
Applied Mathematics, 2013, 4, 26-34
http://dx.doi.org/10.4236/am.2013.410A1005 Published Online October 2013 (http://www.scirp.org/journal/am)

Equivalence of Subclasses of Two-Way
Non-Deterministic Watson Crick Automata

Kumar Sankar Ray, Kingshuk Chatterjee, Debayan Ganguly
Electronics and Communication Science Unit, ISI, Kolkata, India

Email: ksray@isical.ac.in, kingshukchaterjee@gmail.com, debayan3737@gmail.com

Received June 5, 2013; revised July 5, 2013; accepted July 12, 2013

Copyright © 2013 Kumar Sankar Ray et al. This is an open access article distributed under the Creative Commons Attribution Li-
cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Watson Crick automata are finite automata working on double strands. Extensive research work has already been done
on non deterministic Watson Crick automata and on deterministic Watson Crick automata. Parallel Communicating
Watson Crick automata systems have been introduced by E. Czeziler et al. In this paper we discuss about a variant of
Watson Crick automata known as the two-way Watson Crick automata which are more powerful than non-deterministic
Watson Crick automata. We also establish the equivalence of different subclasses of two-way Watson crick automata.
We further show that recursively enumerable (RE) languages can be realized by an image of generalized sequential
machine (gsm) mapping of two-way Watson-Crick automata.

Keywords: Non-Deterministic Watson Crick Automata; Two-Way Non-Deterministic Watson Crick Automata; RE

Languages

1. Introduction

The tremendous progress in biotechnology has resulted
in decoding of DNA sequences, synthesizing and mani-
pulating DNA, which lead to its usage in computation by
computer scientists. As a result sticker systems, splicing
systems and carving systems came into existence [1].
Many of the NP-complete problems were solved effi-
ciently using DNA computing. The first, the Adleman ex-
periment was done in 1994 [2]. As the interest in using
DNA in computation increased so did the need for auto-
mata which exploit the properties of DNA. The first such
automata which exploited the DNA property were the
Watson-Crick automata [3] which are the automata coun-
terpart of the Sticker Systems. Essentially Watson-Crick
automata are finite automata having two independent
heads working on double strands where the characters on
the corresponding positions of the two strands are con-
nected by a complementarity relation similar to the Wat-
son-Crick complementarity relation.

The movement of the heads although independent of
each other is controlled by a single state.

Details of several variants of non-deterministic Wat-
son-Crick automata have been explored in [4].

Deterministic Watson-Crick automata and their vari-
ants have been explicitly handled in [5,6]. Parallel Com-
municating Watson-Crick automata were introduced in

[7] and further investigated in [8]. A survey of Watson-
Crick automata can be found in [9]. The effect of the
complementarity relation on the computing power of
Watson Crick automata is discussed in [10].

Two-way finite automaton (FA) is an abstract machine,
a generalized version of the finite automaton which can
revisit characters already processed. As in FA, in two-
way FA there are finite number of states with transi-
tions between them based on the current character; but
each transition is also labeled with a value indicating whe-
ther the machine will move its reading head to the left,
right, or stay at the same position. Equivalently, 2FAs
can be seen as read-only Turing machines with no work
tape; only a read-only input tape. The accepting condi-
tion is that when the reading head falls off the right end
of the tape and the state in which the machine is at that
time is final state then the input word is accepted. A two-
way Watson Crick automaton (2AWK) is similar in con-
cept to a two-way finite automaton. The only difference
between them is that in two-way Watson Crick automata
the input tape is double stranded. The idea of two-way
Watson Crick automata were introduced in [4] but no
comparison of its power with respect to AWK was dis-
cussed. The importance of 2AWK is that unlike two-way
FA which is equal in power to a FA, 2AWK are more po-
werful than AWK which we establish in this paper.

Copyright © 2013 SciRes. AM

K. S. RAY ET AL. 27

In this paper, we give a general description of non-de-
terministic Watson Crick automata and its different sub-
classes in Sections 2 and 3. In Section 4 we describe the
twin shuffle language and state the relation of twin shuf-
fle language with RE languages. In the following section
we state the rules governing two-way non-deterministic
Watson Crick automata. In Section 6 we give the defini-
tion of the different classes (variants) of 2AWK and in-
vestigate the relationship between classes of 2AWK au-
tomata. We show that 2AWK = 2SWK = 21WK =
2FWK = 2FSWK = 2F1WK similar to the case of Wat-
son Crick automata. We further show the family of lan-
guages accepted by 2AWK is context sensitive. In Sec-
tion 7 we show that two-way non-deterministic Watson
Crick automata are more powerful than non-deterministic
Watson Crick automata. In Section 9 we further show
that recursively enumerable (RE) languages can be real-
ized by an image of generalized sequential machine (gsm)
mapping of two-way Watson-Crick automata.

2. Basic Terminology for Watson-Crick
Automata

V is a finite alphabet. V* denotes the set of all finite
words over V, including the empty word

.V V For , w V w denotes the length of
w. Let and be two words and if there is
some word

u V v V
x V , such that , then u is the pre-

fix of v, denoted by . Two words, u and v are pre-
fix comparable denoted by u~pv if u is a prefix of v or
vice versa.

v ux
u v

Given two alphabets V and U a mapping h:
* ,V U extended to s: by *V U * h and

 1 2,h x x 1 2h x h x for *
1 2, ,x x V is called a mor-

phism. If ,h a for each , then h is a λ free
morphism.

aV

A morphism h: is called a coding if *V U

*

 h a U

 for each a V and a weak coding if
 h a U for each .a V If

is the morphism defined by for 1

 * *
1 2 1:h V V V

a a V h a , and
 h a

*,

 otherwise, then we say that h is a projection
(associated with) and we denote it by prV1. 1

For
V

x y V we define their shuffle by

1 1 1

*
1 ,

,

, , 1 , 1

n n n

n i i

xШy x y x y x x x

y y y x y V i n n

A generalized sequential machine (gsm) is a sequential
transducer. Such a device is a system

 1 2 0, , , , , .g Q V V q F
,V V

q Q

 where Q is the set of states,

1 2 are the alphabets(input and output alphabets) of
the automaton, 0 is the initial state, F Q is the
set of final states and *

2V Q1: fQ V P is the
transition mapping.

The definitions of morphism, gsm and shuffle are stat-

ed in [1].
A Watson-Crick automaton is a 6-tuple of the form

 0, , , , ,M V Q q F where V is an alphabet set,
is a set of states,

Q
V V is the complementarity re-

lation similar to Watson Crick complementarity relation
and q0 is the initial state and F Q is the set of final
states. The function contains a finite number of tran-

sition rules of the form , which denotes 1

2

q
w

q
w

that the machine in state q parses w1 in upper strand and
w2 in lower strand and goes to state where q

*
1 2,w w V . 1

2

w

w

 is different from . is 1

2

w

w

1

2

w

w

just a pair of strings written in that form instead of

 1 2,w w whereas in 1

2

w

w

 the two strands are of same

length i.e. 1 2 and the corresponding symbols in
two strands are complementarity in the sense of relation
ρ.

w w

 , , ,a b
V a

V
V a

b
b

 and

V

K
V

W V

 .

A transition in a Watson-Crick finite automaton can be
defined as follows:

For,
*

1 1 1

*
2 2 2

x u w V

x u w V

 such that

 1 1 1

2 2 2

x u w
WK V

x u w

 and , ,q q Q

1 1 1 1 1 1

2 2 2 2 2 2

x u w x
q

u w
q

x u w x u w

 iff there is

transition rule 1

2

q
u

q
u

 in .

*

 denotes the transitive and reflexive closure of .

The language accepted by Watson-Crick Automata is

1*
1 0

2

1*
2

2

,

with ,,

w
L M w V q

w

w
q F w V WK V

w

q

For a Watson-Crick Automaton M, with input

 1

2

w
WK V

w

1
0

2 2

 where w1 is any string in V* and

1
f

w
q

w w
 w

q

 where q0 is the initial state and qf is

Copyright © 2013 SciRes. AM

K. S. RAY ET AL. 28

a final state. Then 1 1
0

2 2
f

w w
q

w w

q is a computation

in M denoted by .
Another important language associated with Watson-

Crick automaton is defined taking into consideration the
transitions and not the language recognised.

For a Watson-Crick Automaton 0, , , , ,Q q F M V
consider a labeling

: ,e Lab of rules in with elements in a set
Lab. For computation

 , ,f w WK V q F0: q w w q
 e

,f

by
 denoted

 the control word of , that is the sequence of
labels of transition rules used in . In this way the lan-
guage is obtained.

 0: ,fq w wq w W

 ctrL M

 , ctr fL M e K V q F .

The definition of is stated in [4].

3. Subclasses of Non-Deterministic
Watson-Crick Automata (AWK)

Depending on the type of states and transition rules there
are four types or subclasses of Watson-Crick Automata.
Watson-Crick Automaton 0, , ,Q q F, ,M V is

1) stateless (NWK): If it has only one state, i.e.

 0 ;Q F q

2) all-final (FWK): If all the states are final, i.e.
;Q F

3) simple (SWK): If at each step the automaton reads
either from the upper strand or from the lower strand, i.e.
for any transition rule

1
1 2

2

 ;
w

w
w

q either , orq w

4) 1-limlited (1WK): If for any transition rule q

1

2

q
w

q
w

, we have 1 2 1w w .

Theorem 1: Simple and 1 limited Watson-Crick au-
tomata accept the same family of languages as the fa-
mily of languages accepted by Watson-Crick automa-
ta with arbitrary transition rules.

The proof of Theorem 1 is in [4].
Theorem 2: Non-deterministic Watson-Crick auto-

mata are equivalent with non-deterministic simple
Watson-Crick automata.

Corollary 1: Non-deterministic Watson-Crick auto-
mata are equivalent with non-deterministic 1-limited
Watson-Crick automata.

The proof of Theorem 2 and Corollary 1 are given in
[4].

4. Twin-Shuffle Language

Consider an alphabet V and its barred variant,

 V a a V . The language

 V
x V

TS xШx

is called the twin-shuffle language over . (For a string V
,x V x denotes the string obtained by replacing each

symbol in x with its barred variant).
For the morphism h: V V V

 defined by
 , for andh a a V
 , for .h a a a V

Clearly the equality is , .V VTS hQ prE
Theorem 3: Each recursively enumerable language

*L T can be written in the form
 VTS RTL pr , where is an alphabet and R is

a regular language.
V

In this representation, the language TSV depends on the
language L. This can be avoided in the following way:

Let a coding be : 0,1f V *, for instance,
 01 0iif a , where i is the symbol of V in a

specified ordering. The language
a thi

 f R is regular. A
generalized sequential machine gsm can simulate the
intersection with a regular language, the projection T
as well as the decoding of elements in

pr
 .Vf TS Thus

we obtain:
Corollary 2: For each recursively enumerable lan-

guage L there is a gsm gL such that

 , . 0 1LL g TS

Therefore, by using a sequential transducer which can
be a deterministic one, we can obtain all recursively enu-
merable language, starting from the unique language

 Proofs of Theorem 3 and Corollary 2 are in [1]. 0,1 .TS

5. Two-Way Non-Deterministic Watson
Crick Automata (2AWK)

Two-way non-deterministic Watson Crick automata sys-
tem is a 6 tuple, 0#,$, , , , ,M V Q q F

#,$ V

V V

 where
 is a set of alphabet, are the beginning and

the end marker respectively; that is the word w to be re-
cognized is provided as an input to the automaton in the
form is a set of states, 1

V

$.w Q and
 2 and 1 2#,# , $,$

0q
 is the comple-

mentarity relation and is the initial state and F Q
is the set of final states. is the finite number of transi-
tion rules;

1) either of the form , which denotes 1 1

2 2

,

,

w dir
q

w di
q

r

that the machine in state q parses 1 in upper strand in
dir1 direction and 2 in lower strand in dir2 direction
and goes to state

w
w

q where
 *

1 2 1 2, , ,w w V dir L R , ir ,0d where L signifies that
the head is reading the word in the left direction, R signi-
fies that the head is reading the word in right direction
and if a head reads the empty word it remains in its

Copyright © 2013 SciRes. AM

K. S. RAY ET AL. 29

current position denoted by 0.

2) or of the forms , where 1 1

2 2

,

,

x dir
q

x di
q

r

1 2, #,x x and 1 2, ,dir dir L R ,0 with restrictions
that when 1 2or x x

or x x
 the corresponding

1 and when 1 22 or dir dir L the correspon-
ding . Moreover, there cannot be transi- 1 or dir dir2 0

tion rules having the form where 1 1

2 2

,

,

w dir
q

w di
q

r

1 where and 1 or 2 21 #w w *
1w V dir L #w w

where and 2 or both. These rules en-
sure that the reading heads do not go past the input word
on the left side or the heads do not move when it reads
empty word. Moreover once a head goes past the right
end of the tape it cannot comeback.

*V2w dir L

Accepting conditions

1W is accepted by M if, starting in state (initial 0q

state) with and on the dou- 1

2

$

$

w

w

 1

2

w

WK V
w

ble stranded input tape and the two heads at the left end
of 1 and 2 respectively, # $w # $w M eventually en-
ters a final state at the same time both the heads fall off
the right hand side of the double stranded input tape.

The word 1 is rejected if one of the following 3
conditions occurs:

w

1) The two-way WK automaton goes into a loop which
is identified in a similar way as loops in two-way FAs are
identified.

2) When both the heads fall off the right hand side of
the input tape and the machine is in a non final state.

3) If the machine comes to a halt (i.e. there are no tran-
sition rules that can be applied for that particular state in
which the machine is) before the heads fall off the right
hand side of the input tape.

i.e. mathematically

1*
1 0

2

*
2

1

2

,

with

$
*

$

,

.

 ,

w
L M w V q

w

q F w V

w
V

q

WK
w

6. Subclasses of Two-Way Non-Deterministic
Watson-Crick Automata (2AWK)

Depending on the type of states and transition rules there
are four types or subclasses of two-way Watson-Crick
Automata similar to Watson Crick automata.

2-way Watson-Crick Automaton
 0, , , , ,M V Q q F is

1) stateless (2NWK): If it has only one state, i.e.

 0 ;Q F q
2) all-final (2FWK): If all the states are final, i.e.

;Q F
3) simple (2SWK): If at each step the automaton reads

either from the upper strand or from the lower strand, i.e.

for any transition rule either 1 1

2 2

,

,

w dir
q q

w dir

1 2 or ;w w
4) 1-limlited (21WK): If for any transition rule

1 1

2 2

,

,

w dir
q q

w dir

, we have 1 2 1.w w

Many combinations of these classes can also be ob-
tained such as all-final simple two-way WK automata
(2FSWK), all final 1 limited two-way WK automata
(21FWK), stateless 1 limited two-way WK automata
(21NWK) etc.

Theorem 4: Simple and 1 limited two-way Watson
Crick automata accept the same family of languages
as the family of languages accepted by two-way Wat-
son Crick automata with arbitrary transition rules.

The proof of theorem is similar to the proof done in [4]
for Theorem 1.

Let 0, , , , ,M V Q q F be a non-deterministic
two-way Watson Crick automaton. We introduce a 1 li-
mited two-way Watson Crick automaton

 0' , , , , ,M V Q q F .

1 1

2 2

,

,

w dir
q

w di
q

r

 For each transition rule t of the

form in where 1 1 2 nw a a a

where 1w n and 2 1b2 mw b b where 2w m

and 2,n m the condition is imposed be- 2n m
cause rules with 2m n is already in the 1-limited
form and no further modification is required for them.
We introduce new rules in of the form

1 1
,1

,

, 0 t

dir
q q

a

1 1
,i, 1

,
1 1

,
,

0
i

t i tq q
a dir

i n

,

,1
1 2

,n

,0

,t tb di
q q

r

, 1
1

,
2

, 0
1 2

,
, t jj

j
t j m

b dir
q q

,

1
2

,

,0

,t
m

m b d r
q q

i

.

All the new states are introduced in Q’ along with
states in Q. From the construction of M’ which is ob-
tained from M it is obvious that both M’ and M recog-
nize the same language. So 2AWK are subset of 21WK
and from the definition of 21WK and AWK we know

Copyright © 2013 SciRes. AM

K. S. RAY ET AL. 30

that 21WK are subset of 2AWK. So 2AWK and 21WK
are equivalent i.e. they accept the same family of lan-
guages. A similar proof can also be established for
2SWK. Therefore we can say, 2AWK = 2SWK = 21WK.

Theorem 5: All final two-way Watson Crick auto-
mata accept the same family of languages as the fam-
ily of languages accepted by two-way Watson Crick
automata with arbitrary transition rules.

Let 0, , , , ,M V Q q F be a two-way non-deter-

ministic Watson Crick automaton. We introduce an all fi-
nal two-way Watson Crick automaton

 0, , , , .M V Q q

1 1

2 2

,

,

w dir
q

w di
q

r

 Each transition rule t of the form

 in δ where where 1 1 2 nw a a a

1w n and where 2 1 2 mw b b b 2w m falls un-

der one of the five classes. The classes are defined as fol-
lows:

Class 1: Transition rules of the form

1 1

2 2

,

,

w dir
q

w di
q

r

 in where where 1 1 2 nw a a a

1w n and 2 1 2 m where w b b b 2w m and
and i.e. w1 and w2 do not have $ at their ends.

na
$,nb

Class 2: Transition rules of the form 1

2

,

,

w R
q

w R
q

in where where 1 1 2 nw a a a 1w n and

2 1 2 mb w b b where 2w m ,, and , $n na b i.e.
 and both have $ at their ends. 1w w2

Class 3: Transition rules of the form

1

2 2

,

,

w R
q

w dir
q

 in where where 1 1 2 nw a a a

1 w n and where 2 1 2 mw b b b 2 , $nw m a
and i.e. 1 has $ at its end and does not
have at its end.

$nb
$

w 2w

Class 4: Transition rules of the form 1 1

2

,

,

w dir
q

w R
q

in where where 1 1 2 nw a a a 1w n and

2 1 2 mw b b b where 2 , nw m a $ and $nb i.e.

1 does not have at its end and has $ at its
end.
w $ 2w

Class 5: Either transition rules of the form
$,

,0
q

L
q

 in or transition rules of the form

$,

$,

L
q

L
q

 in or transition rules of the form

 in
,0

$,
q q

L

 .

The transition rules of M are modified as follows to
form the transition rules of M .

Transition rules of M which fall in class 1 and class
5 are kept same in M .

For transition ru oles f M which belong to class 2
tw

, where

o instances can occur;

case 1: For transition 1

2

,
'

,

w R
q

w
q

R

q is a

final state. In this case the transition rules are kept same
in M .

2case : For transition , where 1

2

,

,

w R
q

w R
q

q is a

non final state. In this case the transition rules of M are
modified as follows for M .

For each transition ru 1

2

,

,

w R
q

w R
q

 in le M be-

longing to class 2 where q is a non final state,

1,w R
q

2 ,w R
q

 where and

 1 1$w w 2 2 $w w are

introduced in M and there is no transition from q in
M . These ne les in w ru M ensure that if the heads go

he right end of the tape i off t n M when M is in a non
final state then M would go to tate q d would
not accept the string as e is no transition from

 s an
ther q i.e.

the above stated rules ensure the heads do not fall off the
t end of the tape for righ M when M does not accept

the word. As M is all final if the h s go off right
end of the tape it will acce the given string.

For transition rules of

ead t
pt

he

M which belong to class 3 the
fo

, where

llowing modifications are needed. Class 3 also has two
instances similar to class 2.

case 1: For transition
 1

2 2

,

,

w R
q

w dir
q

 q is

a final state. In this case the transition rules are kept same
in M .

c 2:ase For transition , where 1

2 2

,

,

w R
q

w dir
q

 q is

a non final state. In this case the transition rules of M
are modified as follows for M .

For each transition rule 1w

2 2

,

,

R
q

w dir
q

 in M be-

longing to class 3 where q is a non final state,

1,w R
q

$

2 2, uw dir
q

 wher is introduced ine 1 1$w w

M where $uq denotes that the head on the upper
strand has go past the right end marker $ in the ori-
ginal machine

ne
M on application of the above transition

rule.
Only rules having λ on the upper strand are applied to

$uq because in the actual machine M if the above
s of class 3 are applied then the u er head would

have gone past the right end of the tape. So only rules
rule pp

Copyright © 2013 SciRes. AM

K. S. RAY ET AL. 31

having λ on the upper head can be applied to the machine
M . As M replicates M similar thing is done in
M

T
 too.
hus, all the transition hat can be applied to rules t q

in M with on the upper strand and 2 1 2w a a
and $n in the lower strand can also

$uq

na
 to a

in
 be applied

 M . Rules having on the upper strand and

na a and $na the lower strand where
goes to al state are applied to $uq

2 1w a
e tran

2
sition

i
fin

n
th a .
Finally for rules with on the upper strand and

2 1 2 nw a a a and $a in the lower strand whn

 a
ere

l

d in

the tr

duce

ansition

2

goes to final state, the rules of the

form
,0

 where are intro-

non

$ $,u uq q
w R

 2 2 $w w

M
e ru

 and th transition rules from ere are no

$.ulq Thes les ensure that when M reaches the end of
string on a non final state then the M goes to $.ulq

and M does not accept the string as re is no tra
tion $.ulq i.e. the above stated rules ensure the
heads do no ll off the right end of the tape for

 the nsi-
from

t fa M
when heads off M fall off the right end and the state to
which M goes is non final.

Class 4 rules are handled i

e tran

n a similar way to class 3

 s from th sition rules introduced in
rules.

It is obviou
M that M accepts the same family of languages as

T
M.

Cr

hus, = 2AWK.
limited two-way Watson

2FWK

Theorem 6: All final 1
ick automata accept the same family of languages

as the family of languages accepted by 1 limited two-
way Watson Crick automata with arbitrary transition
rules.

Let 0, , , ,Q q ,FM V
 Cr

min

 be a two-way 1 limited
non-deter istic Watson ick automaton. We intro-
duce an all final 1 limited two-way Watson Crick auto-
maton 0, , , , .M V Q q Each transition rule t of

the form in q 1 1

2 2,w dir

,w dir
q

 where 1 2 1w w

falls under one of the four classes. The classes are de-

rules of the form
fined as follows:

Class 1: Transition

1 1,w dir
q in

2 2ir

 ,w d

q where 1 2$ and $.w w

Class 2: Transition rules he form of t
$,

,0
q

R
q

 in

 .

Class 3: Transition rules he form of t
,0

$,
q

R
q

$,

,0
q

R
q

 in

 in

 .

Class 4: Transition rules of the form

 or transition rules of the form
,0

q
R

 $,

q

 in

The transition rules of

M

are modified as follows to
form the transition rules of M .

Transition rules of M which fall in class 1 and class
4 are kept same in M .

For transition ru oles f M which belong to class 2
ha

n , where

ve two instances.

case 1: For transitio
$,

,0
q

R
q

q is a

final state. In this case the transition rules are kept same
in M .

case 2: For transition , where
$,

,0
q

R
q

q is a

non final state. In this case the transition rules of M are
modified as follows for M .

For each transition rule
$,

,0
q

R
q

 in M be-

longing to class 2 where q is a non final state,

$,0 bu
$, L

qq
 and

,x R
q q where

$ $,0bul u

x V

M . $uq
past

denotes that the head on the are introduced in
upper strand has g e the right end marker $ in
the original machine

on
M .

Only rules having on the upper strand can be ap-
plied to $uq (for reasons similar to reasons stated in
proof of T orem 5). Thus, all the transition rules that
can be applied to q

he
 with on the upper strand and

2 $w in the lowe trand ar applied to $uq . For rules r s e
having on the upper strand and 2 $w the lower
strand w ere the transition goes to a fi tate are ap-
plied to $uq

 in
l sh na

 . Finally for rules with on the upper
strand and 2 $ w in the lower strand where the transi-
tion goes to inal state in a non f M , the rules of the form

,0
 q q b

$ $$,u uL l and

 , where

$ $

,0

,bul ulq q
x R

are introduced in M x V . These rules ensure that
when M reaches the end of the string on a non final
state, M does not accept the string as there are no
transit from state $.ulqions

Class 3 is handled in m a si ilar way as class 2.
ced in It is obvious from the transition rules introdu

M that M accepts the same family of languages as
M .

Thus, 21FWK = 21WK.
1 limited two-way Watson

C
Corollary 3: All final

rick automata accept the same family of languages
as the family of languages accepted by arbitrary two-

Copyright © 2013 SciRes. AM

K. S. RAY ET AL. 32

way Watson Crick automata with arbitrary transition
rules.

Proof: From Theorem 4 we know 2AWK = 21WK
an

that
2A

7. Power of Two-Way Non-Deterministic

In t show that AWK are subset of

rministic Watson Crick
au

d from Theorem 6 we obtain 21FWK = 21WK. Thus
combining both the results we get 21FWK = AWK.

Thus from the above Theorems we can state
WK = 21FWK = 21WK = 2SWK = 2FSWK = 2FWK.

WK Automata

this section we firs
2AWK. Then we further show that this subset relation is
proper i.e. 2AWK are more powerful than AWK.

Theorem 7: AWK 2AWK.
The theorem says that non-dete
tomata are subset of two-way non-deterministic Wat-

son Crick automata.
Proof:
Let 0, , , , ,V Q q FM

 Crick automaton wher
be a non-deterministic

Watson e V is a set of alphabet,
 Q is a set of states, V V the complementarity

ation and 0q is the in e and
is

trel itial sta F Q is the set
of final states. is the finite number o ition rules

of the form 1
 where *

f trans

2

q
w

q
w

, 1 2, .w w V

We introduce a two-way non-deterministic Watson
Crick automaton

 #,$,M V , , , ,fQ q q
alphabet, #,$ V are the beginn

ly, that i

 where is a set of V
heing and t end marker

respective s, the word w to be recognized is pro-
vided as an input to the automaton in the form # $.w

 0 , , #,# , $,$fQ Q q q is the co
tate and qf is a

final state.

mple-
mentarity relation and 0q is the initial s

 is the fi number of transition rules of
the form

1) For ea

nite

ch rule 1

2

q
w

q
w

 in introduce

1

2

,

,

w R
q

w R
q

 in

2) .

3) For each state

.

0 0

#

#
q q

x F in M introduce
$,

$, f

R
q in

R
x

From the construction of

.

M it is evident that all that
will be accepted by M wil accepted by l be M .

Theorem 8: One-Way Two headed finite to au mata
ar

is theorem is in [4].

e equivalent to AWK
An informal proof of th
Example 1
Let M V 0#,$, , , , ,Q q F be a 2AWK

where , , #,$V a b V
 respectively, that i

are the beg d inning and the en
marker s, the word w to be recognized
is provided as an input to the automaton in the form
$.w Q is a set of states, 0 1 2 3 4, , , , ,Q q q q q q
 is th
the

e identity complementarity relatio
 initial state and

n and 0q is
 4F q is the set of final states.

 is the finite numb sition rules. In this exam-
he mirror language *

,{ |
er of tran

ple t L w w a b and

 *
 and , RL w w a b w w where Rw tes deno

the reverse of is accepted o-
.

les of

 w using tw way Watson
Crick automaton

The transition ru M are as follow

V

0 1#, R

#,

,
R

q q

1 1

,
,

, 0
,

x R
q q x

1 2

$,

,0
,

L
q q

2 2 ,
,

,
,

x L
q q x

x R

V

2 3

#,

$
,

,

R
q q

L

3 3

,
,

,0
,

x R
q q x

 V

Theorem 9: One-way finite automata with 2 heads
ca

erful than AWK

i.e
we know that AWK is equiva-

le

epted by WK
au

hine (LBA) can simulate
th

3 4

$,

$,

R
q q

R

.

nnot accept the mirror language.
The above theorem is stated in [11].
Theorem 10: 2AWK are more pow
. AWK 2AWK.
Proof. Fr Theorem 8 om

nt to 1-way two headed finite automata and from Theo-
rem 9 we know that 1-way two headed finite automata
cannot recognize the mirror language. Thus AWK cannot
recognize the mirror language. But in Example 1 we
have shown that two-way AWK can accept the mirror
language and in theorem 7 we have shown that AWK
2AWK i.e. 2AWK accepts all the family of languag
which are accepted by AWK. Moreover it also accepts
the mirror language which AWK cannot accept. Thus
2AWK accepts at least one language more than AWK.
Hence we conclude that the accepting power of two-way
AWK is more than AWK. Mathematically AWK
2AWK, i.e. the subset relation is proper.

Theorem 11: Family of languages acc

es

tomata is context sensitive.
A linear bounded Turing mac
e actions of two-way Watson Crick automaton. As the

language accepted by LBA is context sensitive so the

Copyright © 2013 SciRes. AM

K. S. RAY ET AL.

Copyright © 2013 SciRes. AM

33

8. Characterization of Recursively

In e light of the RE

 enumerable l

gu

: We have already shown in Theorem 7 AWK

family of languages accepted by two-way Watson Crick
automaton is also context sensitive.

Enumerable (RE) Languages in
Terms of 2AWK Automata

this section we discuss 2AWK in th
languages. We show each language in the family of RE is
the image of a gsm mapping of a language in 2 AWK.

Theorem 12: TSV AWK(ctrl)
The proof of this theorem is in [4].
Theorem 13: For each recursively an-
age L there is a gsm gL such that L = gL (2AWK

(ctrl)).
Proof

2A

9. Conclusion

iscuss about the power of a variant o

REFERENCES
[1] L. C. S. Calud ting with Cells and

dleman, “Molecular Computation of Solutions to

WK and it is stated in [4] that TSV AWK(ctrl) an
from corollary 2 we know that each language in the fam-
ily of RE is the image of a gsm mapping of a language in
TS{0,1}. As TSV AWK(ctrl) and AWK 2AWK, so we
can state, each language in the family of RE is the image
of a gsm mapping of a language in 2AWK(ctrl).

d

In this paper, we d f
non-deterministic Watson Crick automata known as
2AWK. We describe their structure and accepting condi-
tions. We introduce different subclasses of 2AWK simi-
lar to AWK and show the equivalence of some of those
subclasses. We further establish the fact that 2AWK are
more powerful than AWK. Based on the relation between
AWK and 2AWK we show that a gsm mapping of
2AWK results in the generation of each language in the
family of the recursively enumerable languages.

e and G. Paun, “Compu
Atoms: An Introduction to Quantum, DNA and Mem-
brane Computing,” Taylor & Francis Publishers, London,
2001.

[2] L. M. A
Combinatorial Problems,” Science, New Series, Vol. 226,
No. 5187, 1994, pp. 1021-1024.
http://dx.doi.org/10.1126/science.7973651

[3] R. Freund, G. Paun, G. Rozenberg and A. Saloma, “A,

A. Salomaa, “DNA Comput-

, E. Czeizler, L. Kari and K Salomaa, “Watson-

, L. Kari and K. Salomaa, “On the

Watson-Crick Finite Automata,” Proceedings of the 3rd
DIMACS Workshop on DNA Based Computers, Phila-
delphia, 1997, pp. 297-328.

[4] G. Paun, G. Rozenberg and
ing: New Computing Paradigms,” Springer-Verlag, Ber-
lin, 1998.

[5] E. Czeizler
Crick Automata: Determinism and State Complexity,”
Proceeding of: 10th International Workshop on Descrip-
tional Complexity of Formal Systems, DCFS, 16-18 July
2008, pp. 121-133.

[6] E. Czeizler, E. Czeizler
Descriptional Complexity of Watson-Crick Automata,”
Theoretical Computer Science, Vol. 410, No. 35, 2009,
pp. 3250-3260.
http://dx.doi.org/10.1016/j.tcs.2009.05.001

[7] E. Czeizler, E. Czeizler,” Parallel Communicating Wat-

the Power of Parallel Communicating

ck Automa-

-

b and A. Malcher, “Multi-Head Finite

son-Crick Automata Systems,” In: Z. Fulop Z. Esik (Ed.),
Proceedings of 11th International Conference, AFL 2005,
2005, pp. 83-96.

[8] E. Czeizler, “On
Watson-Crick Automata Systems,” Theoretical Computer
Science, Vol. 358, No. 1, 2006, pp. 142-147.

[9] E. Czeizler, “A Short Survey on Watson-Cri
ta,” Bulletin of the EATCS, Vol. 88, 2006, pp. 104-119.

[10] D. Kuske and P. Weigel, “The Role of the Complementa
rity Relation in Watson-Crick Automata and Sticker Sys-
tems,” Developments in Language Theory, Vol. 3340,
Lecture Notes in Computer Science, Springer, Berlin,
2004, pp. 272-283.

[11] M. Holzer, M. Kutri
Automata: Characterizations, Concepts and Open Prob-
lems,” Proceedings International Workshop on the Com-
plexity of Simple Programs, Cork, 6-7 December 2008,
pp. 93-107.

http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1016/j.tcs.2009.05.001
http://dx.doi.org/10.1016/j.tcs.2009.05.001

K. S. RAY ET AL. 34

Abbreviations

ministic Watson-Crick automata.
to-

m

2NWK: two way stateless non-deterministic Watson-
Cr

achine.

AWK: non-deter
NWK: stateless non-deterministic Watson-Crick au
ata.
FWK: all final non-deterministic Watson-Crick auto-

mata.
SWK: simple non-deterministic Watson-Crick auto-

mata.
1WK: 1-limited non-deterministic Watson-Crick auto-

mata.
2AWK: two way non-deterministic Watson-Crick au-

tomata.

ick automata.
2FWK: two way all final non-deterministic Watson-

Crick automata.
2SWK: two way simple non-deterministic Watson-

Crick automata.
21WK: two way 1-limited non-deterministic Watson-

Crick automata.
TSV: twin-shuffle language.
RE: recursive enumerable.

 mgsm: generalized sequential

Copyright © 2013 SciRes. AM

