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Equivalen
e of modi�ed gravity equation to the Clausius relationKazuharu Bamba1,, Chao-Qiang Geng1,, Shin'i
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iò Catalana de Re
er
a i Estudis Avançats (ICREA) and Institut de Cien
ies de l'Espai (IEEC-CSIC),Campus UAB, Fa
ultat de Cien
ies, Torre C5-Par-2a pl, E-08193 Bellaterra (Bar
elona), SpainWe expli
itly show that the equations of motion for modi�ed gravity theories of F (R)-gravity, thes
alar-Gauss-Bonnet gravity, F (G)-gravity and the non-lo
al gravity are equivalent to the Clausiusrelation in thermodynami
s. In addition, we dis
uss the relation between the expression of theentropy and the 
ontribution from the modi�ed gravity as well as the matter to the de�nition of theenergy �ux (heat).PACS numbers: 04.50.Kd, 04.70.Dy, 95.36.+x, 98.80.-kThe dis
overy of bla
k hole (BH) entropy by Beken-stein [1℄ and the �rst law of BH thermodynami
s [2℄ witha Hawking temperature [3℄ implies the fundamental 
on-ne
tion between gravitation and thermodynami
s. Ja-
obson has shown that the Einstein equation 
an be de-rived from the Clausius relation, δS = δQ/T , in thermo-dynami
s [4℄. Here, S is the entropy, Q is the heat, and Tis the temperature. In his formulation, δQ is interpretedas the energy �ux through the lo
al Rindler horizon Hat a free-falling lo
al observer p0:
δQ =

∫

H

TµνχµdΣν , (1)and T 
ould be the Unruh temperature [5℄:
T =

k

2π
. (2)In Eq. (1), χµ is an approximate lo
al boost Killing �eldfuture dire
ted to the past of p0, Tµν is the 
ontributionto the energy-momentum tensor from all ordinary mat-ters, and the integration is over a pen
il of generators of

H at p0, and dΣµ is given by dΣµ = KµdλdA, where dA isthe 
ross se
tion area element of H and Kµ is an approx-imate Killing �eld generating boost at p0 and vanishingat p0, whi
h is taken as the future pointing to the insidepast of p0. In Eq. (2), k is the a

eleration of the Killingorbit on whi
h the norm of χµ is unity if K is a tan-gent ve
tor to the generators of H with an a�ne param-eter λ (λ = 0 at p0). The formulation was extended to
F (R)-gravity [6, 7℄ (for a review of F (R) and other mod-i�ed gravity theories, see [8℄), and to the more generalextended gravity theory [9℄ (see also related dis
ussionsin [10℄). The �rst generalization of the relation betweenthe gravitational �eld equations and thermodynami
s toLan
zos-Lovelo
k gravity has been exe
uted in [11, 12℄(see also a re
ent related work in [13℄). Moreover, theentropy fun
tional approa
h for Lan
zos-Lovelo
k gravity
∗Also at Tomsk State Pedagogi
al University.

has extensively been dis
ussed in [14℄. This entropy fun
-tional approa
h is the same (ex
ept for a four-divergen
e)as the one used in [9, 15℄ and its 
onne
tion with di�eo-morphism invarian
e has been noted in [16℄, in whi
h ithas been stated that in prin
iple, all di�eomorphism in-variant theories have an entropi
 derivation, provided oneis willing to a

ept a parti
ular expression as entropy.In [7℄ and [9℄, the de�nition of the entropy S was usedas [17℄:
S = − 2

T

∮

∂H

Sµρνσ ǫ̂µρǫνσ , (3)with
Sµρνσ ≡ 1√−g

δI

δRµρνσ
, (4)where I is the a
tion, the integration in Eq. (3) is overthe surfa
e en
losing the volumeH, ǫµν is a 2-dimensionalvolume form, and ǫ̂µν is given by ǫ̂µν = ∇µχ̃ν = ǫµν/ǭwith χ̃ν = χν/k and the area element ǭ of the 
ross se
-tion of the horizon. Consequently, in [9℄ the followingformula has been obtained:1

T σν = 2
[

−2∇µ∇ρS
µσνρ + SµρτσR ν

µρτ

]

+ gσνΦ . (5)Here, Φ is determined by the 
onservation law or Bian
hiidentity. As a result, the equivalen
e between the equa-tions of motion and the fundamental thermodynami
 re-lation for the generalized theories of gravity has beendemonstrated in [9℄.1 The sign of the �rst term in the right-hand side (r.h.s.) is dif-ferent from that in [9℄, whi
h 
omes from the di�eren
e of thede�nition of the Riemann tensor. In the present paper, we de�nethe 
urvatures as,
R = gµνRµν , Rµν = Rλ

µλν ,

Rλ
µρν = −Γλ

µρ,ν + Γλ
µν,ρ − Γη

µρΓλ
νη + Γη

µνΓλ
ρη .

http://arxiv.org/abs/0909.4397v2


2In the present paper, we study modi�ed gravity theo-ries, in parti
ular (i) F (R)-gravity2, (ii) the s
alar-Gauss-Bonnet gravity inspired by (super)string theories, (iii)
F (G)-gravity [19℄ and (iv) the non-lo
al gravity, where
G ≡ R2 − 4RµνRµν + RµνρσRµνρσ is the Gauss-Bonnetinvariant (R, Rµν and Rµνρσ are the s
alar 
urvature, theRi

i tensor and the Riemann tensor, respe
tively) and
F (G) is an appropriate fun
tion in terms of G, and expli
-itly show that the equations of motion for these theoriesare equivalent to the Clausius relation in thermodynam-i
s by applying the formula in Eq. (5). Extended (ormodi�ed) gravity theories are frequently studied in the
ontext of e�e
tive gravity theories of string theories andsupergravity. In addition, these theories have the 
apa-bility to explain the 
urrent a

elerated expansion of theuniverse alternative to the ΛCDM 
osmology as well asin�ation in the early universe.In Eq. (1), the energy �ux δQ is expressed by usingthe energy-momentum tensor, Tµν , of all ordinary mat-ters. The entropy S is de�ned by Eq. (3) with Eq. (4) fora gravity theory. δQ is related to S through the Clau-sius relation δS = δQ/T . By applying Eqs. (1) and (3)to the Clausius relation, Eq. (5) 
an be derived. Hen
e,Eq. (5) 
orresponds to the equation of motion for thegravity theory, whi
h relates the matter and gravity. Forthe above four extended gravity theories, we derive theexpli
it expressions of ∇µ∇ρS

µσνρ, SµρτσR ν
µρτ and Φ,whi
h are 
omponents on the r.h.s. of Eq. (5), to 
learlyillustrate the equations of motion from the Clausius rela-tion in thermodynami
s. Our investigation is the appli-
ation of the Ja
obson's proposal to derive the Einsteinequation as a thermodynami
 equation of state in gen-eral relativity to modi�ed gravity theories. We use unitsof kB = c = ~ = 1 and denote the gravitational 
on-stant 8πG by κ2 ≡ 8π/MPl

2 with the Plan
k mass of
MPl = G−1/2 = 1.2 × 1019GeV.A general form of the a
tion des
ribing modi�ed grav-ity theories (in the below 
ontext) is given by

I =

∫

d4x
√
−g

[

F(R, φ, X,G)

2κ2
+ Lmatter

]

, (6)where g is the determinant of the metri
 tensor gµν ,
Lmatter is the matter Lagrangian, φ is a s
alar �eld,
X ≡ − (1/2)gµν∇µφ∇νφ is a kineti
 term of φ (∇µ isthe 
ovariant derivative operator asso
iated with gµν),and F(R, φ, X,G) is an arbitrary fun
tion in terms of R,
φ, X and G. The s
alar �eld φ is a gravitational partner,e.g., a dilaton, in the 
ase of string theories.From the a
tion in Eq. (6), the gravitational �eld equa-2 The equations of motion for F (R)-gravity in [6℄ were derivedby using nonequilibrium thermodynami
s, while in [7℄ they wereexamined in equilibrium thermodynami
s with the idea of �lo
al-boost-invarian
e� [18℄. In the present paper, however, we applythe generalization of the Ja
obson's derivation proposed in [9℄ to

F (R)-gravity.

tion and the equation of motion for φ are derived as
F,R

(

Rµν − 1

2
Rgµν

)

= κ2T (matter)
µν +

1

2
gµν (F − F,RR)

+∇µ∇νF,R − gµν�F,R +
1

2
F,X∂µφ∂νφ

+
(

−2RRµν + 4RµρRν
ρ − 2Rµ

ρστRνρστ

+4gαρgβσRµανβRρσ

)

F,G + 2 (∇µ∇νF,G) R

−2gµν (�F,G)R + 4 (�F,G)Rµν − 4 (∇ρ∇µF,G)Rν
ρ

−4 (∇ρ∇νF,G)Rµ
ρ + 4gµν (∇ρ∇σF,G)Rρσ

−4 (∇ρ∇σF,G) gαρgβσRµανβ , (7)
F,φ +

1√−g
∂µ

(

F,X

√
−ggµν∂νφ

)

= 0 , (8)where we have used the following expressions:
F,R =

∂F(R, φ, X,G)

∂R
, F,X =

∂F(R, φ, X,G)

∂X
,

F,G =
∂F(R, φ, X,G)

∂G , F,φ =
∂F(R, φ, X,G)

∂φ
. (9)Here, � ≡ gµν∇µ∇ν is the 
ovariant d'Alembertian for as
alar �eld and T

(matter)
µν is the 
ontribution to the energy-momentum tensor from all ordinary matters.Hereafter, we investigate four expli
it examples ofmodi�ed gravity theories.(i) F (R)-gravityFrom the a
tion

I =

∫

d4x
√
−g [F (R) + Lmatter] , (10)we obtain

Sµνρσ =
F ′(R)

2
(gµνgρσ − gµσgνρ) , (11)and

∇µ∇σSµρνσ =
1

2
(∇ν∇ρ − gνρ

�)F ′(R) , (12)
SµρτσR ν

µρτ = RσνF ′(R) . (13)Here and in what follows, the prime denotes di�erentia-tion with respe
t to the argument of the fun
tion F as
F ′(R) = dF (R)/dR. On the other hand, the equation in
F (R)-gravity, 
orresponding to the Einstein equation, isgiven by

0 =
1

2
gµνF (R) − RµνF ′(R) + ∇µ∇νF ′(R)

−gµν�F ′(R) +
1

2
T (matter)

µν . (14)By 
omparing Eq. (14) with Eq. (5) and using Eqs. (12)and (13), we �nd
Tµν = T (matter)

µν , (15)
Φ = −F (R) . (16)



3(ii) S
alar-Gauss-Bonnet gravityThe a
tion is given by
I =

∫

d4x
√
−g

[

R

2κ2
− γ

2
gµν∂µφ∂νφ − V (φ) + f(φ)G

+Lmatter

]

, (17)where γ = ±1. If φ is a 
anoni
al s
alar �eld, γ = 1.On the other hand, if the GB invariant is not in
luded,
φ behaves as a phantom s
alar �eld only when γ = −1.Moreover, V (φ) is the potential and f(φ) is an appropri-ate fun
tion of φ. For this theory, we �nd

Sµρνσ =
1

4κ2
(gµνgρσ − gµσgνρ)

+f(φ)
{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν + gµνRρσ)

+2Rµρνσ
}

, (18)and
∇σSµρνσ = ∇σf(φ)

{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν) + 2Rµρνσ
}

+f(φ)
{

(gµνgρσ − gµσgνρ)∇σR

−2 (∇ρRµν − gρν∇σRµσ −∇µRρν + gµν∇σRρσ)

+2∇σRµρνσ
}

. (19)From the Bian
hi identity:
0 = ∇µRνρστ + ∇νRρµστ + ∇ρRµνστ , (20)we have several identities:

∇ρRρτµν = ∇µRντ −∇νRµτ , ∇ρRρµ =
1

2
∇µR . (21)We see that the terms multiplied by f(φ) (without ∇σ)
an
el with ea
h other and we get

∇σSµρνσ = ∇σf(φ)
{

(gµνgρσ − gµσgνρ) R

−2 (gρσRµν − gρνRµσ − gµσRρν) + 2Rµρνσ
}

. (22)Similarly, we �nd
∇µ∇σSµρνσ = ∇µ∇σf(φ)

{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν) + 2Rµρνσ
}

, (23)and
SµρνσR η

µρν =
1

2κ2
Rση + f(φ)

{

2RσηR − 4R σ η
µ ν Rµν

−4R η
µ Rµσ + 2R η

µρν Rµρνσ
}

. (24)In four dimensions, we have the following non-trivialidentity:
0 =

1

2
gµνG − 2RRµν + 4RµρRν

ρ − 2Rµ
ρστ Rνρστ

+4gαρgβσRµανβRρσ . (25)

We 
an rewrite Eq. (24) as
SµρνσR η

µρν =
1

2κ2
Rση +

f(φ)G
2

gση . (26)Now by 
omparing Eq. (5) with the equation in thes
alar-Gauss-Bonnet gravity 
orresponding to the Ein-stein equation:
T (matter)

µν =
1

κ2

(

Rµν − 1

2
Rgµν

)

−γ

(

∂µφ∂νφ − 1

2
gµν∂ρφ∂ρφ

)

+ gµνV (φ)

−4 (∇µ∇νf(φ)) R + 4gµν (�f(φ))R − 8 (�f(φ))Rµν

+8 (∇ρ∇µf(φ)) Rν
ρ + 8 (∇ρ∇νf(φ)) Rµ

ρ

−8gµν (∇ρ∇σf(φ))Rρσ

+8 (∇ρ∇σf(φ)) gαρgβσRµανβ , (27)we get
Tµν = T (matter)

µν + γ

(

∂µφ∂νφ − 1

2
gµν∂ρφ∂ρφ

)

−gµνV (φ) , (28)
Φ =

R

2κ2
− f(φ)G . (29)(iii) F (G)-gravityIn the so-
alled F (G)-gravity [19℄, the a
tion is givenby

I =

∫

d4x
√
−g

[

R

2κ2
+ F (G) + Lmatter

]

. (30)In this 
ase, we �nd
Sµρνσ =

1

4κ2
(gµνgρσ − gµσgνρ)

+F ′(G)
{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν + gµνRρσ)

+2Rµρνσ
}

, (31)where F ′(G) = dF (G)/dG. By repeating the 
al
ulationssimilar to Eqs. (19)�(26), we obtain
∇µ∇σSµρνσ = ∇µ∇σF ′(G)

{

(gµνgρσ − gµσgνρ)R

−2 (gρσRµν − gρνRµσ − gµσRρν) + 2Rµρνσ
}

, (32)
SµρνσR η

µρν =
1

2κ2
Rση +

F ′(G)G
2

gση . (33)The equation of motion 
orresponding to the Einsteinequation is given by
T (matter)

µν =
1

κ2

(

Rµν − 1

2
Rgµν

)

− gµν (F (G) − GF ′(G))

−4 (∇µ∇νF ′(G)) R + 4gµν (�F ′(G)) R

−8 (�F ′(G)) Rµν + 8 (∇ρ∇µF ′(G)) Rν
ρ

+8 (∇ρ∇νF ′(G)) Rµ
ρ − 8gµν (∇ρ∇σF ′(G)) Rρσ

+8 (∇ρ∇σF ′(G)) gαρgβσRµανβ . (34)



4Table I: Expli
it expressions of ∇µ∇ρSµσνρ, SµρτσR ν
µρτ and Φ in Eq. (5) for four modi�ed gravity theories: (i) F (R)-gravity,(ii) the s
alar-Gauss-Bonnet gravity, (iii) F (G)-gravity and (iv) the non-lo
al gravity.Theory ∇µ∇ρSµσνρ SµρτσR ν

µρτ Φ(i) F (R)-gravity 1
2

(∇ν
∇

σ
− gνσ

�)F ′(R) RσνF ′(R) −F (R)(ii) S
alar-Gauss-Bonnet gravity ∇µ∇ρf(φ)
˘

(gµνgσρ
− gµρgνσ) R 1

2κ2 Rσν + f(φ)G
2

gσν R

2κ2 − f(φ)G
−2 (gσρRµν

− gσνRµρ
− gµρRσν)

+2Rµσνρ
¯(iii) F (G)-gravity ∇µ∇ρF ′(G)

˘

(gµνgσρ
− gµρgνσ) R 1

2κ2 Rσν + F ′(G)G
2

gσν R

2κ2 − F (G)
−2 (gσρRµν

− gσνRµρ
− gµρRσν)

+2Rµσνρ
¯(iv) Non-lo
al gravity 1

4κ2 (∇ν
∇

σ
− gνσ

�)
“

f̃(ϕ) − ξ
”

1
2κ2

“

1 + f̃(ϕ) − ξ
”

Rσν R

2κ2

“

1 + f̃(ϕ) − ξ
”By using Eqs. (32) and (33) and 
omparing Eq. (5) withEq. (34), we �nd

Tµν = T (matter)
µν , (35)

Φ =
R

2κ2
− F (G) . (36)(iv) Non-lo
al gravityWe now 
onsider the non-lo
al gravity [20, 21℄

I =

∫

d4x
√
−g

{

1

2κ2
R

(

1 + f̃(�−1R)
)

+ Lmatter

}

.(37)Here, f̃ is an appropriate fun
tion in terms of its argu-ment. The above a
tion 
an be rewritten by introdu
ingtwo s
alar �elds ϕ and ξ in the following form [21℄:
I =

∫

d4x
√
−g

[

1

2κ2

{

R
(

1 + f̃(ϕ)
)

− ∂µξ∂µϕ − ξR
}

+Lmatter

]

, (38)whi
h leads to
Sµρνσ =

1

4κ2

(

1 + f̃(ϕ) − ξ
)

(gµνgρσ − gµσgνρ) , (39)and
∇µ∇σSµρνσ =

1

4κ2
(∇ν∇ρ − gνρ

�)
(

f̃(ϕ) − ξ
)

, (40)
SµρνσR η

µρν =
1

2κ2

(

1 + f̃(ϕ) − ξ
)

Rση . (41)The equation of motion 
orresponding to the Einsteinequation is given by
T (matter)

µν =
1

κ2

[

−1

2
gµν

{

R
(

1 + f̃(ϕ) − ξ
)

− ∂ρξ∂
ρϕ

}

+Rµν

(

1 + f̃(ϕ) − ξ
)

− 1

2
(∂µξ∂νϕ + ∂µϕ∂νξ)

+ (gµν� −∇µ∇ν)
(

f̃(ϕ) − ξ
)

]

. (42)

By using Eqs. (40) and (41) and 
omparing Eq. (5) withEq. (42), we �nd
Tµν = T (matter)

µν +
1

2κ2

(

∂µξ∂νϕ + ∂µϕ∂νξ

−gµν∂ρξ∂
ρϕ

)

, (43)
Φ =

R

2κ2

(

1 + f̃(ϕ) − ξ
)

. (44)We should note that there is an ambiguity in the sepa-ration into Tµν part and Φ part. For example, instead ofEqs. (43) and (44), we may 
hoose
T̃µν = T (matter)

µν +
1

2κ2
(∂µξ∂νϕ + ∂µϕ∂νξ) , (45)

Φ̃ =
R

2κ2

(

1 + f̃(ϕ) − ξ
)

− ∂ρξ∂
ρϕ . (46)Here, the last term in Eq. (43) has been in
luded in thede�nition of Φ̃.From the analysis of the above four modi�ed gravitytheories, it is 
lear that we have derived expli
it expres-sions of ∇µ∇ρS

µσνρ, SµρτσR ν
µρτ and Φ in Eq. (5). Theresults are summarized in Table I. A general expres-sion for Φ 
an be expressed as the linear 
ombinationof R/

(

2κ2
), whi
h is the Lagrangian des
ribing generalrelativity, and the Lagrangian of gravity Lgravity as

Φ = c1
R

2κ2
+ c2Lgravity , (47)where c1 and c2 are 
onstants. For (i) F (R)-gravity,

c1 = 0, c2 = −1 and Lgravity = F (R). For (ii) the s
alar-Gauss-Bonnet gravity, c1 = 2, c2 = −1 and Lgravity =
R/

(

2κ2
)

+f(φ)G. For (iii) F (G)-gravity, c1 = 2, c2 = −1and Lgravity = R/
(

2κ2
)

+ F (G). For (iv) the non-lo
algravity, if we use the expression in Eq. (44), we �nd
c1 = 0, c2 = 1 and Lgravity =

[

R/
(

2κ2
)]

(

1 + f̃(ϕ) − ξ
).If we use Eq. (46) instead of Eq. (44), we obtain Lgravity =

[

R/
(

2κ2
)]

(

1 + f̃(ϕ) − ξ
)

− ∂ρξ∂
ρϕ, whi
h is nothingbut the gravity part of the a
tion in Eq. (38).Thus, we have reinfor
ed the generalization [9℄ in modi-�ed gravity theories of the Ja
obson's proposal to express



5the Einstein equation as a thermodynami
 equation ofstate in general relativity with our analysis. Our results
ould support the idea that gravitation on a ma
ros
opi
s
ale is a manifestation of the thermodynami
s of theva
uum state of quantum �eld theory [9℄.Between Eqs. (43-44) and Eqs. (45-46), we have �ndthe ambiguity to de�ne Tµν . As we see now, this 
ouldbe a result from the ambiguity when we 
onsider thethermodynami
s in the extended gravities. In general,any gravity equation 
an be written as
T (matter)

µν + T (modified gravity)
µν =

1

κ2

(

Rµν − 1

2
Rgµν

)

.(48)Hen
e, if we in
lude the 
ontribution from
T

(modified gravity)
µν , whi
h 
omes from the modi�
a-tion of the Einstein gravity, to the de�nition of theenergy �ux (heat), the usual area law of the entropy isnot modi�ed but the entropy in
ludes the 
ontributionfrom the (modi�ed) gravity. On the other hand, we maywrite Eq. (48) as

T (matter)
µν =

1

κ2

(

Rµν − 1

2
Rgµν

)

+ Gmodified gravity
µν ,

Gmodified gravity
µν ≡ −T (modified gravity)

µν . (49)If we 
onsider the 
ontribution only from matter to thede�nition of the energy �ux (heat), in general the entropy
S will be expressed by a fun
tion of the area A as S =
h(A), where h(A) is an appropriate (not always linear)fun
tion in terms of A and it may in
lude the parameters
oming from the modi�ed gravity and/or 
urvatures, et
.Furthermore, there might be a mixture of Eqs. (48) and(49) like

T (matter)
µν + T̃ (modified gravity)

µν =
1

κ2

(

Rµν − 1

2
Rgµν

)

+G̃modified gravity
µν ,

Gmodified gravity
µν = −T (modified gravity)

µν

= G̃modified gravity
µν − T̃ (modified gravity)

µν . (50)

Thus, the entropy 
ontains the 
ontribution not onlyfrom the matter but from the modi�ed gravity partially,and the expression of the entropy 
ould be modi�ed fromthe Einstein gravity. This may tell that when we dis
ussthe entropy, we may 
larify the 
ontribution to the en-tropy is purely from the matter or partially from (modi-�ed) gravity. Then espe
ially in 
ase that the theory in-
ludes the s
alar �eld(s), we 
annot always apply Wald'sformula in Eq. (3) so naively.In 
on
lusion, we have expli
itly illustrated that theequations of motion for modi�ed gravity theories, in par-ti
ular F (R)-gravity, the s
alar-Gauss-Bonnet gravity,
F (G)-gravity and the non-lo
al gravity, are equivalentto the Clausius relation in thermodynami
s. In modi-�ed gravity theories, whether we in
lude the 
ontributionfrom the matter with or without the modi�ed gravity tothe de�nition of the energy �ux (heat) is 
ru
ial to theexpression of the entropy. This point is 
losely relatedto the dis
ussion in [22℄ where it shows that it is pos-sible to obtain a pi
ture of equilibrium thermodynami
son the apparent horizon in the expanding 
osmologi
alba
kground for a wide 
lass of modi�ed gravity theoriesdue to a suitable de�nition of an energy momentum ten-sor of the 
omponent from modi�ed gravity that respe
tsto a lo
al energy 
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