeiw)) ^ Ä/2.

Proof. This follows immediately since the measures P|0(A"(7n)E •) are inner
regular on êA.

In the case in which C is a (771,7r2, x0) tail type singularity, a similar type of
argument yields the following result.
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Proposition 8.2.2. If C is a (tt^ n2, x0) tail type singularity such that P20(C) = a
and s e [0, oo), then

P2X0(C n {X(s) 6 K"J2}) ^ a/2.

In the case in which D is a (77, 772, x0) jump singularity, a similar type of argument
yields the following result.

Proposition 8.2.3. If D is a (trx, ir2, x0)jump singularity at TD with

P20(Dn{S < TD < S+t}) = a' > 0

for some t e [0, 00), then
P2Xo(X(S)eKH'2)^a'/2.

8.3. A result on tail type singularities.

Theorem 8.3.1. If (tx, tt2) have a tail type singularity then they have a tail field
singularity.

Proof. Let C be a (77, 772, x0) tail type singularity with P20(C) = a. Then Prop-
osition 8.2.2 implies that P20(C n {X(s) e KaJ,2})^a/2 for every s e [0, 00). But
then PlJiß^N^^^IA and P1Xo(e~1kaJ12) = 0. Moreover df^^eJif. Hence if
C0 = n"=i U"=n ek'KaJ2, then C0 ef*, P20(C0)>0 and P20(C0) = 0. Hence C0 is
a tail field singularity.

8.4. A result on local singularities.

Theorem 8.4.1. If(trx,Tr2) have a pseudo local singularity, then (ttx,tt2) have a
local singularity. Moreover for some a>0, K?±0 for all t>0.

Proof. Let G be a (nx, n2, x0) pseudo local singularity at a stopping time T with
Pl0(ß) = a. But then Proposition 8.2.1 implies that for 0<e<a/2,

(84.1) 720(nH (X(Tn) e Kb2ln) n GJ ^ b/2

where b = (a — e)/2, T?2/n is a compact subset of K%ln and {T„} is a sequence of stopping
times such that lim,,^*, Tn=T, P20-almost surely on G. This implies that K2ln=£ 0
for every positive integer «.

Consider the sequence of stopping times defined by :

SI = 0,
£■<_!+&''4-1       for« = 2,3,...,

where the Sn, n = 2, 3,..., are defined as follows. If

Sn m inf {s : Xs(w) e Kb2ln},       « = 2, 3,...

■ +00       if the above set is empty,

then Sn is an (J?%2)-stopping time. We then let Sn be an (^#t)-stopping time chosen
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so thatP2(Sn^Sn)=0 where p(-)=P2Xo(X(S^x) e ■). LetSgalim^. Si Sl^Klln
and Sb0= n™=i Un=k SI Fhe event Sb0 n (Sb0<oo) is a local event and PXo(Sb0)=0.
Moreover (8.4.1) implies that P%0(Sb0 < co) > 0 and therefore P20(Sb0 n {Sg < oo}) > 0.
It is then easy to verify that Si n {5g < oo} is a (nx, tt2, x0) local singularity at 5§.

8.5. ^4 remark on jump singularities. Let 7*, n, fc=l, 2, 3,..., be the stopping
times defined in the proof of Theorem 5.1. Let Jl1,* be the a-field generated by the
triple of random variables (/£, Xfi, Xf*) and Ji{ be the a-field generated by
the random variables £ and x«<oo)-^c". Then Jij^J/j^ and Ji{<^JiK. We call the

, a-fields Jij*, k, n = 1, 2, 3,..., and Ji{ the jump o-fields. An event A is a (irx, tr2, x0)
jump field singularity if A belongs to one of the jump a-fields and is a (ttx, tt2, x0)
jump singularity at the corresponding jump time. If the pair (771,7r2) is either free
of jump singularities or has jump field singularities then it is said to have the
/-property. The pair (771,7r2) of Example 3 of §3 has the /-property. However, the
question of the characterization of pairs of processes which have the /-property
is not considered in this paper.

A. V. Skorokhod [17] has considered the question of jump singularities for
Markov processes which are defined by stochastic integral equations.

8.6. The decomposition theorem. Let irx and 772 be a pair of Hunt processes which
are instantaneously equivalent.

Theorem 8.6.1. If A0 is a (ttx, tt2, x0) singularity, then A0<= C u D u G where C
is either empty or a tail type singularity, D is either empty or a jump singularity and G
is either empty or a pseudo local singularity.

Proof. Given A0 let B'0 be defined as in Proposition 6.5. Let C=B'0 n {TAo = 00}.
If P20(C)>0, then for each re[0, 00), Yc(t) = 0, P|0-almost surely (Proposition
6.3). Hence C is a tail type singularity. Let D = B'0 n {TAo<co} n {XT ¿XfA }
and let S be a stopping time such that P20(D n {S< TAo})=P20(D). Then Proposi-
tions 6.3 and 6.5 imply that F¿(5') = 0, P|0-almost surely on £>. In addition, TAo
is 7r2-totally inaccessible in the weak sense at x0 on D (Proposition 2.9.1). Hence
D is a (tt!, tt2, x0) jump singularity. Let G=B'0 n {TAo<<x>} n {XTa =XjA }. Then
Proposition 2.9.1 implies the existence of an increasing sequence of stopping times
{Tn} such that limn.,«, Tn = TAo and Tn<TAo<oo for every n, both P|0-almost
surely on G. Propositions 6.3 and 6.5 imply that for every n, YG(Tn)=0, P20-
almost surely on G. Hence G is a pseudo local singularity and the proof is complete.

8.6. Continuous Hunt processes. Let 7Tj and 7r2 be a pair of continuous Hunt
processes which are instantaneously equivalent. Then we have the following
result.

Theorem 8.7.1. (i) 7/7Ti and n2 are free of local singularities then ttx andn2 are
equivalent infinite time.

(ii) If in addition -nx and-rT2 are not strongly equivalent infinite time, then -nx andir2
must have a jump singularity at £.
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(iii) Ifnx and-n 2 are uninterrupted, then trx andtr2 are strongly equivalent infinite
time.

Proof, (i) If A0 is a (77^ 772, x0) or a (7r2,771; x0) singularity and A0e^¡ for some
t e [0, 00) and A0 <= (£ > 0, then TA<¡ < £ on {TAo < 00}. But then TAo is accessible on
A0 which in view of Theorem 8.4.1 implies the existence of a local singularity thus
yielding a contradiction.

(ii) If A0 is a (7r1; 772, x0) or a (t72, ttx, x0) singularity which belongs to J^ for
some t e [0, co), then since nx and 772 are free of local singularities A must be a
jump singularity. But if trx and 772 are continuous, 7£=4-oo, P^-almost surely,
i= 1, 2, for each xeE, every positive integer k and every «= 1, 2, 3,.... Hence A
must be a jump singularity at £.

(iii) If ttx and 772 are uninterrupted and continuous, then there can be no jump
singularities. Hence if -nx and tt2 are free of local singularities, then trx and 772 are
strongly equivalent in finite time.

8.8. Remarks on the examples of §3. Example 1 of §3 is an example of a pair of
Markov processes which can have only tail field singularities. In Example 2 the
pair (771; 772) have local singularities at the stopping times Tn = n, where n is a
positive integer. Note that in this case 772 is not quasi left continuous and that the
jumps occur at accessible times. Example 3 illustrates the phenomena of jump
singularities. Although the processes in this example are not in the canonical form
we have considered, the results that we have obtained are nevertheless applicable.
As noted above the pair of processes in Example 3 has the 7-property.

9. Locally smooth Markov processes. In this section we show that for a large
class of Hunt processes the existence of local singularities implies the existence of
germ field singularities.

Let 77 = (Q, ^¡0, (Px)XeEA, (Xt)teio,<ci) be a strong Markov process with respect to
the cT-fields (Jff)t£io,co)- The Markov process 77 is locally smooth if the following is
satisfied. Let x be any point in E; let {7n} be an increasing sequence of stopping
times and 7be a stopping time such that Tn<T for all « and lim,!-.» Tn = T, both
7x-almost surely on {T<Q, and let {Fn} be a sequence of S ¿-measurable sets.
Then for any positive integer N,

(9.1) PX(X(T) e CN, ß {X(Tn) e r„}) = 0,

where CN = {y : y e E, Py(T\j«=tirn =0)=0}, and for F e êA,

Tv = inf{t : XteF}
= +00       if the above set is empty.

(Note that it can be shown that CN is measurable with respect to the a-field of
universally measurable subsets of £¿ (R. K. Getoor [8]).)

In §10 we introduce the fine topology connected with the Markov process. The
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property of local smoothness can be thought of as quasi left continuity in the fine
topology. We begin by obtaining some preliminary results.

Proposition 9.1. Let AneJiTn, «=1,2,3,..., where {Tn} is a decreasing
sequence of stopping times such that lim,,..,*, 7n = 0, P x-almost surely for some x e EA.
If A = f~)k = x \Jn=kAn, then AeJifc, the completion of Ji0 with respect to the
measure Px.

Proof. It suffices to show that A e Jit for each t > 0. Since A e JiTn for each «,
it follows that A r\{TnSt}e Jit for each r>0. Since

A = (An {Tn S t}) u (A n {Tn > t}),

it suffices to show that A n lim,,-,«, {Tn>t} e Jig*. But

A n lim {7n > 0 c /Um Tn > 0\.
n-»oo Ln-*oo J

Since {lim^o, Tn>0}eJio and TV{limn-.M 7n>0})=0, therefore

yin (lim {Tn > t})eJi^.
\n-»oo /

Proposition 9.2. Let {rn} be a sequence of compact subsets of E such that for
every positive integer A and some y e E— (J"=i Tn, Py(T\j™=tirn =0)= 1. Then for
any e>0 there exists a decreasing sequence of stopping times {T*} and an integral
valued function f(ri), nSf(n)<oo, such that

(i) 7„* >0for each « and lim„_ œT*=0, Py-almost surely, and
(ii) Py(C]^x{X(T*) e US». Tm})^ 1 -e.

Proof. For any integral valued function/(«), nSf(n)<oo, let

Trf = co
T* = Töm-,nrm a 1/« A T*_x,       « = 1, 2, 3, 4,....

Since 7Ur|=nrm j 0, 7y-almost surely as r ^ co, then 7^(7*) e (Jmí* Tm) t 1 as
f(n) -> oo. Hence we can choose/(«) so that Py(X(T*) e (Jm=n Tm)> 1 -e/2". But
then Pv(n»"-iOT?)elÄ Tm})^!-«- The fact that 7*>0 for each «, Py-
almost surely follows from the right continuity of the paths.

Corollary. There is a sequence of (Ji^-stopping times {Sn} satisfying (i) and (ii).

Proof. This follows immediately from Propositions 9.2 and 2.8.1.
Let ttx and 772 be a pair of instantaneously equivalent locally smooth Hunt

processes. Then we have the following result.

Theorem 9.1. The pair (ttx, tt2) is free of local singularities except possibly at the
stopping time £.

Proof. Let us assume the contrary; in particular let AQ be a (77^ 7r2, x0) local
singularity at a stopping time 7 with 7< I, 720-almost surely on A0. Then by the
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corollary to Proposition 8.2.1, P2Xo({X(limn_ „ Tn) e £} n (f|"=i {-TO 6 &*/»})) >0
for some ¿>>0 and some increasing sequence of stopping times {7„}, where the
KHm, n = 1, 2, 3,..., are compact subsets of the sets K^ln. Since tt2 is locally smooth,
there is a point y e E such that for each N= 1, 2, 3,...,

'WlÄ-itu = o) = i.
Note that y is a fine boundary point of each of the sets K2lm. We proceed to show
that y e Ho o Kt which contradicts the assumption that the processes are instan-
taneously equivalent (Proposition 7.2).

Since Dm=i K2lm=0 we can assume without loss of generality that y$ Um=i ^aim-
Let {Sn} be a sequence of (^()-stopping times constructed as in the corollary to
Proposition 9.2 such that for some integral-valued function /(«),

pá ñ {x(sn) e ü zu) ^
\n=l m = n /

for some e < b. Then
VHri)    .       1

«Í,1   U ^2,m   e ^Sn + 2/n       (Proposition 2.6.1),
Lm=n J

¿[^(Ü^,»)] =0,p
and

lfB= C\k°=i U»-fc WJffi?. ^2/J then Pï1(5)=0and P2(B)^b-e. Furthermore,
Proposition 9.1 implies that BeJiF¿ = Jip¿y. Hence y e C\t>0 Ktb, yielding a
contradiction and the proof is complete.

Corollary. If (nx, tt2) are a pair of locally smooth and instantaneously equivalent
continuous Hunt processes, then nx andtr2 are equivalent infinite time.

Proof. This follows immediately from Theorem 8.7. l(i) and Theorem 9.1.
Remark 9.1. In view of Proposition 9.3 the equivalence class (for equivalence

in finite time) of a locally smooth continuous Hunt process is described by the
mapping

O : E -> r0 where T0 is the Stone space of JiQ, and
( ' ' ®(x) = {A: AeJ/0, PX(A) = 0}.

It would be interesting if one could formulate some reasonable set of sufficient
conditions in order that a mapping of the form (9.1) be associated with a con-
tinuous locally smooth Hunt process. If we call a continuous locally smooth Hunt
process whose germ field probabilities are described by (9.1) a solution to the
correspondence (9.1), then this is the problem of finding sufficient conditions for

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



28 D. A. DAWSON [April

the existence of a solution. Since it is shown in Example 1 of §3 that <1> uniquely
determines and is uniquely determined by the diffusive term of the infinitesimal
generator (or stochastic differential equation) for a one-dimensional diffusion one
might think of (9.1) as a generalized stochastic differential equation.

We next formulate a necessary condition for (9.1) to have a solution. Let Ah
/=1,2,3,..., be sets of JiQ such that for every xeE, Px(At) = l. Then if
{/, : /"= 1, 2, 3,...} is any countable dense subset of [0, e) for some e>0, let
Âi = 6~xAi and Â={Jn = x (\iur,£iM At. Then ÂeJi0 and a necessary condition
for the existence of a solution to (9.1) is that for every x e E, Px(Â)=l.

In general such a solution, if it exists, is not unique. In fact E. B. Dynkin [7]
and P. Courrège [4] have systematically studied the construction of processes which
are equivalent in finite time by means of multiplicative functionals. Another
interesting problem is to formulate side conditions which would pick out a unique
solution to (9.1). In the case of stochastic differential equations for uninterrupted
diffusions on the real line (cf. §3, Example 1) this is done by prescribing the drift
term of the stochastic differential equation, that is, the limit:

limEx((X(t)-x)¡t) = a(x).
tio

10. Characterization of locally smooth processes. In §9 it was shown that
equivalence in finite time is equivalent to instantaneous equivalence for the class of
continuous locally smooth Hunt processes. It turns out that the definition of local
smoothness is intimately connected with certain concepts in probabilistic potential
theory. In this section we discuss these connections. We begin by reviewing a few
ideas from probabilistic potential theory. The reader is referred to G. A. Hunt
[10], E. B. Dynkin [7] or R. K. Getoor [8] for more details. In this section
77 = (Q, J^, (Px)xeE&, (-JQieto.oo]) is a Hunt process which is considered as a strong
Markov process with respect to the a-fields (J?t)teio,a>i-

If T c T¿¿, then x is irregular for F if there exists a Borel set F' ? F such that
Px(Tv >0)= 1. If x is not irregular for F, then it is said to be regular for F. Let Tr
denote the set of regular points of F. A set F is open in the fine topology if each
xe F is irregular for Fc. A set F<^EA is said to be nearly analytic if for each p
there are analytic sets Fx and F2 such that Fx c Fc F2 and Pu(Xt er2-r, for
some /S0) = 0. A set F is thin if it is contained in a nearly analytic set F' which has
no regular points. A set is semipolar if it can be covered by a countable union of
thin sets. Note that if F e ê then it can be shown that F — Fr is semipolar. A set F
is polar if it is contained in a nearly analytic set F' such that Px(Tr, < oo) = 0 for
each xe E. Note that every polar set is semipolar.

A nonnegative function f on EA with/(A)=0 which is measurable with respect
to the cr-field of universally measurable sets is said to be excessive if Ptf S f for each
r ̂  0 and Ptf->f as t -> 0 pointwise. In particular the constant functions are
excessive for any Hunt process having a Feller semigroup.
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Proposition 10.1. (i) If fis excessive, the function t-~+f(Xt) is right continuous
and finite for all t^s iff(Xs) is finite, Px-almost surely for each xe E.

(ii) For each xe E, f(Xs) is a Px-supermartingale.
(iii) An excessive function is continuous in the fine topology.

Proof. Refer to E. B. Dynkin [7].
An excessive function / is regular if t ~-> f(Xt) is continuous whenever t ~~> Xt is

continuous, P^-almost surely for each xe E. A function/is said to be a harmonic
function if both / and —/ are excessive.

Proposition 10.2. If there exists an excessive function f which is not regular, then
the Markov process is not locally smooth.

Proof. For £>0, let 7£ = inf{r : \f(Xt)-f-(Xt)\>e, Xt = Xf}, where

f'(Xt) = limf(Xs).

(Recall that f(Xt) is free of oscillatory discontinuities, P^-almost surely for each
x0e E (P. A. Meyer [13, Chapter 6, T 3]).) If/is a nonregular excessive function,
then for some e0>0 and x0eE, PXo(Tso <co)>0. But then for some positive
integer k,

PXo(\f(XTC0)-f-(XT,0)\ > e0,ke0/4 S/CJT-h) < (fc+lH/4) > 0.

Let

AE0 a {\f(XTe0)-f-(XTs0)\  > e0, ke0/4 Ú f(XTs0) < (k+l)e0/4}.

Let {Tn} be an increasing sequence of stopping times such that 7n < Ts<> for all n
and limn_œ Tn = Teo, both PXo-almost surely on ASo, and let

r a {x : f(x) i {(k- IK/4, (A: + 2)e0/4]}
and

Y' = {x : f(x) e[ke0/4,(k+l)e0/4]}.

Then Y'<={x : Px(Tr=0)=0} because of the fine continuity off. Since PXo(Aeo)>0,
there is a positive integer N such that PXo(P[u=n X(Tn) e Y, X(T) e Y')>0. Hence
the process is not locally smooth.

Remark 10.1. It can also be proved that if there is a semipolar set which is not
polar, then the process is not locally smooth. However we omit the proof.

Let r<=£andlet/be an excessive function. If 7?/ sinf {« : «excessive, «ä/on Y},
then RÇ is called the réduite off on Y. We make the following assumptions con-
cerning the réduite.

Assumption B. (i) There is a unique excessive function, R^, which differs from
R$ on a semipolar set. RF; is called the balayage off on Y.

(ii) If y $ Y is irregular for Y, then there is a neighborhood Ny of y such that
Rï™y(y)<l.

(iii) The set {y : y e Y, Âx ̂  1} is semipolar.
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Remark 10.2. M. Brelot [2] has shown that Assumption B is valid if the har-
monic functions satisfy a certain set of axioms. In particular these axioms are
satisfied if the infinitesimal generator is an elliptic differential operator with
smooth coefficients. In the general probabilistic context, the balayage and réduite
are discussed in the forthcoming book of R. M. Blumenthal and R. K. Getoor [3].

Theorem 10.1. If Assumption B is satisfied and
(10.1) every semipolar set is polar, and
(10.2) every finite excessive function is regular, then the Markov process is locally

smooth.

Proof. Let us show that if 77 is not locally smooth and (10.1) is satisfied, then
(10.2) is not satisfied. If 77 is not locally smooth then there is a sequence of stopping
times {7n}, a stopping time 7, a sequence {Fn} of cf ¿-measurable sets and a point
xe E such that :

(i) Tn<Tfor all « and lim„_M Tn = T, both 7^-almost surely on {7< £}, and
(ii) for some positive integer A,

Px^{X(Tn) e Fn}, X(T) e CN) > 0,

where CN={y : y e E, Py(TKli=0)=0} and KNs\J^N Fn, A=l, 2, 3,.... As
noted above (CN n KN) is semipolar and hence by (10.1) is polar. If y e CN — KN,
then y is an irregular point for KN. Assumption B implies that there is a neighbor-
hood A, of y (A, is assumed to belong to a countable base for the open sets of E,
say {A,}) for which Rx"nAt(y)< 1. In other words

yeZi = {y : R^níí>(y) < 1} n A,.

But then CN-KN^\J¡°=X S¡ where the union runs over the countable base {AJ.
Let %={y : A^"nA'(y)< 1} n A¡. Since 7?í«nA< = T?í«nA< except on a semipolar
and hence by (10.1) a polar set, there is some i0 such that

Px((\N{X(Tn) e Fn}, X(T)e%0} > 0.

However Rx» nA'0 is excessive and {y : Rx" nA'0(y) <l,yeKNn Aio} is a polar set.
Therefore since XT = Xj, 7^-almost surely on {7<£} (cf. Proposition 2.9.1),
Rfs "\(X(t)) is discontinuous at 7, P*-almost surely on the set (f)"=w {X(Tn) e Fn},
X(T) e2io) which has positive 7^-probability. But then (10.2) is not satisfied and
the proof is complete.

Remark 10.3. A discussion of (10.1) and (10.2) and their interrelation is given
in G. A. Hunt [10] and R. K. Getoor [8].

J. L. Doob [6] has shown that the harmonic functions and excessive functions of
the Wiener process in a Euclidean space are the harmonic and superharmonic
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functions, respectively, of classical potential theory. However the classical super-
harmonic and harmonic functions are such that Assumption B as well as (10.1)
and (10.2) are satisfied (refer to M. Brelot [1] and E. B. Dynkin [7]). Hence the
Wiener process is locally smooth.
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