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Equivalence of the Integrator-Based and
Disturbance-Observer-Based State-Space

Current Controllers for Grid Converters
F. M. Mahafugur Rahman, Student Member, IEEE, Ville Pirsto, Jarno Kukkola,

Marko Hinkkanen, Senior Member, IEEE, Diego Pérez-Estévez, Student Member, IEEE, and

Jesús Doval-Gandoy, Member, IEEE

Abstract—This paper deals with discrete-time state-
space current controllers for three-phase grid convert-
ers equipped with an LCL filter. The integral action in
the controller can be implemented either using an inte-
grator or a disturbance observer. The results show that
the disturbance-observer-based and integrator-based con-
trollers become mathematically equal if the feedforward
gains are selected to be equal, the feedforward zero is
placed to cancel the pole originating from the integral
action, and the closed-loop poles are placed identically.
The equivalent performance in both designs is verified by
means of analyses and experiments. The equivalence is
also shown for double-frequency current controllers.

Index Terms—Disturbance observer, double-frequency
controller, grid converter, integrator, state-space current
control.

I. INTRODUCTION

C
URRENT control plays a key role in modern power-

electronic-based AC systems. In the last two decades,

several hundreds of IEEE journal articles have been pub-

lished on current control of grid converters equipped with

an LCL filter. Among them, proportional-integral (PI) [1]–[4],

proportional-resonant (PR) [3]–[6], and state-space [7]–[13]

current controllers are very common. The synchronous-frame

PI controller is found to be equivalent to the stationary-frame

PR controller, i.e., both controllers yield same transient and

steady-state performance [3]–[5]. Furthermore, PI control is a

special case of state-space control with reference feedforward

and integral action [14]. With an LCL filter, current control

often includes an active resonance damping mechanism, e.g.,

[15]–[17].

A time delay in the current-control loop affects the system

stability, particularly if an LCL filter is used. Due to the delay,

the stability of current control depends on the ratio between

the filter resonance frequency and the sampling frequency [2],
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[18], [19]. For example, single-loop grid-current PI control

is unstable if the resonance frequency of the LCL filter is

below one sixth of the sampling frequency, as shown in [17],

[19], [20]. On the contrary, state-space control can stabilize the

system independently of the filter resonance frequency, and it

inherently enables active resonance damping [9].

In state-space control, the closed-loop dynamics can be

set through pole-placement methods by selecting the closed-

loop poles directly [8]–[10] or using linear quadratic (LQ)

optimal control [21]–[23]. The direct discrete-time design

improves pole-placement accuracy in the case of low sampling

frequencies, resulting in superior performance as compared to

the continuous-time design [8], [24]. In addition, the intrinsic

delays of the digital implementation and pulse-width modu-

lator (PWM) can be easily taken into account in the direct

discrete-time design approach [8], [9].

The integral action in state-space control can be imple-

mented in two ways [25]: integral control by state augmen-

tation or disturbance estimation using an observer. In the

former case, the integral action is included in the control

law, whereas in the latter case, the integral action is a part

of the state observer. Both control structures have been used

in grid converters [8]–[10]. However, the links between these

two apparently different structures are not yet well understood

in the context of grid converters. Closely related to these

structures, disturbance or uncertainty estimation methods [26]

together with the state feedback have also been applied in [27],

[28].

In this paper, we develop a common framework for both the

integrator-based and disturbance-observer-based state-space

current controllers for three-phase grid converters. The direct

discrete-time design approach is selected. The main contribu-

tion of this paper is to show the equivalence of the integrator-

based and disturbance-observer-based state-space current con-

trollers in the context of grid converters. Furthermore, a design

example for controller tuning is given. The equivalence of the

control methods is extended for double-frequency current con-

trollers. Both state-space controllers are evaluated by means

of experiments using a three-phase 12.5-kVA grid converter.

II. SYSTEM MODEL

A standard three-phase three-wire grid converter system is

considered. Since there is no path for zero-sequence current
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Fig. 1. Space-vector model of an LCL filter in stationary coordinates
(vectors marked with the superscript s). The current controller, operating
in grid-voltage coordinates, is also shown. The PLL determines the grid-
voltage angle ϑg.

to flow, the zero-sequence components are omitted in the

modeling [29]. Complex space vectors in synchronous dq

coordinates are used to describe the system, e.g., the grid

current is ig = igd + jigq. Complex-valued quantities are

marked with boldface italic symbols, state vectors with bold-

face lowercase symbols, and system matrices with boldface

uppercase symbols.

Fig. 1 shows a space-vector circuit model of the LCL filter.

The converter voltage is denoted by uc, the voltage across the

capacitor by uf , and the grid voltage by ug. The converter

current is ic and the LCL filter parameters are Lfc, Cf , and

Lfg. The undamped resonance angular frequency of the filter

is

ωr =

√

Lfc + Lfg

LfcCfLfg
. (1)

In synchronous dq coordinates rotating at the grid angular

frequency ωg, the dynamics of the grid current are

x(k + 1) = Φx(k) + Γcuc,ref(k) + Γgug(k)

ig(k) = Cgx(k) (2)

where x = [ig, ic,uf ,uc]
T is the state vector and uc,ref is

the converter voltage reference. The system matrices Φ, Γc,

Γg, and Cg are given in Appendix A. The plant model (2)

relates the grid current to the converter voltage reference and

the grid voltage. The model can be expressed also in the form

of transfer functions,

Y c(z) =
ig(z)

uc,ref(z)
= Cg(zI−Φ)−1

Γc (3)

Y g(z) =
ig(z)

ug(z)
= Cg(zI−Φ)−1

Γg (4)

where I is the identity matrix.

III. CURRENT CONTROL

Fig. 1 shows the overall block diagram of the current

control system. Only the grid current is needed for state-

feedback control. The DC-link voltage udc is measured for the

PWM and the grid voltage is measured for the phase-locked

loop (PLL). The current controller operates in grid-voltage

coordinates, where ug = ug + j0.

A. Integrator-Based Control

1) Control Law: Fig. 2(a) shows the integrator-based cur-

rent control structure [8], [10], i.e., the control law is

xi(k + 1) = xi(k) + ig,ref(k)− ig(k)

uc,ref(k) = ktig,ref(k)−Kfix̂(k) + kixi(k) (5)

where kt is the feedforward gain, Kfi is the state-feedback

gain, ki is the integral gain, xi is the integral state, and x̂ =
[ig, x̂

T
r ]

T is the state vector consisting of the measured state

ig and estimated states x̂r = [̂ic, ûf , ûc]
T. The integral state

xi in the control law (5) eliminates the steady-state control

error. The reference feedforward produces an additional zero

in the numerator polynomial of the reference-tracking transfer

function [8]. The reference-feedforward zero can be placed at

zt by choosing the feedforward gain as

kt = ki/(1− zt). (6)

The feedforward zero can be used to cancel one of the

control poles. An anti-windup mechanism is necessary in

the integrator-based controller. The realizable reference anti-

windup, shown in Fig. 2(a), is typically preferred [30].
2) Observer: The unknown states are estimated using a

reduced-order observer. For its design, the state vector x

is split into the measured state ig and the states xr =
[ic,uf ,uc]

T to be estimated. The system model (2) becomes
[
ig(k + 1)
xr(k + 1)

]

=

[
φaa Φab

Φba Φbb

]

︸ ︷︷ ︸

Φ

[
ig(k)
xr(k)

]

+

[
0
Γr

]

︸ ︷︷ ︸

Γc

uc,ref(k) (7)

where φaa, Φab, Φba, and Φbb are the submatrices of Φ

and Γr is the submatrix of Γc, cf. (2).1 The grid voltage ug is

considered as an unknown disturbance. Following the standard

approach [25], the reduced-order observer can be written as

x̂r(k) = Φbbx̂r(k − 1) +Φbaig(k − 1)

+ Γruc,ref(k − 1) +Koieo(k) (8)

eo(k) = ig(k)− φaaig(k − 1)−Φabx̂r(k − 1) (9)

where Koi is the observer gain, and eo is the estimation error

of the current. Since the grid voltage is considered as an

unknown disturbance, the estimation error is nonzero in the

steady state. However, the internal dynamics of the estimated

states are correctly presented.

B. Disturbance-Observer-Based Control

1) Control Law: Fig. 2(b) shows the disturbance-observer-

based current control structure [9], [31]. The control scheme

uses an estimated disturbance ŵ in the control law in order

to reduce the effect of grid disturbances on the grid current.

In accordance with Fig. 2(b), the control law is

uc,ref(k) = kfig,ref(k)−Kfdx̂(k)− ŵ(k) (10)

1The dimension of the submatrix φaa is 1 × 1, i.e., it is simply
a complex number. Therefore, its notation differs from those of other
submatrices, cf. Section II.
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where kf is the feedforward gain, Kfd is the state-feedback

gain, and x̂ = [ig, x̂
T
r ]

T is the state vector, which contains both

the measured state ig and estimated states x̂r = [̂ic, ûf , ûc]
T.

To achieve zero steady-state control error, the feedforward gain

has to be chosen as

kf =
1

Cg(I−Φ+ ΓcKfd)−1Γc
. (11)

2) Observer: Since the grid voltage is considered as an

unknown disturbance, an input-equivalent disturbance is used

in this model, as explained in [9], [31]. The input-equivalent

disturbance would produce the same effect on the grid current

as the actual disturbance does [25]. The disturbance is assumed

to be constant in synchronous dq coordinates. The observer is

formulated based on the system model (7) and augmented with

the disturbance state estimate, as

x̂r(k) = Φbbx̂r(k − 1) +Φbaig(k − 1)

+ Γr[uc,ref(k − 1) + ŵ(k − 1)] +Kodeo(k) (12)

ŵ(k) = ŵ(k − 1) + kweo(k) (13)

eo(k) = ig(k)− φaaig(k − 1)−Φabx̂r(k − 1) (14)

where Kod and kw are the observer gains, and eo is the

estimation error of the grid current. The disturbance state

estimate ŵ is obtained by integrating the estimation error eo.

Due to the integral action, the estimation error becomes zero

in the steady state.

C. Comparison of the Structures

In disturbance-observer-based control, the feedforward gain

kf has a unique solution which results in zero steady-state

control error. Differently, any value of the feedforward gain

kt leads to zero steady-state control error in the integrator-

based structure due to the integral action in the control law.

The observer is of the third order in integrator-based control,

whereas it is of the fourth order in disturbance-observer-

based control. However, the order of the whole controller,

including the observer and the control law, is the same in both

structures. Unlike in integrator-based control, no additional

anti-windup scheme is required in disturbance-observer-based

control. Despite these structural differences, both controllers

ig,ref
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uc,ref
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F (z) C(z)
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ig
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Fig. 3. 2DOF current control structure.

can have the same input-output behavior, as shown in the

following sections.

IV. EQUIVALENCE OF THE CONTROLLERS

In this section, we show that the integrator-based controller

can be made mathematically equivalent to the disturbance-

observer-based controller. First, a common framework for both

controllers is developed. Then, the conditions for equivalence

are derived.

A. Common Framework

Fig. 3 shows a common framework for two-degrees-of-

freedom (2DOF) current controllers [32]. The framework

consists of a feedback controller C(z), a reference prefilter

F (z), and the open-loop transfer functions Y c(z) and Y g(z),
given in (3) and (4). For simplicity, the converter voltage

reference is assumed to stay in the linear modulation region.

According to Fig. 3, the closed-loop response is

ig(z) =
F (z)C(z)Y c(z)

1 +C(z)Y c(z)
︸ ︷︷ ︸

G(z)

ig,ref(z) +
Y g(z)

1 +C(z)Y c(z)
︸ ︷︷ ︸

Y (z)

ug(z)

(15)

where G(z) is the reference-tracking transfer function and

Y (z) is the disturbance-rejection admittance. Both current

controllers, shown in Fig. 2, can be presented in the framework

of Fig. 3. The derivation of the transfer functions C(z) and

F (z) is shown in Appendix B. To distinguish the controllers,

the transfer functions and polynomials are marked with the

superscript i for the integrator-based controller and with the

superscript d for the disturbance-observer-based controller. For



example, C(z) in integrator-based control is C i(z) and in

disturbance-observer-based control is Cd(z).
The characteristic polynomial of G(z) and Y (z) in (15) is

denoted by D(z). Based on the separation principle [25], it

can be written as

D(z) = Dc(z)Do(z) (16)

where Dc(z) is the control characteristic polynomial and

Do(z) is the observer characteristic polynomial. In integrator

based control, these polynomials are obtained from (2), (5),

(8), and (9), and they are

Di
c(z) = det

(

zI−
[

Φ 0

−Cg 1

]

+

[
Γc

0

]
[
Kfi,−ki

]
)

(17)

Di
o(z) = det(zI−Φbb +KoiΦab). (18)

In disturbance-observer-based control, the characteristic poly-

nomials are obtained from (2), (10), and (12)−(14), and they

are expressed as

Dd
c (z) = det(zI−Φ+ ΓcKfd) (19)

Dd
o(z) = det

(

zI−
[
Φbb Γr

0 1

]

+

[
Kod

kw

]
[
Φab, 0

]
)

. (20)

B. Conditions for Equivalence

The closed-loop systems, corresponding to Fig. 3, become

equal for the same system if the following two conditions are

met:

1) feedback controllers are equal, C i(z) = Cd(z);
2) reference prefilters are equal, F i(z) = F d(z).

These conditions are further expressed in terms of character-

istic polynomials of the systems in the following.

The structure of the plant (3) is of the form

Y c(z) =
P (z)

Q(z)
=

p2z
2 + p1z + p0

z4 + q3z
3 + q2z

2 + q1z + q0

. (21)

In both current controllers, the structure of the feedback

controller is [cf. (51) and (56)]

C(z) =
A(z)

B(z)
=

a4z
4 + a3z

3 + a2z
2 + a1z + a0

(z − 1)(z3 + b2z2 + b1z + b0)
. (22)

Using (21) and (22) in the closed-loop system (15), the

characteristic polynomial can be written in the form of the

Diophantine equation [31]

D(z) = A(z)P (z) +B(z)Q(z). (23)

By forming a system of linear equations of (23), it is observed

that the solution of the coefficients of A(z) and B(z) for

the characteristic polynomial D(z) is unique. Therefore, the

feedback controllers become equal, C i(z) = Cd(z), if the

characteristic polynomials of the two systems are identical,

Di(z) = Dd(z). (24)

The structure of the reference prefilter is [cf. (52) and (57)]

F (z) =
Af(z)

A(z)
(25)

where Af(z) is the numerator polynomial. As can be seen

from (22) and (25), the denominator of F (z) is identical to

TABLE I
NOMINAL PARAMETERS OF A 12.5-KVA CONVERTER SYSTEM

Parameter Value Value (p.u.)

LCL filter

Converter-side inductance Lfc 3.3 mH 0.081
Grid-side inductance Lfg 3.0 mH 0.074
Capacitance Cf 8.8 µF 0.036

Grid

Angular grid frequency ωg 2π· 50 rad/s 1

Voltage (phase-neutral, peak)
√

2/3 · 400 V 1

Converter

Rated current (peak)
√
2 · 18 A 1

DC-bus voltage udc 650 V 2

the numerator of C(z). Therefore, if C i(z) = Cd(z), the

denominators of F (z) in both current controllers are equal,

Ai(z) = Ad(z). Accordingly, the reference prefilters become

equal, F i(z) = F d(z), if the numerators of F (z)

Ai
f(z) = kt(z − zt)D

i
o(z) (26)

Ad
f (z) = kfD

d
o(z) (27)

are equal in both controllers in addition to (24). The zero

zt = 1 − ki/kt originates from the reference feedforward

in integrator-based control, cf (6). In order to have equal

reference prefilter F i(z) = F d(z), the numerators of F (z)
(26) and (27) further lead to the two conditions

kf = kt (28)

Dd
o(z) = (z − zt)D

i
o(z). (29)

According to (29), the feedforward zero has to be at the same

location as one of the poles in Dd
o(z), and the rest of the poles

in Dd
o(z) have to equal the poles in Di

o(z). To summarize, the

conditions (24), (28), and (29) have to be met for equivalent

controllers. The equivalence of the two current controllers

holds under any grid conditions or any parameter variations

in the LCL filter.

V. DESIGN EXAMPLE

In this section, a design example fulfilling the previous

conditions is given. The parameters of a 12.5-kVA converter

system, given in Table I, are used.

A. Pole Locations

The closed-loop poles are the roots of the characteristic

polynomial D(z). They should be placed inside the unit circle

in order to have a stable system. To fulfil the condition (24),

the closed-loop poles are placed identically in both controllers

using the direct pole-placement method [8]–[10]. In this design

example, we choose the closed-loop pole locations by means

of radial projection, i.e., the resonant open-loop poles of the

LCL filter are damped but their resonance angular frequency

is not altered [8]–[10]. The open-loop poles originating from

the computational delay (located at z = 0) are not moved,

since they are perfectly damped. Table II gives the selected

pole locations, and Fig. 4 shows the locations in the complex

plane. The control bandwidth αc and the damping ratios (ζr,



TABLE II
EXAMPLE CLOSED-LOOP POLE LOCATIONS

Poles Location

Control

Dominant exp(−αcTs)

Complex conjugate resonant exp
[(

−ζr ± j
√

1− ζ2r

)

ωrTs

]

Computational delay 0

Observer

Complex conjugate resonant exp
[(

−ζo ± j
√

1− ζ2o

)

ωrTs

]

Computational delay 0

Integral action exp(−2αcTs)

TABLE III
DESIGN PARAMETERS

Parameter Value Value (p.u.)

Damping ratios ζr, ζo 0.7
Control bandwidth αc 2π· 400 rad/s 8
Sampling period Ts 125 µs 2π· 0.00625

Re{z}

−1 1

Im{z}1

−1

Feedforward zero

Pole originating from integral action

Double pole

Dominant pole

Fig. 4. Closed-loop poles, i.e., the roots of the characteristic polynomial
D(z), under nominal conditions. They are obtained from Tables II and
III. The blue circle shows the feedforward zero in the integrator-based
control. The double poles originate from the computational delays and
complex conjugate resonant poles.

ζo) are the design parameters, given in Table III. The dominant

dynamics are determined by a real pole. The pole originating

from the integral action is placed at twice the frequency of the

dominant control pole.

In order to meet the condition in (29), the feedforward

zero zt of the integrator-based controller is placed at the

same location as one of the observer poles in the disturbance-

observer-based design. This selection of the feedforward zero

leads to kf = kt, cf. (28). Using the defined pole locations,

the controller and observer gains are calculated numerically,

as described in [9], [10].

B. Closed-Loop Performance

Using (16), (24), and (29), the relation between the control

characteristic polynomials becomes

Di
c(z) = (z − zt)D

d
c (z). (30)

Fig. 5. Frequency responses of the current controllers: (above) feedback
controller C(z), cf. (51) and (56); and (below) reference prefilter F (z),
cf. (52) and (57). The superscript i marks the integrator-based controller
and the superscript d marks the disturbance-observer-based controller.

Fig. 6. Frequency responses of the closed-loop system in (15) under
nominal conditions: (above) reference tracking G(z); and (below) dis-
turbance rejection Y (z).

For integrator-based control, the reference-tracking transfer

function can be derived from (2), (5), (8), and (9). Using (30),

it can be expressed as

Gi(z) =
e−jωgTskt(z − zt)P (z)

Di
c(z)

=
e−jωgTsktP (z)

Dd
c (z)

(31)

where Ts is the sampling period and P (z) is the numerator

polynomial of Y c(z), cf. (21). For disturbance-observer-based

control, the reference-tracking transfer function is obtained

from (2), (10), and (12)−(14)

Gd(z) =
e−jωgTskfP (z)

Dd
c (z)

. (32)

It can be seen that the transfer functions (31) and (32) do not

depend on the observer under nominal conditions.2

Fig. 5 shows the frequency responses of the feedback

controller C(z) and the reference prefilter F (z) for both

controllers. As expected, the frequency responses of the two

2The poles and zeros of the transfer function originated from the
observer are equal and thus pole-zero cancellation occurs [25]. Under
parameter uncertainties, the poles of the observer move from their
nominal locations. Then, pole-zero cancellation is not perfect and the
transfer functions Gi(z) and Gd(z) also include both poles and zeros
originated from the observer.
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controllers are equal. This equivalence holds independently of

the filter parameter errors or grid conditions (if the same design

parameters are used to parametrize both controllers). Fig. 6

shows the frequency responses for reference tracking G(z)
and disturbance rejection Y (z), both defined in (15). To obtain

these frequency responses, the open-loop transfer functions

(3) and (4) together with the controller transfer functions (51)

and (52) are used for integrator-based control. Analogously,

the controller transfer functions (56) and (57) are used for

disturbance-observer-based control. Naturally, these frequency

responses are identical as well.

Fig. 7 shows an example of the robustness against the

parameter errors in the LCL filter. The accurate system pa-

rameters are used in the control design. The real converter-

side inductance Lr
fc is varied in the range Lr

fc = 0.5 . . . 1.5Lfc

and the real filter capacitance Cr
f is varied in the range Cr

f =
0.5 . . . 1.5Cf . It can be seen that the control systems tolerate

errors in the LCL filter parameters. Due to equivalence, the

robustness is same for both control systems. Furthermore, it

is worth noticing that the performance and robustness depend

on the selected pole locations.

VI. DOUBLE-FREQUENCY CURRENT CONTROLLERS

Both state-space control structures can be extended for

double-frequency current control. The double-frequency con-

troller controls the positive and negative sequences of the

grid current. The reference current includes both the positive-

sequence reference ig,ref+ and the negative-sequence reference

ig,ref−, as shown in Fig. 8.

A. Integrator-Based Control

In integrator-based control, the controller needs two inte-

grators to track the positive- and negative-sequence current

references with zero steady-state control error. The double-

frequency control law is

xi+(k + 1) = xi+(k) + ig,ref+(k)− ig(k) + kti−ig,ref−(k)

xi−(k + 1) = e−2jωgTsxi−(k) + ig,ref−(k)− ig(k)

+ kti+ig,ref+(k)

uc,ref(k) = kt+ig,ref+(k) + kt−ig,ref−(k)

+ ki+xi+(k) + ki−xi−(k)−Kfix̂(k) (33)

ig,ref−

controller

uc,ref

F
−
(z)

Feedbackig,ref+

Prefilters

F+(z)

ig

C(z)

Fig. 8. 2DOF representation of a double-frequency current controller.

where xi+ and xi− are the integral states, kt+ and kt− are the

feedforward gains, and ki+ and ki− are the integral gains for

the positive and negative sequences, respectively. The gains

kti+ and kti− are needed to eliminate the coupling between

the positive- and negative-sequence reference chains.

The control law (33) together with the system model (2)

leads to the control characteristic polynomial

Di
c(z) = det



zI−





Φ 0 0

−Cg 1 0
−Cg 0 e−2jωgTs



+





Γc

0
0



K
′

fi





(34)

where K
′

fi =
[
Kfi,−ki+,−ki−

]
. The observer characteris-

tic polynomial Di
o(z) is the same as (18). The gains kt+

and kti+ introduce two feedforward zeros in the positive-

sequence reference-tracking transfer function Gi
+(z) =

ig(z)/ig,ref+(z). Under nominal conditions, the transfer func-

tion is obtained from (2) and (33), as

Gi
+(z) =

e−jωgTskt+(z − zt)(z − zti)P (z)

Di
c(z)

. (35)

The feedforward zeros zt and zti can be used for pole-

zero cancellation and decoupling of the positive- and negative-

sequence reference chains. The feedforward zeros are placed

on top of the integral-action originated poles in a similar

manner as in the case of the single-frequency controller, cf.

Fig. 4. The feedforward and decoupling gains

kt+ =
ki+(1− e−2jωgTs)

1− zt − zti + ztzti

kti+ =
ki+e

−2jωgTs(zt + zti − e−2jωgTs − ztztie
2jωgTs)

ki−(1− zt − zti + ztzti)
(36)

are obtained analytically as a function of the integral gains

and feedforward zeros.

Similarly, the gains kt− and kti− produce two feedfor-

ward zeros in the negative-sequence reference-tracking transfer

function Gi
−
(z) = ig(z)/ig,ref−(z). The feedforward zeros

are placed at the same locations as the integral-action orig-

inated poles. The analytical expressions for the feedforward

and decoupling gains are

kt− =
ki−(1− e2jωgTs)

e−2jωgTs − zt − zti + ztztie2jωgTs

kti− =
ki−e

2jωgTs(zt + zti − 1− ztzti)

ki+(e−2jωgTs − zt − zti + ztztie2jωgTs)
. (37)

The rest of the design of the control method is similar to the

design explained in Section III-A.



Fig. 9. Frequency responses of the double-frequency controllers: (top)
feedback controller C(z); (middle) positive-sequence reference prefilter
F+(z); and (bottom) negative-sequence reference prefilter F

−
(z).

B. Disturbance-Observer-Based Control

In disturbance-observer-based control, both positive and

negative sequences of the grid voltage are considered to

be a disturbance for the current controller. Thus, the hold-

equivalent disturbance model becomes

r(k + 1) =

[
1 0
0 e−2jωgTs

]

r(k)

wd(k) =
[
1 1

]
r(k) (38)

where r = [w+,w−]
T is the disturbance state vector con-

sisting of the positive-sequence disturbance w+ and negative-

sequence disturbance w−. This disturbance model is embed-

ded into the observer analogously to (12). The control law

is

uc,ref(k) = kf+ig,ref+(k)+kf−ig,ref−(k)−Kfdx̂(k)−ŵd(k)
(39)

where kf+ and kf− are the feedforward gains for the positive

and negative sequences, respectively. The gain kf+ = kf is

given in (11). To achieve zero steady-state control error for

the negative sequence reference tracking, the feedforward gain

has to be chosen as

kf− =
1

Cg(e−2jωgTsI−Φ+ ΓcKfd)−1Γc
. (40)

Otherwise, the control design is similar to that explained in

Section III-B. The control characteristic polynomial Dd
c (z) is

obtained analogously to (19) and the observer characteristic

polynomial Dd
o(z) analogously to (20).

C. Equivalence

Both double-frequency controllers can be shown equal in

a similar manner as the single-frequency controllers, as ex-

plained in Section IV. They are equal if kt+ = kf+, kt− =
kf−, the feedforward zeros cancel the poles originating from

(a)

ig

ig,ref
u

s
c,refū

i
c,ref

ū
d
c,ref

Gate
signals

Disturbance-

observer-

control

based

PWMe
jϑg

control

based

Integrator-

(b)

Fig. 10. Experimental setup: (a) photograph; and (b) schematic.

the integral actions, and the closed-loop poles are identical.

Fig. 9 shows the frequency responses of the feedback con-

troller C(z) and the positive- and negative-sequence reference

prefilters F+(z) and F−(z) for both current controllers. It

can be seen that the controllers are equivalent. It is worth

mentioning that the transfer functions C(z), F+(z), and

F−(z) are obtained in an analogous manner as for the single-

frequency controller given in Appendix B.

D. Comparison of the Structures

In disturbance-observer-based control, the feedforward

gains kf+ and kf− are calculated in a straightforward way us-

ing (11) and (40) to achieve zero steady-state control error for

the positive and negative sequences, respectively. In integrator-

based control, two additional gains kti+ and kti− given in

(36) and (37) are required to decouple the positive- and

negative-sequence reference chains. In addition, integrator-

based control requires an anti-windup mechanism for both pos-

itive and negative sequences, which leads to a more complex

structure as compared to disturbance-observer-based control.

No anti-windup scheme is needed in disturbance-observer-

based control. Despite the structural differences, the controllers

can be designed to be equal, as shown in Fig. 9.

VII. EXPERIMENTAL RESULTS

The design example presented in Section V is evaluated by

means of experiments using a 12.5-kVA 50-Hz grid converter.

Fig. 10(a) shows a photograph of the experimental setup. The

grid is emulated with a 50-kVA three-phase four-quadrant

power supply (Regatron TopCon TC.ACS). A PLL having

the bandwidth of 2π · 2 rad/s, operating in synchronous

coordinates, is used [33]. The test converter controls the grid

current and another back-to-back connected converter provides

constant DC-link voltage. The switching frequency of the

converter under test is 4 kHz and synchronous sampling (twice

per carrier) is used.

As shown in Fig. 10(b), both current controllers were

implemented in parallel, but, the converter is controlled using

the gate signals produced by the integrator-based controller.

Fig. 11 shows the measured responses of the grid current

components igd and igq and equal control effort provided by



(a) (b) (c)

Fig. 11. Experimental results: (a) reference tracking in the linear modulation region; (b) reference tracking with the converter-voltage saturation;
and (c) disturbance rejection against the grid-voltage dip. In (b), the converter voltage saturates in the shaded regions.

both controllers, i.e., ūi
cd,ref = ūd

cd,ref and ūi
cq,ref = ūd

cq,ref .

Due to the equal control effort, both controllers naturally lead

to identical grid current responses.

Fig. 11(a) shows the measured responses, when a current

reference step of 0.2 p.u is applied to igd,ref . A small ref-

erence step is chosen in order to keep the converter voltage

reference in the linear modulation region. As can be observed,

the converter voltage stays in the linear modulation region,

ūc,ref = uc,ref holds, corresponding to the analysis shown

in Section IV. Fig. 11(b) shows the measured responses

for a current reference step of 0.6 p.u. Due to the large

reference step, the converter voltage saturates. In this case, the

realizable voltage reference reaches the maximum available

voltage |ūc,ref | = udc/
√
3, and thus ūc,ref 6= uc,ref . Fig. 11(c)

shows the disturbance-rejection capability of the controllers in

the case of a balanced grid-voltage dip. The converter supplies

the power of 0.4 p.u. to the grid. A voltage dip of 0.5 p.u. is

applied at 2.5 ms. As can be seen, the current controllers reject

the grid-voltage dip well.

Fig. 12 shows the harmonic-disturbance rejection capability

of the controllers. The fifth and seventh harmonic components

of 0.03 p.u. are superimposed on the grid voltage at 20 ms. The

converter supplies the power of 1 p.u. to the grid. The resulting

fifth and seventh harmonic currents are 0.043 p.u. and 0.039

p.u., respectively. The total harmonic distortion (THD) of the

grid current up to the 50th order is 1.4% and 5.9% without

and with the imposed harmonic components, respectively.

VIII. CONCLUSION

We have shown that the disturbance-observer-based and

integrator-based state-space current controllers become mathe-

matically equal, if the closed-loop poles are placed identically,

the feedforward gains are equal, and the feedforward zero

cancels the pole originating from the integral action. The

conditions for equivalence were extended to double-frequency

current controllers as well. In this paper, the reduced-order ob-

server was used as an example, but the equivalence conditions

for the full-order observers can be obtained in an analogous

manner. Similarly, the equivalence conditions could be derived

for the controllers, whose feedback signal is the converter

current, instead of the grid current used in this paper.

APPENDIX A

DISCRETE-TIME SYSTEM MODEL

A continuous-time model of the LCL filter in synchronous

dq coordinates rotating at ωg can be written as

dxp

dt
=





−jωg 0 1
Lfg

0 −jωg − 1
Lfc

− 1
Cf

1
Cf

−jωg





︸ ︷︷ ︸

Ap

xp+





0
1

Lfc

0





︸ ︷︷ ︸

Bc

uc+





− 1
Lfg

0
0





︸ ︷︷ ︸

Bg

ug

(41)

where xp =
[
ig, ic,uf

]T
is the state vector. The PWM is

modeled as the zero-order hold (ZOH) in stationary coordi-

nates. The grid current is sampled synchronously with the

ZOH. Under these assumptions, the hold-equivalent discrete-

time model of (41) becomes

xp(k + 1) = Φpxp(k) + Γcpuc(k) + Γgpug(k) (42)



Fig. 12. Measured (above) grid phase voltages and (below) grid phase
currents. The fifth and seventh harmonics are superimposed at 20 ms.

where the system matrices are [8]

Φp = eApTs Γcp =

∫ Ts

0

eApτe−jωg(Ts−τ)dτ ·Bc

Γgp =

∫ Ts

0

eApτdτ ·Bg. (43)

The closed-form expressions of the system matrices (43) are

Φp = γ






Lfg+Lfc cos(ωrTs)
Lfc+Lfg

Lfc[1−cos(ωrTs)]
Lfc+Lfg

sin(ωrTs)
ωrLfg

Lfg[1−cos(ωrTs)]
Lfc+Lfg

Lfc+Lfg cos(ωrTs)
Lfc+Lfg

− sin(ωrTs)
ωrLfc

− sin(ωrTs)
ωrCf

sin(ωrTs)
ωrCf

cos(ωrTs)






Γcp =
γ

Lfc + Lfg






Ts − sin(ωrTs)
ωr

Ts +
Lfg sin(ωrTs)

ωrLfc

Lfg[1− cos(ωrTs)]






Γgp =







γ[ρLfc sin(ωrTs)−jδLfg−jω2
gLfc cos(ωrTs)]+jδLfg+jω2

gLfc

δωgLfg(Lfc+Lfg)
γ[−ρ sin(ωrTs)+jω2

g cos(ωrTs)−jδ]−jω2
r

δωg(Lfc+Lfg)
γ[ωr cos(ωrTs)+jωg sin(ωrTs)]−ωr

δωrCfLfg







(44)

where γ = e−jωgTs , ρ = ωgωr, and δ = ω2
g − ω2

r .

A computational delay of one sampling period exists in stan-

dard implementations [8], [9].3 The effect of the computational

delay can be modeled in synchronous dq coordinates as [8]

uc(k + 1) = γuc,ref(k) (45)

where uc,ref is the converter voltage reference. With this delay,

the discrete-time model for the system seen by the controller

can be written as

x(k + 1) =

[
Φp Γcp

0 0

]

︸ ︷︷ ︸

Φ

x(k) +

[
0

γ

]

︸︷︷︸

Γc

uc,ref(k) +

[
Γgp

0

]

︸ ︷︷ ︸

Γg

ug(k)

ig(k) =
[
1 0 0 0

]

︸ ︷︷ ︸

Cg

x(k) (46)

where x = [ig, ic,uf ,uc]
T is the state vector. Since the

computational delay (45) is included in the discrete-time

3In stationary coordinates, the computational delay is modeled as
us
c(k + 1) = us

c,ref
(k), where us

c,ref
is the voltage reference for the

PWM according to Fig. 1.

model, the order of the system model (46) increases by one

as compared to the model (42).

APPENDIX B

FEEDBACK CONTROLLER AND REFERENCE PREFILTER

To derive transfer functions F i(z) and C i(z) for integrator-

based control, the observer (8) and the control law (5) are

combined. First, the state-feedback gain Kfi = [ka,Kb] is

split into gain ka for the measured state ig and gain Kb for

the estimated states x̂r. Then, the control law (5) is inserted

in (8) and the resulting controller is written in a state-space

form as

xc(k + 1) = Φcxc(k) + Γ1ig(k + 1) + Γ2ig(k)

+ Γ3ig,ref(k)

uc,ref(k) = −[Kb,−ki]xc(k)− kaig(k) + ktig,ref(k)
(47)

where xc = [x̂T
r ,xi]

T is the state vector and

Φc =

[
Φbb −KoiΦab − ΓrKb Γrki

0 1

]

Γ1 =

[
Koi

0

]

Γ2 =

[
Φba −Koiφaa − Γrka

−1

]

Γ3 =

[
Γrkt

1

]

. (48)

In the z domain, the controller (47) can be written as

zxc(z) = Φcxc(z) + (zΓ1 + Γ2) ig(z) + Γ3ig,ref(z)

uc,ref(z) = −[Kb,−ki]xc(z)− kaig(z) + ktig,ref(z). (49)

If the controller is expressed as

uc,ref(z) = C i(z)[F i(z)ig,ref(z)− ig(z)] (50)

according to Fig. 3, the feedback controller is directly obtained

from (48) and (49) as

C i(z) = [Kb,−ki](zI−Φc)
−1(zΓ1 + Γ2) + ka (51)

and the reference prefilter as

F i(z) =
−[Kb,−ki](zI−Φc)

−1
Γ3 + kt

C i(z)
. (52)

The transfer functions F d(z) and Cd(z) for disturbance-

observer-based control can be obtained in a similar way. The

observer (12), disturbance state (13), and the control law (10)

are combined. The state-feedback gain Kfd = [ka,Kb] is split

into gain ka for the measured state ig and gain Kb for the

estimated states x̂r. Using (10), (12), and (13), the resulting

state-space form of the controller becomes

xc(k + 1) = Φcxc(k) + Γ1ig(k + 1) + Γ2ig(k)

+ Γ3ig,ref(k)

uc,ref(k) = −[Kb, 1]xc(k)− kaig(k) + kfig,ref(k) (53)

where xc = [x̂T
r , ŵ]T is the state vector and

Φc =

[
Φbb −KodΦab − ΓrKb 0

−kwΦab 1

]

Γ1 =

[
Kod

kw

]

Γ2 =

[
Φba −Kodφaa − Γrka

−kwφaa

]

Γ3 =

[
Γrkf

0

]

. (54)



In the z domain, the controller (53) is written as

zxc(z) = Φcxc(z) + (zΓ1 + Γ2)ig(z) + Γ3ig,ref(z)

uc,ref(z) = −[Kb, 1]xc(z)− kaig(z) + kfig,ref(z). (55)

From (54) and (55), the feedback controller and the reference

prefilter, respectively, become

Cd(z) = [Kb, 1](zI−Φc)
−1(zΓ1 + Γ2) + ka (56)

F d(z) =
−[Kb, 1](zI−Φc)

−1
Γ3 + kf

Cd(z)
. (57)
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[31] K. J. Åström and B. Wittenmark, Computer-controlled systems: Theory

and Design, 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall, 1997.
[32] S. Skogestad and I. Postlethwaite, Multivarialbe Feedback Control:

Analysis and Design. West Sussex, England: John Wiley and Sons,
1996.

[33] V. Kaura and V. Blasko, “Operation of a phase locked loop system under
distorted utility conditions,” IEEE Trans. Ind. Appl., vol. 33, no. 1, pp.
58–63, Jan./Feb. 1997.

F. M. Mahafugur Rahman (S’20) received
the B.Sc.(Tech.) degree in electrical and elec-
tronic engineering from the Chittagong Uni-
versity of Engineering and Technology, Chit-
tagong, Bangladesh, in 2011. He received the
M.Sc.(Tech.) degree in electronics and electrical
engineering from the Aalto University, Espoo,
Finland, in 2016, where he is currently working
toward the D.Sc.(Tech.) degree in electrical en-
gineering.

His research interests include control of grid-
connected converters.



Ville Pirsto received the B.Sc. (Tech.) and
M.Sc. (Tech.) degrees in electrical engineering
from the Aalto University, Espoo, Finland,
in 2017 and 2019, respectively, where he is
currently working toward the D.Sc. (Tech.) in
electrical engineering.

His current research focuses on grid-
connected converters.

Jarno Kukkola received the B.Sc. (Tech.),
M.Sc. (Tech.), and D.Sc. (Tech.) degrees in elec-
trical engineering from the Aalto University, Es-
poo, Finland, in 2010, 2012, and 2017, respec-
tively.

He is currently a Postdoctoral Researcher with
the School of Electrical Engineering, Aalto Uni-
versity, Espoo, Finland. His research interests
include control systems and grid-connected con-
verters.

Marko Hinkkanen (M’06–SM’13) received the
M.Sc.(Eng.) and D.Sc.(Tech.) degrees in electri-
cal engineering from the Helsinki University of
Technology, Espoo, Finland, in 2000 and 2004,
respectively.

He is currently an Associate Professor with the
School of Electrical Engineering, Aalto Univer-
sity, Espoo, Finland. His research interests in-
clude control systems, electric drives, and power
converters.

Dr. Hinkkanen was the corecipient of the
2016 International Conference on Electrical Machines (ICEM) Brian
J. Chalmers Best Paper Award, the 2016 and 2018 IEEE Industry
Applications Society Industrial Drives Committee Best Paper Awards,
and the 2020 SEMIKRON Innovation Award. He is an Associate Editor
for the IEEE TRANSACTIONS ON ENERGY CONVERSION and the IET
Electric Power Applications.
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