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Abstract: In Part 1 of this paper (Osmolovskii and Maurer,
2005), we have summarized the main results on the equivalence of
two quadratic forms from which second order necessary and sufficient
conditions can be derived for optimal bang-bang control problems.
Here, in Part 2, we give detailed proofs and elaborate explicit rela-
tions between Lagrange multipliers and elements of the critical cones
in both approaches. The main analysis concerns the derivation of
formulas for the first and second order derivatives of trajectories with
respect to variations of switching times, initial and final time and ini-
tial point. This leads to explicit representations of the second order
derivatives of the Lagrangian for the induced optimization problem.
Based on a suitable transformation, we obtain the elements of the
Hessian of the Lagrangian in a form which involves only first order
variations of the nominal trajectory. Finally, a careful regrouping
of all terms allows us to find the desired equivalence of the two
quadratic forms.
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1. Introduction

Second order necessary and sufficient conditions for optimal bang-bang controls
are obtained from the property that a certain quadratic form be positive (semi)-
definite on a finite-dimensional critical cone. Two different quadratic forms have
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been developed by Agrachev, Stefani and Zezza (2002) and Osmolovskii (1988,
2004); see also Milyutin and Osmolovskii (1998), Part 2, Chapter, Section 12.
In Part 1 of this paper (Osmolovskii and Maurer, 2005) we have summarized the
main results on the equivalence of both forms and have derived explicit relations
between the corresponding Lagrange multipliers and elements of the critical
cones. The main purpose of the present Part 2 is to give detailed proofs, which
make extensive use of explicit formulas for first and second order derivatives of
the trajectory with respect to variations of the optimization variable comprising
the switching times, the free initial and final times and the free initial state.

In Section 2, some basic facts from Part 1 (Osmolovskii and Maurer, 2005)
are summarized for the convenience of the reader. In particular, we formu-
late the induced optimization problem with optimization variable (, which is
associated with the bang-bang control problem. In Section 3, we give formu-
las for the first order derivatives of trajectories with respect to (, which follow
from elementary properties of ODEs. The formulas are used in Section 4 to es-
tablish the explicit relations between the multipliers of Pontryagin’s minimum
principle and the Lagrange multipliers of the induced optimization problem.
Elements of the corresponding critical cones are related in Section 5. Second
order order derivatives of trajectories with respect to ( are elaborated in Sec-
tion 6. In our opinion, the resulting formulas seem to be mostly unknown in the
literature. These formulas provide the main technical tools to obtain explicit
representations of the second order derivatives of the Lagrangian (Section 7).
The remarkable fact to be noted here is that using a suitable transformation
these derivatives are seen to involve only first order variations of the trajec-
tory w.r.t (. This property facilitates considerably the numerical computation
of the Hessian of the Lagrangian. Thus, we arrive at a representation of the
quadratic form associated with the Hessian of the Lagrangian. In Section 8, we
carefully regroup the terms in the quadratic form associated with the Hessian of
the Lagrangian and finally obtain the desired equivalence of the two quadratic
forms.

Due to space limitations, no illustrative examples are discussed here. The
time-optimal control of a van der Pol oscillator has been discussed in Maurer
and Osmolovskii (2004) using ideas along the lines of this paper. The explicit
computations of the variations of the trajectory w.r.t. ¢ on the basis of the for-
mulas given here may become quite involved and tedious. Maurer, Biliskens, Kim
and Kaya (2005) propose methods to compute the Hessian of the Lagrangian
by finite differences. The efficiency and accuracy of this approach has been
demonstrated there by several examples.

2. Review of basic notations for bang—bang control prob-
lems

We review basic definitions and notations for bang-bang controls from Part 1 of
this paper (Osmolovskii and Maurer, 2005). There, the following main problem
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was considered, where z(t) € IRY®) denotes the state variable and u(t) € R
the control variable in the time interval ¢ € A = [to,t1] with the non-fixed
initial time ¢¢ and final time ¢1:

Minimize j(to,tl,I,u) = J(to,x(to),tl,I(tl)) (1)
subject to the constraints
o(t) = f(t,x(t),u(t)), u®)eU, (tz(t)eQ to<t<t, (2)

F(to,l‘(to),tl,l‘(tl)) < Oa K(to,l’(to),tl,lﬂ(tl)) = 07 (3)
(to,x(to),tl,x(tl)) S 7),

where the control variable appears linearly in the system dynamics,
ft,z,u) = a(t,z) + B(t, z)u. (4)

Here, F, K,a are vector functions, B is a d(z) x d(u) matrix function, P C
R>+24@) 9 c R'™®) are open sets and U ¢ R is a convex polyhedron.
The functions J, F, K are assumed to be twice continuously differentiable on P
and the functions a, B are twice continuously differentiable on Q. The dimen-
sions of F, K are denoted by d(F),d(K). We shall use the abbreviations

To = l‘(to), 1 = m(tl)a p= (to,l’o,tl,ﬂ?1).
Let
T = {(@@),a(1)) | t € [fo, £1]}

be a fixed admissible pair of functions such that the control 4(-) is a piecewise
constant function on the interval A = [tg, ¢1]. Denote by

={f,.... 7}, fo<hi<..<f<h (5)

the finite set of all discontinuity points (jump points) of the control @(t). Then,
j:(t) is a piecewise continuous function whose discontinuity points belong to
6, and hence Z(t) is a piecewise smooth function on A. Assume that 6 =
{71,...,7s} is the set of switching points of the bang-bang control (-) that
takes values in the vertex set ex(U) of the polyhedron U,

a(t) = u' € ex(U) for t € (fi_1,71), i=1,...,5+1,
where 7y =ty and 75,1 = ;. Put n = d(z) and

#(fo) =0, 7= (F1,...,7) €ER®, (= (fo,b1,20,7) € R*T"T. (6)

Take a small neighbourhood V of the point é and let ¢ = (to,t1,20,7) € V,
where 7 = (11,...,7,) satisfies tg < 71 < T2 < ... < Ty < t1 . Put 19 =t and
Ts+1 = t1 and define the function u(¢; 7) by the condition

u(t;r) =u'fort € (r,_1,7), i=1,...,5+1. (7)



8 N.P. OSMOLOVSKII, H. MAURER

For uniqueness, define the values u(7;7), ¢ = 1,...,s, by the condition of
continuity of the control from the left: wu(r;7) =u(r; —0;7),i=1,...,s.
Let x(t; to, xo, T) be the solution of the initial value problem (IVP)
&= f(t,z,u(t;7)), tE [to,t1], x(to) = xo. (8)

For each ¢ € V this solution exists, if the neighborhood V of the point 6 is
sufficiently small. Obviously, we have

a(t;fo, 20,7) = &(t), te€A,  wut;7)=a(t), teA\d.
We shall make extensive use of the variational system
V = fu(t,z(t;to, z0,7),u(t; 7))V, V(ty) =E, 9)

where E is the identity matrix. The solution V' (¢) is nxn matrix-valued function
(n = d(x)) which is absolutely continuous in A = [tg,t;]. The solution of (9)
is denoted by V(¢;to,x0,7). Along the reference trajectory Z(t),4(t), i.e. for
¢ = ¢, we shall use the notation V(t) for simplicity.

Consider now the following finite dimensional optimization problem in the
space IR? x IR x IR® of variables ¢ = (to, t1, xg, 7):

Fo(¢): = J(to,wo,t1,(t1;t0, 70, 7)) — min,
F(C): = Fl(to,xo,t1,x(t1;:to, 0, 7)) <0, (10)
g(g) = K(t07x0;tlax(tl;t05$057—)) = 0)

or simply the induced problem. The Lagrange function in the induced problem
is

L(p,¢) = aoJ(to, wo,t1,x(t1;to, 0, 7))
+aF(to, wo, t1, x(t1; to, xo, 7)) + BK (to, xo, t1, 2(t1; to, 20, 7))
= IU(p,to, o, t1,z(t1;t0, 0, 7)), (11)

where | = apJ + oF + K and p = (g, o, 3). By definition, Ag is the set of
multipliers p such that

a2 0, a =20, ag+[af +|B] =1, aF(p) =0, L¢(p,¢) =0, (12)

where ]5 = (fo,jo,fl,jl), .fo = j(f@), .fl = f(fl) = .ﬁ(fl;fo,.fo,f'). NOW7
let us define the corresponding set of normalized Lagrange multipliers for the
trajectory 7 in the main problem. Denote by A the set of multipliers A =
(Oéo, Q, 67 l/}7 l/fo) such that

a0 >0, a>0, a+|o/+|8=1, aF(p) =0,

7w(t) = w(t)fm(ta i'(t)a ﬁ(t))a *l/fo(t) = w(t)ft(tai(t)vﬁ(t))a

l/f(tO) - 7l930(uaﬁ)7 l/f(h) = lz1(,u'7ﬁ)a

Yo(to) = —le (1 0),  Yo(ts) = i, (1, D),

V() f(t 2(t),a(t)) +¢o(t) =0 Ve A\, (13)
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where A = [to, 1], 6 = {70,...,7s}. We shall prove that there is a one-to-one
correspondence between elements of the sets A and Ay (see Propositions 4.1
and 4.2 in Part 1) and a one-to-one correspondence between elements of the
critical cone in the main bang-bang problem for the trajectory 7 and that in
the induced optimization problem at the point 6 (see Propositions 4.3 and 4.4 in
Part 1). To this end we shall need formulas for all first order partial derivatives
of the function x(t1;to, xo, 7).

3. First order derivatives of z(t;;ty, z,7) with respect to
to, tl, T, and 7

Let x(t; to, xo, 7) be the solution of the IVP (8) and put

9(¢) = g(to, t1, 0, 7) := x(t1;t0, T0, T)- (14)

Under our assumptions, the operator g : V — IR" is well defined and C?-smooth
if the neighborhood V of the point (f is sufficiently small. In this subsection,
we shall derive the first order partial derivatives of g(to,t1, 2o, 7) with respect
to tg, t1, xp, and 7 at the point (f . We shall use well-known results in theory
of ODEd about differentiation of solutions to ODEs with respect to parameters
and initial values.

In the sequel, it will be convenient to drop those arguments in z(t; to, zo, 7),
u(t, ), V(t;to, zo, ) etc. that are kept fixed.

3.1. Derivative 0z/0xg
Let us fix 7 and ¢y. The following result is well-known in the theory of ODEs.
PROPOSITION 3.1 We have

0x(t; xo)

D =V (t;x0), (15)

where the matriz-valued function V (t;xo) is the solution to the IVP (9), i.e.,
V= fx(tvx(t)vu(t))vv 4 |t=to: E, (16)
where x(t) = x(t;x), V = .

Consequently, we have

(@) = P TOT) g )
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3.2. Derivatives 0x/0ty and dz/0t;

Fix ¢ and 7 and put

0x(t; to)
t;tg) = ——.
w( ) 0) 6t0
PROPOSITION 3.2 The vector function w(t;tg) is the solution to the IVP
W= fu(t, z(t), u(t))w, W |t=to= —&(to), (18)

where z(t) = x(t;tg), i = 22. Therefore, we have w(t;ty) = —V (t;to)d(to),
where the matriz-valued function V (t;to) is the solution to the IVP (9).

Hence, we obtain

(€)= T ()i ) (19

Obviously, we have

0§ = HHOGET) < i (20)

3.3. Derivatives 0x/07;

Fix ¢ty and z. Take some ¢ and fix 7; for all j # 7. Put

i ox(t;r;
y'(tmi) = 727_. )

and denote by ¢ the derivative of 3* with respect to t.

PROPOSITION 3.3 Fort > 7; the function y'(t;7;) is the solution to the IVP
g = falt,x(tim) ult )y’ Y le=r=—Lf1', (21)

where [f]* = f(mi, x(7i;7), u'™Y) — f(7i,2(75;73), u?) is the jump of the function
ft,x(t;7),u(t; ;) at the point 7;. For t < 7; we have y'(t;7;) = 0. Thus,

[y]* = —[f]%, where [y]* = y(7; + 0;7;) — y(7i — 0;7;) is the jump of the function
y'(t; ;) at the point T;.

Proof. Let us sketch how to obtain the representation (21). For ¢ > 7; the
trajectory x(t; ;) satisfies the integral equation
t
z(t; i) = x(r — 0;73) + f(h,x(h; 1), u(h, 7i)) dh.
7;+0

By differentiating this equation with respect to 7; we obtain
y'(tim) = d(r—0;m) —i(m 4 0;7)
t

+ fa:(haz(haT’L)au(haTz))yl(h,Tz)dha
7;+0



Second order optimality conditions for bang—bang control problems, 2 11

from which we get y° |—.,= —[f]® and the variational equation in (21). [ ]

In particular, we obtain

81(51;1?0,:%0,%) RPN

9:,(0) o= ST i) (22

4. Lagrange multipliers

Here we shall prove Propositions 4.1 and 4.2 of Part 1. Consider the Lagrangian
(11) with a multiplier u = (ag, o, 3) € Ag, where Ag is the set (12) of normalized
Lagrange multipliers at the point (A in the induced problem (10). Define the
absolutely continuous function v (t) and the function ¥y(t) by equations (42)
and (43) in Part 1 (see also (13)):

71/) = Q/sz(t,i‘(t),ﬁ(t)), l/f(h) = lan (Naﬁ) (23)
() f(E,£(t), a(t)) + tho(t) = 0. (24)

We shall show that the function 1) (t) is absolutely continuous and the collection
A = (o, o, 8,1, 1) satisfies all conditions in (13) and hence belongs to the set
A. The conditions

ag 20, >0, ap+|a| +[B] =1, aF(p) =0

in the definitions of Ay and A are identical. Hence, we must analyze the equa-
tions

Le(p,$) =0

in the definition of Ay, which are equivalent to the system

Using the equality 1., (p) = ¢(#;) and formulas (19), (20), (17), (22) for the
derivatives of g with respect to tg, t1, xo, 7;, respectively, at the point (, we get

Lty (1,C) = Ly (p) — (£1)V (1) (F0) = 0, (25)
Lt, (1,€) = 1, (p) + ¥(f1)2 (1) = 0, (26)
Ly (1:€) = Loy (0) + (01)V (B1) = 0, (27)
L(1,6) = v(f)y'(f1) =0, i=1,....s (28)
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Analysis of (25). The n x n matrix value function V' (t) satisfies the equation
V=FfV, V()=E

with f, = fu(¢t,2(t),a(t)). Then, ¥(t) := V~1(t) is the solution to the adjoint
equation

7\:'[1:\11‘/:9:7 U(to) = E.
Consequently, ¢(t1) = (o)W (t1) = (to)V " (f1). Using these relations in
(25), we get

Lo (P) — t(f0)(fo) = 0.
By virtue of (24) we have 9 (fo)Z(fo) = —o(fo). Hence, (25) is equivalent to
the transversality condition for v at the point g :

Lty (D) + o (to) = 0.

Analysis of (26). Since 9(f1)z(f1) = —tbo(f1) holds, (26) is equivalent to the

transversality condition for v at the point ¢;:
le, (P) = wo(t1) = 0.

Analysis of (27). Since ¥(1) = ¥(to)V ~1(f1), equality (27) is equivalent to

the transversality condition for 1) at the point tq:
Zao(ﬁ) + ¢(fo) =0.
Analysis of (28). We need the following result.

PROPOSITION 4.1 Let the absolutely continuous function y be a solution to the
system § = foy on an interval A and let the absolutely continuous function
¥ be a solution to the adjoint system — = 1 f, on the same interval, where
fo = fo(t,2(t),4(t)). Then ¥(t)y(t) = const on A.

Proof. We have 4t (ty) = by + 9§ = —fay + ¥ fay = 0. m
It follows from this proposition and (21) that for i =1,...,s
W)y (f) = ¥(F)y' (7 + 0) = ¥(7) ') = —(R)[2)’ = —[wi]’ = [o]"
Therefore, (28) is equivalent to the conditions
o] =0, i=1,...,s,

which means that iy is continuous at each point 7;, ¢ = 1,...,s, and hence
absolutely continuous on A = [fo,¢1]. Moreover, it follows from 0 = [th]* =
—(7;)[Z]* that

o(#)[a]" =0, (29)
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where o(t) = ¢¥(t)B(t, £(t)) denotes the switching function.
Finally, differentiating (24) with respect to t, we get
—Vfol + U fi + Vel + 0 =0, Pe, —o=0f:

Thus, we have proved that A = («g, a, 8,9, 1) € A.

Vice versa, if (g, o, 3,1) € A, then one can show similarly that (g, a, 8) €
Ag. Moreover, it is obvious that the projector in Part 1, (41), is injective on Ay,
because ¢ and vy are defined uniquely by conditions (23) and (24), respectively.

5. Critical cones

Take an element ¢ = (fo,%1,Zo,7) of the critical cone Ky (see Part 1, equa-
tion (45)) at the point ¢ in the induced problem:

FOC<0, FOC<0iel, G(EC=0,
Define £ := —7 and Z by formulas (49) of Part 1,

§=-7 w0 =V (70— i) + Yy, (30)

and put z = (fo,f1,&,7). We shall show that Z is an element of the critical
cone K (Part 1, (20) and (21)) for the trajectory 7 = {(&(t),a(t) | t € [fo,#1] }
in the main problem. Consider the first inequality F4(¢)¢ < 0 where Fo(¢) :=
J(to, xo,t1,x(t1;t0, 2o, 7)). We obviously have

FoOC = (Juo (D) + T, (B)910 ()0 + (Jtl(A) + o1 ()90 ()

+(Jao (D) + Sy (D) G0 (€ x0+zjm1 gné

Using formulas (19), (20), (17), (22) for the derivatives of g with respect to to,
t1, xo, Ti, respectively, at the point (, we get

FoOC = (Ju) = Jor D)V (1)@ (to))to+(«ft1( )+Jx1(A);(fl))fl

+(J ()+J11 tl 1'0+ZJ931 . Ti -

Hence, inequality F (@ )¢ < 0 is equivalent to inequality
)t

Jto( )to + Jtl( ( )1'0

+Jz, (]5) <V(t1)(i‘0 — i’(fo)t_o) + Zy’(fl)ﬂ + Ci'(l%)tl) <O0.

i=1
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It follows from the definition (30) of Z that

To = j(fo) + .f(fo)fo = Zg, (31)
since V(tg) = E, and y'(fy) = 0, i = 1,...,s. Moreover, using the same
definition, we get

1= x(h) + 2(f)f = V(t)(@0 — 2(0)fo) + >y (B)7 + 2(E)F. (32)

i=1

Thus, inequality fé(é )¢ < 0 is equivalent to inequality

Jto (ﬁ)f@ + Jtl (ﬁ)fl + ‘]ﬂﬂo (]5)5'50 + le (ﬁ)i'l <0,
or shortly,

J'(0)p <0,
where p = (fo, To, {1, %1); see definition (19) in Part 1.

Similarly, the inequalities F/(¢)¢ < 0 Vi € I and the equality G’(¢)¢ = 0 in
the definition of Iy are equivalent to the inequalities, respectively, equality
in the definition of K; see (20) in Part 1.

Since V' = fo(t,2(t),a(t))V and g° = fo(t,2(t),a(t))y’, i = 1,...,s, it
follows from definition (30) that Z is a solution to the same linear system

T = fu(t,&(t),a(t))z.

Finally, recall from (21) that for each i =1,..., s the function y’(t) is piece-
wise continuous with only one jump [y*]" = —[Z]" at the point 7; and absolutely
continuous on each of the half-open intervals [fo,7;) and (7;,%;]. Moreover, the
function V(¢) is absolutely continuous in [f,#;]. Hence, Z(t) is a piecewise

continuous function which is absolutely continuous on each interval of the set
[to, t1] \ @ and satisfies the jump conditions

[E]Z: [j]zgza gi:*’]_—ia Z:].,,S
Thus, we have proved that z = (fo,t1,&,7) is an element of the critical cone K.
Similarly, one can show that if z = (to,#1,£,%) € K, then putting Zo = Z(to)
and 7 = —&, we obtain the element ¢ = (fg, 1, Zo,7) of the critical cone Ky.

6. Second order derivatives of x(t1;, zo, 7) with respect to
t(), tl, T, and 7
In this section we shall give formulas for all second order partial derivatives of
the functions
I(t;t05$057-) and g(C) :g(t07t17x077—) = x(tl;tOManT)

at the point (f . We are not sure that all of them are known, therefore we shall
also sketch the proofs. Here x(¢; g, 2o, 7) is the solution to IVP (8). Denote by
9k(C) := zk(t1;t0, o, 7) the k-th component of the function g.



Second order optimality conditions for bang—bang control problems, 2 15

6.1. Derivatives (gi)woz,

Let x(t; xo) be the solution to the IVP (8) with fixed ¢y and 7 and zy(¢; xo) be

its k-th component. For k = 1,...,n, we define the n x n matrix
02z (t; w0) 0?x(t; 20)
Wkt ) = ——22  with entries  wk (¢;2) = =2
( ) 0) 8208:00 z]( ) 0) 39901'3%03'

where xg; is the i-th component of the column-vector o € IR™.

PROPOSITION 6.1 The matriz-valued functions W (t;zq), k = 1,...,n, satisfy
the IVPs

WE =V fraaV 4> fra, W' W lime=0, k=1,...,n, (33)

r=1

where Wk = %ﬂtk, O is the zero matrix, fi is the k-th component of the vector
function f, and

~ Ofw(t,x(t;20), u(t))

B 02 fr(t, x(t; 20), u(t))
fka:,. - ) )
Ty

are its partial derivatives at the point (t,x(t;zo)) for t € [to,t1].

Proof. For notational convenience, we use the function ¢(¢,z) = f(t,z, u(t)).
Oz (t;xo)
Oxq

By Proposition 3.1, the matrix-valued function V (¢;x¢) = with entries

v (t; o) = %ﬁf") is the solution to the IVP (9). Consequently, its entries

satisfy the equations

8:tk(t;x0) al'r(t;l‘o)
— = z. (t, 2(t; —

T D e (i) =5
0z (to;

where ey; are the elements of the identity matrix E. By differentiating these
equations with respect to xo;, we get

0?d(t; w0) Oz, (t; o)
- = . (& (8 o A
D20:070, ET (Pra, (8, 2(t;20))) 4, Dror

02z, (t;20)
o, (La(t20) m—F— 4
+ 3 ot () (34)

2 .

Fzeltoszo)  _ o i1 . (35)

8z0i8x0j
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Transforming the first sum in the right hand side of equation (34), we get

3 (1,250, 2 20)
Oxs(t;xo) Oz (t; o)

— Zzsom,zbtxtx(’)) ax;j ' 830:)1-

= (V @kmm(t,x(t;xo))V)ij, kvi,j=1,...,n

where (A);; denotes the element a;; of a matrix A and AT denotes the trans-
posed matrix. Thus, (34) and (35) imply (33). [ |

It follows from Proposition 6.1 that
2 Pxp(ty;to, &0, 7)
(gk)zoxo(C) T 8I08I0

where the matrix-valued functions W*(t), k = 1,...,n, satisfy the IVPs (33)
along the reference trajectory (&(t),a(t)).

=WHt), k=1,...,n, (36)

6.2. Mixed derivatives ¢,

Let s = 1 for notational convenience. Fix ¢y and consider the functions

0x(t; xo, ox(t; xg, T
V(t;zo,7) = 730(8500 T), y(t;z0,7) = Oolti z0,7) 8TO ),
_ OV (tyxo,T) 0%x(t; 0, T)
R(t;z0,7) = or  Oz0T
) t: i t:
V(t;zo,7) = VAt 20,7) ’afo’T)7 R(t;xo,7) = i) éfO’T)-

Then, V, V and R, R are n x n matrix-valued functions and y is a vector
function of dimension n.

PROPOSITION 6.2 Fort > 7, the function R(t;xzo,T) is the solution to the IVP
R=(y" fou)V + foR, R(75m0,7) = =[fo]V(7;20,7), (37)

where f, and .. are taken along the trajectory (¢, z(t; xo, 7),u(t, 7)), t € [to, t1].
Here, by definition, (y* fuz) is a n x n matriz with entries

‘f Z P, (38)
y 11 89318% Yi

in the k-th row and j-th column, and
[fz] = fz(Tvx(T;ZO;T)aUQ) - fz(Tvx(T;ZO;T)aul)

is the jump of the function f.(-,x(:;xo,7),u(-, 7)) at the point 7. Fort < T we
have R(t; xo,7) = 0.
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Proof. According to Proposition 3.1, the matrix-valued function V is the solution
to the system

V(t;xo,r) = fo(t,x(t; z0, ), u(t; 7))V (¢ 2o, 7). (39)
By differentiating this equality with respect to 7, we get the equation

ov , O oV
a7 = zi:(fo)xiE thago

which is equivalent to
R= Z(flv)l7y't + foR. (40)

Upon defining
i

the element in the r-th row and s-th column of the matrix A is equal to

Ars = Z((fa )7 Z ZfT:C]U]é Yi

i
Ti

Zzyifr:cﬂjvjs = Z (Z yif'r'mq,;cj) X
= Z (nyl‘l‘)Tj Ujs = ((nyxx)V)rs ’

J
where vj;s is the element in the j-th row and s-th column of the matrix V.
Hence, we have A = (y? f,.)V and see that equation (40) is equivalent to equa-
tion (37). The initial condition in (37), which is similar to the initial condition
(21) in Proposition 3.3, follows from (39) (see the proof of Proposition 3.3). The
condition R(t;xg,7) = 0 for ¢ < 7 is obvious. [ |

Proposition 6.2 yields the formula
sy = i
where the matrix-valued function R’(t) satisfies the IVP
RU(t) = (' (1) faa(t, 2(t), (1)) V() + fo(t, 2(), a(0)R'(2), t € [7i, 1],
R(7;) = ~[fa] V(7). (42)
Here, V' (t) is the solution to the IVP (9), y ¢(t) is the solution to the IVP (21) (for

) is
to = to, To = Tg, T = T) and [f;c] = (7A' j(f' ’IAL(TZ—FO ) f(f'l,.f(f'l),’&(ﬂ—())),
1=1,...,s

= R'(t), (41)
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6.3. Derivatives g,,

Again, let s = 1 for simplicity. Fix ¢y and x¢ and put

. Ox(t;7) L oy(tT) Oz (t;7)
sy = 2200 (g = EET) 2 TEET)
o Oy(t;T) o 0z(t;T)
ylt; ) = s Z(t; 1) = Erant

Then y, y and z, 2 are vector functions of dimension n.

PROPOSITION 6.3 Fort > 7 the function z(t;T) is the solution to the system

2= foz+ ny:cacy (43)

with the initial condition at the point t =T
2 7) +9(7 +0;7) = =[fe] = [fol(@(7 + 0;7) + y(737)). (44)

In (43), fr and fr. are taken along the trajectory (t,z(t;7),u(t; 7)), t € [to, t1],
and yT foy is a vector with elements

n
P fi
(?/Tf~-y)k=nyk Y= ——yy;, k=1,...,n
zx Tx i;I 8:@8933 Y3

In (44), the expressions

17 = fulr,alrsm) ) = fulr, (s ), ),

[fz] - fz(Ta :L'(T;T),UQ) - fx(Ta :L'(T;T)vul)
are the jumps of the derivatives fi(t,xz(t;7),u(t;T)) and fo(t,x(t;7),u(t; 7)) at
the point T (u? = u(t + 0;7), u! = u(r — 0;7)). Fort <1 we have z(t;7) = 0.

Proof. By Proposition 3.3, for ¢ > 7 the function y(¢; 7) is the solution to the
Ivp

Yt;7) = fot, x(t;7), ult; 7))y(t; 7),
y(r;7) = —(f(r,2(m;7),u?) = (7, 2(7;7),ub)).
By differentiating these equalities with respect to 7 at the points 7 and 7 + 0,

respectively, we obtain (43) and (44), respectively. For ¢ < 7 we have y = 0 and
hence z = 0. |

For the solution x(t;tg, zo,7) to the IVP (8) with an arbitrary s, it follows
from Proposition 6.3 that

~ 821'(51;{0;:2'0;71) Py .
Griri (C) N (t1), i=1,...,s, (45)
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where for ¢ > 7; the vector function 2%(t) satisfies the equation

2U(t) = fa(t, 2(1), a(6)2" () +y' ()7 faalt, & (1), a(t))y' (¢) (46)

with the initial condition at the point ¢t = 7; :

25 + 97+ 0) = —[fi]' = [f]' @7 +0) +y'(77)). (47)

Here, for t > 7;, the function y*(t) is the solution to the IVP (21), and y*(t) = 0
fort < 4;,i=1,...,s. Furthermore, by definition, [f]’ = fi(;, 2(7:), 4(7:+0))—
fol7i,2(7:), 0(7 = 0)) and [fo] = fo(7i, 2(7), @i +0)) = fo(Fi, £(F:), (7 = 0))
are the jumps of the derivatives fi(t, Z(t), @(t)) and f, (¢, £(t), 4(t)) at the point
7. Fort <7 weput 2%(t) =0,i=1,...,s

6.4. Mixed derivatives g,

For simplicity, let s =2, 7 = (11, 72) and ¢ty < 71 < 72 < t1. Fix z¢ and to and
put

iy _ Ox(t;T) . 1274\ _ dy' (t;7) _ &x(t;7)
Yy (ta T) - aTi 9 1= ]-a 27 z (t,T) - 67’2 - 67’167'2
i\ Ay'(t; 1) - 1275, N\ 92" (t;7)
y(taT)* 0t 9 Z*1a27 z (t77_)* 875 :

512

Then v, 4%, i = 1,2, and 2! are vector functions of dimension n.

PROPOSITION 6.4 Fort > 7o the function 212(1?; T) 1is the solution to the system
= fo2? + (") foai? (48)

with the initial condition at the point t = 1o ,
22 (5 1) = —[9')% (49)

In (48), fr and fr,. are taken along the trajectory (t,z(t;7),u(t; 7)), t € [to, t1],
and (YT frey? is a vector with elements

((yl)foxy2)k =(y ) fraay® = Z -y2- k=1,...,n.

P 8:@8% Yi
In (49) we have [§*)? = [f]?y! (12;7), where

[fz]2 = fa:(7_2ax(7—2;7—)au3) - fz(7_2a1'(7_2;7—)au2)'

For t < 13 we have 2'2(t;7) = 0.
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Proof. By Proposition 3.3, for t > 7 the function y!(¢;7) is a solution to the
equation

gt 7) = folt,a(t;7),u(t; 7))yt (8 7),

where yl(t;7) = 0 for t < 7 . Differentiating this equation w.r.t. 7 we see

that for ¢ > 75 the function z'2(t;7) = %TZT) is a solution to system (48). The
initial condition (49) is similar to the initial condition (21) in Proposition 3.3.
For t < 73 we obviously have 2'2(¢; 1) = 0. [ |

For the solution x(t;tg, zo,7) of IVP (8) and for m; < 7; (4,5 =1,...,s), it
follows from Proposition 6.4 that

an(tAl;tAOw%Oa%) i7/7

gTq,Tj (C) = 8738@- = 2" (tl)a (50)

where for t > 7; the vector function 2% (t) is the solution to the equation

29(t) = folt, 2(t), a(t))27 (8) + y' (6)" fau(t, 2(2), a(t))y’ (1) (51)
satisfying the initial condition
(1) = =V = ~[faly' (7). (52)

Here, for t > 7;, the function y*(t) is the solution to the IVP (21), while y*(t) = 0
holds for ¢t < 7, i = 1,...,s. By definition, [§]? = ¢*(#; + 0) — ¥*(7; — 0) and
[f2)) = fo(75,28(75),4(7 + 0)) — fo(F5,2(75),4(7; — 0)) are the jumps of the
derivatives §'(t) and f,(t, Z(t), a(t)), respectively, at the point 7;. For ¢ < 7; we
put 2% (t) = 0.

6.5. Derivatives g, gtot; and g1,

Here, we fix g and 7 and study the functions

o\ Ox(t;to) o Ow(tite)  9%a(tito)
w(t7t0) at() ) q(t7t0) - ato - 815(2) B
. ow(t;t Oq(t;t &%z (t; to,
me=—%ﬁnqh@=—%ﬁ,th=—%ﬁu.

PROPOSITION 6.5 The function q(t;ty) is the solution to the system
= foq+ 0" fosw, tE€ [to,t1] (53)
satisfying the initial condition at the point t = i,

E(to;to) + 2 (to; to) + q(tosto) = 0. (54)
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In (53), fr and fyx are taken along the trajectory (t,z(t;to),u(t)), t € [to, t1],
and wT fyew is a vector with elements

T T ~ fr
(0" frzw)r = W frzaw = Z k=1,...,n.

P 8:01893]

Proof. By Proposition 3.2 we have

’LZJ(t; to) = f;c(t, I(t; to))’u}(t; to), i(to; to) + ’w(to; to) =0.

Differentiating these equalities with respect to tg, we obtain (53) and (54). ™

From Proposition 6.5 it follows that

8293(1?1;50,32‘0,’?') ~

Jtoto (CA) = 61?3 = q(t1), (55)

where the vector function ¢(t) is the solution to the equation

q(t) = fa(t, (), @(t)q(t) + w" (t) faa(t, 2(1), 4(t) Jw(t) (56)
satisfying the initial condition

i (to) + 2uw(to) + q(io) = 0. (57)

Since w(t) = =V (t)&(f) in view of Proposition 3.2, V = £,V and V(iy) = E,
we obtain

Thus, the initial condition (57) is equivalent to

2(to) — 2fu(to, 2(fo), af0))2(fo) + g(fo) = 0. (58)
From (19) it follows that

N D?x(ty;to, %o, 7
gt0t1 (C) = (étogtl 2 )

= —V(h)z(o) = —fulbr, 2(0r), a(b)V (E1)(fo). (59)
Formula (20) implies that

N 82 tA 7£ ) L 7A i
R (60)
1
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6.6. Derivatives g+, and g4,

Formula (17) implies that

N 62$(£1;£05j077ﬁ) R v
oty (C) = B T V(t), (61)

where V(t) is the solution to the IVP (9). From (22) it follows that

N 821'(51;1?07@0;%) Lirp .
gTﬂl(() —W—y (tl), Z—].,...,S, (62)

where () is the solution to the IVP (21).

6.7. Derivative g,

Let us fix 7 and consider

ox(t;tg, x AV (t;tg, x O%x(t; to, x
V(t;t0, z0) = 7( xOO 0) , St to,x0) = (%2 0) = 3(IE0 ;to 0)
. oV (t:t . oS(t;t
V(t;t0, z0) = 7( ’ to,ﬂfo) , St to, o) = 75( ’ ;),aco) .

PROPOSITION 6.6 The elements s;;(t;to, xo) of the matriz S(t;to, xo) satisfy the
system

éij = —E?VT(fi)xxVi(to) + fmSej, wj=1,...,n, (63)
and the matriz S itself satisfies the initial condition at the point t = tg,
S(to; to, wo) + V (to; to, 20) = 0. (64)

In (63), the derivatives f, and f., are taken along the trajectory (t,x(t;to, zo),
u(t)), t € [to,t1], e; is the j-th column of the identity matriz E, and, by defini-
tiOTL, .f(to) = .f(to;to,.ﬁo).

Proof. By Proposition 3.1,

V(t;to, x0) = folt, x(t; to, z0), u(t))V (t; to, 20), V(to;to,z0) = E. (65)
The first equality in (65) is equivalent to

035 (t;to, o) = fiz(t, z(t;to, o), u(?))V (¢, to)ej, 4,j=1,...,n.

By differentiating these equalities with respect to t¢ and using Proposition 3.2,
we obtain (63). Differentiating the second equality in (65) with respect to to,
yields (64). [
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Proposition 6.6 implies that

L 821'(51;1?0, Ii'o,f')

N e ] (66)

where the elements s;;(¢) of the matrix S(¢) satisfy the system
85 (1) = €] VE() (fi)aw (1, 2(8), @)V (D2 (fo) + fia(t, 2(1), (1) S (t)e;,
,j=1,...,n. (67)

Here, V(t) is the solution to the IVP (9) and the matrix S(¢) itself satisfies the
initial condition at the point t = ¢,

S(to) + V(o) = 0. (68)

6.8. Derivative g¢.,,

Consider again the case s = 1 and define

Ox(t; to, T) Ay(tito,7)  ax(t;te, )

y( ’ 077—) 87 ’ T( ’ O,T) 8150 815087

) oy(t;to, T ) or(t,tg, 7

itsto,7) = BT gy = O 0 T),

) Ox(t;to, T) Ox(t;to, T)

t;t = —° Vit;t =
I( 3 077—) 815 3 ( 3 077—) 3:E0
PROPOSITION 6.7 Fort > 7 the function r(t;to, T) is the solution to the IVP

7= fur — nym'VjU(tO)v 7 i=r= [f]V(7)Z(t0), (69)

where yT f..Vi(to) is the vector with elements (y* froVa(to))i = y* fizaVi(to),
i=1,...,n, V(1) =V(r;to,7) and
[f:c] = fiC(T7 $(T; th T)a U2) - fx(Ta I(T; t07 T)7 ul)

is the jump of the deriative fy(t,z(t;to, ), u(t; 7)) at the point 7. The deriva-
tives fy and fzy are taken along the trajectory (t,x(t;to, 7),u(t; 7)) , t € [1,t1].
For t < 7 we have r(t;tg,7) = 0. Then the jump of the function r(t;to,7) at
the point t = 7 is given by [r] = [fo]V (7)Z (o).

Proof. By Proposition 3.3 we have y(t; to,7) = 0 for t < 7 and hence r(t; tg, 7) =
0 for ¢ < 7. According to the same proposition, for ¢ > 7 the function y(¢; to, 7)
satisfies the equation

y(t; to, T) = fz (tv l‘(t; to, T)a u(t; T))y(t; to, T)'

Differentiating this equation w.r.t. o, we get

. Ox
r= fmr + nymna_tO
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According to Proposition 3.2,

0x(t; to, T)
dto

= —V(t;to, 7)E(to),
where &(tg) = & (to; to, 7). This yields
P = fur — y7 fraVit(to).
By Proposition 3.3, the following initial condition holds at the point ¢ = 7:
y(Tito, 7) = —(f (7, 2(T5t0, 7),u%) — f(7,2(T5 0, T),u')).

Differentiating this condition w.r.t. tg, we get

- —[fx]g—;g o= L]V (7)i(ho),

where V(1) = V(7;to, 7). [

It follows from Proposition 6.7 that for each i =1,...,s

AN aQI(fl;tAOw%Oa%) i

(O i= ZLLIIT) iy (10
where the function r?(t) is the solution to the system

Ft) = Lot 21, a()r' (8) = (' (0)" fau (b, (1), a(8)V (8)i(fo), (71)
and satisfies the initial condition at the point ¢ = 7,

r' () = [f] 'V (#:)a (o). (72)

Here V (t) is the solution to the IVP (9) and y(t) is the solution to the IVP
(21). The vector (y*)T f..V#(fy) has components

()" foxVito)r = (¥)" fraaVi(to), k=1,...,n.

7. Explicit representation of the quadratic form for the
induced optimization problem

Let the Lagrange multipliers

N:(QOaaaﬁ)€A07 )‘:(a07a7ﬁawaw0)€A

correspond to each other, i.e, let moA = p hold; see Proposition 4.1 in Part 1.
For any ¢ = (fo,t1,%0,7) € IR*™" T let us find an explicit representation for
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the quadratic form (L¢¢(p, é)f, ¢). By definition,
<LCC (,LL, é)é-_a E> = <L10ﬂ70i'07 EO> +2 Z LzOT.;E'O"__i + Z L‘r.;'rj 7_—i7_—j
i=1 ij=1

S
+2Lgt, Zolt +2 ) Ly, Tt + Liyt, 13
=1

S
+2Lot0Zoto + 2 LigrfoTi + 2Legt,tot1 + Ligtotg.  (73)
i=1

All derivatives in formula (73) are taken at the point (i,¢). Now we shall
calculate these derivatives. Recall the definition (11) of the Lagrangian,

L(Ma() = L(/’L7t07t17x0’7—) = l(ﬂ7t07x0;t17x(t1;t0;1'0;7—)) . (74)

Note that all functions V, W*, y¢, 29, S, R, q, w, r’, introduced in Sec-
tions 3 and 6 depend now on t, tg, g, and 7. For simplicity, we put V(t) =
V(t;to, 2o, 7), etc.

7.1. Derivative L,

Using Proposition 3.1, we get

0 _ _
(gl(tovﬂfo,tl,m(tl;to,fﬂoﬁ))> Zo = luy(to, o, t1, (13 0, To, T))Zo
0
+ lzl (to, Zo,t1, l‘(tl; to, Zo, T))V(tl; to, Zo, T)ﬂ_')o. (75)
Let us find the derivative of this function with respect to x¢. We have

0

B (la-o(tm$07t17$(t1;t07$077'))f0) = Zg oo (to, To, t1, x(t1; to, 70, T))
+ 28 Loz, (to, Tos t1, z(t13 to, 20, 7))V (t13 to, To, T), (76)

and

0

Dor (l;cl(to,CUO,t1,I(h;to,I07T))V(t1;t07$077'))j0)
o

= 'ngT(t7 th zo, T) (l:cla;g (tO; o, tl; I(tly th zo, T))

+Z3:1:81 (t07 Zo, tl; I(tly th Zo, T))V(t7 th Zo, T))

iV(t;to,ﬂﬂoﬁ)ﬂfo- (77)

He, (to, xo, t1, 2(t1; to, o, T))é)x
0
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From (75)—(77) and the transversality condition I, (p) = v (#;) it follows that

at the point ¢ we have
(LaowoT0,T0) = g Lugwo (B)To + 275 Lngay (D)V (1) To
+25 VI (E1)layo, (D) V (i1) 0
() e (V{11510 20, 770 0} | (19)
Let us calculate the last term in this formula.
ProrosiTION 7.1 The following equality holds

0

w(tl)ﬁ—xo (V (t1;t0, %0, T)Z0) To = Tg <Z ¢k(t1)Wk(t1;t07$0,T)> Zo.  (79)
%

Proof. For brevity, put ¢¥(t1) = v, V(t1;to,x0,7) =V, W(t1;to,x0,7) = W.
Then we have

9 (Vi) o (0w~ 9 ox -\
Ve (VZo) Zo =5, (a—foxo) Ty =Yg (Z B IOi) o
2
Pz = = 92 -
= V2 2 ot T0iT05 = 20 2 2 Uk s, 003
j i j i

= ZZ (Zk: ’ka&gjﬁ) jOijOj = j(j; (Zk: ’(ﬁk(tl)Wk) xo- | ]
[

PROPOSITION 7.2 For ( = (A, the following equality holds

% (Z ¢kwk> —VTH,,V, (80)
k

where H = f(t,x,u), Hyp = Hye (¢, 2(t), 0(t), 0(t)).

Proof. According to Proposition 6.1, we have

W* =V fiwaV + > fra, W', k=1...n. (81)
Using these equations together with the adjoint equation —t) = 1 fz, we obtain
4 k) — i k ik
dt (Z¢kW ) =S pWhE+ > W
k k k
= waa:kwk + Z 1/% <VTfka:a:V + Z fk:vTWT)
k k T
= waakwk + Z VT (wkfk;c;c) V+ ZW Z fkerT
k k k T

R (; wkfm) vy (; wkfkm7.> W
S W A VT fo)V 4 Y fe W = VT H,L V. .
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Now we can prove the following assertion.

PRrROPOSITION 7.3 The following formula holds

{2

Ern (V (1 to, xo, 7)Zo) Zo} |¢

- / (V($)Z0)" Haa(t, £ (1), a(t), v(£)V (£)To dt. (82)

Proof. Using Propositions 7.1 and 7.2 and the initial conditions W* (fo) =0 for
k=1....,n, we get

{0(t1) 3% (V(t13to, 0, 7)T0) To} |
= & (; m(fl)vvk(fl)) 7o = il (; wk@)wk(t)) zo |1
o

1 il
4 (Z wkwk) Todt = [T VT H, Vg dt
k

to

In view of formulas (78) and (82), we obtain

<L1’0I0§307 EO>
= fglioio (ﬁ)i’o + 2jgl$0$1 (ﬁ)V(fl)fo + (V(fl)jo)lelm1 (ﬁ)V(tAl)fo
+ / (V(1)70)" Hapa(t, (1), 1(8), 6(0)V (t)0 dt. (83)

to

7.2. Derivative L.,

Differentiating (75) with respect to 7; and using Propositions 3.3 and 6.2, we
get
82
6$08Ti

l(to, o, t1, z(t1; to, o, T))To

= _ng(tO; I07t17$(t1;t07x077—))j0

an

0 _
+¥ (I, (to, o, t1, x(t1s to, xo, 7))V (t1; to, o, T)To)
8:c(t1;t0,:c0,r)

= fglzoz1(toaxO;tlax(tl;tO’xO’T)) oT;
i
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0

+ <_0T- lzl(to,mo,thfﬂ(tl;to,fﬂoﬁ))) V(t1;to, wo, 7)o
K3

av(tl;tO; Zo, T) _

gvitiito, %o, 7)
é)ri

= T4 Lpou (to, To, t1, 2 (t15 0, 20, 7)Y (t1; to, T, T)

e, (to, xo, t1, 2(t1; o, 70, 7)) 0

+(V(t15t0, %0, 7)T0) " Leyay (o, o, t1, 2(t15 0, 0, 7))y (t15 0, To, T)

+a, (to, To, t1, T(t1; to, 2o, 7)) R (t15 to, To, 7)) To.

Hence at the point ¢ = é we have

Lyor,ToTi = Tt leos, )y ()T + (V(fl)io)Tl;clxl(ﬁ)yi(tl)ﬁ
+(t1) R (£1)Z0 T -

Let us transform the last term.

>

PRrROPOSITION 7.4 The following formula holds
t
V(6 R (t1)To7; = —[H)'V (7)To7; + / (Hy2y' 7, VTo) dt.

Ti

(86)

Proof Using equation (42) and the adjoint equation —) = Yf,, we get for

t c [’fz,fl] .

LWRY) = YR+ YR = o R + ¢ (y) foa)V + foRY)
= ;wk(yz)Tszzv = (yz)T . wkfka:azv = (yl)THa:a:‘/a

where H,, is taken along the trajectory (¢, Z(t), ¥ (¢), i(t)). Consequently,

i
P(t) R (t1) = ()R (%) + /(yi)THm.V dt.
Using the initial condition (42) for R? at 7;, we get
i
VBB B) = U@LV + [0 e
Hence,
i

Yt R () 30T = —[H,|'V (F)T0T: + / (H,oy' 7, Vo) dt.
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Formulas (85), (86) and the condition y*(t) = 0 for t < 7; imply the equality

Loor 0T = T laga, (B)y' (t1)7 + (V(11)%0) T Loye, (D)Y (£1)7i
o h o (87)
*[HI]ZV(Ti)IL'oTZ‘ + f<Ha:zszia VCL'0> dt.
to
7.3. Derivative L,

Using the notation g—fi =y from Proposition 3.3, we get

ainl(t07x07t17x(t1;t07x05 T))
= la:l (to, CL’o,tl,l‘(tl;to,l‘o,T))yi(tl;to,xo,’r)). (88)

i g
Now, using the notation % = 2" as in Proposition 6.3, we obtain

2

0
Wl(to, xo, t1, x(t1; to, o, 7))

7

0 .
= <§lzl(tovﬂfo,t1,x(t1;to,onJ))) y'(t1;to, 20, 7)
K3

o
Hay (fo, w0, t1, 2(t1; to, 20, 7)) 5y (t15t0, 20, 7)
3

-
= (lgy2, (to, w0, t1, 2(t13 to, o, 7))y (t1; o, w0, 7),y' (t1; to, o, 7))
+l$1(t0a :L'Oatla CL’(tl;to, o, T))Z”(t1§t0; Zo, T)a (89)

and thus,
Lyr = 58_7—221(150;:L'Oatlam(tl;toazoa'r)) |§:f
= <l931951 (ﬁ)yl(fl)a yl(fl» + 111 (ﬁ)z”(tAl)

Let us rewrite the last term in this formula. The transversality condition /,, =
¥ (t1) implies

(90)

31

Lo () (6) = 002" () = [ 05") db 072" 5. o1)
By formula (46), we have

=L ) feay's t2T
Using this equation together with the adjoint equation 71/-) =Y f., we get

d i i L i i iNT i

— = = —VJz z k kxx

S (We') = Ve + 0 far 4 Y () fraay’)

k
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and thus
i
Loy (p)2" (1) = / ()T Hyoy! dt + 0(7) 27 (7). (93)

We shall transform the last term in (93) using the relations

(AH)(t) = H(t,&(t),v(t), ') — H(t,&(t), (1), a')

Di(H) = —%(AiH)h:mo = —[H]' — [Hy]'a(7; 4+ 0) — (7 + 0)[Hy]', (94)

see (12) of Part 1.

ProrosiTION 7.5 The following equality holds,

W(#:)2" (1) = D'(H) — [Ha]'[y']"- (95)
Proof. Multiplying the initial condition (47) for 2% at the point t = 7; by (),
we get

Y(#)" (71) + (75 (Fi +0) = —p(F)fi] = 0 (@)L (2(7 +0) +y' (7)) . (96)

Here, we obviously have the relations ¢(7;)[f:]* = [Hi", (%) [fz]' = [H.]" and
y*(7i) = [y']". Moreover, equation (21) for y* together with the adjoint equation
—1) = f, imply that ¥g* = ¥ fyy® = —y. Hence, in view of the initial

condition (21) for y* we find
Y(F)G (5 +0) = —(7 + 0)y'(F:) = &(F + 0)[f]' = P (F: + 0)[Hy]"
Thus, (96) and (94) imply (95). [ |

From the relations (90), (93), (95) and the equality y*(t) = 0 for t < 7;, it
follows that

ty
LTiTi7_—i2 = <la:1931 (ﬁ)yz (51)7_—1'7 yz (51)7_—1> + /(yz"__z)Tszyl"__z dt
to
+DUH)T? — [H)'[y']'72, i=1,...,s. (97)

7.4. Derivative L.,

Note that L, = L, for all ¢, j. Therefore,

i: Lrpr,TiTj = i: Ler T2 +2Y  Lyo 7). (98)
=1

7,j=1 1<j
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Let us calculate L., for i < j. Differentiating (88) w.r.t. 7;, we get
82
——(to, xo, t1, x(t1; to, o, T
o, (to, w0, t1, x(t1; to, 20, 7))

9 _
= <§lz1(to,xo,tl,w(tl;to,lﬂoﬁ))) y'(t1;to, o, T)
J

e, (to, xo, t1, 2(t1; o, 70, 7)) (t1;to, 0, 7)

o
aij
= <l931951 (toa Zo, t1, x(tl; to, Zo, T))yi(tl; to, o, T)a yj (t1§ to, To, T)>

oy (to, Tos t1, z(t1; to, 20, 7)) 2% (t15 to, T0, 7). (99)

Thus,
82

8Ti87j
<l$1951 (ﬁ)yz(fl)v yj (£1)> + 111 (ﬁ)zw (tAl) (100)

We can rewrite the last term in this formula as

Ly, U(to, wo, t1, z(t1; to, %0, 7)) | ¢

2!

L ()39 (00) = (002 (0) = [ G0 e+ ()5,

7

By formula (51), 2% = f.2% + (y*)T fozy? for t > 7;. Similarly to (92), we get
4 (1h27) = (y')" Hypy?, and thus obtain

Lamwﬁn:/@Wﬂ@wa+w@wW@m (101)

Since y7(t) = 0 for t < 7;, we have

El El
/(yi)THmyj dt = /(yi)THmyj dt. (102)
+j fo

Using the initial condition (52) for 2% at the point 77, we get
W(75)27(75) = = ()l y' (75) = —[Ho P y' (7). (103)
Formulas (100)—(103) imply the following representation for all i < j,

LTz‘TJ?’ii—j = (liﬁlxl(ﬁ)yi(fl)?’iayj(fl)?j>
iy
+ / (7T Howtfi 7, dt — [H, Py (7) 77 (104)

to
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7.5. Derivative L,

Using Proposition 3.1, we get
92

D0ty

= (laot, + lagz, @ +

0
o {lao + 1 V'Y lt=t,

14 + lev) |t=t1

I(to, o, t1, x(t1;t0, 20, 7)) =
o,
oty
= (lﬂﬂotl + lﬂ?oﬂﬁlj: + (lﬂﬂltl + lﬂ?lmli)v + 111 fl’v) |t:t1 :

Again, we transform the last term in this formula at the point { = f . Using the
adjoint equation —1) = v f,; and the transversality condition ¥ (t1) = l,,, we get

lmlfzv |t=t1 WzV |t i (tl)v(tl)

Consequently,

Lzotljot_l = lzotli’(}t_l + < zozl ( ) . (105)
Hlaoyu, V(E)Zots + (loyo, @ ( V(#1)To) — (1) V (E1)ots -
7.6. Derivative LT.tl
Using the notatlon = 3% and Proposition 3.3, we get
0? ) _
——I(t t t1;t = —{l. v} |=
a'fiatl ( 0,20, 1,$( 1, 0,$0,T)) atl{lly} |t—t1
= {(19319313-9 + lﬂ?ltl)yl + lz1yl} |t:t1: {(lﬂﬂlﬂhjjyz + ll’ltl yl + lz1 fmyl} |t:t1 .

We evaluate the last term in this formula at the point ¢ = (f using the adjoint
equation —) = ¢ f, and the transversality condition ¥ (¢1) = I,

Loy fo’ it = Uy’ it = (tl)y (t1).

Therefore,
Lr,7itt = (loyay 2 (000, Y (1)T5) + Loy, v (1) Tty — ¥ (E1)y (F1) 7t (106)

7.7. Derivative Ly ¢,

We have
82

ots ol

- {(Ztltl + ltlgfl‘t) + (Zl‘ltl + lxlllx)x + lex} |t=t1

0 .
to, o, t1, z(t1; o, 20, T)) = a—tl{ltl + ey T} =t

which gives

Ltltl = ltltl + 2lt1951j:(£1) + <l1’11’1¢(£1)7¢(£1)> + w(fl)j(fl) (107)
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Let us transform the last term. Equation (24) in the definition of My is equiv-
alent to the relation ¢& + 19 = 0. Differentiating this equation with respect to
t, we get

Vi + Vi + o = 0. (108)

Hence, formula (107) implies the following equality

Ltltlﬁ - ltltlﬁ + 2lt1$1£(£1){% + <11111£(£1)51a i'(fl)fl> (109)
—(@(t)a (1) +o(f1))8.
7.8. Derivative L,
In view of the relation % =V, we obtain
o I(to, o, t1, z(t1; to, T T))_i{l + 1V}
aﬂ?oato 0,40y 01, 1,%0,40, - ato xo x1 t=t1
ox ox oV

- {lﬂﬂoto + lﬂﬂoﬂﬂla_to + (lﬂﬂlto + lﬂﬂlﬂﬂl a_to)v + ll’l a_to } |t:t1
Now, using the transversality condition I,, = 1(f;), formula (19), and the
notation g—tvo =5, we get

Liﬁoto = liﬁoto - liﬁoxlv(fl)‘%(fo) + Zl‘ltov(fl) - i(fo)TV(tAl)Tlxlle(tAl) (110)
+(t1)S(E).

The transformation of the last term in this formula proceeds as follows. Using
the adjoint equation for ¢ and the system (67) for S, we obtain the equation

G(WS) = VS +US = LS +yfal —al0) VI L vifuV gy
= —i(to)"VTH,,V,
which yields
21
W(E)S(E) = = [[$0) VT HaaV d+ 0(G0)S o) (112)
o
Using now the initial condition (68) for S at the point ¢ = to and the equation
V= f,V, we get

(¥8) l5,= —(@V) ;= —(@£V) 5,= @V) |,= $ (o), (113)
since V(fp) = E. Formulas (110), (112) and (113) then imply the equality
Ll‘()t[) = Zl‘()t() - ngxl V(fl)j(fo) + l:cltov(fl) - -%(fO)TV(fl)Tlllllv(fl)
t
—/:é(fO)TVTHdetHL(fO). (114)

to
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Therefore,
Ld?gtgilofo = lﬂ?gtojofo - <l$0$1 V(fl)i'(AO)EO; i'0> + lﬂ?ltov(fl)jofo
~ (L2, V (£1)Z0, V (£1)2 (F0)t0) + ¥ (t0)Zoto
iy
— /<Hme0, Vi(io)to) dt. (115)
to

7.9. Derivative L,

Using the notations 6% =w, 22 =y and g?g =7, we obtain

2

8T¢8t0 Z(

) - ox oyt
_ 7 T el - _
= {lmoy +(y") lmlato + lay ato} lt=t

= {Zi‘ltoyi + (yi)Tlﬂilﬂilw + l:mri} |t=t1 .

b ,
to, w0, t1, x(t1;to, 0, 7)) = 8_150{lx1yl} lt=t,

According to condition (19) we have w |,_; = —V (1) (to). Using this condition
together with the transversality condition I,, = 1(1), we find
LTito = liﬁltoyi(fl) - (yl(fl))Tlllllv(fl)j(fo) + w(fl)rl(fl) (116)

Let us transform the last term in this formula. Using the adjoint equation
for ¢ and the system (71) for r*, we get for ¢t > 7; :

Do) = ettt = b far b oLt — )Y e Vi(R0)
k
= —(yi)TH..Vi(lo).
It follows that
iy
W) = — /(yi)THmVi(fo) dt + () (8). (117)

The initial condition (72) for r* at the point 7; then yields

V() (1) = $(3)[f) 'V (7)2(lo) = [Ha)'V (7)i(Ho). (118)
Formulas (116)—(118) and the condition y(t) = 0 for ¢ < 7; then imply the
equality

LTito = l:cltgyi(fl) - (yl(fl))ThlalV(fl)j(fo)
+[Hx]"V(ﬁ-)£(fo)—/(yz-)THmV:é(fo)dt. (119)

to
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Hence,
LTito”__iEO = ll’ltoyi({l)i—ifof(y (tl)Tl)Tlml’lV(fl)é(fo)fo
i
+[H 'V (7)2(Fo ) oTs — / (y'7:) " Hyo Vi (Fo) o dt. (120)
fo

7.10. Derivative Ly ¢,

‘We have

0? 9 '
atlat_ol(t07x05t1)x(tlytO)IO)T)) = a_to{ltl +lex} |t=t1

ox 0 ) 0 .
= ltlto —+ ltlmla—to —+ a—tolml T + lzla—tol' |t:t1 .

Using the equalities
0 Ox Ox

_lz :lz lzz_a = = —Vi(t )
dto 1 1to T lay lato dto VI’( 0)
we get
82
Ml(t07 Xo, tl; z(tla tO; o, T))
= Ztlt[) - ltll‘lvx'(to) + liﬁlto‘f(tl) - (V(tl)‘f(to))Tlxlxli(tl) (121)
0
11 6t Y |t ty -

Let us calculate the last term. Differentiating the equation @(t;tg, zo,7) =
f(t,x(t'to,xo,r),u(t'r)) w.r.t. tg, we get
0

6t0 fa: 7szi'(t0)'

Consequently, at the point ( = é we obtain

0 0 . o .
bes g o=ty = 1 -8} ozt = {=0 L2V (o)} iz, = D () V ()& (to)-

Using this equality in (121), we get at the point ¢ = ¢

Lt1t0 = ltltg ltlzlv(t) (t0)+lzlto (fl)
~(laye, V(01 (to), 2(H1)) + P(0)V (01)i(fo), (122)

which yields

Lt1t0£1t_0 = ltltot_lfo - ltll‘l (V(fl)j(f )t_O tl +Z11t0( (
~(laya, V(E1)2 (oo, 2(F1)E1) + 1) (F1) (V (E

)t1)to

Ji(to)to)tr.  (123)
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7.11. Derivative Ly,

‘We have

H? 0 ox

o U(to, w0, t1, z(t1; 0, T0, 7)) = ot {lto + l:cla—to} lt=t

B I T 8x+ ; Ll ox 8x+l 0%z |

= toto tox 8t0 z1to 121 8t0 8t0 T at(QJ t=t1

Ox Ox Ox 0%z
- 2 1A, T1T1 a, ) Oy 1 0,2 =t1
{ZW“ T 2hon g e g ) T 815(2)} o=t

= {Ztot[) + 2lt01‘1w + <Z3L‘1(L‘1w7 U}> + l$1q} |t=t17 (124)

where
ox ow 0%z

oty 1T ot o7
The transversality condition I, = 9 (¢;) yields
Ligty = ligto + 2ligw, w(t1) 4 o,z w(ty), w(tr)) + 1 (t1)q(tr). (125)
Let us transform the last term using the adjoint equation for ¢ and the system

(56) for q :

d : .
—(00) = 9q + 4 = ~bfaq + U frg+ Y Ur(w! fraaw) = ' Hogw.
k
Also, using the equality w = fV:-i(fo) , we obtain
t
viia(h) = Vo) + [ o Hauwds
to

= Wi + [(HoaVi(io), Vi)t (126)
The initial condition (57) for ¢ then implies
¥(to)q(te) = —(to)z(to) — 2¢(to)u(to). (127)

From the equation w = f,w (_see Proposition 3.2), the adjoint equation —1b =
¥ fr and the formula w = —Vz(tp) it follows that

i =~ fow = Y = — Vi (Go).
Since V (fy) = E, we obtain

W(to)i(o) = 4 (to)2(fo)- (128)
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Moreover, by formula (108) we have

— i = )z + 1. (129)
Formulas (127)—(129) imply
Wb(to)a(to) = to(to) — (o) (fo)- (130)
Combining formulas (125), (19), (126) and (130), we obtain
Lijte = ligty — 2lsge, V(E1)Z(E0) + (laye, V(E1)2(F0), V (£1)Z(L0))
+ibo(fo) — (o) 2 (F0) + /1<HMV(1?1)95(50),V(fl)f(f0)>dt- (131)

Thus we have found the representation

Ltotots = liotatg — 2tga, V(E1)2 ()8 + (lora, V(E1)a (Fo)to, V(1) 2 (o) o)

o (o) — 1(E )i (Fo) 2 + / (HouV ()i (o), V (02) (o o) dt. (132)

to

7.12. Representation of the quadratic form (L::(,()

Combining all results and formulas from the preceding sections we have proved
the following theorem.

THEOREM 7.1 Let the Lagrange multipliers p = (ao,a,08) € Ay and A =
(o, @, B,9,10) € A correspond to each other, i.e., let o\ = pi hold; see Propo-
sition 4.1 in Part 1. Then, for any ¢ = (fo,t1,Z0,7) € R*T" "5 formulas (73),

(83), (87), (97), (98), (104), (105), (106), (109), (115), (120), (123), (132)
hold, where the matriz V (t) is the solution to the IVP (9) and the function y'
is the solution to the IVP (21) for each i =1,...,s.

Thus we have obtained the following explicit and massive representation of
the quadratic form in the induced optimization problem:

(LeeC, ) = (Lee(s0)C,€) (133)

= (LugeoT0,70) +2 3 Logri@oTi + O Leini i +2Y Loy, 7475
i=1 i=1

i<j
+2L40t, Tot1 + 2 Z L, Tit1 + L:slltli?

=1

+2L0t0Toto + 2 Z Liyr,toTi + 2Let, tots + Ltotgt%
i=1
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Tp Logwo To + 2% logz, V (E1)Z0 + (V (1) Z0)  ley e, V (£1)Zo0
ty
+ / (VZo)" HeoVTo dt

to

+ZQ$0 Wcly tl Ti +Z2 tl To) gclxlyi(fl)ﬁ

S S 1
722[H1]iV(ﬁ)foﬂJrZ/Z(Hmyiﬁ,V:Eo)dt
=1 =17
to

+i<l1111yz(t TZ? TZ +Z/ yTz zzy Tldt
i=1

e A
i=1 =1

i<j
+Z/ Y7 Heat? 7y dt = Y 2[HL Py (7)77
z<] i<j

+2l10t1f0£1 + 2([1011 ( )t},:fo) + 2lzlt1V(£1)fofl
+ 2y, 2(F1) T, V (£1)Z0) — 200(£1)V (£1)Zot

+ Z 2<lx1x1$(£1)t_1, yi(fl)ﬁ> + Z 2lxltlyi(£1)7_'it_1
i=1

- Z 2(h)y' ()7

+lt1t1ﬁ + 2ltlzlfv(£1)ﬁ + (lzlzlit(ﬂ)ﬂ, i?(ﬂ)ﬂ)

—(W(E)z(E1) + o (fr) 3

+2lagtoZoto — 2(laga, V(£

—2(lay, V (£1)Z0, V (i1) i (F
iy

- / 2(H,.VZo, Vi(lo)to) dt

to

)z (E0)to, Zo) + 2uy 10V (11)Zolo
0)to) + 2¢(to)Zoto
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+ ) sy (B)Fto — Y 2y (01)7) lora, V(B1)(0) o

i=1 i=1

—l—ZQ[H G(to)tom: — Z/ Y7 T HuwVi(f0)to dt

2y, ot1to — 22, (V ) £0)20)T1 + 2y 1o (i'(il) 1)to
i1

—2(loya, V (02) (1 )f 2(01)i) + 20(80) (V (B (o) fo)fr
Fligtoto — 2iga, V (£1)2(E0)8 + (layay V(E1)2(t0) o, V (£1)2(f0) o)
3]
(i) G C)Es + [ (Voo Vo o
io
Again, we wish to emphasize that this explicit representation involves only first
order variations y* and V of the trajectories x(t; to, zo, 7).

8. Equivalence of the quadratic forms in the main and
induced problems

In this section we shall prove Theorem 4.4 of Part 1, which is the main re-
sult of the paper. Let the Lagrange multipliers p = (ag,«,3) € Ag and X\ =
(oo, a, B,%,100) € A correspond to each other, and take any ¢ = (fo, 1, Zo,7) €
IR*"" %5 Consider the representation (133) of the quadratic form (L¢c(, (),
which is far from revealing the equivalence of the quadratic forms for the main
control problem and the induced optimization problem. However, we will show
now that by a careful regrouping of the terms in (133) we shall arrive at the
desired equivalence. The quadratic form (133) contains terms of the following
types.

Type (a): Positive terms with coefficients D*(H) multiplied by with the vari-
ation of the switching time 7,

a:=Y» D'(H)7. (134)
Type (b): Mixed terms with [H,]* connected with the variation 7;,
= = 2AH)'V(#)zom — Y _[Ha|'ly']'7}
i=1 i=1

= 2H Py (7)77 + Z 7)) (Fo) o - (135)

1<J
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Since
;[Hz]jyi(@)fﬁj = ;[Hz]iyj(%i)fifj = Z; iZi[Hz]"yj (7)7:75,
we get fiom (135) ] o
b= - Z 21,1 (V (7m0 + 311
+§yj(ﬂ-)7'j — V(ﬁ-)éc(fo)to) 7. (136)
According to (?jo_) put
Z(t) = V()T + 2 Y ()7 — V(1) (lo)to. (137)

Then we have
. /L_l . .
Z(# = 0) = V(#)zo + Y _ v (7:)7; — V()2 (oo,
j=1
since 37 (7; — 0) = 3/ (#;) = 0 for j > i and y*(7; — 0) = 0. Moreover, the jump

of Z(t) at the point 7; is equal to the jump of y*(¢)7; at the same point, i.e.
[Z]" = [y']'7;. Therefore,

i—1
A\ Lo iqin (A= ANAE AT
V{(7:)Zo + 5[2/ |'7i + z;yj (7:)75 — V(7:)2(to)to
‘7:
= Lo 1. — —i
=z(7; — 0) + i[z] = 5(1’(7} -0)+z(7;+0) =27, -
Thus, we get
s . .
b=—Y 2[H)'Z,7. (138)
i=1
Type (c): Integral terms
fl s tAl
c = /(VJEO)T H,..VZo dt+2/2(Hmyiﬂ-,Vjco) dt
h i=1
to to

1<j

s i th
- /(yiﬁ)THxxyiﬂ dt + E :/2(yifi)THx:cyjfj dt
i=17% .
to

to
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i s h
- / 2 Hy Vi, Vi(io)io)dt — 3 / 2y )T Ho Vi (B0 Yo dit
i =13
t1
- / (H,oVi(to)to, Vi(to)to) dt. (139)
to
Obviously, this sum can be transformed to a perfect square.
fl s S
¢ - / (Hoo(Vao + 3 i — Viio)io), Vao + 3y — Vi(Go)fo) dt

e =1 =1
to

- /(Hm:z,:a dt. (140)

Type (d): Endpoint terms. We shall divide them into several groups.

Group (d1): This group contains the terms with second order derivatives of
the endpoint Lagrangian [ with respect to tg, zg, t1 :

dy = i’glmomoi‘o + 21101519_'30{1 =+ lt1t1{% + 21101509_'50{0 =+ 2lt1t0{1t_0 =+ lt0t0{(2)~ (141)

Group (d2): We collect the terms with Iy, :

d2 = QZmltOV(tAl)i'()EO —+ Z QZIItOyi (fl)’l_'iEO
=1
+2l$1t0£(7€1)t_1t_0 — 2lt01~1V(7€1)£(7§0)t—20
= 2Zmlt0 <V(£1)IO + Z yi(fl)ﬂ' + j(fl)fl — V(fﬂ.ﬁ(f@)?ﬁo) to
=1

= 24,7110, (142)

where in view of (30),

T1 Z:V(fl)fo + Zyi(fl)ﬂ + j(fl)t_l — V(fl)j(fo)t_o = j(fl) + j(fl)t_l . (143)

i=1
Group (d3): Consider the terms with Iz, :

ds = nglxoxlv(fl)jo + Z Q.fglxoxlyi(fl)ﬂ

i=1

+2<lmol’1i(£1){17 jo> - 2<l$011V(£1)£(£0)t70a i'0>
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= Alaga, (V(E1)T0 + iyi(fl)ﬂ' +a(t1)f = V(i1)i(io)o), o)
= 2z, T1,T0). - (144)

Group (d4): This group contains all terms with Iy, 4, :

dy = 211.1,51‘/(1?1)@0{1 + Z Qletlyi(fl)ﬁt_l
i=1

+2lt111 ( ) 2lt111 (V(El) A(tAO){ ){

= Uy, (V(E1)T0 + Zy t)7 + (86 — V(E)E(fo)Eo)h

i=1
= 2y, Tty (145)

Group (d5): We collect all terms containing Iz, :

ds = (V(11)%0) luya, V(1 xo+z V(t1)20) layary' (01)7

s
+Z<Z1111y ( Tl7 tl Tl +Z lllly tl Tl7yj(t1)7ij>
i=1 i<J

+2<l$11-1.%(£1)7?1, V(fl)f0> + Z 2(l$1x1i(7§1)?§1, yz(fl)ﬂ>

oy @(E0)Er, (0 E) = 2(layw, V(E1)T0, V(E) (o) o)

S

- Z 20y (£1)7:)  lay o, V (1) (0 b0 — 200y, V (F1) 2 (o) o, 2(E1)11)

+<l$111V(£1)j(7§0)t_0,V(fﬂj(f@)f@) (146)

One can easily check that this sum can be transformed to the perfect square

ds = {loyar (V(0)T0 + )y ()7 + 2 (00
—V(fl)f(fo)fo), V(fl)fo + Z yi(fl)ﬂ + I(fl)t_l — V(fﬂj(f@)f@)
= <Zl‘11‘1‘%1751>' - (147)

Group (d6): Terms with (o) and v(fo) :
do := 20(fo)Toto + (Po(fo) — ¥ (o) (fo))2. (148)
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Group (d7): Terms with ¢(;) and v (f1) :

dr = —=2(E)V(i1)Zol; — 221/1 b))y’ (£1)7ity

=1

—(p(E1)2(E1) + Yo (£1))F + 20(E1)(V (1) (o) o)

— ()2 (1) + dho(1))8
= —2(t)z(h)h — G2 () +do(hr))E. (149)
Using the equality #; = Z(f;) + 2(£,)f; in (149), we obtain
dr = =2¢(00)T1t — (do(br) — P(E)2(E)E. (150)

This completes the whole list of all terms in the quadratic form associated
with the induced problem. Hence, we have

7

(ngf,(_>:a+b+c+d, d:de
k=1

We thus have found the following representation of this quadratic form, see
formulas (134) for a, (138) for b, and (140) for c:

(LecC.Q) = X0y Di(H)T? = 3 2] n+f B3 +d (15)

where according to formulas (141), (142), (144), (145), (147), (148), (150) for
dy,...,dr, respectively,
d = (logwo®o: To) + 2, Toly + le,1, 1]
+2Lgt0Toto + 21,101 E0 + Lot g + 2lay 1, Z1t0
+2(lzgz, T1, To) + 2Lyt Trty + (lzyey T1, 1)
+2¢(f0)Zoto + (Yo (to) — ¥ (o) (0))T3
—2(t)Z1t1 — (o(tr) — ()2 ()8 (152)
In (151) and (152) the function Z(¢) and the vector T; are defined by (137) and
(143), respectively. Note that in (152),
(Lo T0, To) + 2luot, Totr + Lyt 17 + 2lagtyToto + 2ty 1o tato
Fligtolg + 2lertoT1to + 2(laga; T1, Zo) + eyt Trt1 + (loye, T1, 1)
= (LppD: P}, (153)

where, by definition,
p= ({0,5’20,{1,51). (154)
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Finally, we get

d = (lppp, p) + 2¢(fo)Zoto + (dho(to) — ¥(fo )f(to))%
—2¢(t1)w1t1 — (?ﬂo(tl) w(f )(

We thus have proved the following result.

PF>
=
~—

°t5

(155)

THEOREM 8.1 Let the Lagrange multipliers p = (ao,a,8) € Ay and A =
(o, e, B,,10) € A correspond to each other, i.e., let moA = p hold. Then
for any ¢ = (to,t1,70,7) € R*T™*® the quadratic form (L¢¢C,C) has the rep-
resentation (151)-(155), where the vector function Z(t) and the vector T, are
defined by (137) and (143). The matriz-valued function V (t) is the solution to
the IVP (9) and, for each i = 1,...,s, the vector function y' is the solution to
the IVP (21).

Finally, we have arrived at the main result of Part 2 i.e., the present paper.
Then, Theorem 4.4 of Part 1, which is the main result in both parts immediately
follows from this theorem.

THEOREM 8.2 Let A\ = (ag,, 3,%,%0) € A and { = (to, 1, %0, 7) € R*T"TS,
Put p = (ag, 0, ), i.e., let oA = p € Ag hold; see Proposition 4.1 in Part 1.
Define the function z(t) by formula (137). Put € = —7 and z = (to,t1,&,7),
which means mz = (; see Propositions 4.3 and 4.4 in Part 1. Then the following
equality holds,

<LCC(,U'76)& §> = Q()\,Z), (156)
where Q(A, Z) is defined by formulas (22), (23) in Part 1.

Proof. By Theorem 8.1, the equalities (151)—(155) hold. In view of the definition
(19) in Part 1 put

To = .f(to) + 7?0.%(7?0) = (V(f@)xo + Zyi(fo)ﬂ - { )i(to) ) + t0$(t0)

Since yi(tg) = 0 for i = 1,...,s and V(fy) = E, it follows that To = Z(to).
Consequently, the vector p which was defined in Part 1, (19) as (fo, Zo, t1,%1)
coincides with the vector p, defined in this subsection by formula (154). Hence,
the endpoint quadratic form d in (155) and the endpoint quadratic form (Ap, p)
in (23) of Part 1 take equal values, d = (Ap,p). Moreover, the integral terms
fl -

J(Hy2®,Z) dt in the representation (151) of the form (L¢¢¢, () and those in the
to

representation (22), Part 1, of the form Q coincide, and

S S

> (D'(H)E +2[H ZDZ 2= 2H.) w7

i=1 i=1
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because & = —7;, @ = 1,...,s. Thus, the representation (151) of the form
(L¢eC, ¢) implies the equality (156) of both forms. ]

Theorem 4.4 of Part 1, which is the main result of both parts, then follows
from Theorem 8.2.
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