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Abstract: In Part 1 of this paper (Osmolovskii and Maurer,
2005), we have summarized the main results on the equivalence of
two quadratic forms from which second order necessary and sufficient
conditions can be derived for optimal bang-bang control problems.
Here, in Part 2, we give detailed proofs and elaborate explicit rela-
tions between Lagrange multipliers and elements of the critical cones
in both approaches. The main analysis concerns the derivation of
formulas for the first and second order derivatives of trajectories with
respect to variations of switching times, initial and final time and ini-
tial point. This leads to explicit representations of the second order
derivatives of the Lagrangian for the induced optimization problem.
Based on a suitable transformation, we obtain the elements of the
Hessian of the Lagrangian in a form which involves only first order
variations of the nominal trajectory. Finally, a careful regrouping
of all terms allows us to find the desired equivalence of the two
quadratic forms.
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1. Introduction

Second order necessary and sufficient conditions for optimal bang-bang controls
are obtained from the property that a certain quadratic form be positive (semi)-
definite on a finite-dimensional critical cone. Two different quadratic forms have
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been developed by Agrachev, Stefani and Zezza (2002) and Osmolovskii (1988,
2004); see also Milyutin and Osmolovskii (1998), Part 2, Chapter, Section 12.
In Part 1 of this paper (Osmolovskii and Maurer, 2005) we have summarized the
main results on the equivalence of both forms and have derived explicit relations
between the corresponding Lagrange multipliers and elements of the critical
cones. The main purpose of the present Part 2 is to give detailed proofs, which
make extensive use of explicit formulas for first and second order derivatives of
the trajectory with respect to variations of the optimization variable comprising
the switching times, the free initial and final times and the free initial state.

In Section 2, some basic facts from Part 1 (Osmolovskii and Maurer, 2005)
are summarized for the convenience of the reader. In particular, we formu-
late the induced optimization problem with optimization variable ζ, which is
associated with the bang-bang control problem. In Section 3, we give formu-
las for the first order derivatives of trajectories with respect to ζ, which follow
from elementary properties of ODEs. The formulas are used in Section 4 to es-
tablish the explicit relations between the multipliers of Pontryagin’s minimum
principle and the Lagrange multipliers of the induced optimization problem.
Elements of the corresponding critical cones are related in Section 5. Second
order order derivatives of trajectories with respect to ζ are elaborated in Sec-
tion 6. In our opinion, the resulting formulas seem to be mostly unknown in the
literature. These formulas provide the main technical tools to obtain explicit
representations of the second order derivatives of the Lagrangian (Section 7).
The remarkable fact to be noted here is that using a suitable transformation
these derivatives are seen to involve only first order variations of the trajec-
tory w.r.t ζ. This property facilitates considerably the numerical computation
of the Hessian of the Lagrangian. Thus, we arrive at a representation of the
quadratic form associated with the Hessian of the Lagrangian. In Section 8, we
carefully regroup the terms in the quadratic form associated with the Hessian of
the Lagrangian and finally obtain the desired equivalence of the two quadratic
forms.

Due to space limitations, no illustrative examples are discussed here. The
time-optimal control of a van der Pol oscillator has been discussed in Maurer
and Osmolovskii (2004) using ideas along the lines of this paper. The explicit
computations of the variations of the trajectory w.r.t. ζ on the basis of the for-
mulas given here may become quite involved and tedious. Maurer, Büskens, Kim
and Kaya (2005) propose methods to compute the Hessian of the Lagrangian
by finite differences. The efficiency and accuracy of this approach has been
demonstrated there by several examples.

2. Review of basic notations for bang–bang control prob-

lems

We review basic definitions and notations for bang-bang controls from Part 1 of
this paper (Osmolovskii and Maurer, 2005). There, the following main problem
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was considered, where x(t) ∈ IRd(x) denotes the state variable and u(t) ∈ IRd(u)

the control variable in the time interval t ∈ ∆ = [t0, t1] with the non–fixed
initial time t0 and final time t1:

Minimize J (t0, t1, x, u) = J(t0, x(t0), t1, x(t1)) (1)

subject to the constraints

ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U, (t, x(t)) ∈ Q, t0 ≤ t ≤ t1, (2)

F (t0, x(t0), t1, x(t1)) ≤ 0, K(t0, x(t0), t1, x(t1)) = 0,

(t0, x(t0), t1, x(t1)) ∈ P ,
(3)

where the control variable appears linearly in the system dynamics,

f(t, x, u) = a(t, x) +B(t, x)u . (4)

Here, F,K, a are vector functions, B is a d(x) × d(u) matrix function, P ⊂

IR2+2d(x), Q ⊂ IR1+d(x) are open sets and U ⊂ IRd(u) is a convex polyhedron.
The functions J, F,K are assumed to be twice continuously differentiable on P
and the functions a,B are twice continuously differentiable on Q. The dimen-
sions of F,K are denoted by d(F ), d(K). We shall use the abbreviations

x0 = x(t0), x1 = x(t1), p = (t0, x0, t1, x1).

Let

T̂ = { (x̂(t), û(t)) | t ∈ [t̂0, t̂1] }

be a fixed admissible pair of functions such that the control û(·) is a piecewise
constant function on the interval ∆̂ = [t̂0, t̂1]. Denote by

θ̂ = {τ̂1, . . . , τ̂s}, t̂0 < τ̂1 < . . . < τ̂s < t̂1 (5)

the finite set of all discontinuity points (jump points) of the control û(t). Then,
˙̂x(t) is a piecewise continuous function whose discontinuity points belong to

θ̂, and hence x̂(t) is a piecewise smooth function on ∆̂. Assume that θ̂ =
{τ̂1, . . . , τ̂s} is the set of switching points of the bang-bang control û(·) that
takes values in the vertex set ex(U) of the polyhedron U ,

û(t) = ui ∈ ex(U) for t ∈ (τ̂i−1, τ̂i), i = 1, . . . , s+ 1,

where τ̂0 = t̂0 and τ̂s+1 = t̂1. Put n = d(x) and

x̂(t̂0) = x̂0, τ̂ = (τ̂1, . . . , τ̂s) ∈ IRs, ζ̂ = (t̂0, t̂1, x̂0, τ̂ ) ∈ IR2+n+s. (6)

Take a small neighbourhood V of the point ζ̂ and let ζ = (t0, t1, x0, τ) ∈ V ,
where τ = (τ1, . . . , τs) satisfies t0 < τ1 < τ2 < . . . < τs < t1 . Put τ0 = t0 and
τs+1 = t1 and define the function u(t; τ) by the condition

u(t; τ) = ui for t ∈ (τi−1, τi), i = 1, . . . , s+ 1. (7)
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For uniqueness, define the values u(τi; τ), i = 1, . . . , s, by the condition of
continuity of the control from the left: u(τi; τ) = u(τi − 0; τ), i = 1, . . . , s.

Let x(t; t0, x0, τ) be the solution of the initial value problem (IVP)

ẋ = f(t, x, u(t; τ)), t ∈ [t0, t1], x(t0) = x0. (8)

For each ζ ∈ V this solution exists, if the neighborhood V of the point ζ̂ is
sufficiently small. Obviously, we have

x(t; t̂0, x̂0, τ̂ ) = x̂(t), t ∈ ∆̂, u(t; τ̂) = û(t), t ∈ ∆̂ \ θ̂.

We shall make extensive use of the variational system

V̇ = fx(t, x(t; t0, x0, τ), u(t; τ))V , V (t0) = E, (9)

where E is the identity matrix. The solution V (t) is n×nmatrix-valued function
(n = d(x)) which is absolutely continuous in ∆ = [t0, t1]. The solution of (9)
is denoted by V (t; t0, x0, τ). Along the reference trajectory x̂(t), û(t), i.e. for

ζ = ζ̂, we shall use the notation V (t) for simplicity.
Consider now the following finite dimensional optimization problem in the

space IR2 × IRn × IRs of variables ζ = (t0, t1, x0, τ):

F0(ζ) : = J(t0, x0, t1, x(t1; t0, x0, τ)) → min,
F(ζ) : = F (t0, x0, t1, x(t1; t0, x0, τ)) ≤ 0,
G(ζ) : = K(t0, x0, t1, x(t1; t0, x0, τ)) = 0,

(10)

or simply the induced problem. The Lagrange function in the induced problem
is

L(µ, ζ) = α0J(t0, x0, t1, x(t1; t0, x0, τ))

+αF (t0, x0, t1, x(t1; t0, x0, τ)) + βK(t0, x0, t1, x(t1; t0, x0, τ))

= l(µ, t0, x0, t1, x(t1; t0, x0, τ)), (11)

where l = α0J + αF + βK and µ = (α0, α, β). By definition, Λ0 is the set of
multipliers µ such that

α0 ≥ 0, α ≥ 0, α0 + |α| + |β| = 1, αF (p̂) = 0, Lζ(µ, ζ̂) = 0, (12)

where p̂ = (t̂0, x̂0, t̂1, x̂1), x̂0 = x̂(t̂0), x̂1 = x̂(t̂1) = x(t̂1; t̂0, x̂0, τ̂). Now,
let us define the corresponding set of normalized Lagrange multipliers for the
trajectory T̂ in the main problem. Denote by Λ the set of multipliers λ =
(α0, α, β, ψ, ψ0) such that

α0 ≥ 0, α ≥ 0, α0 + |α| + |β| = 1, αF (p̂) = 0,

−ψ̇(t) = ψ(t)fx(t, x̂(t), û(t)), −ψ̇0(t) = ψ(t)ft(t, x̂(t), û(t)),

ψ(t̂0) = −lx0
(µ, p̂), ψ(t̂1) = lx1

(µ, p̂),

ψ0(t̂0) = −lt0(µ, p̂), ψ0(t̂1) = lt1(µ, p̂),

ψ(t)f(t, x̂(t), û(t)) + ψ0(t) = 0 ∀ t ∈ ∆̂ \ θ̂, (13)
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where ∆̂ = [t̂0, t̂1], θ̂ = {τ̂0, . . . , τ̂s}. We shall prove that there is a one-to-one
correspondence between elements of the sets Λ and Λ0 (see Propositions 4.1
and 4.2 in Part 1) and a one-to-one correspondence between elements of the
critical cone in the main bang-bang problem for the trajectory T̂ and that in
the induced optimization problem at the point ζ̂ (see Propositions 4.3 and 4.4 in
Part 1). To this end we shall need formulas for all first order partial derivatives
of the function x(t1; t0, x0, τ).

3. First order derivatives of x(t1; t0, x0, τ) with respect to

t0, t1, x0, and τ

Let x(t; t0, x0, τ) be the solution of the IVP (8) and put

g(ζ) = g(t0, t1, x0, τ) := x(t1; t0, x0, τ). (14)

Under our assumptions, the operator g : V → IRn is well defined and C2-smooth
if the neighborhood V of the point ζ̂ is sufficiently small. In this subsection,
we shall derive the first order partial derivatives of g(t0, t1, x0, τ) with respect

to t0, t1, x0, and τ at the point ζ̂. We shall use well-known results in theory
of ODEd about differentiation of solutions to ODEs with respect to parameters
and initial values.

In the sequel, it will be convenient to drop those arguments in x(t; t0, x0, τ),
u(t, τ), V (t; t0, x0, τ) etc. that are kept fixed.

3.1. Derivative ∂x/∂x0

Let us fix τ and t0. The following result is well-known in the theory of ODEs.

Proposition 3.1 We have

∂x(t;x0)

∂x0
= V (t;x0), (15)

where the matrix-valued function V (t;x0) is the solution to the IVP (9), i.e.,

V̇ = fx(t, x(t), u(t))V, V |t=t0= E, (16)

where x(t) = x(t;x0), V̇ = ∂V
∂t

.

Consequently, we have

gx0
(ζ̂) :=

∂x(t̂1; t̂0, x̂0, τ̂ )

∂x0
= V (t̂1). (17)
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3.2. Derivatives ∂x/∂t0 and ∂x/∂t1

Fix x0 and τ and put

w(t; t0) =
∂x(t; t0)

∂t0
.

Proposition 3.2 The vector function w(t; t0) is the solution to the IVP

ẇ = fx(t, x(t), u(t))w, w |t=t0= −ẋ(t0), (18)

where x(t) = x(t; t0), ẇ = ∂w
∂t

. Therefore, we have w(t; t0) = −V (t; t0)ẋ(t0),
where the matrix-valued function V (t; t0) is the solution to the IVP (9).

Hence, we obtain

gt0(ζ̂) :=
∂x(t̂1; t̂0, x̂0, τ̂ )

∂t0
= −V (t̂1) ˙̂x(t̂0). (19)

Obviously, we have

gt1(ζ̂) :=
∂x(t̂1; t̂0, x̂0, τ̂ )

∂t1
= ˙̂x(t̂1) . (20)

3.3. Derivatives ∂x/∂τi

Fix t0 and x0. Take some i and fix τj for all j 6= i. Put

yi(t; τi) =
∂x(t; τi)

∂τi
.

and denote by ẏi the derivative of yi with respect to t.

Proposition 3.3 For t ≥ τi the function yi(t; τi) is the solution to the IVP

ẏi = fx(t, x(t; τi), u(t; τi)) y
i, yi |t=τi

= −[f ]i, (21)

where [f ]i = f(τi, x(τi; τi), u
i+1) − f(τi, x(τi; τi), u

i) is the jump of the function
f(t, x(t; τi), u(t; τi)) at the point τi. For t < τi we have yi(t; τi) = 0. Thus,
[y]i = −[f ]i, where [y]i = y(τi + 0; τi) − y(τi − 0; τi) is the jump of the function
yi(t; τi) at the point τi.

Proof. Let us sketch how to obtain the representation (21). For t ≥ τi the
trajectory x(t; τi) satisfies the integral equation

x(t; τi) = x(τi − 0; τi) +

∫ t

τi+0

f(h, x(h; τi), u(h, τi)) dh .

By differentiating this equation with respect to τi we obtain

yi(t; τi) = ẋ(τi − 0; τi) − ẋ(τi + 0; τi)

+

∫ t

τi+0

fx(h, x(h; τi), u(h, τi))y
i(h; τi) dh ,
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from which we get yi |t=τi
= −[f ]i and the variational equation in (21).

In particular, we obtain

gτi
(ζ̂) :=

∂x(t̂1; t̂0, x̂0, τ̂ )

∂τi
= yi(t̂1). (22)

4. Lagrange multipliers

Here we shall prove Propositions 4.1 and 4.2 of Part 1. Consider the Lagrangian
(11) with a multiplier µ = (α0, α, β) ∈ Λ0, where Λ0 is the set (12) of normalized

Lagrange multipliers at the point ζ̂ in the induced problem (10). Define the
absolutely continuous function ψ(t) and the function ψ0(t) by equations (42)
and (43) in Part 1 (see also (13)):

−ψ̇ = ψfx(t, x̂(t), û(t)), ψ(t1) = lx1
(µ, p̂) (23)

ψ(t)f(t, x̂(t), û(t)) + ψ0(t) = 0. (24)

We shall show that the function ψ0(t) is absolutely continuous and the collection
λ = (α0, α, β, ψ, ψ0) satisfies all conditions in (13) and hence belongs to the set
Λ. The conditions

α0 ≥ 0, α ≥ 0, α0 + |α| + |β| = 1, αF (p̂) = 0

in the definitions of Λ0 and Λ are identical. Hence, we must analyze the equa-
tions

Lζ(µ, ζ̂) = 0

in the definition of Λ0, which are equivalent to the system

Lt0(µ, ζ̂) = lt0(p̂) + lx1
(p̂)gt0(ζ̂) = 0,

Lt1(µ, ζ̂) = lt1(p̂) + lx1
(p̂)gt1(ζ̂) = 0,

Lx0
(µ, ζ̂) = lx0

(p̂) + lx1
(p̂)g′x0

(ζ̂) = 0,

Lτi
(µ, ζ̂) = lx1

(p̂)gτi
(ζ̂) = 0, i = 1, . . . , s.

Using the equality lx1
(p̂) = ψ(t̂1) and formulas (19), (20), (17), (22) for the

derivatives of g with respect to t0, t1, x0, τi, respectively, at the point ζ̂, we get

Lt0(µ, ζ̂) = lt0(p̂) − ψ(t̂1)V (t̂1) ˙̂x(t̂0) = 0, (25)

Lt1(µ, ζ̂) = lt1(p̂) + ψ(t̂1) ˙̂x(t̂1) = 0, (26)

Lx0
(µ, ζ̂) = lx0

(p̂) + ψ(t̂1)V (t̂1) = 0, (27)

Lτi
(µ, ζ̂) = ψ(t̂1)y

i(t̂1) = 0, i = 1, . . . , s. (28)
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Analysis of (25). The n× n matrix value function V (t) satisfies the equation

V̇ = fxV, V (t0) = E

with fx = fx(t, x̂(t), û(t)). Then, Ψ(t) := V −1(t) is the solution to the adjoint
equation

−Ψ̇ = Ψfx, Ψ(t0) = E.

Consequently, ψ(t̂1) = ψ(t̂0)Ψ(t̂1) = ψ(t̂0)V
−1(t̂1). Using these relations in

(25), we get

lt0(p̂) − ψ(t̂0) ˙̂x(t̂0) = 0.

By virtue of (24) we have ψ(t̂0) ˙̂x(t̂0) = −ψ0(t̂0). Hence, (25) is equivalent to
the transversality condition for ψ0 at the point t̂0 :

lt0(p̂) + ψ0(t̂0) = 0.

Analysis of (26). Since ψ(t̂1) ˙̂x(t̂1) = −ψ0(t̂1) holds, (26) is equivalent to the
transversality condition for ψ0 at the point t̂1:

lt1(p̂) − ψ0(t̂1) = 0.

Analysis of (27). Since ψ(t̂1) = ψ(t̂0)V
−1(t̂1), equality (27) is equivalent to

the transversality condition for ψ at the point t̂0:

lx0
(p̂) + ψ(t̂0) = 0.

Analysis of (28). We need the following result.

Proposition 4.1 Let the absolutely continuous function y be a solution to the
system ẏ = fxy on an interval ∆ and let the absolutely continuous function
ψ be a solution to the adjoint system −ψ̇ = ψfx on the same interval, where
fx = fx(t, x̂(t), û(t)). Then ψ(t)y(t) ≡ const on ∆.

Proof. We have d
dt

(ψy) = ψ̇y + ψẏ = −ψfxy + ψfxy = 0.

It follows from this proposition and (21) that for i = 1, . . . , s

ψ(t̂1)y
i(t̂1) = ψ(τ̂i)y

i(τ̂i + 0) = ψ(τ̂i)[y
i]i = −ψ(τ̂i)[ ˙̂x]

i = −[ψ ˙̂x]i = [ψ0]
i.

Therefore, (28) is equivalent to the conditions

[ψ0]
i = 0, i = 1, . . . , s,

which means that ψ0 is continuous at each point τ̂i, i = 1, . . . , s, and hence
absolutely continuous on ∆̂ = [t̂0, t̂1]. Moreover, it follows from 0 = [ψ0]

i =
−ψ(τ̂i)[ ˙̂x]

i that

σ(τ̂i)[û]
i = 0, (29)
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where σ(t) = ψ(t)B(t, x̂(t)) denotes the switching function.

Finally, differentiating (24) with respect to t, we get

−ψfx ˙̂x+ ψft + ψfx ˙̂x+ ψ̇0 = 0, i.e., −ψ̇0 = ψft.

Thus, we have proved that λ = (α0, α, β, ψ, ψ0) ∈ Λ.

Vice versa, if (α0, α, β, ψ) ∈ Λ, then one can show similarly that (α0, α, β) ∈
Λ0. Moreover, it is obvious that the projector in Part 1, (41), is injective on Λ0,
because ψ and ψ0 are defined uniquely by conditions (23) and (24), respectively.

5. Critical cones

Take an element ζ̄ = (t̄0, t̄1, x̄0, τ̄ ) of the critical cone K0 (see Part 1, equa-

tion (45)) at the point ζ̂ in the induced problem:

F ′

0(ζ̂)ζ̄ ≤ 0, F ′

i(ζ̂)ζ̄ ≤ 0, i ∈ I, G′(ζ̂)ζ̄ = 0,

Define ξ̄ := −τ̄ and x̄ by formulas (49) of Part 1,

ξ̄ = −τ̄ , x̄(t) = V (t)
(
x̄0 − ˙̂x(t̂0)t̄0

)
+

s∑

i=1

yi(t)τ̄i , (30)

and put z̄ = (t̄0, t̄1, ξ̄, x̄). We shall show that z̄ is an element of the critical
cone K (Part 1, (20) and (21)) for the trajectory T̂ = {(x̂(t), û(t) | t ∈ [t̂0, t̂1] }

in the main problem. Consider the first inequality F ′

0(ζ̂)ζ̄ ≤ 0 where F0(ζ) :=
J(t0, x0, t1, x(t1; t0, x0, τ)). We obviously have

F ′

0(ζ̂)ζ̄ = (Jt0(p̂) + Jx1
(p̂)gt0(ζ̂))t̄0 + (Jt1(p̂) + Jx1

(p̂)gt1(ζ̂))t̄1

+(Jx0
(p̂) + Jx1

(p̂)gx0
(ζ̂))x̄0 +

s∑

i=1

Jx1
(p̂)gτi

(ζ̂)τ̄i .

Using formulas (19), (20), (17), (22) for the derivatives of g with respect to t0,

t1, x0, τi, respectively, at the point ζ̂, we get

F ′

0(ζ̂)ζ̄ = (Jt0(p̂) − Jx1
(p̂)V (t1) ˙̂x(t̂0))t̄0 + (Jt1(p̂) + Jx1

(p̂) ˙̂x(t̂1))t̄1

+(Jx0
(p̂) + Jx1

(p̂)V (t̂1))x̄0 +
s∑

i=1

Jx1
(p̂)yi(t̂1)τ̄i .

Hence, inequality F ′

0(ζ̂)ζ̄ ≤ 0 is equivalent to inequality

Jt0(p̂)t̄0 + Jt1(p̂)t̄1 + Jx0
(p̂)x̄0

+Jx1
(p̂)

(
V (t1)(x̄0 − ˙̂x(t̂0)t̄0) +

s∑

i=1

yi(t̂1)τ̄i + ˙̂x(t̂1)t̄1

)
≤ 0.
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It follows from the definition (30) of x̄ that

x̃0 := x̄(t̂0) + ˙̂x(t̂0)t̄0 = x̄0, (31)

since V (t̂0) = E, and yi(t̂0) = 0, i = 1, . . . , s. Moreover, using the same
definition, we get

x̃1 := x̄(t̂1) + ˙̂x(t̂1)t̄1 = V (t1)(x̄0 − ˙̂x(t̂0)t̄0) +
s∑

i=1

yi(t̂1)τ̄i + ˙̂x(t̂1)t̄1. (32)

Thus, inequality F ′

0(ζ̂)ζ̄ ≤ 0 is equivalent to inequality

Jt0(p̂)t̄0 + Jt1(p̂)t̄1 + Jx0
(p̂)x̃0 + Jx1

(p̂)x̃1 ≤ 0,

or shortly,

J ′(p̂)p̃ ≤ 0,

where p̃ = (t̄0, x̃0, t̄1, x̃1); see definition (19) in Part 1.

Similarly, the inequalities F ′

i(ζ̂)ζ̄ ≤ 0 ∀ i ∈ I and the equality G′(ζ̂)ζ̄ = 0 in
the definition of K0 are equivalent to the inequalities, respectively, equality

F ′

i (p̂)p̃ ≤ 0, i ∈ I, K ′(p̂)p̃ = 0,

in the definition of K; see (20) in Part 1.
Since V̇ = fx(t, x̂(t), û(t))V and ẏi = fx(t, x̂(t), û(t))y

i, i = 1, . . . , s, it
follows from definition (30) that x̄ is a solution to the same linear system

˙̄x = fx(t, x̂(t), û(t))x̄.

Finally, recall from (21) that for each i = 1, . . . , s the function yi(t) is piece-
wise continuous with only one jump [yi]i = −[ ˙̂x]i at the point τ̂i and absolutely
continuous on each of the half-open intervals [t̂0, τ̂i) and (τ̂i, t̂1]. Moreover, the
function V (t) is absolutely continuous in [t̂0, t̂1]. Hence, x̄(t) is a piecewise
continuous function which is absolutely continuous on each interval of the set
[t̂0, t̂1] \ θ̂ and satisfies the jump conditions

[x̄]i = [ ˙̂x]iξ̄i, ξ̄i = −τ̄i, i = 1, . . . , s.

Thus, we have proved that z̄ = (t̄0, t̄1, ξ̄, x̄) is an element of the critical cone K.
Similarly, one can show that if z̄ = (t̄0, t̄1, ξ̄, x̄) ∈ K, then putting x̄0 = x̄(t̂0)
and τ̄ = −ξ̄, we obtain the element ζ̄ = (t̄0, t̄1, x̄0, τ̄) of the critical cone K0.

6. Second order derivatives of x(t1; t0, x0, τ) with respect to

t0, t1, x0, and τ

In this section we shall give formulas for all second order partial derivatives of
the functions

x(t; t0, x0, τ) and g(ζ) = g(t0, t1, x0, τ) := x(t1; t0, x0, τ)

at the point ζ̂. We are not sure that all of them are known, therefore we shall
also sketch the proofs. Here x(t; t0, x0, τ) is the solution to IVP (8). Denote by
gk(ζ) := xk(t1; t0, x0, τ) the k-th component of the function g.
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6.1. Derivatives (gk)x0x0

Let x(t;x0) be the solution to the IVP (8) with fixed t0 and τ and xk(t;x0) be
its k-th component. For k = 1, . . . , n, we define the n× n matrix

W k(t;x0) =
∂2xk(t;x0)

∂x0∂x0
with entries wkij(t;x0) =

∂2xk(t;x0)

∂x0i∂x0j
,

where x0i is the i-th component of the column-vector x0 ∈ IRn.

Proposition 6.1 The matrix-valued functions W k(t;x0), k = 1, . . . , n, satisfy
the IVPs

Ẇ k = V T fkxxV +

n∑

r=1

fkxr
W r, W k |t=t0= O, k = 1, . . . , n, (33)

where Ẇ k = ∂Wk

∂t
, O is the zero matrix, fk is the k-th component of the vector

function f , and

fkxr
=
∂fk(t, x(t;x0), u(t))

∂xr
, fkxx =

∂2fk(t, x(t;x0), u(t))

∂x∂x

are its partial derivatives at the point (t, x(t;x0)) for t ∈ [t0, t1].

Proof. For notational convenience, we use the function ϕ(t, x) := f(t, x, u(t)).

By Proposition 3.1, the matrix-valued function V (t;x0) = ∂x(t;x0)
∂x0

with entries

vij(t;x0) = ∂xi(t;x0)
∂x0j

is the solution to the IVP (9). Consequently, its entries

satisfy the equations

∂ẋk(t;x0)

∂x0i
=

∑

r

ϕkxr
(t, x(t;x0))

∂xr(t;x0)

∂x0i

∂xk(t0;x0)

∂x0i
= eki, k, i = 1, . . . , n,

where eki are the elements of the identity matrix E. By differentiating these
equations with respect to x0j , we get

∂2ẋk(t;x0)

∂x0i∂x0j
=

∑

r

(ϕkxr
(t, x(t;x0)))x0j

∂xr(t;x0)

∂x0i

+
∑

r

ϕkxr
(t, x(t;x0))

∂2xr(t;x0)

∂x0i∂x0j
, (34)

∂2xk(t0;x0)

∂x0i∂x0j
= 0, k, i, j = 1, . . . , n. (35)
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Transforming the first sum in the right hand side of equation (34), we get

∑

r

(ϕkxr
(t, x(t;x0)))x0j

∂xr(t;x0)

∂x0i

=
∑

r

∑

s

ϕkxrxs
(t, x(t;x0))

∂xs(t;x0)

∂x0j
·
∂xr(t;x0)

∂x0i

=
(
V Tϕkxx(t, x(t;x0))V

)
ij
, k, i, j = 1, . . . , n,

where (A)ij denotes the element aij of a matrix A and AT denotes the trans-
posed matrix. Thus, (34) and (35) imply (33).

It follows from Proposition 6.1 that

(gk)x0x0
(ζ̂) :=

∂2xk(t̂1; t̂0, x̂0, τ̂ )

∂x0∂x0
= W k(t̂1), k = 1, . . . , n, (36)

where the matrix-valued functions W k(t), k = 1, . . . , n, satisfy the IVPs (33)
along the reference trajectory (x̂(t), û(t)).

6.2. Mixed derivatives gx0τi

Let s = 1 for notational convenience. Fix t0 and consider the functions

V (t;x0, τ) =
∂x(t;x0, τ)

∂x0
, y(t;x0, τ) =

∂x(t;x0, τ)

∂τ
,

R(t;x0, τ) =
∂V (t;x0, τ)

∂τ
=
∂2x(t;x0, τ)

∂x0∂τ
,

V̇ (t;x0, τ) =
∂V (t;x0, τ)

∂t
, Ṙ(t;x0, τ) =

∂R(t;x0, τ)

∂t
.

Then, V , V̇ and R, Ṙ are n × n matrix-valued functions and y is a vector
function of dimension n.

Proposition 6.2 For t ≥ τ , the function R(t;x0, τ) is the solution to the IVP

Ṙ = (yT fxx)V + fxR, R(τ ;x0, τ) = −[fx]V (τ ;x0, τ), (37)

where fx and fxx are taken along the trajectory (t, x(t;x0, τ), u(t, τ)), t ∈ [t0, t1].
Here, by definition, (yT fxx) is a n× n matrix with entries

(yT fxx)k,j =

n∑

i=1

∂2fk
∂xi∂xj

yi (38)

in the k-th row and j-th column, and

[fx] = fx(τ, x(τ ;x0 , τ), u
2) − fx(τ, x(τ ;x0 , τ), u

1)

is the jump of the function fx(·, x(·;x0, τ), u(·, τ)) at the point τ . For t < τ we
have R(t;x0, τ) = 0.
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Proof. According to Proposition 3.1, the matrix-valued function V is the solution
to the system

V̇ (t;x0, τ) = fx(t, x(t;x0, τ), u(t; τ))V (t;x0, τ). (39)

By differentiating this equality with respect to τ , we get the equation

∂V̇

∂τ
=
∑

i

(fxV )′xi

∂xi
∂τ

+ fx
∂V

∂τ
,

which is equivalent to

Ṙ =
∑

i

(fxV )xi
yi + fxR. (40)

Upon defining

A =
∑

i

(fxV )xi
yi,

the element in the r-th row and s-th column of the matrix A is equal to

ars =
∑

i

((fxV )rs)xi
yi =

∑

i



∑

j

frxj
vjs




xi

yi

=
∑

i

∑

j

yifrxixj
vjs =

∑

j

(
∑

i

yifrxixj

)
vjs

=
∑

j

(
yT fxx

)
rj
vjs =

(
(yT fxx)V

)
rs
,

where vjs is the element in the j-th row and s-th column of the matrix V .
Hence, we have A = (yT fxx)V and see that equation (40) is equivalent to equa-
tion (37). The initial condition in (37), which is similar to the initial condition
(21) in Proposition 3.3, follows from (39) (see the proof of Proposition 3.3). The
condition R(t;x0, τ) = 0 for t < τ is obvious.

Proposition 6.2 yields the formula

gx0τi
(ζ̂) :=

∂2x(t̂1; t̂0, x̂0, τ̂)

∂x0∂τi
= Ri(t̂1), (41)

where the matrix-valued function Ri(t) satisfies the IVP

Ṙi(t) =
(
yi(t)T fxx(t, x̂(t), û(t))

)
V (t) + fx(t, x̂(t), û(t))R

i(t), t ∈ [τ̂i, t̂1],

Ri(τ̂i) = −[fx]
iV (τ̂i). (42)

Here, V (t) is the solution to the IVP (9), yi(t) is the solution to the IVP (21) (for
t0 = t̂0, x0 = x̂0, τ = τ̂) and [fx]

i = f(τ̂i, x̂(τ̂i), û(τ̂i+0))−f(τ̂i, x̂(τ̂i), û(τ̂i−0)),
i = 1, . . . , s.
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6.3. Derivatives gτiτi

Again, let s = 1 for simplicity. Fix t0 and x0 and put

y(t; τ) =
∂x(t; τ)

∂τ
, z(t; τ) =

∂y(t; τ)

∂τ
=
∂2x(t; τ)

∂τ2
,

ẏ(t; τ) =
∂y(t; τ)

∂t
, ż(t; τ) =

∂z(t; τ)

∂t
.

Then y, ẏ and z, ż are vector functions of dimension n.

Proposition 6.3 For t ≥ τ the function z(t; τ) is the solution to the system

ż = fxz + yT fxxy (43)

with the initial condition at the point t = τ

z(τ ; τ) + ẏ(τ + 0; τ) = −[ft] − [fx](ẋ(τ + 0; τ) + y(τ ; τ)). (44)

In (43), fx and fxx are taken along the trajectory (t, x(t; τ), u(t; τ)), t ∈ [t0, t1],
and yT fxxy is a vector with elements

(yT fxxy)k = yT fkxxy =

n∑

i,j=1

∂2fk
∂xi∂xj

yiyj, k = 1, . . . , n.

In (44), the expressions

[ft] = ft(τ, x(τ ; τ), u
2) − ft(τ, x(τ ; τ), u

1),

[fx] = fx(τ, x(τ ; τ), u
2) − fx(τ, x(τ ; τ), u

1)

are the jumps of the derivatives ft(t, x(t; τ), u(t; τ)) and fx(t, x(t; τ), u(t; τ)) at
the point τ (u2 = u(τ + 0; τ), u1 = u(τ − 0; τ)). For t < τ we have z(t; τ) = 0.

Proof. By Proposition 3.3, for t ≥ τ the function y(t; τ) is the solution to the
IVP

ẏ(t; τ) = fx(t, x(t; τ), u(t; τ))y(t; τ),

y(τ ; τ) = −(f(τ, x(τ ; τ), u2) − f(τ, x(τ ; τ), u1)).

By differentiating these equalities with respect to τ at the points τ and τ + 0,
respectively, we obtain (43) and (44), respectively. For t < τ we have y = 0 and
hence z = 0.

For the solution x(t; t0, x0, τ) to the IVP (8) with an arbitrary s, it follows
from Proposition 6.3 that

gτiτi
(ζ̂) :=

∂2x(t̂1; t̂0, x̂0, τ̂)

∂τi∂τi
= zii(t̂1), i = 1, . . . , s, (45)
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where for t ≥ τ̂i the vector function zii(t) satisfies the equation

żii(t) = fx(t, x̂(t), û(t))z
ii(t) + yi(t)T fxx(t, x̂(t), û(t))y

i(t) (46)

with the initial condition at the point t = τ̂i :

zii(τ̂i) + ẏi(τ̂i + 0) = −[ft]
i − [fx]

i( ˙̂x(τ̂i + 0) + yi(τ̂i)). (47)

Here, for t ≥ τ̂i, the function yi(t) is the solution to the IVP (21), and yi(t) = 0
for t < τ̂i, i = 1, . . . , s. Furthermore, by definition, [ft]

i = ft(τ̂i, x̂(τ̂i), û(τ̂i+0))−
ft(τ̂i, x̂(τ̂i), û(τ̂i − 0)) and [fx]

i = fx(τ̂i, x̂(τ̂i), û(τ̂i + 0))− fx(τ̂i, x̂(τ̂i), û(τ̂i − 0))
are the jumps of the derivatives ft(t, x̂(t), û(t)) and fx(t, x̂(t), û(t)) at the point
τ̂i. For t < τ̂i we put zii(t) = 0, i = 1, . . . , s.

6.4. Mixed derivatives gτiτj

For simplicity, let s = 2, τ = (τ1, τ2) and t0 < τ1 < τ2 < t1. Fix x0 and t0 and
put

yi(t; τ) =
∂x(t; τ)

∂τi
, i = 1, 2, z12(t; τ) =

∂y1(t; τ)

∂τ2
=
∂2x(t; τ)

∂τ1∂τ2
,

ẏi(t; τ) =
∂yi(t; τ)

∂t
, i = 1, 2, ż12(t; τ) =

∂z12(t; τ)

∂t
.

Then yi, ẏi, i = 1, 2, and z12, ż12 are vector functions of dimension n.

Proposition 6.4 For t ≥ τ2 the function z12(t; τ) is the solution to the system

ż12 = fxz
12 + (y1)T fxxy

2 (48)

with the initial condition at the point t = τ2 ,

z12(τ2; τ) = −[ẏ1]2. (49)

In (48), fx and fxx are taken along the trajectory (t, x(t; τ), u(t; τ)), t ∈ [t0, t1],
and (y1)T fxxy

2 is a vector with elements

((y1)T fxxy
2)k = (y1)T fkxxy

2 =

n∑

i,j=1

∂2fk
∂xi∂xj

y1
i y

2
j , k = 1, . . . , n.

In (49) we have [ẏ1]2 = [fx]
2y1(τ2; τ), where

[fx]
2 = fx(τ2, x(τ2; τ), u

3) − fx(τ2, x(τ2; τ), u
2).

For t < τ2 we have z12(t; τ) = 0.
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Proof. By Proposition 3.3, for t ≥ τ1 the function y1(t; τ) is a solution to the
equation

ẏ1(t; τ) = fx(t, x(t; τ), u(t; τ))y
1(t; τ),

where y1(t; τ) = 0 for t < τ1 . Differentiating this equation w.r.t. τ2 we see

that for t ≥ τ2 the function z12(t; τ) = ∂y1(t;τ)
∂τ2

is a solution to system (48). The
initial condition (49) is similar to the initial condition (21) in Proposition 3.3.
For t < τ2 we obviously have z12(t; τ) = 0.

For the solution x(t; t0, x0, τ) of IVP (8) and for τi < τj (i, j = 1, . . . , s), it
follows from Proposition 6.4 that

gτiτj
(ζ̂) :=

∂2x(t̂1; t̂0, x̂0, τ̂ )

∂τi∂τj
= zij(t̂1), (50)

where for t ≥ τ̂j the vector function zij(t) is the solution to the equation

żij(t) = fx(t, x̂(t), û(t))z
ij(t) + yi(t)T fxx(t, x̂(t), û(t))y

j(t) (51)

satisfying the initial condition

zij(τ̂j) = −[ẏi]j = −[fx]
jyi(τ̂j). (52)

Here, for t ≥ τ̂i, the function yi(t) is the solution to the IVP (21), while yi(t) = 0
holds for t < τ̂i, i = 1, . . . , s. By definition, [ẏi]j = ẏi(τ̂j + 0) − ẏi(τ̂j − 0) and
[fx]

j = fx(τ̂j , x̂(τ̂j), û(τ̂j + 0)) − fx(τ̂j , x̂(τ̂j), û(τ̂j − 0)) are the jumps of the
derivatives ẏi(t) and fx(t, x̂(t), û(t)), respectively, at the point τ̂j . For t < τ̂j we
put zij(t) = 0.

6.5. Derivatives gt0t0 , gt0t1 and gt1t1

Here, we fix x0 and τ and study the functions

w(t; t0) =
∂x(t; t0)

∂t0
, q(t; t0) =

∂w(t; t0)

∂t0
=
∂2x(t; t0)

∂t20
,

ẇ(t; t0) =
∂w(t; t0)

∂t
, q̇(t; t0) =

∂q(t; t0)

∂t
, ẍ(t; t0) =

∂2x(t; t0, )

∂t2
.

Proposition 6.5 The function q(t; t0) is the solution to the system

q̇ = fxq + wT fxxw, t ∈ [t0, t1] (53)

satisfying the initial condition at the point t = t0,

ẍ(t0; t0) + 2ẇ(t0; t0) + q(t0; t0) = 0. (54)
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In (53), fx and fxx are taken along the trajectory (t, x(t; t0), u(t)), t ∈ [t0, t1],
and wT fxxw is a vector with elements

(wT fxxw)k = wT fkxxw =

n∑

i,j=1

∂2fk
∂xi∂xj

wiwj , k = 1, . . . , n.

Proof. By Proposition 3.2 we have

ẇ(t; t0) = fx(t, x(t; t0))w(t; t0), ẋ(t0; t0) + w(t0; t0) = 0.

Differentiating these equalities with respect to t0, we obtain (53) and (54).

From Proposition 6.5 it follows that

gt0t0(ζ̂) :=
∂2x(t̂1; t̂0, x̂0, τ̂)

∂t20
= q(t̂1), (55)

where the vector function q(t) is the solution to the equation

q̇(t) = fx(t, x̂(t), û(t))q(t) + wT (t)fxx(t, x̂(t), û(t))w(t) (56)

satisfying the initial condition

¨̂x(t̂0) + 2ẇ(t̂0) + q(t̂0) = 0. (57)

Since w(t) = −V (t) ˙̂x(t̂0) in view of Proposition 3.2, V̇ = fxV and V (t̂0) = E,
we obtain

ẇ(t̂0) = −V̇ (t̂0) ˙̂x(t̂0) = −fx(t̂0, x̂(t̂0), û(t̂0)) ˙̂x(t̂0).

Thus, the initial condition (57) is equivalent to

¨̂x(t̂0) − 2fx(t̂0, x̂(t̂0), û(t̂0)) ˙̂x(t̂0) + q(t̂0) = 0. (58)

From (19) it follows that

gt0t1(ζ̂) :=
∂2x(t̂1; t̂0, x̂0, τ̂)

∂t0∂t1

= −V̇ (t̂1) ˙̂x(t̂0) = −fx(t̂1, x̂(t̂1), û(t̂1))V (t̂1) ˙̂x(t̂0). (59)

Formula (20) implies that

gt1t1(ζ̂) :=
∂2x(t̂1; t̂0, x̂0, τ̂)

∂t21
= ¨̂x(t̂1). (60)
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6.6. Derivatives gx0t1 and gτit1

Formula (17) implies that

gx0t1(ζ̂) :=
∂2x(t̂1; t̂0, x̂0, τ̂ )

∂x0∂t1
= V̇ (t̂1), (61)

where V (t) is the solution to the IVP (9). From (22) it follows that

gτit1(ζ̂) :=
∂2x(t̂1; t̂0, x̂0, τ̂ )

∂τi∂t1
= ẏi(t̂1), i = 1, . . . , s, (62)

where yi(t) is the solution to the IVP (21).

6.7. Derivative gx0t0

Let us fix τ and consider

V (t; t0, x0) =
∂x(t; t0, x0)

∂x0
, S(t; t0, x0) =

∂V (t; t0, x0)

∂t0
=
∂2x(t; t0, x0)

∂x0∂t0
,

V̇ (t; t0, x0) =
∂V (t; t0, x0)

∂t
, Ṡ(t; t0, x0) =

∂S(t; t0, x0)

∂t
.

Proposition 6.6 The elements sij(t; t0, x0) of the matrix S(t; t0, x0) satisfy the
system

ṡij = −eTj V
T (fi)xxV ẋ(t0) + fixSej , i, j = 1, . . . , n, (63)

and the matrix S itself satisfies the initial condition at the point t = t0,

S(t0; t0, x0) + V̇ (t0; t0, x0) = 0. (64)

In (63), the derivatives fx and fxx are taken along the trajectory (t, x(t; t0, x0),
u(t)), t ∈ [t0, t1], ej is the j-th column of the identity matrix E, and, by defini-
tion, ẋ(t0) = ẋ(t0; t0, x0).

Proof. By Proposition 3.1,

V̇ (t; t0, x0) = fx(t, x(t; t0, x0), u(t))V (t; t0, x0), V (t0; t0, x0) = E. (65)

The first equality in (65) is equivalent to

v̇ij(t; t0, x0) = fix(t, x(t; t0, x0), u(t))V (t, t0)ej , i, j = 1, . . . , n.

By differentiating these equalities with respect to t0 and using Proposition 3.2,
we obtain (63). Differentiating the second equality in (65) with respect to t0,
yields (64).
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Proposition 6.6 implies that

g′′x0t0
(ζ̂) :=

∂2x(t̂1; t̂0, x̂0, τ̂ )

∂x0∂t0
= S(t̂1), (66)

where the elements sij(t) of the matrix S(t) satisfy the system

ṡij(t) = eTj V
T (t)(fi)xx(t, x̂(t), û(t))V (t) ˙̂x(t̂0) + fix(t, x̂(t), û(t))S(t)ej ,

i, j = 1, . . . , n. (67)

Here, V (t) is the solution to the IVP (9) and the matrix S(t) itself satisfies the
initial condition at the point t = t̂0,

S(t̂0) + V̇ (t̂0) = 0. (68)

.6.8. Derivative gτit0

Consider again the case s = 1 and define

y(t; t0, τ) =
∂x(t; t0, τ)

∂τ
, r(t; t0, τ) =

∂y(t; t0, τ)

∂t0
=
∂2x(t; t0, τ)

∂t0∂τ
,

ẏ(t; t0, τ) =
∂y(t; t0, τ)

∂t
, ṙ(t; t0, τ) =

∂r(t, t0, τ)

∂t
,

ẋ(t; t0, τ) =
∂x(t; t0, τ)

∂t
, V (t; t0, τ) =

∂x(t; t0, τ)

∂x0
.

Proposition 6.7 For t ≥ τ the function r(t; t0, τ) is the solution to the IVP

ṙ = fxr − yT fxxV ẋ(t0), r |t=τ= [fx]V (τ)ẋ(t0), (69)

where yT fxxV ẋ(t0) is the vector with elements (yT fxxV ẋ(t0))i = yT fixxV ẋ(t0),
i = 1, . . . , n, V (τ) = V (τ ; t0, τ) and

[fx] = fx(τ, x(τ ; t0, τ), u
2) − fx(τ, x(τ ; t0, τ), u

1)

is the jump of the derivative fx(t, x(t; t0, τ), u(t; τ)) at the point τ . The deriva-
tives fx and fxx are taken along the trajectory (t, x(t; t0, τ), u(t; τ)) , t ∈ [τ, t1].
For t < τ we have r(t; t0, τ) = 0. Then the jump of the function r(t; t0, τ) at
the point t = τ is given by [r] = [fx]V (τ)ẋ(t0).

Proof. By Proposition 3.3 we have y(t; t0, τ) = 0 for t < τ and hence r(t; t0, τ) =
0 for t < τ . According to the same proposition, for t ≥ τ the function y(t; t0, τ)
satisfies the equation

ẏ(t; t0, τ) = fx(t, x(t; t0, τ), u(t; τ))y(t; t0, τ).

Differentiating this equation w.r.t. t0, we get

ṙ = fxr + yT fxx
∂x

∂t0
.
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According to Proposition 3.2,

∂x(t; t0, τ)

∂t0
= −V (t; t0, τ)ẋ(t0),

where ẋ(t0) = ẋ(t0; t0, τ). This yields

ṙ = fxr − yT fxxV ẋ(t0).

By Proposition 3.3, the following initial condition holds at the point t = τ :

y(τ ; t0, τ) = −(f(τ, x(τ ; t0, τ), u
2) − f(τ, x(τ ; t0, τ), u

1)).

Differentiating this condition w.r.t. t0, we get

r |t=τ= −[fx]
∂x

∂t0
|t=τ= [fx]V (τ)ẋ(t0),

where V (τ) = V (τ ; t0, τ).

It follows from Proposition 6.7 that for each i = 1, . . . , s

gτit0(ζ̂) :=
∂2x(t̂1; t̂0, x̂0, τ̂ )

∂τi∂t0
= ri(t̂1), (70)

where the function ri(t) is the solution to the system

ṙi(t) = fx(t, x̂(t), û(t))r
i(t) − (yi(t))T fxx(t, x̂(t), û(t))V (t) ˙̂x(t̂0), (71)

and satisfies the initial condition at the point t = τ̂i,

ri(τ̂i) = [fx]
iV (τ̂i) ˙̂x(t̂0). (72)

Here V (t) is the solution to the IVP (9) and yi(t) is the solution to the IVP
(21). The vector (yi)T fxxV ˙̂x(t̂0) has components

((yi)T fxxV ˙̂x(t̂0))k = (yi)T fkxxV ˙̂x(t̂0), k = 1, . . . , n.

7. Explicit representation of the quadratic form for the

induced optimization problem

Let the Lagrange multipliers

µ = (α0, α, β) ∈ Λ0, λ = (α0, α, β, ψ, ψ0) ∈ Λ

correspond to each other, i.e, let π0λ = µ hold; see Proposition 4.1 in Part 1.
For any ζ̄ = (t̄0, t̄1, x̄0, τ̄ ) ∈ IR2+n+s, let us find an explicit representation for
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the quadratic form 〈Lζζ(µ, ζ̂)ζ̄ , ζ̄〉. By definition,

〈Lζζ(µ, ζ̂)ζ̄, ζ̄〉 = 〈Lx0x0
x̄0, x̄0〉 + 2

s∑

i=1

Lx0τi
x̄0τ̄i +

s∑

i,j=1

Lτiτj
τ̄iτ̄j

+2Lx0t1 x̄0t̄1 + 2

s∑

i=1

Lτit1 τ̄i t̄1 + Lt1t1 t̄
2
1

+2Lx0t0 x̄0t̄0 + 2

s∑

i=1

Lt0τi
t̄0τ̄i + 2Lt0t1 t̄0t̄1 + Lt0t0 t̄

2
0. (73)

All derivatives in formula (73) are taken at the point (µ, ζ̂). Now we shall
calculate these derivatives. Recall the definition (11) of the Lagrangian,

L(µ, ζ) = L(µ, t0, t1, x0, τ) = l(µ, t0, x0, t1, x(t1; t0, x0, τ)) . (74)

Note that all functions V , W k, yi, zij, S, Ri, q, w, ri, introduced in Sec-
tions 3 and 6 depend now on t, t0, x0, and τ . For simplicity, we put V (t) =
V (t; t̂0, x̂0, τ̂), etc.

7.1. Derivative Lx0x0

Using Proposition 3.1, we get

(
∂

∂x0
l(t0, x0, t1, x(t1; t0, x0, τ))

)
x̄0 = lx0

(t0, x0, t1, x(t1; t0, x0, τ))x̄0

+ lx1
(t0, x0, t1, x(t1; t0, x0, τ))V (t1; t0, x0, τ)x̄0. (75)

Let us find the derivative of this function with respect to x0. We have

∂

∂x0

(
lx0

(t0, x0, t1, x(t1; t0, x0, τ))x̄0

)
= x̄T0 lx0x0

(t0, x0, t1, x(t1; t0, x0, τ))

+ x̄T0 lx0x1
(t0, x0, t1, x(t1; t0, x0, τ))V (t1; t0, x0, τ), (76)

and

∂

∂x0

(
lx1

(t0, x0, t1, x(t1; t0, x0, τ))V (t1; t0, x0, τ))x̄0

)

= x̄T0 V
T (t; t0, x0, τ)

(
lx1x0

(t0, x0, t1, x(t1; t0, x0, τ))

+lx1x1
(t0, x0, t1, x(t1; t0, x0, τ))V (t; t0, x0, τ)

)

+lx1
(t0, x0, t1, x(t1; t0, x0, τ))

∂

∂x0
V (t; t0, x0, τ)x̄0. (77)
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From (75)–(77) and the transversality condition lx1
(p̂) = ψ(t̂1) it follows that

at the point ζ̂ we have

〈Lx0x0
x̄0, x̄0〉 = x̄T0 lx0x0

(p̂)x̄0 + 2x̄T0 lx0x1
(p̂)V (t̂1)x̄0

+x̄T0 V
T (t̂1)lx1x1

(p̂)V (t̂1)x̄0

+{ψ(t1)
∂

∂x0
(V (t1; t0, x0, τ)x̄0)x̄0} |

ζ=ζ̂ . (78)

Let us calculate the last term in this formula.

Proposition 7.1 The following equality holds

ψ(t1)
∂

∂x0
(V (t1; t0, x0, τ)x̄0) x̄0 = x̄T0

(
∑

k

ψk(t1)W
k(t1; t0, x0, τ)

)
x̄0. (79)

Proof. For brevity, put ψ(t1) = ψ, V (t1; t0, x0, τ) = V , W (t1; t0, x0, τ) = W .
Then we have

ψ ∂
∂x0

(V x̄0) x̄0 = ψ ∂
∂x0

(
∂x
∂x0

x̄0

)
x̄0 = ψ ∂

∂x0

(∑
i

∂x
∂x0i

x̄0i

)
x̄0

= ψ
∑
j

∑
i

∂2x
∂x0i∂x0j

x̄0ix̄0j =
∑
k

∑
j

∑
i

ψk
∂2xk

∂x0i∂x0j
x̄0ix̄0j

=
∑
i

∑
j

(∑
k

ψk
∂2xk

∂x0i∂x0j

)
x̄0ix̄0j = x̄T0

(∑
k

ψk(t1)W
k

)
x̄0.

Proposition 7.2 For ζ = ζ̂, the following equality holds

d

dt

(
∑

k

ψkW
k

)
= V THxxV, (80)

where H = ψf(t, x, u), Hxx = Hxx(t, x̂(t), ψ(t), û(t)).

Proof. According to Proposition 6.1, we have

Ẇ k = V T fkxxV +
∑

r

fkxr
W r, k = 1. . . . , n. (81)

Using these equations together with the adjoint equation −ψ̇ = ψfx, we obtain

d
dt

(∑
k

ψkW
k

)
=
∑
k

ψ̇kW
k +

∑
k

ψkẆ
k

= −
∑
k

ψfxk
W k +

∑
k

ψk

(
V T fkxxV +

∑
r

fkxr
W r

)

= −
∑
k

ψfxk
W k +

∑
k

V T (ψkfkxx)V +
∑
k

ψk
∑
r

fkxr
W r

= −
∑
r

ψfxr
W r + V T

(∑
k

ψkfkxx

)
V +

∑
r

(∑
k

ψkfkxr

)
W r

= −
∑
r

ψfxr
W r + V T (ψfxx)V +

∑
r

ψfxr
W r = V THxxV.
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Now we can prove the following assertion.

Proposition 7.3 The following formula holds

{ψ(t1)
∂

∂x0
(V (t1; t0, x0, τ)x̄0) x̄0} |

ζ̂

=

t̂1∫

t̂0

(V (t)x̄0)
T
Hxx(t, x̂(t), û(t), ψ(t))V (t)x̄0 dt. (82)

Proof. Using Propositions 7.1 and 7.2 and the initial conditions W k(t̂0) = 0 for
k = 1. . . . , n, we get

{ψ(t1)
∂
∂x0

(V (t1; t0, x0, τ)x̄0) x̄0} |
ζ̂

= x̄T0

(∑
k

ψk(t̂1)W
k(t̂1)

)
x̄0 = x̄T0

(∑
k

ψk(t)W
k(t)

)
x̄0 |t̂1

t̂0

=
t̂1∫

t̂0

x̄T0
d
dt

(∑
k

ψkW
k

)
x̄0 dt =

t̂1∫

t̂0

x̄T0 V
THxxV x̄0 dt

=
t̂1∫

t̂0

(V x̄0)
T
Hxx (V x̄0) dt.

In view of formulas (78) and (82), we obtain

〈Lx0x0
x̄0, x̄0〉

= x̄T0 lx0x0
(p̂)x̄0 + 2x̄T0 lx0x1

(p̂)V (t̂1)x̄0 + (V (t̂1)x̄0)
T lx1x1

(p̂)V (t̂1)x̄0

+

t̂1∫

t̂0

(V (t)x̄0)
T
Hxx(t, x̂(t), ψ(t), û(t))V (t)x̄0 dt. (83)

7.2. Derivative Lx0τi

Differentiating (75) with respect to τi and using Propositions 3.3 and 6.2, we
get

∂2

∂x0∂τi
l(t0, x0, t1, x(t1; t0, x0, τ))x̄0

=
∂

∂τi
lx0

(t0, x0, t1, x(t1; t0, x0, τ))x̄0

+
∂

∂τi
(lx1

(t0, x0, t1, x(t1; t0, x0, τ))V (t1; t0, x0, τ)x̄0)

= x̄T0 lx0x1
(t0, x0, t1, x(t1; t0, x0, τ))

∂x(t1; t0, x0, τ)

∂τi



28 N.P. OSMOLOVSKII, H. MAURER

+

(
∂

∂τi
lx1

(t0, x0, t1, x(t1; t0, x0, τ))

)
V (t1; t0, x0, τ)x̄0

+lx1
(t0, x0, t1, x(t1; t0, x0, τ))

∂V (t1; t0, x0, τ)

∂τi
x̄0

= x̄T0 lx0x1
(t0, x0, t1, x(t1; t0, x0, τ))y

i(t1; t0, x0, τ)

+(V (t1; t0, x0, τ)x̄0)
T lx1x1

(t0, x0, t1, x(t1; t0, x0, τ))y
i(t1; t0, x0, τ)

+lx1
(t0, x0, t1, x(t1; t0, x0, τ))R

i(t1; t0, x0, τ))x̄0. (84)

Hence at the point ζ = ζ̂ we have

Lx0τi
x̄0τ̄i = x̄T0 lx0x1

(p̂)yi(t̂1)τ̄i +
(
V (t̂1)x̄0

)T
lx1x1

(p̂)yi(t̂1)τ̄i

+ψ(t̂1)R
i(t̂1)x̄0τ̄i .

(85)

Let us transform the last term.

Proposition 7.4 The following formula holds

ψ(t̂1)R
i(t̂1)x̄0τ̄i = −[Hx]

iV (τ̂i)x̄0τ̄i +

t̂1∫

τ̂i

〈Hxxy
iτ̄i, V x̄0〉 dt. (86)

Proof Using equation (42) and the adjoint equation −ψ̇ = ψfx, we get for
t ∈ [τ̂i, t̂1] :

d
dt

(ψRi) = ψ̇Ri + ψṘi = −ψfxR
i + ψ

(
((yi)T fxx)V + fxR

i
)

=
∑
k

ψk(y
i)T fkxxV = (yi)T

∑
k

ψkfkxxV = (yi)THxxV,

where Hxx is taken along the trajectory (t, x̂(t), ψ(t), û(t)). Consequently,

ψ(t̂1)R
i(t̂1) = ψ(τ̂i)R

i(τ̂i) +

t̂1∫

τ̂i

(yi)THxxV dt.

Using the initial condition (42) for Ri at τ̂i, we get

ψ(t̂1)R
i(t̂1) = −ψ(τ̂i)[fx]

iV (τ̂i) +

t̂1∫

τ̂i

(yi)THxxV dt.

Hence,

ψ(t̂1)R
i(t̂1)x̄0τ̄i = −[Hx]

iV (τ̂i)x̄0τ̄i +

t̂1∫

τ̂i

〈Hxxy
iτ̄i, V x̄0〉 dt.
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Formulas (85), (86) and the condition yi(t) = 0 for t < τ̂i imply the equality

Lx0τi
x̄0τ̄i = x̄T0 lx0x1

(p̂)yi(t̂1)τ̄i + (V (t̂1)x̄0)
T lx1x1

(p̂)yi(t̂1)τ̄i

−[Hx]
iV (τ̂i)x̄0τ̄i +

t̂1∫

t̂0

〈Hxxy
iτ̄i, V x̄0〉 dt.

(87)

7.3. Derivative Lτiτi

Using the notation ∂x
∂τi

= yi from Proposition 3.3, we get

∂
∂τi
l(t0, x0, t1, x(t1; t0, x0, τ))

= lx1
(t0, x0, t1, x(t1; t0, x0, τ))y

i(t1; t0, x0, τ)). (88)

Now, using the notation ∂yi

∂τi
= zii as in Proposition 6.3, we obtain

∂2

∂τ2
i

l(t0, x0, t1, x(t1; t0, x0, τ))

=

(
∂

∂τi
lx1

(t0, x0, t1, x(t1; t0, x0, τ))

)
yi(t1; t0, x0, τ)

+lx1
(t0, x0, t1, x(t1; t0, x0, τ))

∂

∂τi
yi(t1; t0, x0, τ)

= 〈lx1x1
(t0, x0, t1, x(t1; t0, x0, τ))y

i(t1; t0, x0, τ), y
i(t1; t0, x0, τ)〉

+lx1
(t0, x0, t1, x(t1; t0, x0, τ))z

ii(t1; t0, x0, τ), (89)

and thus,

Lτiτi
= ∂2

∂τ2

i

l(t0, x0, t1, x(t1; t0, x0, τ)) |ζ=ζ̂

= 〈lx1x1
(p̂)yi(t̂1), y

i(t̂1)〉 + lx1
(p̂)zii(t̂1).

(90)

Let us rewrite the last term in this formula. The transversality condition lx1
=

ψ(t̂1) implies

lx1
(p̂)zii(t̂1) = ψ(t̂1)z

ii(t̂1) =

t̂1∫

τ̂i

d

dt
(ψzii) dt+ ψ(τ̂i)z

ii(τ̂i). (91)

By formula (46), we have

żii = fxz
ii + (yi)T fxxy

i, t ≥ τi.

Using this equation together with the adjoint equation −ψ̇ = ψfx, we get

d

dt
(ψzii) = ψ̇zii + ψżii = −ψfxz

ii + ψfxz
ii +

∑

k

ψk((y
i)T fkxxy

i)

= (yi)THxxy
i, (92)
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and thus

lx1
(p̂)zii(t̂1) =

t̂1∫

τ̂i

(yi)THxxy
i dt+ ψ(τ̂i)z

ii(τ̂i). (93)

We shall transform the last term in (93) using the relations

(∆iH)(t) = H(t, x̂(t), ψ(t), ûi+) −H(t, x̂(t), ψ(t), ûi−)

Di(H) = −
d

dt
(∆iH)

∣∣
t=τi+0

= −[Ht]
i − [Hx]

i ˙̂x(τ̂i + 0) − ψ̇(τ̂i + 0)[Hψ]i, (94)

see (12) of Part 1.

Proposition 7.5 The following equality holds,

ψ(τ̂i)z
ii(τ̂i) = Di(H) − [Hx]

i[yi]i. (95)

Proof. Multiplying the initial condition (47) for zii at the point t = τ̂i by ψ(τ̂i),
we get

ψ(τ̂i)z
ii(τ̂i) + ψ(τ̂i)ẏ

i(τ̂i + 0) = −ψ(τ̂i)[ft]
i − ψ(τ̂i)[fx]i

(
˙̂x(τ̂i + 0) + y

i(τ̂i)
)
. (96)

Here, we obviously have the relations ψ(τ̂i)[ft]
i = [Ht]

i, ψ(τ̂i)[fx]
i = [Hx]

i and
yi(τ̂i) = [yi]i. Moreover, equation (21) for yi together with the adjoint equation
−ψ̇ = ψfx imply that ψẏi = ψfxy

i = −ψ̇y. Hence, in view of the initial
condition (21) for yi we find

ψ(τ̂i)ẏ
i(τ̂i + 0) = −ψ̇(τ̂i + 0)yi(τ̂i) = ψ̇(τ̂i + 0)[f ]i = ψ̇(τ̂i + 0)[Hψ]i.

Thus, (96) and (94) imply (95).

From the relations (90), (93), (95) and the equality yi(t) = 0 for t < τ̂i, it
follows that

Lτiτi
τ̄2
i = 〈lx1x1

(p̂)yi(t̂1)τ̄i, y
i(t̂1)τ̄i〉 +

t̂1∫

t̂0

(yiτ̄i)
THxxy

iτ̄i dt

+Di(H)τ̄2
i − [Hx]

i[yi]iτ̄2
i , i = 1, . . . , s. (97)

7.4. Derivative Lτiτj

Note that Lτiτj
= Lτjτi

for all i, j. Therefore,

s∑

i,j=1

Lτiτj
τ̄iτ̄j =

s∑

i=1

Lτiτi
τ̄2
i + 2

∑

i<j

Lτiτj
τ̄iτ̄j . (98)
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Let us calculate Lτiτj
for i < j. Differentiating (88) w.r.t. τj , we get

∂2

∂τi∂τj
l(t0, x0, t1, x(t1; t0, x0, τ))

=

(
∂

∂τj
lx1

(t0, x0, t1, x(t1; t0, x0, τ))

)
yi(t1; t0, x0, τ)

+lx1
(t0, x0, t1, x(t1; t0, x0, τ))

∂

∂τj
yi(t1; t0, x0, τ)

= 〈lx1x1
(t0, x0, t1, x(t1; t0, x0, τ))y

i(t1; t0, x0, τ), y
j(t1; t0, x0, τ)〉

+lx1
(t0, x0, t1, x(t1; t0, x0, τ))z

ij(t1; t0, x0, τ). (99)

Thus,

Lτiτj
=

∂2

∂τi∂τj
l(t0, x0, t1, x(t1; t0, x0, τ)) |ζ=ζ̂

= 〈lx1x1
(p̂)yi(t̂1), y

j(t̂1)〉 + lx1
(p̂)zij(t̂1). (100)

We can rewrite the last term in this formula as

lx1
(p̂)zij(t̂1) = ψ(t̂1)z

ij(t̂1) =

t̂1∫

τ̂j

d

dt
(ψzij) dt+ ψ(τ̂j)z

ij(τ̂j).

By formula (51), żii = fxz
ii + (yi)T fxxy

j for t ≥ τ̂j . Similarly to (92), we get
d
dt

(ψzij) = (yi)THxxy
j , and thus obtain

lx1
(p̂)zij(t̂1) =

t̂1∫

τ̂j

(yi)THxxy
j dt+ ψ(τ̂j)z

ij(τ̂j). (101)

Since yj(t) = 0 for t < τ̂j , we have

t̂1∫

τ̂j

(yi)THxxy
j dt =

t̂1∫

t̂0

(yi)THxxy
j dt. (102)

Using the initial condition (52) for zij at the point τ̂ j , we get

ψ(τ̂j)z
ij(τ̂j) = −ψ(τ̂j)[fx]

jyi(τ̂j) = −[Hx]
jyi(τ̂j). (103)

Formulas (100)–(103) imply the following representation for all i < j,

Lτiτj
τ̄iτ̄j = 〈lx1x1

(p̂)yi(t̂1)τ̄i, y
j(t̂1)τ̄j〉

+

t̂1∫

t̂0

(yiτ̄i)
THxxy

j τ̄j dt− [Hx]
jyi(τ̂j)τ̄iτ̄j . (104)
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7.5. Derivative Lx0t1

Using Proposition 3.1, we get

∂2

∂x0∂t1
l(t0, x0, t1, x(t1; t0, x0, τ)) =

∂

∂t1
{lx0

+ lx1
V } |t=t1

= (lx0t1 + lx0x1
ẋ+

∂lx1

∂t1
V + lx1

V̇ ) |t=t1

= (lx0t1 + lx0x1
ẋ+ (lx1t1 + lx1x1

ẋ)V + lx1
fxV ) |t=t1 .

Again, we transform the last term in this formula at the point ζ = ζ̂. Using the
adjoint equation −ψ̇ = ψfx and the transversality condition ψ(t1) = lx1

, we get

lx1
fxV |t=t̂1= ψfxV |t=t̂1= −ψ̇(t̂1)V (t̂1).

Consequently,

Lx0t1 x̄0t̄1 = lx0t1 x̄0 t̄1 + 〈lx0x1

˙̂x(t̂1)t̄1, x̄0〉

+lx1t1V (t̂1)x̄0 t̄1 + 〈lx1x1

˙̂x(t̂1)t̄1, V (t̂1)x̄0〉 − ψ̇(t̂1)V (t̂1)x̄0 t̄1 .
(105)

7.6. Derivative Lτit1

Using the notation ∂x
∂τi

= yi and Proposition 3.3, we get

∂2

∂τi∂t1
l(t0, x0, t1, x(t1; t0, x0, τ)) =

∂

∂t1
{lx1

yi} |t=t1

= {(lx1x1
ẋ+ lx1t1)y

i + lx1
ẏi} |t=t1= {(lx1x1

ẋyi + lx1t1y
i + lx1

fxy
i} |t=t1 .

We evaluate the last term in this formula at the point ζ = ζ̂ using the adjoint
equation −ψ̇ = ψfx and the transversality condition ψ(t̂1) = lx1

:

lx1
fxy

i |t=t̂1= ψfxy
i |t=t̂1= −ψ̇(t̂1)y

i(t̂1).

Therefore,

Lτit1 τ̄i t̄1 = 〈lx1x1
ẋ(t̂1)t̄1, y

i(t̂1)τ̄i〉 + lx1t1y
i(t̂1)τ̄i t̄1 − ψ̇(t̂1)y

i(t̂1)τ̄i t̄1. (106)

7.7. Derivative Lt1t1

We have

∂2

∂t21
l(t0, x0, t1, x(t1; t0, x0, τ)) =

∂

∂t1
{lt1 + lx1

ẋ} |t=t1

= {(lt1t1 + lt1x1
ẋ) + (lx1t1 + lx1x1

ẋ)ẋ+ lx1
ẍ} |t=t1

which gives

Lt1t1 = lt1t1 + 2lt1x1
ẋ(t̂1) + 〈lx1x1

ẋ(t̂1), ẋ(t̂1)〉 + ψ(t̂1)¨̂x(t̂1). (107)
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Let us transform the last term. Equation (24) in the definition of M0 is equiv-
alent to the relation ψ ˙̂x+ ψ0 = 0. Differentiating this equation with respect to
t, we get

ψ̇ ˙̂x+ ψ¨̂x+ ψ̇0 = 0. (108)

Hence, formula (107) implies the following equality

Lt1t1 t̄
2
1 = lt1t1 t̄

2
1 + 2lt1x1

˙̂x(t̂1)t̄
2
1 + 〈lx1x1

˙̂x(t̂1)t̄1, ˙̂x(t̂1)t̄1〉

−(ψ̇(t̂1) ˙̂x(t̂1) + ψ̇0(t̂1))t̄
2
1.

(109)

7.8. Derivative Lx0t0

In view of the relation ∂x
∂x0

= V , we obtain

∂2

∂x0∂t0
l(t0, x0, t1, x(t1; t0, x0, τ)) =

∂

∂t0
{lx0

+ lx1
V } |t=t1

=

{
lx0t0 + lx0x1

∂x

∂t0
+ (lx1t0 + lx1x1

∂x

∂t0
)V + lx1

∂V

∂t0

}
|t=t1 .

Now, using the transversality condition lx1
= ψ(t̂1), formula (19), and the

notation ∂V
∂t0

= S, we get

Lx0t0 = lx0t0 − lx0x1
V (t̂1) ˙̂x(t̂0) + lx1t0V (t̂1) − ˙̂x(t̂0)

TV (t̂1)
T lx1x1

V (t̂1)

+ψ(t̂1)S(t̂1).
(110)

The transformation of the last term in this formula proceeds as follows. Using
the adjoint equation for ψ and the system (67) for S, we obtain the equation

d
dt

(ψS) = ψ̇S + ψṠ = −ψfxS + ψfxS − ˙̂x(t̂0)
TV T

∑
i ψifixxV

= − ˙̂x(t̂0)
TV THxxV,

(111)

which yields

ψ(t̂1)S(t̂1) = −

t̂1∫

t̂0

˙̂x(t̂0)
TV THxxV dt+ ψ(t̂0)S(t̂0). (112)

Using now the initial condition (68) for S at the point t = t̂0 and the equation
V̇ = fxV , we get

(ψS) |t̂0= −(ψV̇ ) |t̂0= −(ψfxV ) |t̂0= (ψ̇V ) |t̂0= ψ̇(t̂0), (113)

since V (t̂0) = E. Formulas (110), (112) and (113) then imply the equality

Lx0t0 = lx0t0 − lx0x1
V (t̂1) ˙̂x(t̂0) + lx1t0V (t̂1) − ˙̂x(t̂0)

TV (t̂1)
T lx1x1

V (t̂1)

−

t̂1∫

t̂0

˙̂x(t̂0)
TV THxxV dt+ ψ̇(t̂0). (114)
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Therefore,

Lx0t0 x̄0t̄0 = lx0t0 x̄0t̄0 − 〈lx0x1
V (t̂1) ˙̂x(t̂0)t̄0, x̄0〉 + lx1t0V (t̂1)x̄0 t̄0

−〈lx1x1
V (t̂1)x̄0, V (t̂1) ˙̂x(t̂0)t̄0〉 + ψ̇(t̂0)x̄0 t̄0

−

t̂1∫

t̂0

〈HxxV x̄0, V ˙̂x(t̂0)t̄0〉 dt. (115)

7.9. Derivative Lτit0

Using the notations ∂x
∂t0

= w, ∂x
∂τi

= yi and ∂yi

∂t0
= ri, we obtain

∂2

∂τi∂t0
l(t0, x0, t1, x(t1; t0, x0, τ)) =

∂

∂t0
{lx1

yi} |t=t1

=

{
lx1t0y

i + (yi)T lx1x1

∂x

∂t0
+ lx1

∂yi

∂t0

}
|t=t1

= {lx1t0y
i + (yi)T lx1x1

w + lx1
ri} |t=t1 .

According to condition (19) we have w |t=t̂1= −V (t̂1) ˙̂x(t̂0). Using this condition

together with the transversality condition lx1
= ψ(t̂1), we find

Lτit0 = lx1t0y
i(t̂1) − (yi(t̂1))

T lx1x1
V (t̂1) ˙̂x(t̂0) + ψ(t̂1)r

i(t̂1). (116)

Let us transform the last term in this formula. Using the adjoint equation
for ψ and the system (71) for ri, we get for t ≥ τ̂i :

d

dt
(ψri) = ψ̇ri + ψṙi = −ψfxr

i + ψfxr
i − (yi)

T
∑

k

ψkfkxxV ˙̂x(t̂0)

= −(yi)
THxxV ˙̂x(t̂0).

It follows that

ψ(t̂1)r
i(t̂1) = −

t̂1∫

τ̂i

(yi)
THxxV ˙̂x(t̂0) dt+ ψ(τ̂i)r

i(t̂i). (117)

The initial condition (72) for ri at the point τ̂i then yields

ψ(τ̂i)r
i(τ̂i) = ψ(τ̂i)[fx]

iV (τ̂i) ˙̂x(t̂0) = [Hx]
iV (τ̂i) ˙̂x(t̂0). (118)

Formulas (116)–(118) and the condition yi(t) = 0 for t < τ̂i then imply the
equality

Lτit0 = lx1t0y
i(t̂1) − (yi(t̂1))

T lx1x1
V (t̂1) ˙̂x(t̂0)

+[Hx]
iV (τ̂i) ˙̂x(t̂0) −

t̂1∫

t̂0

(yi)
THxxV ˙̂x(t̂0) dt. (119)
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Hence,

Lτit0 τ̄i t̄0 = lx1t0y
i(t̂1)τ̄i t̄0 − (yi(t̂1)τ̄i)

T lx1x1
V (t̂1) ˙̂x(t̂0)t̄0

+[Hx]
iV (τ̂i) ˙̂x(t̂0)t̄0τ̄i −

t̂1∫

t̂0

(yiτ̄i)
THxxV ˙̂x(t̂0)t̄0 dt. (120)

7.10. Derivative Lt1t0

We have

∂2

∂t1∂t0
l(t0, x0, t1, x(t1; t0, x0, τ)) =

∂

∂t0
{lt1 + lx1

ẋ} |t=t1

=

{
lt1t0 + lt1x1

∂x

∂t0
+

(
∂

∂t0
lx1

)
ẋ+ lx1

∂

∂t0
ẋ

}
|t=t1 .

Using the equalities

∂

∂t0
lx1

= lx1t0 + lx1x1

∂x

∂t0
,

∂x

∂t0
= −V ẋ(t0),

we get

∂2

∂t1∂t0
l(t0, x0, t1, x(t1; t0, x0, τ))

= lt1t0 − lt1x1
V ẋ(t0) + lx1t0 ẋ(t1) − (V (t1)ẋ(t0))

T lx1x1
ẋ(t1) (121)

+ lx1

∂

∂t0
ẋ |t=t1 .

Let us calculate the last term. Differentiating the equation ẋ(t; t0, x0, τ) =
f(t, x(t; t0, x0, τ), u(t; τ)) w.r.t. t0, we get

∂

∂t0
ẋ = fx

∂

∂t0
x = −fxV ẋ(t0).

Consequently, at the point ζ = ζ̂ we obtain

lx1

∂

∂t0
ẋ |t=t̂1= {ψ

∂

∂t0
ẋ} |t=t̂1= {−ψfxV ẋ(t̂0)} |t=t̂1= ψ̇(t̂1)V (t̂1)ẋ(t0).

Using this equality in (121), we get at the point ζ = ζ̂

Lt1t0 = lt1t0 − lt1x1
V (t̂1) ˙̂x(t̂0) + lx1t0

˙̂x(t̂1)

−〈lx1x1
V (t̂1) ˙̂x(t̂0), ˙̂x(t̂1)〉 + ψ̇(t̂1)V (t̂1)ẋ(t̂0), (122)

which yields

Lt1t0 t̄1t̄0 = lt1t0 t̄1t̄0 − lt1x1
(V (t̂1) ˙̂x(t̂0)t̄0)t̄1 + lx1t0(

˙̂x(t̂1)t̄1)t̄0

−〈lx1x1
V (t̂1) ˙̂x(t̂0)t̄0, ˙̂x(t̂1)t̄1〉 + ψ̇(t̂1)(V (t̂1)ẋ(t̂0)t̄0)t̄1 . (123)
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7.11. Derivative Lt0t0

We have

∂2

∂t20
l(t0, x0, t1, x(t1; t0, x0, τ)) =

∂

∂t0

{
lt0 + lx1

∂x

∂t0

}
|t=t1

=

{
lt0t0 + lt0x1

∂x

∂t0
+

(
lx1t0 + lx1x1

∂x

∂t0

)
∂x

∂t0
+ lx1

∂2x

∂t20

}
|t=t1

=

{
lt0t0 + 2lt0x1

∂x

∂t0
+ 〈lx1x1

∂x

∂t0
,
∂x

∂t0
〉 + lx1

∂2x

∂t20

}
|t=t1

= {lt0t0 + 2lt0x1
w + 〈lx1x1

w,w〉 + lx1
q} |t=t1 , (124)

where

w =
∂x

∂t0
, q =

∂w

∂t0
=
∂2x

∂t20
.

The transversality condition lx1
= ψ(t̂1) yields

Lt0t0 = lt0t0 + 2lt0x1
w(t̂1) + 〈lx1x1

w(t̂1), w(t̂1)〉 + ψ(t̂1)q(t̂1). (125)

Let us transform the last term using the adjoint equation for ψ and the system
(56) for q :

d

dt
(ψq) = ψ̇q + ψq̇ = −ψfxq + ψfxq +

∑

k

ψk(w
T fkxxw) = wTHxxw.

Also, using the equality w = −V ˙̂x(t̂0) , we obtain

ψ(t̂1)q(t̂1) = ψ(t̂0)q(t̂0) +

∫ t̂1

t̂0

wTHxxw dt

= ψ(t̂0)q(t̂0) +

t̂1∫

t̂0

〈HxxV ˙̂x(t̂0), V ˙̂x(t̂0)〉 dt. (126)

The initial condition (57) for q then implies

ψ(t̂0)q(t̂0) = −ψ(t̂0)¨̂x(t̂0) − 2ψ(t̂0)ẇ(t̂0). (127)

From the equation ẇ = fxw (see Proposition 3.2), the adjoint equation −ψ̇ =
ψfx and the formula w = −V ˙̂x(t̂0) it follows that

−ψẇ = −ψfxw = ψ̇w = −ψ̇V ˙̂x(t̂0).

Since V (t̂0) = E, we obtain

ψ(t̂0)ẇ(t̂0) = ψ̇(t̂0) ˙̂x(t̂0). (128)
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Moreover, by formula (108) we have

−ψ¨̂x = ψ̇ ˙̂x+ ψ̇0. (129)

Formulas (127)–(129) imply

ψ(t̂0)q(t̂0) = ψ̇0(t̂0) − ψ̇(t̂0) ˙̂x(t̂0). (130)

Combining formulas (125), (19), (126) and (130), we obtain

Lt0t0 = lt0t0 − 2lt0x1
V (t̂1) ˙̂x(t̂0) + 〈lx1x1

V (t̂1) ˙̂x(t̂0), V (t̂1) ˙̂x(t̂0)〉

+ψ̇0(t̂0) − ψ̇(t̂0) ˙̂x(t̂0) +

t̂1∫

t̂0

〈HxxV (t̂1) ˙̂x(t̂0), V (t̂1) ˙̂x(t̂0)〉 dt. (131)

Thus we have found the representation

Lt0t0 t̄
2
0 = lt0t0 t̄

2
0 − 2lt0x1

V (t̂1) ˙̂x(t̂0)t̄
2
0 + 〈lx1x1

V (t̂1) ˙̂x(t̂0)t̄0, V (t̂1) ˙̂x(t̂0)t̄0〉

+ψ̇0(t̂0)t̄
2
0 − ψ̇(t̂0) ˙̂x(t̂0)t̄

2
0 +

t̂1∫

t̂0

〈HxxV (t̂1) ˙̂x(t̂0)t̄0, V (t̂1) ˙̂x(t̂0)t̄0〉 dt. (132)

7.12. Representation of the quadratic form 〈Lζζ ζ̄ , ζ̄〉

Combining all results and formulas from the preceding sections we have proved
the following theorem.

Theorem 7.1 Let the Lagrange multipliers µ = (α0, α, β) ∈ Λ0 and λ =
(α0, α, β, ψ, ψ0) ∈ Λ correspond to each other, i.e., let π0λ = µ hold; see Propo-
sition 4.1 in Part 1. Then, for any ζ̄ = (t̄0, t̄1, x̄0, τ̄) ∈ IR2+n+s, formulas (73),
(83), (87), (97), (98), (104), (105), (106), (109), (115), (120), (123), (132)
hold, where the matrix V (t) is the solution to the IVP (9) and the function yi

is the solution to the IVP (21) for each i = 1, . . . , s.

Thus we have obtained the following explicit and massive representation of
the quadratic form in the induced optimization problem:

〈Lζζ ζ̄, ζ̄〉 = 〈Lζζ(µ, ζ̂)ζ̄, ζ̄〉 (133)

= 〈Lx0x0
x̄0, x̄0〉 + 2

s∑

i=1

Lx0τi
x̄0τ̄i +

s∑

i=1

Lτiτi
τ̄

2

i + 2

s∑

i<j

Lτiτj
τ̄iτ̄j

+2Lx0t1 x̄0 t̄1 + 2

s∑

i=1

Lτit1 τ̄it̄1 + L
′′

t1t1
t̄
2

1

+2Lx0t0 x̄0 t̄0 + 2

s∑

i=1

Lt0τi
t̄0τ̄i + 2Lt0t1 t̄0t̄1 + Lt0t0 t̄

2

0



38 N.P. OSMOLOVSKII, H. MAURER

= x̄
T
0 lx0x0

x̄0 + 2x̄T
0 lx0x1

V (t̂1)x̄0 + (V (t̂1)x̄0)
T
lx1x1

V (t̂1)x̄0

+

t̂1∫

t̂0

(V x̄0)
T
HxxV x̄0 dt

+

s∑

i=1

2x̄T
0 lx0x1

y
i(t̂1)τ̄i +

s∑

i=1

2(V (t̂1)x̄0)
T
lx1x1

y
i(t̂1)τ̄i

−

s∑

i=1

2[Hx]iV (τ̂i)x̄0τ̄i +

s∑

i=1

t̂1∫

t̂0

2〈Hxxy
i
τ̄i, V x̄0〉 dt

+

s∑

i=1

〈lx1x1
y

i(t̂1)τ̄i, y
i(t̂1)τ̄i〉 +

s∑

i=1

t̂1∫

t̂0

(yi
τ̄i)

T
Hxxy

i
τ̄i dt

+

s∑

i=1

D
i(H)τ̄ 2

i −

s∑

i=1

[Hx]i[yi]iτ̄ 2

i

+
∑

i<j

2〈lx1x1
y

i(t̂1)τ̄i, y
j(t̂1)τ̄j〉

+
∑

i<j

t̂1∫

t̂0

2(yi
τ̄i)

T
Hxxy

j
τ̄j dt−

∑

i<j

2[Hx]jyi(τ̂j)τ̄iτ̄j

+2lx0t1 x̄0t̄1 + 2〈lx0x1

˙̂x(t̂1)t̄1, x̄0〉 + 2lx1t1V (t̂1)x̄0t̄1

+2〈lx1x1

˙̂x(t̂1)t̄1, V (t̂1)x̄0〉 − 2ψ̇(t̂1)V (t̂1)x̄0t̄1

+

s∑

i=1

2〈lx1x1
ẋ(t̂1)t̄1, y

i(t̂1)τ̄i〉 +

s∑

i=1

2lx1t1y
i(t̂1)τ̄it̄1

−

s∑

i=1

2ψ̇(t̂1)y
i(t̂1)τ̄it̄1

+lt1t1 t̄
2

1 + 2lt1x1
ẋ(t̂1)t̄

2

1 + 〈lx1x1
ẋ(t̂1)t̄1, ẋ(t̂1)t̄1〉

−(ψ̇(t̂1) ˙̂x(t̂1) + ψ̇0(t̂1))t̄
2

1

+2lx0t0 x̄0t̄0 − 2〈lx0x1
V (t̂1) ˙̂x(t̂0)t̄0, x̄0〉 + 2lx1t0V (t̂1)x̄0t̄0

−2〈lx1x1
V (t̂1)x̄0, V (t̂1) ˙̂x(t̂0)t̄0〉 + 2ψ̇(t̂0)x̄0t̄0

−

t̂1∫

t̂0

2〈HxxV x̄0, V ˙̂x(t̂0)t̄0〉 dt
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+

s∑

i=1

2lx1t0y
i(t̂1)τ̄it̄0 −

s∑

i=1

2(yi(t̂1)τ̄i)
T
lx1x1

V (t̂1) ˙̂x(t̂0)t̄0

+

s∑

i=1

2[Hx]iV (τ̂i) ˙̂x(t̂0)t̄0τ̄i −

s∑

i=1

t̂1∫

t̂0

2(yi
τ̄i)

T
HxxV ˙̂x(t̂0)t̄0 dt

+2lt1t0 t̄1t̄0 − 2lt1x1
(V (t̂1) ˙̂x(t̂0)t̄0)t̄1 + 2lx1t0(

˙̂x(t̂1)t̄1)t̄0

−2〈lx1x1
V (t̂1) ˙̂x(t̂0)t̄0, ˙̂x(t̂1)t̄1〉 + 2ψ̇(t̂1)(V (t̂1)ẋ(t̂0)t̄0)t̄1

+lt0t0 t̄
2

0 − 2lt0x1
V (t̂1) ˙̂x(t̂0)t̄

2

0 + 〈lx1x1
V (t̂1) ˙̂x(t̂0)t̄0, V (t̂1) ˙̂x(t̂0)t̄0〉

+ψ̇0(t̂0)t̄
2

0 − ψ̇(t̂0) ˙̂x(t̂0)t̄
2

0 +

t̂1∫

t̂0

〈HxxV ˙̂x(t̂0)t̄0, V ˙̂x(t̂0)t̄0〉 dt.

Again, we wish to emphasize that this explicit representation involves only first
order variations yi and V of the trajectories x(t; t0, x0, τ).

8. Equivalence of the quadratic forms in the main and

induced problems

In this section we shall prove Theorem 4.4 of Part 1, which is the main re-
sult of the paper. Let the Lagrange multipliers µ = (α0, α, β) ∈ Λ0 and λ =
(α0, α, β, ψ, ψ0) ∈ Λ correspond to each other, and take any ζ̄ = (t̄0, t̄1, x̄0, τ̄ ) ∈
IR2+n+s. Consider the representation (133) of the quadratic form 〈Lζζ ζ̄ , ζ̄〉,
which is far from revealing the equivalence of the quadratic forms for the main
control problem and the induced optimization problem. However, we will show
now that by a careful regrouping of the terms in (133) we shall arrive at the
desired equivalence. The quadratic form (133) contains terms of the following
types.

Type (a): Positive terms with coefficients Di(H) multiplied by with the vari-
ation of the switching time τ̄i,

a :=

s∑

i=1

Di(H)τ̄2
i . (134)

Type (b): Mixed terms with [Hx]
i connected with the variation τ̄i,

b := −

s∑

i=1

2[Hx]
iV (τ̂i)x̄0τ̄i −

s∑

i=1

[Hx]
i[yi]iτ̄2

i

−
∑

i<j

2[Hx]
jyi(τ̂j)τ̄i τ̄j +

s∑

i=1

2[Hx]
iV (τ̂i) ˙̂x(t̂0)t̄0τ̄i . (135)
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Since

∑

i<j

[Hx]
jyi(τ̂j)τ̄i τ̄j =

∑

j<i

[Hx]
iyj(τ̂i)τ̄iτ̄j =

s∑

i=1

i−1∑

j=1

[Hx]
iyj(τ̂i)τ̄iτ̄j ,

we get from (135)

b = −

s∑

i=1

2[Hx]
i

(
V (τ̂i)x̄0 +

1

2
[yi]iτ̄i

+

i−1∑

j=1

yj(τ̂i)τ̄j − V (τ̂i) ˙̂x(t̂0)t̄0

)
τ̄i . (136)

According to (30) put

x̄(t) = V (t)x̄0 +

s∑

i=1

yi(t)τ̄i − V (t) ˙̂x(t̂0)t̄0. (137)

Then we have

x̄(τ̂ i − 0) = V (τ̂i)x̄0 +
i−1∑

j=1

yj(τ̂i)τ̄j − V (τ̂i) ˙̂x(t̂0)t̄0,

since yj(τ̂i − 0) = yj(τ̂i) = 0 for j > i and yi(τi − 0) = 0. Moreover, the jump
of x̄(t) at the point τ̂i is equal to the jump of yi(t)τ̄i at the same point, i.e.
[x̄]i = [yi]iτ̄i. Therefore,

V (τ̂i)x̄0 +
1

2
[yi]iτ̄i +

i−1∑

j=1

yj(τ̂i)τ̄j − V (τ̂i) ˙̂x(t̂0)t̄0

= x̄(τ̂i − 0) +
1

2
[x̄]i =

1

2
(x̄(τ̂i − 0) + x̄(τ̂i + 0)) = x̄iav .

Thus, we get

b = −

s∑

i=1

2[Hx]
ix̄iav τ̄i . (138)

Type (c): Integral terms

c :=

t̂1∫

t̂0

(V x̄0)
T
HxxV x̄0 dt+

s∑

i=1

t̂1∫

t̂0

2〈Hxxy
iτ̄i, V x̄0〉 dt

+

s∑

i=1

t̂1∫

t̂0

(yiτ̄i)
THxxy

iτ̄i dt+
∑

i<j

t̂1∫

t̂0

2(yiτ̄i)
THxxy

j τ̄j dt
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−

t̂1∫

t̂0

2〈HxxV x̄0, V ˙̂x(t̂0)t̄0〉 dt−

s∑

i=1

t̂1∫

t̂0

2(yiτ̄i)
THxxV ˙̂x(t̂0)t̄0 dt

+

t̂1∫

t̂0

〈HxxV ˙̂x(t̂0)t̄0, V ˙̂x(t̂0)t̄0〉 dt. (139)

Obviously, this sum can be transformed to a perfect square.

c =

t̂1∫

t̂0

〈Hxx(V x̄0 +
s∑

i=1

yiτ̄i − V ˙̂x(t̂0)t̄0), V x̄0 +
s∑

i=1

yiτ̄i − V ˙̂x(t̂0)t̄0〉 dt

=

t̂1∫

t̂0

〈Hxxx̄, x̄〉 dt. (140)

Type (d): Endpoint terms. We shall divide them into several groups.

Group (d1): This group contains the terms with second order derivatives of
the endpoint Lagrangian l with respect to t0, x0, t1 :

d1 := x̄T0 lx0x0
x̄0 + 2lx0t1 x̄0 t̄1 + lt1t1 t̄

2
1 + 2lx0t0 x̄0 t̄0 + 2lt1t0 t̄1t̄0 + lt0t0 t̄

2
0. (141)

Group (d2): We collect the terms with lt0x1
:

d2 := 2lx1t0V (t̂1)x̄0 t̄0 +
s∑

i=1

2lx1t0y
i(t̂1)τ̄i t̄0

+2lx1t0
˙̂x(t̂1)t̄1 t̄0 − 2lt0x1

V (t̂1) ˙̂x(t̂0)t̄
2
0

= 2lx1t0

(
V (t̂1)x̄0 +

s∑

i=1

yi(t̂1)τ̄i + ˙̂x(t̂1)t̄1 − V (t̂1) ˙̂x(t̂0)t̄0

)
t̄0

= 2lx1t0 x̃1t̄0, (142)

where in view of (30),

x̃1 :=V (t̂1)x̄0 +

s∑

i=1

yi(t̂1)τ̄i + ˙̂x(t̂1)t̄1 − V (t̂1) ˙̂x(t̂0)t̄0 = x̄(t̂1) + ˙̂x(t̂1)t̄1 . (143)

Group (d3): Consider the terms with lx0x1
:

d3 := 2x̄T0 lx0x1
V (t̂1)x̄0 +

s∑

i=1

2x̄T0 lx0x1
yi(t̂1)τ̄i

+2〈lx0x1

˙̂x(t̂1)t̄1, x̄0〉 − 2〈lx0x1
V (t̂1) ˙̂x(t̂0)t̄0, x̄0〉
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= 2〈lx0x1
(V (t̂1)x̄0 +

s∑

i=1

yi(t̂1)τ̄i + ˙̂x(t̂1)t̄1 − V (t̂1) ˙̂x(t̂0)t̄0), x̄0〉

= 2〈lx0x1
x̃1, x̄0〉. (144)

Group (d4): This group contains all terms with lt1x1
:

d4 := 2lx1t1V (t̂1)x̄0 t̄1 +
s∑

i=1

2lx1t1y
i(t̂1)τ̄i t̄1

+2lt1x1
ẋ(t̂1)t̄

2
1 − 2lt1x1

(V (t̂1) ˙̂x(t̂0)t̄0)t̄1

= 2lx1t1(V (t̂1)x̄0 +

s∑

i=1

yi(t̂1)τ̄i + ẋ(t̂1)t̄1 − V (t̂1) ˙̂x(t̂0)t̄0)t̄1

= 2lx1t1 x̃1t̄1. (145)

Group (d5): We collect all terms containing lx1x1
:

d5 := (V (t̂1)x̄0)
T lx1x1

V (t̂1)x̄0 +

s∑

i=1

2(V (t̂1)x̄0)
T lx1x1

yi(t̂1)τ̄i

+

s∑

i=1

〈lx1x1
yi(t̂1)τ̄i, y

i(t̂1)τ̄i〉 +
∑

i<j

2〈lx1x1
yi(t̂1)τ̄i, y

j(t̂1)τ̄j〉

+2〈lx1x1

˙̂x(t̂1)t̄1, V (t̂1)x̄0〉 +

s∑

i=1

2〈lx1x1
ẋ(t̂1)t̄1, y

i(t̂1)τ̄i〉

+〈lx1x1
ẋ(t̂1)t̄1, ẋ(t̂1)t̄1〉 − 2〈lx1x1

V (t̂1)x̄0, V (t̂1) ˙̂x(t̂0)t̄0〉

−

s∑

i=1

2(yi(t̂1)τ̄i)
T lx1x1

V (t̂1) ˙̂x(t̂0)t̄0 − 2〈lx1x1
V (t̂1) ˙̂x(t̂0)t̄0, ˙̂x(t̂1)t̄1〉

+〈lx1x1
V (t̂1) ˙̂x(t̂0)t̄0, V (t̂1) ˙̂x(t̂0)t̄0〉. (146)

One can easily check that this sum can be transformed to the perfect square

d5 := 〈lx1x1
(V (t̂1)x̄0 +

s∑

i=1

yi(t̂1)τ̄i + ẋ(t̂1)t̄1

−V (t̂1) ˙̂x(t̂0)t̄0), V (t̂1)x̄0 +

s∑

i=1

yi(t̂1)τ̄i + ẋ(t̂1)t̄1 − V (t̂1) ˙̂x(t̂0)t̄0〉

= 〈lx1x1
x̃1, x̃1〉. (147)

Group (d6): Terms with ψ̇(t̂0) and ψ̇0(t̂0) :

d6 := 2ψ̇(t̂0)x̄0 t̄0 + (ψ̇0(t̂0) − ψ̇(t̂0) ˙̂x(t̂0))t̄
2
0. (148)
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Group (d7): Terms with ψ̇(t̂1) and ψ̇0(t̂1) :

d7 := −2ψ̇(t̂1)V (t̂1)x̄0 t̄1 −

s∑

i=1

2ψ̇(t̂1)y
i(t̂1)τ̄i t̄1

−(ψ̇(t̂1) ˙̂x(t̂1) + ψ̇0(t̂1))t̄
2
1 + 2ψ̇(t̂1)(V (t̂1)ẋ(t̂0)t̄0)t̄1

= −2ψ̇(t̂1)

(
V (t̂1)x̄0 +

s∑

i=1

yi(t̂1)τ̄i − V (t̂1)ẋ(t̂0)t̄0)

)
t̄1

−(ψ̇(t̂1) ˙̂x(t̂1) + ψ̇0(t̂1))t̄
2
1

= −2ψ̇(t̂1)x̄(t̂1)t̄1 − (ψ̇(t̂1) ˙̂x(t̂1) + ψ̇0(t̂1))t̄
2
1. (149)

Using the equality x̃1 = x̄(t̂1) + ˙̂x(t̂1)t̄1 in (149), we obtain

d7 = −2ψ̇(t̂1)x̃1 t̄1 − (ψ̇0(t̂1) − ψ̇(t̂1) ˙̂x(t̂1))t̄
2
1. (150)

This completes the whole list of all terms in the quadratic form associated
with the induced problem. Hence, we have

〈Lζζ ζ̄ , ζ̄〉 = a+ b+ c+ d, d =

7∑

k=1

dk .

We thus have found the following representation of this quadratic form, see
formulas (134) for a, (138) for b, and (140) for c:

〈Lζζ ζ̄ , ζ̄〉 =
∑s

i=1D
i(H)τ̄2

i −
s∑
i=1

2[Hx]
ix̄iav τ̄i +

t̂1∫

t̂0

〈Hxxx̄, x̄〉 + d, (151)

where according to formulas (141), (142), (144), (145), (147), (148), (150) for
d1, . . . , d7, respectively,

d = 〈lx0x0
x̄0, x̄0〉 + 2lx0t1 x̄0t̄1 + lt1t1 t̄

2
1

+2lx0t0 x̄0 t̄0 + 2lt1t0 t̄1t̄0 + lt0t0 t̄
2
0 + 2lx1t0 x̃1 t̄0

+2〈lx0x1
x̃1, x̄0〉 + 2lx1t1 x̃1 t̄1 + 〈lx1x1

x̃1, x̃1〉

+2ψ̇(t̂0)x̄0 t̄0 + (ψ̇0(t̂0) − ψ̇(t̂0) ˙̂x(t̂0))t̄
2
0

−2ψ̇(t̂1)x̃1 t̄1 − (ψ̇0(t̂1) − ψ̇(t̂1) ˙̂x(t̂1))t̄
2
1. (152)

In (151) and (152) the function x̄(t) and the vector x̃1 are defined by (137) and
(143), respectively. Note that in (152),

〈lx0x0
x̄0, x̄0〉 + 2lx0t1 x̄0 t̄1 + lt1t1 t̄

2
1 + 2lx0t0 x̄0t̄0 + 2lt1t0 t̄1t̄0

+lt0t0 t̄
2
0 + 2lx1t0 x̃1t̄0 + 2〈lx0x1

x̃1, x̄0〉 + 2lx1t1 x̃1 t̄1 + 〈lx1x1
x̃1, x̃1〉

= 〈lppp̃, p̃〉, (153)

where, by definition,

p̃ = (t̄0, x̄0, t̄1, x̃1). (154)
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Finally, we get

d = 〈lppp̃, p̃〉 + 2ψ̇(t̂0)x̄0 t̄0 + (ψ̇0(t̂0) − ψ̇(t̂0) ˙̂x(t̂0))t̄
2
0

−2ψ̇(t̂1)x̃1 t̄1 − (ψ̇0(t̂1) − ψ̇(t̂1) ˙̂x(t̂1))t̄
2
1. (155)

We thus have proved the following result.

Theorem 8.1 Let the Lagrange multipliers µ = (α0, α, β) ∈ Λ0 and λ =
(α0, α, β, ψ, ψ0) ∈ Λ correspond to each other, i.e., let π0λ = µ hold. Then
for any ζ̄ = (t̄0, t̄1, x̄0, τ̄ ) ∈ IR2+n+s the quadratic form 〈Lζζ ζ̄, ζ̄〉 has the rep-
resentation (151)–(155), where the vector function x̄(t) and the vector x̃1 are
defined by (137) and (143). The matrix-valued function V (t) is the solution to
the IVP (9) and, for each i = 1, . . . , s, the vector function yi is the solution to
the IVP (21).

Finally, we have arrived at the main result of Part 2 i.e., the present paper.
Then, Theorem 4.4 of Part 1, which is the main result in both parts immediately
follows from this theorem.

Theorem 8.2 Let λ = (α0, α, β, ψ, ψ0) ∈ Λ and ζ̄ = (t̄0, t̄1, x̄0, τ̄) ∈ IR2+n+s.
Put µ = (α0, α, β), i.e., let π0λ = µ ∈ Λ0 hold; see Proposition 4.1 in Part 1.
Define the function x̄(t) by formula (137). Put ξ̄ = −τ̄ and z̄ = (t̄0, t̄1, ξ̄, x̄),
which means π1z̄ = ζ̄; see Propositions 4.3 and 4.4 in Part 1. Then the following
equality holds,

〈Lζζ(µ, ζ̂)ζ̄ , ζ̄〉 = Ω(λ, z̄), (156)

where Ω(λ, z̄) is defined by formulas (22), (23) in Part 1.

Proof. By Theorem 8.1, the equalities (151)–(155) hold. In view of the definition
(19) in Part 1 put

x̃0 = x̄(t0) + t̄0 ˙̂x(t̂0) =

(
V (t̂0)x̄0 +

s∑

i=1

yi(t̂0)τ̄i − V (t̂0) ˙̂x(t̂0)t̄0

)
+ t̄0 ˙̂x(t̂0).

Since yi(t̂0) = 0 for i = 1, . . . , s and V (t̂0) = E, it follows that x̃0 = x̄(t0).
Consequently, the vector p̃ which was defined in Part 1, (19) as (t̄0, x̃0, t̄1, x̃1)
coincides with the vector p̃, defined in this subsection by formula (154). Hence,
the endpoint quadratic form d in (155) and the endpoint quadratic form 〈Ap̃, p̃〉
in (23) of Part 1 take equal values, d = 〈Ap̃, p̃〉. Moreover, the integral terms
t̂1∫

t̂0

〈Hxxx̄, x̄〉 dt in the representation (151) of the form 〈Lζζ ζ̄ , ζ̄〉 and those in the

representation (22), Part 1, of the form Ω coincide, and

s∑

i=1

(
Di(H)ξ2i + 2[Hx]

ix̄iavξi
)

=

s∑

i=1

Di(H)τ̄2
i −

s∑

i=1

2[Hx]
ix̄iav τ̄i,
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because ξ̄i = −τ̄i, i = 1, . . . , s. Thus, the representation (151) of the form
〈Lζζ ζ̄, ζ̄〉 implies the equality (156) of both forms.

Theorem 4.4 of Part 1, which is the main result of both parts, then follows
from Theorem 8.2.
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