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Equivalene of modi�ed gravity equation to the Clausius relationKazuharu Bamba1,, Chao-Qiang Geng1,, Shin'ihi Nojiri2, and Sergei D. Odintsov3,∗
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3Instituiò Catalana de Reera i Estudis Avançats (ICREA) and Institut de Cienies de l'Espai (IEEC-CSIC),Campus UAB, Faultat de Cienies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barelona), SpainWe expliitly show that the equations of motion for modi�ed gravity theories of F (R)-gravity, thesalar-Gauss-Bonnet gravity, F (G)-gravity and the non-loal gravity are equivalent to the Clausiusrelation in thermodynamis. In addition, we disuss the relation between the expression of theentropy and the ontribution from the modi�ed gravity as well as the matter to the de�nition of theenergy �ux (heat).PACS numbers: 04.50.Kd, 04.70.Dy, 95.36.+x, 98.80.-kThe disovery of blak hole (BH) entropy by Beken-stein [1℄ and the �rst law of BH thermodynamis [2℄ witha Hawking temperature [3℄ implies the fundamental on-netion between gravitation and thermodynamis. Ja-obson has shown that the Einstein equation an be de-rived from the Clausius relation, δS = δQ/T , in thermo-dynamis [4℄. Here, S is the entropy, Q is the heat, and Tis the temperature. In his formulation, δQ is interpretedas the energy �ux through the loal Rindler horizon Hat a free-falling loal observer p0:
δQ =

∫

H

TµνχµdΣν , (1)and T ould be the Unruh temperature [5℄:
T =

k

2π
. (2)In Eq. (1), χµ is an approximate loal boost Killing �eldfuture direted to the past of p0, Tµν is the ontributionto the energy-momentum tensor from all ordinary mat-ters, and the integration is over a penil of generators of

H at p0, and dΣµ is given by dΣµ = KµdλdA, where dA isthe ross setion area element of H and Kµ is an approx-imate Killing �eld generating boost at p0 and vanishingat p0, whih is taken as the future pointing to the insidepast of p0. In Eq. (2), k is the aeleration of the Killingorbit on whih the norm of χµ is unity if K is a tan-gent vetor to the generators of H with an a�ne param-eter λ (λ = 0 at p0). The formulation was extended to
F (R)-gravity [6, 7℄ (for a review of F (R) and other mod-i�ed gravity theories, see [8℄), and to the more generalextended gravity theory [9℄ (see also related disussionsin [10℄). The �rst generalization of the relation betweenthe gravitational �eld equations and thermodynamis toLanzos-Lovelok gravity has been exeuted in [11, 12℄(see also a reent related work in [13℄). Moreover, theentropy funtional approah for Lanzos-Lovelok gravity
∗Also at Tomsk State Pedagogial University.

has extensively been disussed in [14℄. This entropy fun-tional approah is the same (exept for a four-divergene)as the one used in [9, 15℄ and its onnetion with di�eo-morphism invariane has been noted in [16℄, in whih ithas been stated that in priniple, all di�eomorphism in-variant theories have an entropi derivation, provided oneis willing to aept a partiular expression as entropy.In [7℄ and [9℄, the de�nition of the entropy S was usedas [17℄:
S = − 2

T

∮

∂H

Sµρνσ ǫ̂µρǫνσ , (3)with
Sµρνσ ≡ 1√−g

δI

δRµρνσ
, (4)where I is the ation, the integration in Eq. (3) is overthe surfae enlosing the volumeH, ǫµν is a 2-dimensionalvolume form, and ǫ̂µν is given by ǫ̂µν = ∇µχ̃ν = ǫµν/ǭwith χ̃ν = χν/k and the area element ǭ of the ross se-tion of the horizon. Consequently, in [9℄ the followingformula has been obtained:1

T σν = 2
[

−2∇µ∇ρS
µσνρ + SµρτσR ν

µρτ

]

+ gσνΦ . (5)Here, Φ is determined by the onservation law or Bianhiidentity. As a result, the equivalene between the equa-tions of motion and the fundamental thermodynami re-lation for the generalized theories of gravity has beendemonstrated in [9℄.1 The sign of the �rst term in the right-hand side (r.h.s.) is dif-ferent from that in [9℄, whih omes from the di�erene of thede�nition of the Riemann tensor. In the present paper, we de�nethe urvatures as,
R = gµνRµν , Rµν = Rλ

µλν ,

Rλ
µρν = −Γλ

µρ,ν + Γλ
µν,ρ − Γη

µρΓλ
νη + Γη

µνΓλ
ρη .
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2In the present paper, we study modi�ed gravity theo-ries, in partiular (i) F (R)-gravity2, (ii) the salar-Gauss-Bonnet gravity inspired by (super)string theories, (iii)
F (G)-gravity [19℄ and (iv) the non-loal gravity, where
G ≡ R2 − 4RµνRµν + RµνρσRµνρσ is the Gauss-Bonnetinvariant (R, Rµν and Rµνρσ are the salar urvature, theRii tensor and the Riemann tensor, respetively) and
F (G) is an appropriate funtion in terms of G, and expli-itly show that the equations of motion for these theoriesare equivalent to the Clausius relation in thermodynam-is by applying the formula in Eq. (5). Extended (ormodi�ed) gravity theories are frequently studied in theontext of e�etive gravity theories of string theories andsupergravity. In addition, these theories have the apa-bility to explain the urrent aelerated expansion of theuniverse alternative to the ΛCDM osmology as well asin�ation in the early universe.In Eq. (1), the energy �ux δQ is expressed by usingthe energy-momentum tensor, Tµν , of all ordinary mat-ters. The entropy S is de�ned by Eq. (3) with Eq. (4) fora gravity theory. δQ is related to S through the Clau-sius relation δS = δQ/T . By applying Eqs. (1) and (3)to the Clausius relation, Eq. (5) an be derived. Hene,Eq. (5) orresponds to the equation of motion for thegravity theory, whih relates the matter and gravity. Forthe above four extended gravity theories, we derive theexpliit expressions of ∇µ∇ρS

µσνρ, SµρτσR ν
µρτ and Φ,whih are omponents on the r.h.s. of Eq. (5), to learlyillustrate the equations of motion from the Clausius rela-tion in thermodynamis. Our investigation is the appli-ation of the Jaobson's proposal to derive the Einsteinequation as a thermodynami equation of state in gen-eral relativity to modi�ed gravity theories. We use unitsof kB = c = ~ = 1 and denote the gravitational on-stant 8πG by κ2 ≡ 8π/MPl

2 with the Plank mass of
MPl = G−1/2 = 1.2 × 1019GeV.A general form of the ation desribing modi�ed grav-ity theories (in the below ontext) is given by

I =

∫

d4x
√
−g

[

F(R, φ, X,G)

2κ2
+ Lmatter

]

, (6)where g is the determinant of the metri tensor gµν ,
Lmatter is the matter Lagrangian, φ is a salar �eld,
X ≡ − (1/2)gµν∇µφ∇νφ is a kineti term of φ (∇µ isthe ovariant derivative operator assoiated with gµν),and F(R, φ, X,G) is an arbitrary funtion in terms of R,
φ, X and G. The salar �eld φ is a gravitational partner,e.g., a dilaton, in the ase of string theories.From the ation in Eq. (6), the gravitational �eld equa-2 The equations of motion for F (R)-gravity in [6℄ were derivedby using nonequilibrium thermodynamis, while in [7℄ they wereexamined in equilibrium thermodynamis with the idea of �loal-boost-invariane� [18℄. In the present paper, however, we applythe generalization of the Jaobson's derivation proposed in [9℄ to

F (R)-gravity.

tion and the equation of motion for φ are derived as
F,R

(

Rµν − 1

2
Rgµν

)

= κ2T (matter)
µν +

1

2
gµν (F − F,RR)

+∇µ∇νF,R − gµν�F,R +
1

2
F,X∂µφ∂νφ

+
(

−2RRµν + 4RµρRν
ρ − 2Rµ

ρστRνρστ

+4gαρgβσRµανβRρσ

)

F,G + 2 (∇µ∇νF,G) R

−2gµν (�F,G)R + 4 (�F,G)Rµν − 4 (∇ρ∇µF,G)Rν
ρ

−4 (∇ρ∇νF,G)Rµ
ρ + 4gµν (∇ρ∇σF,G)Rρσ

−4 (∇ρ∇σF,G) gαρgβσRµανβ , (7)
F,φ +

1√−g
∂µ

(

F,X

√
−ggµν∂νφ

)

= 0 , (8)where we have used the following expressions:
F,R =

∂F(R, φ, X,G)

∂R
, F,X =

∂F(R, φ, X,G)

∂X
,

F,G =
∂F(R, φ, X,G)

∂G , F,φ =
∂F(R, φ, X,G)

∂φ
. (9)Here, � ≡ gµν∇µ∇ν is the ovariant d'Alembertian for asalar �eld and T

(matter)
µν is the ontribution to the energy-momentum tensor from all ordinary matters.Hereafter, we investigate four expliit examples ofmodi�ed gravity theories.(i) F (R)-gravityFrom the ation

I =

∫

d4x
√
−g [F (R) + Lmatter] , (10)we obtain

Sµνρσ =
F ′(R)

2
(gµνgρσ − gµσgνρ) , (11)and

∇µ∇σSµρνσ =
1

2
(∇ν∇ρ − gνρ

�)F ′(R) , (12)
SµρτσR ν

µρτ = RσνF ′(R) . (13)Here and in what follows, the prime denotes di�erentia-tion with respet to the argument of the funtion F as
F ′(R) = dF (R)/dR. On the other hand, the equation in
F (R)-gravity, orresponding to the Einstein equation, isgiven by

0 =
1

2
gµνF (R) − RµνF ′(R) + ∇µ∇νF ′(R)

−gµν�F ′(R) +
1

2
T (matter)

µν . (14)By omparing Eq. (14) with Eq. (5) and using Eqs. (12)and (13), we �nd
Tµν = T (matter)

µν , (15)
Φ = −F (R) . (16)



3(ii) Salar-Gauss-Bonnet gravityThe ation is given by
I =

∫

d4x
√
−g

[

R

2κ2
− γ

2
gµν∂µφ∂νφ − V (φ) + f(φ)G

+Lmatter

]

, (17)where γ = ±1. If φ is a anonial salar �eld, γ = 1.On the other hand, if the GB invariant is not inluded,
φ behaves as a phantom salar �eld only when γ = −1.Moreover, V (φ) is the potential and f(φ) is an appropri-ate funtion of φ. For this theory, we �nd

Sµρνσ =
1

4κ2
(gµνgρσ − gµσgνρ)

+f(φ)
{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν + gµνRρσ)

+2Rµρνσ
}

, (18)and
∇σSµρνσ = ∇σf(φ)

{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν) + 2Rµρνσ
}

+f(φ)
{

(gµνgρσ − gµσgνρ)∇σR

−2 (∇ρRµν − gρν∇σRµσ −∇µRρν + gµν∇σRρσ)

+2∇σRµρνσ
}

. (19)From the Bianhi identity:
0 = ∇µRνρστ + ∇νRρµστ + ∇ρRµνστ , (20)we have several identities:

∇ρRρτµν = ∇µRντ −∇νRµτ , ∇ρRρµ =
1

2
∇µR . (21)We see that the terms multiplied by f(φ) (without ∇σ)anel with eah other and we get

∇σSµρνσ = ∇σf(φ)
{

(gµνgρσ − gµσgνρ) R

−2 (gρσRµν − gρνRµσ − gµσRρν) + 2Rµρνσ
}

. (22)Similarly, we �nd
∇µ∇σSµρνσ = ∇µ∇σf(φ)

{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν) + 2Rµρνσ
}

, (23)and
SµρνσR η

µρν =
1

2κ2
Rση + f(φ)

{

2RσηR − 4R σ η
µ ν Rµν

−4R η
µ Rµσ + 2R η

µρν Rµρνσ
}

. (24)In four dimensions, we have the following non-trivialidentity:
0 =

1

2
gµνG − 2RRµν + 4RµρRν

ρ − 2Rµ
ρστ Rνρστ

+4gαρgβσRµανβRρσ . (25)

We an rewrite Eq. (24) as
SµρνσR η

µρν =
1

2κ2
Rση +

f(φ)G
2

gση . (26)Now by omparing Eq. (5) with the equation in thesalar-Gauss-Bonnet gravity orresponding to the Ein-stein equation:
T (matter)

µν =
1

κ2

(

Rµν − 1

2
Rgµν

)

−γ

(

∂µφ∂νφ − 1

2
gµν∂ρφ∂ρφ

)

+ gµνV (φ)

−4 (∇µ∇νf(φ)) R + 4gµν (�f(φ))R − 8 (�f(φ))Rµν

+8 (∇ρ∇µf(φ)) Rν
ρ + 8 (∇ρ∇νf(φ)) Rµ

ρ

−8gµν (∇ρ∇σf(φ))Rρσ

+8 (∇ρ∇σf(φ)) gαρgβσRµανβ , (27)we get
Tµν = T (matter)

µν + γ

(

∂µφ∂νφ − 1

2
gµν∂ρφ∂ρφ

)

−gµνV (φ) , (28)
Φ =

R

2κ2
− f(φ)G . (29)(iii) F (G)-gravityIn the so-alled F (G)-gravity [19℄, the ation is givenby

I =

∫

d4x
√
−g

[

R

2κ2
+ F (G) + Lmatter

]

. (30)In this ase, we �nd
Sµρνσ =

1

4κ2
(gµνgρσ − gµσgνρ)

+F ′(G)
{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν + gµνRρσ)

+2Rµρνσ
}

, (31)where F ′(G) = dF (G)/dG. By repeating the alulationssimilar to Eqs. (19)�(26), we obtain
∇µ∇σSµρνσ = ∇µ∇σF ′(G)

{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν) + 2Rµρνσ
}

, (32)
SµρνσR η

µρν =
1

2κ2
Rση +

F ′(G)G
2

gση . (33)The equation of motion orresponding to the Einsteinequation is given by
T (matter)

µν =
1

κ2

(

Rµν − 1

2
Rgµν

)

− gµν (F (G) − GF ′(G))

−4 (∇µ∇νF ′(G)) R + 4gµν (�F ′(G)) R

−8 (�F ′(G)) Rµν + 8 (∇ρ∇µF ′(G)) Rν
ρ

+8 (∇ρ∇νF ′(G)) Rµ
ρ − 8gµν (∇ρ∇σF ′(G)) Rρσ

+8 (∇ρ∇σF ′(G)) gαρgβσRµανβ . (34)



4Table I: Expliit expressions of ∇µ∇ρSµσνρ, SµρτσR ν
µρτ and Φ in Eq. (5) for four modi�ed gravity theories: (i) F (R)-gravity,(ii) the salar-Gauss-Bonnet gravity, (iii) F (G)-gravity and (iv) the non-loal gravity.Theory ∇µ∇ρSµσνρ SµρτσR ν

µρτ Φ(i) F (R)-gravity 1
2

(∇ν
∇

σ
− gνσ

�)F ′(R) RσνF ′(R) −F (R)(ii) Salar-Gauss-Bonnet gravity ∇µ∇ρf(φ)
˘

(gµνgσρ
− gµρgνσ) R 1

2κ2 Rσν + f(φ)G
2

gσν R

2κ2 − f(φ)G
−2 (gσρRµν

− gσνRµρ
− gµρRσν)

+2Rµσνρ
¯(iii) F (G)-gravity ∇µ∇ρF ′(G)

˘

(gµνgσρ
− gµρgνσ) R 1

2κ2 Rσν + F ′(G)G
2

gσν R

2κ2 − F (G)
−2 (gσρRµν

− gσνRµρ
− gµρRσν)

+2Rµσνρ
¯(iv) Non-loal gravity 1

4κ2 (∇ν
∇

σ
− gνσ

�)
“

f̃(ϕ) − ξ
”

1
2κ2

“

1 + f̃(ϕ) − ξ
”

Rσν R

2κ2

“

1 + f̃(ϕ) − ξ
”By using Eqs. (32) and (33) and omparing Eq. (5) withEq. (34), we �nd

Tµν = T (matter)
µν , (35)

Φ =
R

2κ2
− F (G) . (36)(iv) Non-loal gravityWe now onsider the non-loal gravity [20, 21℄

I =

∫

d4x
√
−g

{

1

2κ2
R

(

1 + f̃(�−1R)
)

+ Lmatter

}

.(37)Here, f̃ is an appropriate funtion in terms of its argu-ment. The above ation an be rewritten by introduingtwo salar �elds ϕ and ξ in the following form [21℄:
I =

∫

d4x
√
−g

[

1

2κ2

{

R
(

1 + f̃(ϕ)
)

− ∂µξ∂µϕ − ξR
}

+Lmatter

]

, (38)whih leads to
Sµρνσ =

1

4κ2

(

1 + f̃(ϕ) − ξ
)

(gµνgρσ − gµσgνρ) , (39)and
∇µ∇σSµρνσ =

1

4κ2
(∇ν∇ρ − gνρ

�)
(

f̃(ϕ) − ξ
)

, (40)
SµρνσR η

µρν =
1

2κ2

(

1 + f̃(ϕ) − ξ
)

Rση . (41)The equation of motion orresponding to the Einsteinequation is given by
T (matter)

µν =
1

κ2

[

−1

2
gµν

{

R
(

1 + f̃(ϕ) − ξ
)

− ∂ρξ∂
ρϕ

}

+Rµν

(

1 + f̃(ϕ) − ξ
)

− 1

2
(∂µξ∂νϕ + ∂µϕ∂νξ)

+ (gµν� −∇µ∇ν)
(

f̃(ϕ) − ξ
)

]

. (42)

By using Eqs. (40) and (41) and omparing Eq. (5) withEq. (42), we �nd
Tµν = T (matter)

µν +
1

2κ2

(

∂µξ∂νϕ + ∂µϕ∂νξ

−gµν∂ρξ∂
ρϕ

)

, (43)
Φ =

R

2κ2

(

1 + f̃(ϕ) − ξ
)

. (44)We should note that there is an ambiguity in the sepa-ration into Tµν part and Φ part. For example, instead ofEqs. (43) and (44), we may hoose
T̃µν = T (matter)

µν +
1

2κ2
(∂µξ∂νϕ + ∂µϕ∂νξ) , (45)

Φ̃ =
R

2κ2

(

1 + f̃(ϕ) − ξ
)

− ∂ρξ∂
ρϕ . (46)Here, the last term in Eq. (43) has been inluded in thede�nition of Φ̃.From the analysis of the above four modi�ed gravitytheories, it is lear that we have derived expliit expres-sions of ∇µ∇ρS

µσνρ, SµρτσR ν
µρτ and Φ in Eq. (5). Theresults are summarized in Table I. A general expres-sion for Φ an be expressed as the linear ombinationof R/

(

2κ2
), whih is the Lagrangian desribing generalrelativity, and the Lagrangian of gravity Lgravity as

Φ = c1
R

2κ2
+ c2Lgravity , (47)where c1 and c2 are onstants. For (i) F (R)-gravity,

c1 = 0, c2 = −1 and Lgravity = F (R). For (ii) the salar-Gauss-Bonnet gravity, c1 = 2, c2 = −1 and Lgravity =
R/

(

2κ2
)

+f(φ)G. For (iii) F (G)-gravity, c1 = 2, c2 = −1and Lgravity = R/
(

2κ2
)

+ F (G). For (iv) the non-loalgravity, if we use the expression in Eq. (44), we �nd
c1 = 0, c2 = 1 and Lgravity =

[

R/
(

2κ2
)]

(

1 + f̃(ϕ) − ξ
).If we use Eq. (46) instead of Eq. (44), we obtain Lgravity =

[

R/
(

2κ2
)]

(

1 + f̃(ϕ) − ξ
)

− ∂ρξ∂
ρϕ, whih is nothingbut the gravity part of the ation in Eq. (38).Thus, we have reinfored the generalization [9℄ in modi-�ed gravity theories of the Jaobson's proposal to express



5the Einstein equation as a thermodynami equation ofstate in general relativity with our analysis. Our resultsould support the idea that gravitation on a marosopisale is a manifestation of the thermodynamis of thevauum state of quantum �eld theory [9℄.Between Eqs. (43-44) and Eqs. (45-46), we have �ndthe ambiguity to de�ne Tµν . As we see now, this ouldbe a result from the ambiguity when we onsider thethermodynamis in the extended gravities. In general,any gravity equation an be written as
T (matter)

µν + T (modified gravity)
µν =

1

κ2

(

Rµν − 1

2
Rgµν

)

.(48)Hene, if we inlude the ontribution from
T

(modified gravity)
µν , whih omes from the modi�a-tion of the Einstein gravity, to the de�nition of theenergy �ux (heat), the usual area law of the entropy isnot modi�ed but the entropy inludes the ontributionfrom the (modi�ed) gravity. On the other hand, we maywrite Eq. (48) as

T (matter)
µν =

1

κ2

(

Rµν − 1

2
Rgµν

)

+ Gmodified gravity
µν ,

Gmodified gravity
µν ≡ −T (modified gravity)

µν . (49)If we onsider the ontribution only from matter to thede�nition of the energy �ux (heat), in general the entropy
S will be expressed by a funtion of the area A as S =
h(A), where h(A) is an appropriate (not always linear)funtion in terms of A and it may inlude the parametersoming from the modi�ed gravity and/or urvatures, et.Furthermore, there might be a mixture of Eqs. (48) and(49) like

T (matter)
µν + T̃ (modified gravity)

µν =
1

κ2

(

Rµν − 1

2
Rgµν

)

+G̃modified gravity
µν ,

Gmodified gravity
µν = −T (modified gravity)

µν

= G̃modified gravity
µν − T̃ (modified gravity)

µν . (50)

Thus, the entropy ontains the ontribution not onlyfrom the matter but from the modi�ed gravity partially,and the expression of the entropy ould be modi�ed fromthe Einstein gravity. This may tell that when we disussthe entropy, we may larify the ontribution to the en-tropy is purely from the matter or partially from (modi-�ed) gravity. Then espeially in ase that the theory in-ludes the salar �eld(s), we annot always apply Wald'sformula in Eq. (3) so naively.In onlusion, we have expliitly illustrated that theequations of motion for modi�ed gravity theories, in par-tiular F (R)-gravity, the salar-Gauss-Bonnet gravity,
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