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ABSTRACT 

Watson Crick automata are finite automata working on double strands. Extensive research work has already been done 
on non deterministic Watson Crick automata and on deterministic Watson Crick automata. Parallel Communicating 
Watson Crick automata systems have been introduced by E. Czeziler et al. In this paper we discuss about a variant of 
Watson Crick automata known as the two-way Watson Crick automata which are more powerful than non-deterministic 
Watson Crick automata. We also establish the equivalence of different subclasses of two-way Watson crick automata. 
We further show that recursively enumerable (RE) languages can be realized by an image of generalized sequential 
machine (gsm) mapping of two-way Watson-Crick automata. 
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1. Introduction 

The tremendous progress in biotechnology has resulted 
in decoding of DNA sequences, synthesizing and mani- 
pulating DNA, which lead to its usage in computation by 
computer scientists. As a result sticker systems, splicing 
systems and carving systems came into existence [1]. 
Many of the NP-complete problems were solved effi- 
ciently using DNA computing. The first, the Adleman ex- 
periment was done in 1994 [2]. As the interest in using 
DNA in computation increased so did the need for auto- 
mata which exploit the properties of DNA. The first such 
automata which exploited the DNA property were the 
Watson-Crick automata [3] which are the automata coun- 
terpart of the Sticker Systems. Essentially Watson-Crick 
automata are finite automata having two independent 
heads working on double strands where the characters on 
the corresponding positions of the two strands are con- 
nected by a complementarity relation similar to the Wat- 
son-Crick complementarity relation.  

The movement of the heads although independent of 
each other is controlled by a single state.  

Details of several variants of non-deterministic Wat- 
son-Crick automata have been explored in [4]. 

Deterministic Watson-Crick automata and their vari- 
ants have been explicitly handled in [5,6]. Parallel Com- 
municating Watson-Crick automata were introduced in 

[7] and further investigated in [8]. A survey of Watson- 
Crick automata can be found in [9]. The effect of the 
complementarity relation on the computing power of 
Watson Crick automata is discussed in [10]. 

Two-way finite automaton (FA) is an abstract machine, 
a generalized version of the finite automaton which can 
revisit characters already processed. As in FA, in two- 
way FA there are finite number of states with transi- 
tions between them based on the current character; but 
each transition is also labeled with a value indicating whe- 
ther the machine will move its reading head to the left, 
right, or stay at the same position. Equivalently, 2FAs 
can be seen as read-only Turing machines with no work 
tape; only a read-only input tape. The accepting condi- 
tion is that when the reading head falls off the right end 
of the tape and the state in which the machine is at that 
time is final state then the input word is accepted. A two- 
way Watson Crick automaton (2AWK) is similar in con- 
cept to a two-way finite automaton. The only difference 
between them is that in two-way Watson Crick automata 
the input tape is double stranded. The idea of two-way 
Watson Crick automata were introduced in [4] but no 
comparison of its power with respect to AWK was dis- 
cussed. The importance of 2AWK is that unlike two-way 
FA which is equal in power to a FA, 2AWK are more po- 
werful than AWK which we establish in this paper. 
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In this paper, we give a general description of non-de- 
terministic Watson Crick automata and its different sub- 
classes in Sections 2 and 3. In Section 4 we describe the 
twin shuffle language and state the relation of twin shuf- 
fle language with RE languages. In the following section 
we state the rules governing two-way non-deterministic 
Watson Crick automata. In Section 6 we give the defini- 
tion of the different classes (variants) of 2AWK and in- 
vestigate the relationship between classes of 2AWK au- 
tomata. We show that 2AWK = 2SWK = 21WK = 
2FWK = 2FSWK = 2F1WK similar to the case of Wat- 
son Crick automata. We further show the family of lan- 
guages accepted by 2AWK is context sensitive. In Sec- 
tion 7 we show that two-way non-deterministic Watson 
Crick automata are more powerful than non-deterministic 
Watson Crick automata. In Section 9 we further show 
that recursively enumerable (RE) languages can be real- 
ized by an image of generalized sequential machine (gsm) 
mapping of two-way Watson-Crick automata. 

2. Basic Terminology for Watson-Crick 
Automata 

V is a finite alphabet. V* denotes the set of all finite 
words over V, including the empty word 

.V V      For ,  w V w  denotes the length of 
w. Let  and  be two words and if there is 
some word 

u V  v V 
x V  , such that , then u is the pre- 

fix of v, denoted by . Two words, u and v are pre- 
fix comparable denoted by u~pv if u is a prefix of v or 
vice versa. 

v ux
u v

Given two alphabets V and U a mapping h: 
* ,V U extended to s:  by *V U *    h    and 

     1 2,h x x  1 2h x h x  for *
1 2, ,x x V  is called a mor- 

phism. If   ,h a   for each , then h is a λ free 
morphism.  

aV

A morphism h:  is called a coding if  *V U


*

 h a U


 for each a V  and a weak coding if 
  h a U    for each .a V  If  

is the morphism defined by  for 1

 * *
1 2 1:h V V V

a a V  h a  , and 
 h a 

*,

 otherwise, then we say that h is a projection 
(associated with ) and we denote it by prV1. 1

For 
V

x y V  we define their shuffle by  




1 1 1

*
1 ,

,

, ,  1 ,  1

n n n

n i i

xШy x y x y x x x

y y y x y V i n n

 

   

 

 



 

A generalized sequential machine (gsm) is a sequential 
transducer. Such a device is a system 

 1 2 0, , , , , .g Q V V q F 
,V V

q Q

 where Q is the set of states, 

1 2  are the alphabets(input and output alphabets) of 
the automaton, 0  is the initial state, F Q  is the 
set of final states and  *

2V Q1: fQ V P    is the 
transition mapping. 

The definitions of morphism, gsm and shuffle are stat- 

ed in [1]. 
A Watson-Crick automaton is a 6-tuple of the form 

 0, , , , ,M V Q q F   where V  is an alphabet set,  
is a set of states, 

Q
V V    is the complementarity re- 

lation similar to Watson Crick complementarity relation 
and q0 is the initial state and F Q  is the set of final 
states. The function   contains a finite number of tran- 

sition rules of the form , which denotes  1

2

q
w

q
w

 
 





that the machine in state q parses w1 in upper strand and 
w2 in lower strand and goes to state  where  q

*
1 2,w w V . 1

2

w

w

 
 
 

 is different from .  is  1

2

w

w

 
 
 

1

2

w

w

 
 
 

just a pair of strings written in that form instead of  

 1 2,w w  whereas in 1

2

w

w

 
 
 

 the two strands are of same  

length i.e. 1 2  and the corresponding symbols in 
two strands are complementarity in the sense of relation 
ρ.  

w w

 , ,  ,a b
V a

V
V a

b
b




          




 


  
 and 

 
V

K
V

W V





 
 
 

 . 

A transition in a Watson-Crick finite automaton can be 
defined as follows: 

For, 
*

1 1 1

*
2 2 2

x u w V

x u w V

   
   
 

 
 
   

 such that 

 1 1 1

2 2 2

x u w
WK V

x u w 
 

 
 

 and  ,  ,q q Q

1 1 1 1 1 1

2 2 2 2 2 2

x u w x
q

u w
q

x u w x u w

         
         

       


  
 iff there is  

transition rule 1

2

q
u

q
u

 
 





 in  . 

*


 denotes the transitive and reflexive closure of . 

The language accepted by Watson-Crick Automata is 

 

 

1*
1 0

2

1*
2

2

,

with   ,,

w
L M w V q

w

w
q F w V WK V

w

q






 




   
   

  

 
 
 

  


 

For a Watson-Crick Automaton M, with input 

 1

2

w
WK V

w 
 

 
 

1
0

2 2

 where w1 is any string in V* and 

1
f

w
q

w w
 w

q
  




   
   

 where q0 is the initial state and qf is 

Copyright © 2013 SciRes.                                                                                  AM 



K. S. RAY  ET  AL. 28 

a final state. Then 1 1
0

2 2
f

w w
q

w w
   

   
   

q  is a computation 

in M denoted by  . 
Another important language associated with Watson- 

Crick automaton is defined taking into consideration the 
transitions and not the language recognised.  

For a Watson-Crick Automaton  0, , , , ,Q q F M V    
consider a labeling  

:  ,e Lab   of rules in   with elements in a set 
Lab. For computation 

  , ,f w WK V q F0:  q w w q 
 e

,f

by
 denoted  

  the control word of  , that is the sequence of 
labels of transition rules used in  . In this way the lan- 
guage is obtained. 

      0: ,fq w wq w W 

 ctrL M



 ,  ctr fL M e K V q F  .  

The definition of  is stated in [4]. 

3. Subclasses of Non-Deterministic 
Watson-Crick Automata (AWK) 

Depending on the type of states and transition rules there 
are four types or subclasses of Watson-Crick Automata. 
Watson-Crick Automaton 0, , ,Q q F, ,M V    is 

1) stateless (NWK): If it has only one state, i.e. 

 0 ;Q F q   

2) all-final (FWK): If all the states are final, i.e.  
;Q F  

3) simple (SWK): If at each step the automaton reads 
either from the upper strand or from the lower strand, i.e. 
for any transition rule  

1
1 2

2

   ;
w

w
w

q either  ,   orq w  


 



    

4) 1-limlited (1WK): If for any transition rule q  

1

2

q
w

q
w

 
 





, we have 1 2 1w w  . 

Theorem 1: Simple and 1 limited Watson-Crick au- 
tomata accept the same family of languages as the fa- 
mily of languages accepted by Watson-Crick automa- 
ta with arbitrary transition rules. 

The proof of Theorem 1 is in [4].  
Theorem 2: Non-deterministic Watson-Crick auto- 

mata are equivalent with non-deterministic simple 
Watson-Crick automata. 

Corollary 1: Non-deterministic Watson-Crick auto- 
mata are equivalent with non-deterministic 1-limited 
Watson-Crick automata. 

The proof of Theorem 2 and Corollary 1 are given in 
[4]. 

4. Twin-Shuffle Language 

Consider an alphabet V and its barred variant, 

  V a a V  . The language  

 V
x V

TS xШx


   

is called the twin-shuffle language over . (For a string V
,x V x  denotes the string obtained by replacing each 

symbol in x with its barred variant). 
For the morphism h:  V V V

   defined by 
  ,  for   andh a a V   
  ,  for  .h a a a V   

Clearly the equality is  ,  .V VTS hQ prE  
Theorem 3: Each recursively enumerable language 

*L T  can be written in the form  
 VTS RTL pr , where  is an alphabet and R is 

a regular language. 
V

In this representation, the language TSV depends on the 
language L. This can be avoided in the following way: 

Let a coding be  : 0,1f V  *,  for instance,  
  01 0iif a  , where i  is the  symbol of V  in a 

specified ordering. The language 
a thi

 f R  is regular. A 
generalized sequential machine  gsm  can simulate the 
intersection with a regular language, the projection T  
as well as the decoding of elements in 

pr
 .Vf TS  Thus 

we obtain: 
Corollary 2: For each recursively enumerable lan- 

guage L  there is a gsm gL such that 

  , . 0 1LL g TS  

Therefore, by using a sequential transducer which can 
be a deterministic one, we can obtain all recursively enu- 
merable language, starting from the unique language 

 Proofs of Theorem 3 and Corollary 2 are in [1].  0,1 .TS

5. Two-Way Non-Deterministic Watson 
Crick Automata (2AWK) 

Two-way non-deterministic Watson Crick automata sys- 
tem is a 6 tuple,   0#,$ , , , , ,M V Q q F  

#,$ V

V V

 where 
 is a set of alphabet,  are the beginning and 

the end marker respectively; that is the word w to be re- 
cognized is provided as an input to the automaton in the 
form  is a set of states, 1

V

# $.w Q     and 
    2  and 1 2#,# , $,$    

0q
 is the comple- 

mentarity relation and  is the initial state and F Q  
is the set of final states.   is the finite number of transi- 
tion rules; 

1) either of the form , which denotes  1 1

2 2

,

,

w dir
q

w di
q

r

 
 
 



that the machine in state q parses 1  in upper strand in 
dir1 direction and 2  in lower strand in dir2 direction 
and goes to state 

w
w

q  where  
 *

1 2 1 2, , ,w w V dir L R , ir ,0d  where L signifies that 
the head is reading the word in the left direction, R signi- 
fies that the head is reading the word in right direction 
and if a head reads the empty word   it remains in its 
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current position denoted by 0. 

2) or of the forms , where  1 1

2 2

,

,

x dir
q

x di
q

r

 
 
 



1 2, #,x x   and  1 2, ,dir dir L R ,0  with restrictions 
that when 1 2or x x 

or   x x
 the corresponding 

1  and when 1 22 or  dir dir L   the correspon- 
ding . Moreover, there cannot be transi-  1  or  dir dir2 0

tion rules having the form  where  1 1

2 2

,

,

w dir
q

w di
q

r

 
 
 



1  where  and 1  or 2 21 #w w *
1w V  dir L #w w  

where  and 2  or both. These rules en- 
sure that the reading heads do not go past the input word 
on the left side or the heads do not move when it reads 
empty word. Moreover once a head goes past the right 
end of the tape it cannot comeback.  

*V2w dir  L

Accepting conditions 

1W  is accepted by M  if, starting in state  (initial  0q

state) with  and  on the dou-  1

2

# $

# $

w

w



 


  1

2

 
w

WK V
w 
 

 
 

ble stranded input tape and the two heads at the left end 
of 1  and 2  respectively, # $w # $w M  eventually en-
ters a final state at the same time both the heads fall off 
the right hand side of the double stranded input tape.  

The word 1  is rejected if one of the following 3 
conditions occurs: 

w

1) The two-way WK automaton goes into a loop which 
is identified in a similar way as loops in two-way FAs are 
identified. 

2) When both the heads fall off the right hand side of 
the input tape and the machine is in a non final state. 

3) If the machine comes to a halt (i.e. there are no tran- 
sition rules that can be applied for that particular state in 
which the machine is) before the heads fall off the right 
hand side of the input tape. 

i.e. mathematically 

 

 

1*
1 0

2

*
2

1

2

, 

with 

# $
*

# $

,

.

 ,

w
L M w V q

w

q F w V

w
V

q

WK
w 




    
    

  



 
 



 






  

6. Subclasses of Two-Way Non-Deterministic 
Watson-Crick Automata (2AWK) 

Depending on the type of states and transition rules there 
are four types or subclasses of two-way Watson-Crick 
Automata similar to Watson Crick automata.  

2-way Watson-Crick Automaton 
 0, , , , ,M V Q q F   is  

1) stateless (2NWK): If it has only one state, i.e. 

 0 ;Q F q   
2) all-final (2FWK): If all the states are final, i.e. 

;Q F  
3) simple (2SWK): If at each step the automaton reads 

either from the upper strand or from the lower strand, i.e.  

for any transition rule  either 1 1

2 2

,

,

w dir
q q

w dir

 
 

 

1 2 or  ;w w    
4) 1-limlited (21WK): If for any transition rule  

1 1

2 2

,

,

w dir
q q

w dir

 
 

 
, we have 1 2 1.w w   

Many combinations of these classes can also be ob-
tained such as all-final simple two-way WK automata 
(2FSWK), all final 1 limited two-way WK automata 
(21FWK), stateless 1 limited two-way WK automata 
(21NWK) etc. 

Theorem 4: Simple and 1 limited two-way Watson 
Crick automata accept the same family of languages 
as the family of languages accepted by two-way Wat-
son Crick automata with arbitrary transition rules. 

The proof of theorem is similar to the proof done in [4] 
for Theorem 1.  

Let  0, , , , ,M V Q q F   be a non-deterministic 
two-way Watson Crick automaton. We introduce a 1 li- 
mited two-way Watson Crick automaton  

 0' , , , , ,M V Q q F .  

1 1

2 2

,

,

w dir
q

w di
q

r

 
 
 

 For each transition rule t of the 

form   in   where 1 1 2 nw a a a   

where 1w n  and 2 1b2 mw b b   where 2w m  

and 2,n m   the condition  is imposed be-  2n m
cause rules with 2m n   is already in the 1-limited 
form and no further modification is required for them. 
We introduce new rules in    of the form  

1 1
,1

,
 

, 0 t

dir
q q

a


 

 
 

 

1 1
,i, 1

,
1 1

,
,  

0
i

t i tq q
a dir

i n




 

 


 


, 

,1
1 2

,n

,0

,t tb di
q q

r

   
 

 

, 1
1

,
2

, 0
1 2

,
,  t jj

j
t j m

b dir
q q






 
  





,  

1
2

,

,0

,t
m

m b d r
q q

i




 
  

 
. 

All the new states are introduced in Q’ along with 
states in Q. From the construction of M’ which is ob- 
tained from M it is obvious that both M’ and M recog- 
nize the same language. So 2AWK are subset of 21WK 
and from the definition of 21WK and AWK we know 
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that 21WK are subset of 2AWK. So 2AWK and 21WK 
are equivalent i.e. they accept the same family of lan- 
guages. A similar proof can also be established for 
2SWK. Therefore we can say, 2AWK = 2SWK = 21WK. 

Theorem 5: All final two-way Watson Crick auto- 
mata accept the same family of languages as the fam- 
ily of languages accepted by two-way Watson Crick 
automata with arbitrary transition rules. 

Let  0, , , , ,M V Q q F   be a two-way non-deter-  

ministic Watson Crick automaton. We introduce an all fi- 
nal two-way Watson Crick automaton 

 0, , , , .M V Q q   

1 1

2 2

,

,

w dir
q

w di
q

r

 
 
 



  Each transition rule t of the form 

 in δ where  where 1 1 2 nw a a a 

1w  n  and  where 2 1 2 mw b b b  2w m  falls un-  

der one of the five classes. The classes are defined as fol- 
lows: 

Class 1: Transition rules of the form 

1 1

2 2

,

,

w dir
q

w di
q

r

 
 
 

  in   where  where  1 1 2 nw a a a 

1w  n  and 2 1 2 m  where w b b b  2w m  and  
and  i.e. w1 and w2 do not have $ at their ends. 

na
$,nb 

Class 2: Transition rules of the form 1

2

,

,

w R
q

w R
q
 
 





  

in   where  where 1 1 2 nw a a a  1w  n  and 

2 1 2 mb w b b  where 2w m ,, and , $n na b   i.e. 
 and  both have $ at their ends. 1w w2

Class 3: Transition rules of the form 

1

2 2

,

,

w R
q

w dir
q
 
 
 

  in   where  where 1 1 2 nw a a a 

1 w  n  and  where 2 1 2 mw b b b  2 , $nw m a    
and  i.e. 1  has $  at its end and  does not 
have  at its end. 

$nb 
$

w 2w

Class 4: Transition rules of the form 1 1

2

,

,

w dir
q

w R
q
 
 





 

in   where  where 1 1 2 nw a a a  1w n  and  

2 1 2 mw b b b   where 2 ,  nw m a  $  and $nb   i.e. 

1  does not have  at its end and  has $  at its 
end. 
w $ 2w

Class 5: Either transition rules of the form  
$,

,0
q

L
q


 
 





 in   or transition rules of the form  

$,

$,

L
q

L
q
 
 





 in   or transition rules of the form 

 in 
,0

$,
q q

L

   
 

 . 

The transition rules of M  are modified as follows to 
form the transition rules of M  . 

Transition rules of M  which fall in class 1 and class 
5 are kept same in M  . 

For transition ru  oles f M  which belong to class 2 
tw

, where 

o instances can occur; 

case 1: For transition 1

2

,
'

,

w R
q

w
q

R

 





q  is a  

final state. In this case the transition rules are kept same 
in M  . 

2case : For transition , where 1

2

,

,

w R
q

w R
q
 
 





q  is a  

non final state. In this case the transition rules of M  are 
modified as follows for M  . 

For each transition ru  1

2

,

,

w R
q

w R
q
 
 





 in le M  be-  

longing to class 2 where q  is a non final state, 

1,w R
q

 

2 ,w R
q  
 


  where  and 

 1 1$w w 2 2 $w w  are  

introduced in M   and there is no transition from q  in 
M  . These ne les in w ru M   ensure that if the heads go 

he right end of the tape i  off t n M  when M  is in a non 
final state then M   would go to tate q  d would 
not accept the string as e is no transition from 

 s an
ther q  i.e. 

the above stated rules ensure the heads do not fall off the 
t end of the tape for righ M   when M  does not accept 

the word. As M   is all final if the h s go off  right 
end of the tape it will acce the given string. 

For transition rules of 

ead t
pt 

he

M  which belong to class 3 the 
fo

, where 

llowing modifications are needed. Class 3 also has two 
instances similar to class 2. 

case 1: For transition 
 1

2 2

,

,

w R
q

w dir
q


 
 

 q  is  

a final state. In this case the transition rules are kept same 
in M  . 

c  2:ase  For transition , where 1

2 2

,

,

w R
q

w dir
q
 
 
 

 q  is  

a non final state. In this case the transition rules of M  
are modified as follows for M  . 

For each transition rule 1w

2 2

,

,

R
q

w dir
q
 
 
 

  in M  be-  

longing to class 3 where q  is a non final state,  

1,w R
q

 
$

2 2, uw dir
q  






 wher   is introduced ine  1 1$w w

M   where $uq  denotes that the head on the upper 
strand has go past the right end marker $  in the ori- 
ginal machine 

ne 
M  on application of the above transition 

rule. 
Only rules having λ on the upper strand are applied to 

$uq  because in the actual machine M  if the above 
s of class 3 are applied then the u er head would 

have gone past the right end of the tape. So only rules 
rule pp
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having λ on the upper head can be applied to the machine 
M . As M   replicates M  similar thing is done in 
M 

T
 too. 
hus, all the transition hat can be applied to  rules t q  

in M  with   on the upper strand and 2 1 2w a a   
and $n   in the lower strand can also  

$uq  

na
 to a

in
  be applied

 M  . Rules having   on the upper strand and 

na a  and $na    the lower strand where 
goes to al state are applied to $uq

2 1w a
e tran

2
sition 

i
fin

n
th  a  . 
Finally for rules with   on the upper strand and 

2 1 2 nw a a a   and $a   in the lower strand whn

 a 
ere 

l

d in

the tr

duce

ansition 

2

 

 

goes to  final state, the rules of the  

form 
,0

 
  where   are intro-  

non

$ $,u uq q
w R 


 2 2 $w w

M 
e ru

 and th  transition rules from ere are no

$.ulq  Thes les ensure that when M reaches the end of 
string on a non final state then the M   goes to $ .ulq  

and M   does not accept the string as re is no tra  
tion  $ .ulq  i.e. the above stated rules ensure the 
heads do no ll off the right end of the tape for 

 the nsi-
from

t fa M   
when heads off M fall off the right end and the state to 
which M goes is non final. 

Class 4 rules are handled i

e tran

n a similar way to class 3 

 s from th sition rules introduced in 
rules. 

It is obviou
M   that M   accepts the same family of languages as 

T
M. 

Cr

hus,  = 2AWK. 
limited two-way Watson 

2FWK



Theorem 6: All final 1 
ick automata accept the same family of languages 

as the family of languages accepted by 1 limited two- 
way Watson Crick automata with arbitrary transition 
rules. 

Let 0, , , ,Q q ,FM V  
 Cr


min

 be a two-way 1 limited 
non-deter istic Watson ick automaton. We intro- 
duce an all final 1 limited two-way Watson Crick auto- 
maton  0, , , , .M V Q q     Each transition rule t of  

the form  in  q 1 1

2 2,w dir 


,w dir
q




   where 1 2 1w w    

falls under one of the four classes. The classes are de- 

rules of the form  
fined as follows: 

Class 1: Transition 

1 1,w dir
q  in 

2 2ir

 
  ,w d 

q   where 1 2$ and $.w w  

Class 2: Transition rules he form of t
$,

,0
q

R
q


 
 





 in 

 . 

Class 3: Transition rules he form of t
,0

$,
q

R
q

 
 





$,

,0
q

R
q


 
 





 in 

 in 

 . 

Class 4: Transition rules of the form 

 or transition rules of the form 
,0

q
R

 
 $,

q






 in   

The transition rules of 



M  
 

are modified as follows to 
form the transition rules of M  . 

Transition rules of M  which fall in class 1 and class 
4 are kept same in M  . 

For transition ru  oles f M  which belong to class 2 
ha

n , where 

ve two instances. 

case 1: For transitio
$,

,0
q

R
q


 
 





q  is a  

final state. In this case the transition rules are kept same 
in M  . 

case 2: For transition , where 
$,

,0
q

R
q


 
 





q  is a  

non final state. In this case the transition rules of M  are 
modified as follows for M  . 

For each transition rule 
$,

,0
q

R
q


 
 





 in M  be-  

longing to class 2 where q  is a non final state,  

$,0 bu
$, L

qq
    and 

,x R
q q  where 

 
$ $,0bul u
 
 
 

x V  

M  . $uq  
past

denotes that the head on the are introduced in 
upper strand has g e  the right end marker $  in 
the original machine 

on
M . 

Only rules having   on the upper strand can be ap- 
plied to $uq  (for reasons similar to reasons stated in 
proof of T orem 5). Thus, all the transition rules that 
can be applied to q

he
  with   on the upper strand and 

2 $w   in the lowe trand ar  applied to $uq . For rules r s e
having   on the upper strand and 2 $w   the lower 
strand w ere the transition goes to a fi tate are ap- 
plied to $uq

 in
l sh na

 . Finally for rules with   on the upper 
strand and 2 $ w   in the lower strand where the transi- 
tion goes to inal state in a non f M , the rules of the form 

,0
 q q b

 
 

$ $$,u uL l  and 
 

 , where  


$ $

,0

,bul ulq q
x R








are introduced in M x V  . These rules ensure that 
when M  reaches the end of the string on a non final 
state, M   does not accept the string as there are no 
transit  from state $ .ulqions   

Class 3 is handled in m a si ilar way as class 2.  
ced in It is obvious from the transition rules introdu

M   that M   accepts the same family of languages as 
M . 

Thus, 21FWK = 21WK. 
1 limited two-way Watson 

C
Corollary 3: All final 

rick automata accept the same family of languages 
as the family of languages accepted by arbitrary two- 
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way Watson Crick automata with arbitrary transition 
rules. 

Proof: From Theorem 4 we know 2AWK = 21WK 
an

that 
2A

7. Power of Two-Way Non-Deterministic 

In t show that AWK are subset of 

rministic Watson Crick 
au

d from Theorem 6 we obtain 21FWK = 21WK. Thus 
combining both the results we get 21FWK = AWK. 

Thus from the above Theorems we can state 
WK = 21FWK = 21WK = 2SWK = 2FSWK = 2FWK. 

WK Automata 

this section we firs
2AWK. Then we further show that this subset relation is 
proper i.e. 2AWK are more powerful than AWK.  

Theorem 7: AWK  2AWK. 
The theorem says that non-dete
tomata are subset of two-way non-deterministic Wat- 

son Crick automata. 
Proof: 
Let  0, , , , ,V Q q FM  

 Crick automaton wher
be a non-deterministic 

Watson e V  is a set of alphabet, 
 Q  is a set of states, V V     the complementarity 

ation and 0q  is the in e and 
is

trel itial sta F Q  is the set 
of final states.   is the finite number o ition rules  

of the form 1 
 where *

f trans

2

q
w

q
w 





, 1 2, .w w V  

We introduce a two-way non-deterministic Watson 
Crick automaton 

  #,$ ,M V , , , ,fQ q q   
alphabet, #,$ V  are the beginn

ly, that i

     where is a set of V  
heing and t  end marker 

respective s, the word w to be recognized is pro- 
vided as an input to the automaton in the form # $.w  

      0 , ,  #,# , $,$fQ Q q q        is the co  
tate and qf is a 

final state. 

mple-
mentarity relation and 0q  is the initial s

   is the fi number of transition rules of 
the form  

1) For ea

nite 

ch rule 1

2

q
w

q
w

 
 





 in   introduce 

1

2

,

,

w R
q

w R
q
 
 





 in  

2) .  

3) For each state 

. 

0 0

#

#
q q
 
 


 


x F  in M  introduce 
$,

$, f

R
q  in 

R
x
 
 





 

From the construction of 

. 

M   it is evident that all that 
will be accepted by M  wil accepted by l be M  . 

Theorem 8: One-Way Two headed finite to au mata 
ar

is theorem is in [4]. 



e equivalent to AWK 
An informal proof of th
Example 1 
Let M V   0#,$ , , , , ,Q q F    be a 2AWK  

where  , , #,$V a b V   
 respectively, that i

are the beg d inning and the en
marker s, the word w to be recognized 
is provided as an input to the automaton in the form 
# $.w  Q  is a set of states,  0 1 2 3 4,  ,  ,  ,  ,Q q q q q q  
  is th
the

e identity complementarity relatio  
 initial state and 

n and 0q  is
 4F q  is the set of final states. 

  is the finite numb sition rules. In this exam- 
he mirror language  *

,{ |
er of tran

ple t L w w a b  and  

  *
 and ,  RL w w a b w  w  where Rw tes   deno

the reverse of  is accepted o-  
. 

les of 

 w using tw way Watson
Crick automaton

The transition ru M  are as follow 

V

0 1#, R 
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,
R

q q
 

1 1
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, 0
,  

x R
q q x


 







 

1 2

$,

,0
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Theorem 9: One-way finite automata with 2 heads 
ca

 
erful than AWK 

i.e
we know that AWK is equiva- 

le

epted by WK 
au

hine (LBA) can simulate 
th

3 4

$,

$,

R
q q

R

 





.

nnot accept the mirror language. 
The above theorem is stated in [11].
Theorem 10: 2AWK are more pow
. AWK   2AWK. 
Proof. Fr  Theorem 8 om

nt to 1-way two headed finite automata and from Theo- 
rem 9 we know that 1-way two headed finite automata 
cannot recognize the mirror language. Thus AWK cannot 
recognize the mirror language. But in Example 1 we 
have shown that two-way AWK can accept the mirror 
language and in theorem 7 we have shown that AWK   
2AWK i.e. 2AWK accepts all the family of languag  
which are accepted by AWK. Moreover it also accepts 
the mirror language which AWK cannot accept. Thus 
2AWK accepts at least one language more than AWK. 
Hence we conclude that the accepting power of two-way 
AWK is more than AWK. Mathematically AWK   
2AWK, i.e. the subset relation is proper.  

Theorem 11: Family of languages acc

es

tomata is context sensitive. 
A linear bounded Turing mac
e actions of two-way Watson Crick automaton. As the 

language accepted by LBA is context sensitive so the 
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8. Characterization of Recursively 

In e light of the RE

 
 enumerable l

gu

: We have already shown in Theorem 7 AWK 

family of languages accepted by two-way Watson Crick 
automaton is also context sensitive.  

Enumerable (RE) Languages in 
Terms of 2AWK Automata 

this section we discuss 2AWK in th  
languages. We show each language in the family of RE is 
the image of a gsm mapping of a language in 2 AWK. 

Theorem 12: TSV  AWK(ctrl) 
The proof of this theorem is in [4].
Theorem 13: For each recursively an- 
age L there is a gsm gL such that L = gL (2AWK 

(ctrl)). 
Proof   

2A

9. Conclusion 

iscuss about the power of a variant o
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Abbreviations 

ministic Watson-Crick automata. 
to- 

m

2NWK: two way stateless non-deterministic Watson- 
Cr

achine. 

AWK: non-deter
NWK: stateless non-deterministic Watson-Crick au
ata. 
FWK: all final non-deterministic Watson-Crick auto- 

mata. 
SWK: simple non-deterministic Watson-Crick auto-

mata. 
1WK: 1-limited non-deterministic Watson-Crick auto- 

mata. 
2AWK: two way non-deterministic Watson-Crick au- 

tomata.  
 

ick automata. 
2FWK: two way all final non-deterministic Watson- 

Crick automata. 
2SWK: two way simple non-deterministic Watson- 

Crick automata. 
21WK: two way 1-limited non-deterministic Watson- 

Crick automata.  
TSV: twin-shuffle language. 
RE: recursive enumerable. 

 mgsm: generalized sequential
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