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some symbols used in this paper

symbol name meaning
U English U set union, union operator
v English v logical OR
n intersect set intersection
3 backwards E existential quantifier
i bold N natural numbers
bold VvV set of variables
T bold T set of terms
F bold F set of formulas
A bold A set of alpha expressions
E bold E set of algebra expressions
I bold I set of instances
€ small epsilon set membership
d small alpha calculus expressions
g small psi a formula
W small pi a formula
e small rho a restriction or join
o small sigma a selection
x cross Cartesian product
= four bars equi-selection
= three bars equi-~restriction

1 B bold { } restriction/selection operator



1. Introduction

Report writing, generating what is colloquially known as
"IBM printouts", 1is an important function of database sys-
tems. A report is generated by the application of aggregate
or statistical functions such as sum, average, minimum, etc.
to data files or database relations. While relational data-
base theory has provided a sound mathematical basis for
studying many database problems, the use of aggregate func-
tions in relational query languages is not well understood.
Precise and general definitions are 1lacking, and their

embedding into query languages is not well defined.

l1.1. An Example

Consider the relational schema of Figure 1 describing a
university database. A typical query, in English, involving

aggregate functions would be:

For every department in the Letters & Science col-
lege, compute the total grad student support for
each of the department's faculty members and print
the department name and the average support for the
department.

dept(name, head, college)
faculty(name, dname)
grad (name, majorprof, grantamt)

Figure 1. Example Schema




1l.2. Purpose of Paper

The purposes of this paper are:

® We give precise definitions for aggregate functions.

® We extend relational calculus to include aggregate
functions in a natural manner.

® We extend relational algebra to include aaggregate fun-
citions in a natural manner.

@ We prove that the algebra and calculus so extended

have the same expressive power.
There are several reasons the above work is needed:

As stated, report writers are an important part of real-life
database applications. A theoretical foundation is needed
for these systems. With such a foundation, system specifi-
cations can be made much more precise, and new languages can

more easily be defined.

Previous treatments of aggregate functions 1in relational
languages have not been general and have not been well
defined. Two examples are System—-R ([ABCE], [CAEG], [ChBol)
and Ingres ([HeSW], [SWKH]) . These formulations do not
apply to more general languages, for example, to languages
having explicit quantifiers. Their definitions of aggregate
functions also unnecessarily rely on sets of tuples having
duplicate members (a contradiction). This goes completely
outside the set-theoretic definition of the relational

model. A precise definition is therefore needed which does



not use the notion of "duplicate". 1In this paper we give
definitions of aggregate functions for the calculus and the

algebra which are natural, general and precise.

Having extended the calculus and alagebra to include aggre-
gate functions, it 1s 1important to know 1if they have
equivalent expressive power. This will allow designers to
base new languages on elther the calculus or the algebra

without fear of losing expressive power.

The proof by Codd [Codd72al that relational calculus and
relational algebra (without aggregate functions) are
equivalent is incorrect. (See Section 4.) The literature

should record a correct proof.

1.3. Outline of Paper

In the next section we formally define relations, agagregate
functions, relational algebra and relational calculus. Some
comparisons between the two languages are made. In Section
3 an algorithm is given showing that every algebra guery can
be expressed as & calculus expression. In Section 4 we show
that every calculus query has an eqguivalent algebra expres-
sion. Finally, in Section 5 we provide a summary and some

directions for future work.



2. Formal Definitions

The relational model 1is first defined. We follow Codd
([Codd7a], [Codd72a], [Codd72b]l) in treating all data
domains as integers and in referring to attributes by column
number. This simplifies the treatment although some arith-

metic computations on column numbers is then necessary.

2.1. The Relational Model

A relation scheme is a pair <R,k>. R is a symbol (the rela-

tion name), and k is a positive integer (R's degree) which
is denoted deg(R). If <KR,k> 1is & relation scheme, the

domains of R, doms(R), 1is the set {1,2,...,k} of natural

numbers,

A schema is & sedquence <<Rl'k1>""'<Rs'k >> of relation

s
schemes, It 1s generally written simply <Ry,...,Rg>.
Throughout this paper, one fixed schema <Rys...,Rg> is
assumed.
An 1instance I of schema <Ry,.+..,Rg> is a sequence

<Iy,ee.,1g5> where for each i=1,...,s, I; C Mdeg(Ri). All

i
domains are taken without loss of generality to range over
the set N of natural numbers, and N™ is the set of all m-

tuples over W. We let I be the set of all instances over

our fixed schema of s relations.



2.2. Aggregate Functions

The concept of an aggregate function is quite simple. An
aggregate function takes a set of tuples as an argument and

produces a single simple value as a result,

Both SQL ([ABCE], [CAEG], [ChBo]) and QUEL ([HeSW], [SWKH]),
the query Jlanguages of System-R and Ingres, respectively,
require that agagregate functions be able to accept arguments
with duplicates. For example, to sum the salaries in an
employee relation, the relation would be projected on the
salary column, duplicates would be retained, and the projec-
tion would be sent to the sum function. Besides being
unnecessary as we will see, the notion of "duplicates" is
not well definedl. For example, the number of duplicate

tuples in an expression:
R{X1 U sS[Y]

could depend on the order in which the system choses to per-

form the projections and union.

Instead of providing one sum function (or average, max

etc.), we provide a family of sum functions:

suml, SUH\Z, sum3, s oo g Sumi, ° e

The function sum; sums the numbers in the i~th column of its

1 Although bags have been formally defined [RoLe], they
do not solve the problem.
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input. Now there is no need for the vague notion of "dupli-
cates". For example to determine the total of column 3

(salaries) in the tuple set:

e +
|Joe 25 12000 |
INancy 21 13000 |
R = | Sue 28 13004 |
IPete 35 14000 |
|John 30 12000 |
e e +
we would write sum3z (R), not sum' (R[3]), where sum' is

somehow supposed to tell its input not to be a set but a

bag!
Formally, we hypothesize a countable set
F = {fl’ f2, f?), s 0 o }

of aggregate function symbols. For each f; € F, the meaning

of fi is a function

. : U: Fin(wl) = w.

1 1

(U

; denotes the union over i € M; Fin denotes the finite

subset operator.) That is, it is a function whose range is
the natural numbers (our universe) and whose domain 1is the

set of all finite homogeneous tuple setsz.

2 We do not bother to define the meaning of & function
symbol for each database instance as is the case for func-
tion symbols in logic; all we need is one standard interpre-
tation for each symbol.

We also do not consider details of which kinds of



The set F cannot be completely arbitrary. It must have the
following wuniformness property: For every f € F and tuple
set 8, if 8' is a "constant expansion" of S, i.e., if there
is a projection X such that S'[X] = S and S[~X] contains
just one tuple, then there is an f' € F such that
f(8) = f£'(8"). S and S8' are always isomorphic, and we will
not even distinguish between f and f'. All normal sets of
aggregate functions have this property. A more concise
statement of this property will be agiven when we have

defined the relational algebra.

2.3. Relational Algebra

The set E of relational algebra expressions over our fixed

schema and the associated functions deg (degree) and doms

(domains) for expressions are defined inductively as fol-

lows:

If e € E has degree k, then doms(e) = {1,...,k}.

() Literals: For any constant c¢c € W, {c} € B and heas
degree 1.

(1) Base Relations: hi € E for each R; in the schema, and
deg(Ri) is as defined in the schema.

(2) Projection: If e € E and deg(e) is k, then e[X]1 € E
where X is a sublist of doms(e), and deg(el{Xl) = number
of elements in X.

(3) Cross Product: If ey, ey € E and deq(el) = dl' deq(e2)

tuple sets aggregate functions might not be defined on.



= dz, then (elXeZ) € E, and deg(ejXey) = dl + d2'
(4) Restriction: If e € E and X,Y € doms(e), then e{xeyl
€ E, where 8 is =, > or <, and deg(e{xeY}) = deg(e).
(5) Union, Difference: If e and e, are in E and both have
degree n, then e; U e, and e; - e, are in E and have
degree n.
() Adggregate Formation: If e € E and X is a sublist of

doms(e), then e<X,f> € E, and has degree len(X) + 1.

Other traditional operators can be defined in terms of the

above operators. The most common are the following:

(7) Selection: If e € E, V EMN, and X € doms(e), then
efxe'v'} is (e X {Vv}){xekl}ldoms(e)], where k =
deg(e)+l. We will write e{X='V'} as e{XEV}].

(8) Restriction Lists: If e € E and XKyreoorXp oYy, oo, ¥y
are in doms(e), then eﬂxl,...,Xk = Yl,...,Ykﬂ is
efX =Y HXozVo b X =Y b

{(%9) Join: If ey, e, are in E, X is a domain list of e} of
length k, and Y 1is a domain list of e, of length k,
then elﬁxeYﬁeZ is (eIXeZ)ﬂXGY'B, where Y' is Y+deg(e;).

(1) Intersection: If e;, ey are in E and have the same
degree, then elﬂez is (elXez)ﬂDlsDzﬂ[Dl], where D is
1,...,deg(el) and Dy is 1+deg(el),...,deq(e2)+deq(el).

(11) Division: If e;, ey are in E, X is a domain list of e
of length k, and Y is a domain list of e, of length k,
then e;[X+Y]e, is e;["X] - ((e["X]Xey[Y])-eq) [7X],

where "X are the domains of e; not in X.



For each e € E of degree k and for each I € I, the
value of e on I, denoted e(I), is a subset of mK. The

formal definition is as follows:

() {el(1) = {c}.

(1) R;(I) = TI;.

(2) e[XI(I) = {t : Tt'ee(I) t'[X]I=t}, where tf[X] is
the tuple whose i~th component is the j~th com-
ponent of t', where j is the i-th element of X.

(3) (e1Xe,) (I) = {tl"t2 : ti€ey(I) & tzeez(I)}, where
'"' denotes concatenation.

(4) elxeyYh(I) = {t : te€e(I) & tlXletlY]}.

(5) (e U ey) (I) = {t : t€ey(I) v teez(I)}
(e] - e,) (I) = {t : teey(I) & tfe,(I)}.

() e<X,f>(I) = {t[X1"y : t€e(I) &y = £({t' : t'e€e(I)

& t'[XI=t[XIh}.

2.4. Relational Calculus

Six classes of objects are used to define calculus expres-
sions: variables, terms, formulas, range formulas, alpha

expressions (called simply alphas) and closed alpha expres-

sions,

The set ¥ of variables is {vl,vz,v3, ees }o

The set T of terms is defined as follows: Every element of
M is in T. (These are the constants.) For every variable

v; and column number A, vi[A] is a term. If  is an alpha,



and f € F, then f(d) is a term.

The set B of formulas is defined as follows: If d is an
alpha and vy €V, then d(vi) € F. 1If tyr ty € T, and & is
|=|3

, If §, w € F, then so are ~J and (f v w). If y eF,

v; € V and r is a range formula, then (Hrvi)w e FY.

The set RF of range formulas is defined as follows: If

dl,...,dk are closed (defined below) alphas, and v; €V,

then
d1(vi) Vv ee. v dp(vy)

in in RF and is caelled a range formula for v If r is a

io

range formula for vj . we will often write r(v;).

The set A of alphas is defined as follows: If R;j is in the
schema, then R; is an alpha of degree deqg(Ry). If
tl""'tn €T, if ry,...,rp are range formulas for
vil,.,,,vim, if the free variables (defined below) of

tl,...,tn are vil,...,vim, and if § € F, then

(tl,o-"tn) . rl,-.-,rm 4 [p

is an alpha of degree n.

3 We have tried in this paper to keep multiple usages of
symbols to a minimum. Thus '=' denotes the formal equality
symbol, while '=' denotes real set equality. Some symbols
such as 'U' still serve double purposes.

For completeness, we only need to have —lquantified
variables coupled to simple alpha expressions, but allowing
range formulas makes the proofs less cumbersome.
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Free variables, bound variables and closed objects (terms,
formulas, alphas) are now defined. An occurrence of a vari-
able vy is free if it is not within the scope of a v;-

quantifier. Otherwise, the occurrence is bound. A

vi—quantifier is a fragment (Ehvi) of a formula or the range

fragment rl,...,rj(vi),...,rm of an alpha. In the follow-
ing, X and Y denote (possibly empty) strings. The scope of

(Frv;)  in X(drvi) WY dis 0. The scope of rj,...,r, in

X(tl,...,tn):rl,...,rm:WY is (tl""’tn) and [. An obiject
(term, formula, alpha) is closed if it has no free

occurrences of any variable.

2.5. Interpretations of Alphas

In order to define the value of an alpha on an instance, we
must, as in Predicate Calculus, define valuations which give
values to free variables. Since a variable may occur in an
alpha in several scopes with different ranges, it simplifies
matters to rename variables so that each one occurs in only
one scope. That this can be done follows from the same
arguments as for the analogous property 1in Predicate Cal-

culus ([Shoe], [BeS1]). We will assume this renaming has

been done.

If d is atomic, say Rj, then no valuation is needed oand we

simply define (I) to be I;-

Let d be an alpha with variables VireserVy whose respective

ranges are ry,...,r,. Let I € T. If r; has the form
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dl(vi) V ese V dk(Vj_)r

then the range of v; in I is rj(I) =dy(I) U ... U di(I)

which 1is defined by induction. A valuation for d on I is a

partial function

x « {1,...,n} = U-

3 rj(I)

(a sequence with "holes") such that for each i, x; € ri(I).
Given a valuation x, x[i/a] denotes the valuation which is

identical to x except that x; is always defined and x; = a.

Given instance I and valuation x for d on I, we define

interpretations of the terms, formulas and alphas in d, and

ad itself as follows:

Interpretations of terms: If c €N is a constant,
c(I,x) = c (itself). 1If x is defined on v; (on i to be pre-
cise), then v; [A]1(I,x) is defined and equals x;[A] (the A-th
component of x;). if d(I,x) is defined, then f(d) (I,x) is

defined and equals F(d(I,x)).

Interpretations of formulas: For an atomic formula of the
form d'(vi), we have d'(I) defined by induction. Then
d'(vi)(I,x) is defined if xj is, and d'(v;)(I,x) =1 if
X; € ad'(I) and is otherwise #. For terms tj and t,, if
tl(I,x) and t2(I,x) are defined, then (tletz)(I,x) is
defined and equals 1 if tl(I,x) is 8 to tz(I,x), and other-
wise equals @. If U(I,x) is defined, then (7U¥)(I,x) Iis

defined and equals 1 if U(I,x)=0, and otherwise equals 0.
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If P(1,x) and w(I,x) are defined, then (¥ v w)(I,x) is
defined and equals the maximum of ¥(I,x) and w(l,x). If for
some a € ri(I), U(I,x[i/al) is defined and equals 1, then
(Hrivi)w(l,x) is defined and equals 1. Otherwise

(Hrivi)W(I,x) equals 0.

Interpretations of alphas: R;(I,Xx) is always defined and
m:w, then ' (I,x)
is defined and empty if some rji(I) is empty. Otherwise it
is defined and equal to the set of all tuples

equals Ii' If d' is (tl”"'tn):rjl”°"rj

(tl(I,x'),...,tn(I,x')) such that x' is a valuation of the
form x[jl/al][j2/a2]...[jm/am] for some a; € r;(I), and such

that each ti(I,x') is defined and Y (I,x') equals 1.

As in Predicate Calculus, it is easy to show that for any
alpha d, the value of d(I,x) depends only on the components
of % corresponding to free variables of d. In particular,

if d is closed, d(I,x) is always defined and is independent

of x, and in this case we simply write d(I).

2.6. Comments and Comparisons

In this section we illustrate the different features of the

algebra and the calculus.

The syntactic (and semantic) structures of the two languages
are gquite different. The algebra has one syntactic class:
expressions. The calculus has six: variables, terms, formu-

las, range formulas, alphas and closed alphas, the last
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being the only one corresponding to expressions. 1In Figure
2 we depict the syntactic structures of the algebra and the
calculus where arrows —> to denote the relation "is used to

define". Any equivalence proof must reconcile these very

different structures,

Among the tradeoffs in using the two languages are the fol=-
lowing two: The algebra has a much simpler structure. This
could be useful in theoretical work where, for example,
inductive proofs are used. On the other hand, the calculus
allows queries to be expressed more naturally (see Dbelow),
and this may be useful, not only for end-user purposes, but
also to make language specifications by translations to the

calculus simpler.
Some examples are now given

Given a student relation scheme:

terms =—————p formulas
expressions / \\‘ / \

variables alphas #=———————range

l formulas
closed ,//”///)'

alphas

Figure 2. Recursive Structure.
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student (name, yr, gpa),

we want to know, for each student year (1,2,3,4), the aver-

age gpa for students in that year. In the calculus we can

write:

(vl[2], ave3((v2[l],v2[2],v2[3]):student(vz):v2[2]=vl[2]))
student(vl) s -

In the algebra we could write:
student<2,aves>

Now suppose we wanted for each student year the average of
students in that year or in a greater year. In the calculus

one change to the previous query will suffice:

(vl[2], ave3((v2[l],v2[2],v2[3]):student(vz):v2[2]>v1[2]))
: student(vl) : -

However, in the algebra, aggregate functions are applied
only to “egui-partitions"; there 1is no such thing as a
"greater-than—partition"5. The algebra expression must
first greater-than-join student with itself before applying

the aggregate function:

(student{2>2}student)<5,aves>

5 One, of course, could be defined, but the resultinag set
of operators would not be independent.
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Next consider the example query in Section 1:

For every department in the Letters & Science col-
lege, compute the total grad student support for
each of the department's faculty members and print
the average for the department.

In the calculus we can write:

(v1[171, avez(vz[l],
sumz(v3[1], v3[3] : grad(v3) : v3[2]=v2[l])
faculty(vy) : vol2l=vy[1]))
: dept(vy) : v;[3]="L&s’

It would seem that to express this query in the algebra, we
would only have to partition the grad relation by fname and
sum grantamt, join this with the faculty relation, partition
the result by the dept column and average the sum column.
Finally, we would join with the dept relation, do the col-
lege selection and project out name and the average. The

actual expression would be:

((((grad<2,sum3>)ﬂlslﬂfaculty)<4,ave2>)
f1=1}(dept{3E'L&S'})) [1,2]

This is incorrect, however, because faculty with no students
will not be counted in the average whereas they should
appear with a zero sum. To properly express this query, and
any similar guery, we must generate sum tuples with zeros

for those faculty having no students. To correct the above
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query we should replace grad<2,sum3> by the expression:
grad<2,sumg> U (faculty[l] - grad[2]) X {a}.

Range formulas in Codd's definition of the <calculus were
combinations of base relations. 1In the calculus with aaggre-
gate functions, we need range formulas built from combina-
tions of alpha expressions. That this is necessary can be

seen by considering the following algebra expression:
R<X,f> U S<X,g>

Without our general range clause, there is no way to write a
calculus expression which can generate a set of tuples whose
second column is sometimes an f-value and sometimes a g-

value,

Literal relations are needed in the algebra because the cal-
culus can put 1in the target list constants which actually

occur nowhere in an instance.

The uniformness property for the set of aggregate functions
can be expressed as follows: Define an aggregate formation

operator of three variables by:

e<X,Z,f>(I) = {t[X]"y : t€e(I) &
y = F({t'[2] : t'€e(I) & t'[X]=t[XI1}.

This operator partitions, projects and then applies the

function. The set F has the uniformness property if for
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every e, X, Z and f there is an f' such that
e<X,Z,£>(I) = e[XUZ]<X,f'>(I), for all I,

The three argument aggregate formation operator closely
corresponds to applying an aggregate function to a calculus
expression. The Z represents the domains in the target list

of the alpha.

3. Translating Algebra to Calculus

In this section, we want show that for every algebra expres-
sion e € B there 1is an alpha o with e(I) = d(I) for all

I € I. This is done recursively as follows:

() A literal {c} corresponds to the alpha (c):-:- (empty
range and predicate).

(1) For a schema relation Riy the <corresponding alpha is
simply R; .

For the next three steps, assume e has a correspondina alpha
of the form (tl,...,tn):rl(vl),...,rm(vm):w. The tar-
get list will be abbreviated t. In (2)-(7) we will
also abbreviate other target lists.

(2) To translate the projection e[X], assume for notational
convenience that the free wvariables in t[X] are
Vireeo,Vp. Then with e[X] we associate the alpha

EIXT 2 £y (Vi) seenrrpy(vy) 2 (A Vpeg) e (v ) UL

(3) With e{XeY} we associate t : Tireeesly = Ust[X]OL[Y].

(4) With e<X,f> we associate
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(vi[X1, f(vy:id(vy):vy[X]l=vy[X])) : d(vy) : = .
For the next three steps assume e; and e, are associated
with o; and d,, respectively.,
(5) With e;Xe, asséciate VyrVy : di(vy) = dy(vy).
(6) With e; U ey associate vy : dj(vy) v dy(vy) 3 -

(7) With e; - e, associate vy : dj(vy) : "dy(vy).
All steps excluding possibly (2) should be clear.

For step (2), suppose a € e[X](I). There 1is an a' € e(I)

with a'[X] = a. By induction, a' € d(I), so for some valua-
tion x defined on VireeerVhr a' = (tl(I,x),,..,tn(I,x)) and
g(1,x) = 1. From this we aget a = t[X1(1I,x) and

(E|rh+lvh+l) °--(E|rmvm)IU<I,X) = l.
For the converse, suppose

a € tlX] & ry(v) e, rp(vy) s (IrpyVpey) e (Hrpvy) U(I) . For

some valuation b4 a = t[X1(1I,x), and
(3rh+lvh+l)...(Hrmvm)W(I) = 1, From this we can get a
valuation x' such that §(I,x") = 1. Let a' = t(I,x'). By
induction, a' € e(I), and we see that a'[X] = a; hence

a e e[X1(1).

4, Translating Calculus to Algebra

The goal of this section is to prove that every closed alpha
has an equivalent algebra expression. Formally, for every
d € CA, there is an e € B such that d(I) = e(I) for all

I € 1I.
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Our approach is necessarily different from Codd's. The
latter approach6 sought to form a cross product from all
range expressions and use restriction, projection and divi-
sion to extract the answer from this c¢ross product. With
aggregate functions, new columns are created, and forming

cross products will not work. We attack alpha expressions

directly: For all terms, formulas and alphas, we seek to
produce "equivalent" algebra expressions. These are then
combined recursively. The algebraic representation for a

term should evaluate to a set containing a single 1-tuple
which is the interpretation of the term. The algebraic
representation for a formula should evaluate to an empty set
if the interpretation of the formula is false and to a
nonempty set if it is true. The algebraic representation of
an alpha should evaluate to a set of tuples which equals the
interpretation of that alpha.

Clearly, the problem with this approach is the pres-

ence of free variables. How do we represent free variables

® codd's proof seems to be in error: The first step in
his reduction, putting the qualification into prenex normal
form, is impossible with range-coupled guantifiers. For ex-
ample, the formula:

p v (drjvi)a,

where v; is not free in p, would bhe transformed to the for-
mula:

(Zhesvi) (p v oa).

These formulas are not equivalent, however, because the
second can never be true in an instance I if r;(I) is empty
whiles the first can be.
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in an algebraic expression? The answer is that we represent
calculus objects not by just an algebra expression, but by
an algebra expression plus a restriction clause. The func-
tion of the restriction clause 1is to represent the free

variables of the calculus object.

We form an algebraic expression D representing all possible
valuations. The interpretation of a calculus object in
instance I with valuation x will then correspond to the
value of the algebraic expression (Dﬂdxkﬂpﬂe)[z] on I, where
Oy is a selection clause corresponding to valuation x, and p
and e are the Jjoin clause and algebraic expression
representing the calculus object. The projection Z serves

to remove D and other unneeded factors.,

Let d have unique scopes for all of it variables VireesrVpy
and assume the theorem is true for a1l alphas smaller than
d. Thus, there are algebraic expressions DyseeesDp such
that ri(I) = Di(I) for all I € I. For each i, we let Di* be
({l}—({l}XDi)[l])X{l}n"l U D;, where n is the degree of Dj.

With this formula, D;* is never empty, and D;*(I) = Dy If

D;(I) # g. Let D be Dy*X...XD,*.
For notational convenience we define:

K = deqg (D),
K; = deg(Dy*X...XDj_1%)

dj = Kj+1,...,K;+deg(D;)
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For every valuation x there is a corresponding selection

clause Oy such that
DﬂG&R[di] = {x;}, if x is defined on i.

We let Dy denote Dﬂo&ﬂ. In the appendix we show that an
expression of the form (Dxﬂpﬁe)[ze], where Za refers to
domains of E, is eguivalent to eﬂpxﬁ[ze], where Px is a

selection derived from Dy and P-
The translation to the algebra is done in three steps:

(a) For every term t we define an expression e, a Jjoin
clause P and a projection list Z such that for all I and

x, if t(I,x) is defined, then
(Dxﬂpﬁe)[21(1) = {t(I,x)}.

(b) For every formula § we define an expression e, a Join
clause P and a formula E such that for all I and x, if

U(I,x) is defined, then

(DylplE) (I) # 8,
(Dylphe) (I) = (DylplE) (1), if Y(I,x)=1,

(Dylple) (1) = ¢, if U(I,x)=0.
The expression E will be used for negations.

(c) For every alpha d' contained in d we define an expres-
sion e, a Join <clause P and a projection list Z such

that for all I and x, if '(I,x) is defined, then
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(Dylphe) [2)(T) = d'(1,%).

In every case it will be seen that the join clause p will
join a part of e to D;*¥ iff v; is free in the corresponding

calculus object.

Note that once we prove property (c¢) we are almost done

since for a closed alpha d we can (and will) easily show

that (I) = e[Z](I).

First we give the details of these constructions, and then

we prove the stated properties.

To keep the notation manageable, we do not derive new selec-
tion, restriction and projection clauses when rearranging
expressions. For example, to be precise, the rule that res-
trictions commute with projections as lona as the domains

are in the projection is precisely written as:
e{XeYh(z] = elz1dX'0Y'},

where X' is the position in Z at which X occurred, and Y' is
the position in Z at which Y occurred. However, we will

simply write:
e{xevyh(z] = el[z]1{XeY},
and this should not cause any confusion.

As another notational convenience, we use projections with

possibly empty projection 1lists. An empty projection is
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defined as follows:

e[l = ({1}Xe)[1].

The essential property of e[] is:

(a)

(b)

el[](I) =g 1iff e(I) = 4.

Terms: For a constant term ¢, let e be {c}; let P be

the empty clause, and let Z bhe K+l.

For a term v;[A]l, let e be D;[A]; let P be K;+A=1, and

let Z be K+1.

For an aggregate term f(d) where the translation of d

hag vielded ey Py and Zd’ write Py as
dl,dz,...,dkzal,az,...,ak, where the d's refer to
domains of D. Then let e be
ed[(al'°"'ak)'Zd]<(l""'k)'f>' Let P be

dldz...dkzl,Z,...,k, and let Z be K+k+1.

Formulas: For an atomic formula t;8t,, suppose we
already have e1r P1s Zy and €or Por Zy for t1r toy
respectively. Write P1r P2 respectively, as d;=w; and
dyzwy. Let e be (elﬂzlezzﬁez)[wl,wz]. Let p be

(Perz)- Let E be (ejXey) [wy,wy].

For an atomic formula d'(vj), suppose the translation
for d' has vyielded e'. (d' is closed, so P is empty.)
Let e he e'; let P be dj=d', where d' is 1,...,deg(e').

Let E be Di*.
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For a negation ", suppose the algebraic parts for § are

ew, PW and EW' Let e be Ew—ew; let P bhe PW; let E be

For a disjunction (J v w), suppose we have obtained ey
Pq], Eq] and ew, P“ and E“,. Let e be (wae“_) U (eq]XE“.).

Let P be (Pw’PH)' Let E be EWXE“.

For a guantification (Hrivi)m, suppose ey PW and Ew
have been defined. Write PW as (dsw,P—), where d=w are
the Join terms referring to D;*. Let e be
((Dﬂdzwﬂew)[~w]XDi)[”w], where ~“w refers to the domains
of e not in w. (The D; term makes sure that 1If the

range D; is empty, then (Dxﬂpﬂe)(I) is always empty.)

Let P be P—' and let E be Ew[”w].

Alphas: For an atomic alpha Riy let e be Rij; let P he

empty, and let Z be K+l,...,K+deg(Ri).

Suppose d' is (ty,ece,bp)ilysecertp:P. (We assume the
D's are renumbered for notational convenience.) Assume
the translation has yielded ej, pj and Z; for each tj
and ew and Py for Y. Let e be
((DXeyX...XepXey) Ipy reeerppspyl X DyX...XDy) (W],
where P$ are the clauses of Pm referring to DyreeesrDpr

and where W projects out D;X...XDp. (The DyX...XDy term

m
makes sure that no tuples go in the result when any of

the free variable ranges is empty.) Let p be obtained

from Pw by deleting all terms referring to DyveeesDpe-
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Let Z be Zl""'zn’

Now we proceed to prove these properties. 1In every case the
hypothesis is that the interpretation of the object being
considered is defined at instance I and wvaluation x. The
numbers in parentheses at the end of lines refer to items in

the appendix 7justifying the step which derives the next

line.

(a) For a constant term ¢, we have

(Dylphe) (2] (1)

(DyX{c}) [K] (1) (1)

{c} (1)
{c}

{c(I,x)}.

il

For a term v;[A], we have
(Dxﬂpﬂe)[Z](I)

= (D {K;+A=1}D; [A]) [K+1] (1) (1)

it

D; [A1115x; (A} (I)

{Xi[A]}

it

{fvi[A](I,x)}.

For a term f£(d), we have

(Dylphe) [2] (1)

(Dxﬂdl,...,dkEl,...,k[}(ed[(alIOO-lak)Izd.'

<(Yl,...,k), £>)) [R+k+1]7 (1)

ed[(alr---,ak),Zd]<(l,---,k),f>ﬂpxﬁ[k+l](I) (2)

Fleqlpy b 241 (1)) (1)

(1)
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= T((Dylpley) [24]1 (1))
= ?(C((I rx)) .

In this section we make use of the fact that (Dxﬂpﬁel)(l)
= (Dyfphe,) (I) iff (Dylphey) [Z,1(I) =
(Dylpley) [2o1(T),

where Z, consists of the domains of e} (= domains of e,).

For an atomic formula t)0t, we have:

(Dylple) [2,1(T)

= (DxﬂPI’PZB((elﬂzleZ2Be2)[wl’w2]))[ze](1) (3)
= (Dylpy.palle1z0z5hey)) [wy,wyl (1) (1)
= (elﬂzlezzﬂez)ﬂplx,pZXl}[w]_,w2](I) (4)

((el{}PlX[}) {]ZleZQI}(eZHPZXI})) [Wl'WZ] (I) (1)

]

((Dylipyley)izy0z, b (Dyelpyley)) [wy,wyl (1) (5)
= ((Dxﬂplﬂel)X(DXﬂPZRez))[wl,wz](f)
if ty(I,x) is 8 to ty (I,x);
=g if ty(I,x) is not 6 to tz(I,x).

Also,

(D 1phE) [Z] (1)

= (Dylpyrpab(egXey) [wy,wyl) [Zg] (1) (as above)
= ((Dglpyhe]) X (Dylpoley)) [wy,wyl (I) (A)
7 B

For an atomic formula d'(vi), we have

(Dylple) [Z,1(1)

(D, fdy=d'be') [Zo] () (1)

e'{d'Zx; b (1)
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{Xl} = Di*{]d'ixil}(l) if X3 € e' (1)

g if X3 Z e'(I).
Also,
(DXﬂPEE)[Ze](I)

= (DxﬂdiEd' [}Di*) [Ze] (I)

Dl*{]d'ixll}(l)
{Xi}
# 4.

For a negation ~J we have:
(Dylple) (1)
= (Dylpyh (By-ey)) (1) (7)
= (D lpykBy) (1) = (Dylpyley) (1)
= (DxﬂpwﬂEw)(I) - (DxﬂpwﬂEw)(I) =g
i “W(I,x)=a (P(I,x)=1),
= (DglpylEy) (I) - 4 = Dy lpy By (D)
if ~U(I,x)=1 (Y(I,x)=0).
Also,
(DydpbE) (T)
£ B.

For a disjunction (§ v w) we have:

(Dylphe) (2,1 (1)

= (Dylpyrpat (ByXey U eyXEr)) [2,1(1) (8)

= Dylpyrpgl (EgXeq)) [Z1(1) U (Dylpyrpyl (eyXEy)) 2] (T) (9)
= (Dyelpy prt (EyXEp)) (2,1 (1),

if P(I,x)=1 or w(I,x)=1

g 1if Y(I,x)=0 and w(I,x)=0.
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Also,
(DxﬂpﬂE)(I)
£ B.

For a gquantification (dr;v;)y we have

If r;(I) (= D;(I)) = ¢4, then (dr;v{)P(I,x) = @, and by
construction (because of the D; cross product term in e),
(Dxﬂpﬂe)[ze](l) = 4. Otherwise, we have

(Dylple) [2,1(T) (19)

= (Dxﬂp_ﬂ((DﬂdEWﬂem)[”W]))[Ze](l) (1)

(Dldzwhey) (7wl fpy b (1) (11)

= Uaer; (1) (Pxrizaylpbey) [Twl (D)

= Uaer,; (1) (Dy[i/a] 1P bEy) [Tw] (T) (12)
& P(I,x[i/al)=1
= Uaeri(I) EmﬂPX[i/a]ﬂ[~W](I)

& P(I,x[i/al)y=1
= g4 (empty union) if there is no a € r (I)
with ¢(1,x[i/al)=1,
ice., 1f (drjv)V(I,x)=0,
otherwise if there is some a € ri(I)

with U(I,x[i/a]l)=1 (13)

i

E[p [Tw](I)

= Bydo b I~wl (1)
Px

i

(D dp b (By[™w])) (2] (1)

i

(DylpbE) [2,] (1) .

Also,

(DgIp FE) (T)
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= oo = (DylpyhEy) [Twl (1)
7 8.

If "w happens to be empty, the equalities will all still hold.

(In this case, P" is empty.)

(c) For an atomic alpha Ri’ we have

(Dylple) [2] (1)

(D XR;) [d'] (1) (1)

R; (T)

Il

Ri(I,x).

Now consider nonatomic alpha d'. 1If one of the ranges
rl(I),...,r(I)m is empty, then ('(I,x)=¢4, and we also
have by construction (Dxﬂpﬂe)[Z](I) = @g. Otherwise we

have:

(Dylple) [2] (1) (like 1)

]

Dy dpyh (PIpy,oeespnipl (01X e XenXey))) (2,000, 2,1 () (14)

Uj=1,...,m (Dx[j/aj}[Pl""'Pn'Pw](elx"‘><enxew))

ajerj(I) [Zl,...,Zn] (I) (15)

Us=1,...,m (Dx[j/aj] Ipybey) [Z11(T)

ajerj(I)
W(I,XEj/aj])=l x
x
(Dx[j/aj]ﬂPn[}en)[zn](I)
= Uso1, ... ,m {tl(l,x[j/aj])} X...X {tn(I,x[j/aj])}

a:€r..

(1)
w{I,4ci/az1)=1
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= d'(I,x).
Given any d € A we now have the identity:
(Dxﬂpﬁe)[z](l) = d(I,x).
If o is closed, then P is empty and we have:

‘mdple) [21 (1) =
(DyXe) [2]1 (1) =

elZ](I).

Thus, for all I € I, d(I) = e[Z2']1(I), and d is equivalent to

an algebra expression.

5. Summary and Future Work

Report writers may be thought of as query languages having
aggregate functions. Within the framework of the relational
model we have formally defined aggregate functions so that

the imprecise notion of "duplicates are not removed" is not

needed,

Relational algebra was extended to include an aggregate for-
mation operator. It partitions 1its operand by specified

columns and applies the aggregate function to each member of

the partition.

Relational calculus was extended so that a term, which may

appear in a target list or in a qualification, can be formed
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"y applying an aggregate function to a calculus expression.
Linking of outer terms to terms within an aggregate term is
accomplished by using free variables. It was necessary to
allow wvariables to range over alpha expressions rather than

simply over unions and projections of base relations.

We showed that the set of gqueries expressible in the algebra

is the same as the set of gueries expressible in the cal-

culus.

5.1. Future Work

The results reported here can form a foundation for more

work in the following directions:

¢ Develop algorithms for logical optimization of expres-
sions involving aggregate functions.

@ Develop algorithms for deciding the equivalence of
expressions involving aggregate functions.

@ Extend the languages to include additional types of
operations such as arithmetic operators on terms.

®# Investigate the complexity of the calculus-to-algebra
translation. Our examples have indicated that it might
have a high complexity.

6. Appendix -- Details of Calculus-to-Algebra Proof

(1) (Dxﬂdéwﬂe)[z](I) = eﬁwixdk[z](l); Z consists of domains

of e, Xq is the subsequence of x formed from d, and x
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is defined at all places referenced by d.

If t € (Dxﬂdiwﬁe)[z](l). then there are tuples t, €
DX(I) and te € e(I) with tx[d] = te[w] and te[z] = t,
But by definition t [d] = Xgr SO t, € eﬂwide(I), and t

e eﬂW§xdﬁ[Z](I). The converse is similar.

(2) elY,z]1<k,£>{kSEc}[k+11(I) = F(elYSch[2Z]) (I), where k
= len(Y) and k = (1,...,k).
The hypothesis on the family F of aggregate functions
says that el[Y,zZ]<k,f>(I) = e<Y,Z,f>(I) = {t[Y]"y :
t€e(I) & y=f({t'[z]:t'€e(I) & t'[Y]=t[Y]})}. Hence,

elY,z1<k.£>{k=c} [k+11 (1)

F({t'"[Z] : t'€e(I) & t'[Y]=c})

TlelyEchizI(I)).

(3) Projections distribute through <cross products and
unions, and they commute with restrictions (if all res-
tricted domains are retained) and combine with them-

selves. See [Ullm].

(4) Restrictions commute with other restrictions and with

cross products [Ullm].

(5) If tl(I,x) is ©® to to(I,x), then if sl”sz e
((DxﬂPlBeI)X(DxﬂPZI}QZ))(I)’ then 81[211 = tl(I,X) and
52[22] = t,(I,x). Hence sl[Zl] is 8 to 32[22], and

s17s, € ((Dylpyley) 1218251 (Dylpylesy)) (1)

(6) Since tl(I,x) and t2(I,x) are defined,
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(9)

(10)

(11)

(12)
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(Dxﬂplﬂel)[zl](l) and (Dxﬂpzﬁez)[zz](l) are nonempty.
Restrictions distribute through set differences.
Restrictions distribute through unions.

This follows by using rule (1) and the above distribu-

tive and commutative rules.

With D; (I) # @8, we use rule (1) to eliminate the Dj

term.

We want to show that
(DYd=whey) ["wl{py } (1)
= Uaeri(I) e[pﬂwgad§[~w]ﬂP;R(I).

Since d in d=w refers only to D, we can write

1’
(D{d=w} %ﬁ[“w] as (Diﬂdzwﬂe)[~w]. Now D;(I) =
UaeDi(I) {al(1). Since (set theoretic) union commutes

with cross product and restriction (and hence join), we
have

(Djid=whey) [Twlipy b (1)

= Uaep, (1) eglwEag b ["wlipy (1)

= UaeDi(I) ewﬂwiad,P;§[“w](I),

where agq are the components of a referred to by d. But
(wéad,p;) is just Px[i/a]’ and we have
(Diﬂdswkew)[“w]ﬂp;ﬁ(l)

= Vaep, (1) eylPxrizar bI7WI(D)

= UaeDi(I) (Dxﬂpmﬂem)["WJ(I)

We use induction and restrict the union to the cases
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(14)

(15)
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where Y (I,x[i/a]l)=1.

For any E associated with a formula, any restrictions
P1 and P2 and any projection Z which does not include
any domains of Py Eﬂplﬂﬂpzﬂ[z](I) = EﬂPZ&[Z](I). This
follows because E is equivalent to an expression having
only cross products and projections. That E 1is so
equivalent should be clear from the construction noting
that in the case of atomic formulas of the form t8t,,
the associated E has the form:

(e1<Xq,£1> X ey<Xy,f5>) [Xy,X,],

where ej; and e, have only cross products and projec-
tions.,. It 1is easy to see that this expression is
equivalent to

el[Xl] x e2[X2}.

The proof is as in (11). We must only generalize to
more that one quantified wvariable. The notation

x[j/aj] is short for

x[l/al][2/a2]...[m/am].

This follows from rule (1) and the induction hypothesis

for ©.
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