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Abstract. If L is a finite relational language then all computable L-
structures can be effectively enumerated in a sequence {An}n∈ω in such
a way that for every computable L-structure B an index n of its iso-
morphic copy An can be found effectively and uniformly. Having such
a universal computable numbering, we can identify computable struc-
tures with their indices in this numbering. If K is a class of L-structures
closed under isomorphism we denote by Kc the set of all computable
members of K. We measure the complexity of a description of Kc or
of an equivalence relation on Kc via the complexity of the correspond-
ing sets of indices. If the index set of Kc is hyperarithmetical then (the
index sets of) such natural equivalence relations as the isomorphism or
bi-embeddability relation are Σ1

1 . In the present paper we study the sta-
tus of these Σ1

1 equivalence relations (on classes of computable structures
with hyperarithmetical index set) within the class of Σ1

1 equivalence re-
lations as a whole, using a natural notion of hyperarithmetic reducibility.

1 Introduction

Formalization of the notion of algorithm and studies of the computability phe-
nomenon have resulted in increasing interest in the investigation of effective
mathematical objects, in particular of algebraic structures and their classes. We
call an algebraic structure computable if its universe is a computable subset of
ω and all its basic predicates and operations are uniformly computable. For a
class K of structures, closed under isomorphism, we denote by Kc the set of
computable members of K. One of the questions of computable model theory is
to study the algorithmic complexity of such classes of computable structures and
various relations on these structures. In particular, we want to have a nice way
to measure the complexity of a description of Kc or to compare the complexity
of relations defined on different classes of computable structures. We say that K
has a computable characterization, if we can separate computable structures in
K from all other structures (not in K or noncomputable). Possible approaches
to formalize the idea of computable characterizations of classes were described
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in [10]. One such approach involves the notion of an index set from the clas-
sical theory of numberings [7]. It will be described below. The same approach
can be used to formalize the question of computable classification of K up to
some equivalence relation, i. e. the question of existence of a description of each
element of K up to isomorphism, or other equivalence relation, in terms of rela-
tively simple invariants. In this paper we will discuss different ways to measure
the complexity of equivalence relations on classes of computable structures.

This work is analogous to research in descriptive set theory, where the com-
plexity of classes of structures and relations on these classes is studied via Borel-
reducibility. In this paper we will study the questions that can be considered as
computable versions of questions from [12,14,8].

First of all, we introduce the necessary definitions and basic facts from com-
putable model theory.

2 Background

2.1 Computable Sequences and Indices of Structures

Consider a sequence {An}n∈ω of algebraic structures.

Definition 1. A sequence {An}n∈ω is called computable if each structure An

is computable, uniformly in n.

In other words, there exists a computable function which gives us an index for
the atomic diagram of A uniformly in n; equivalently, we can effectively check
the correctness of atomic formulas on elements of each structure in the sequence
uniformly.

Definition 2. We call a sequence {An}n∈ω of computable structures hyper-
arithmetical, if there is a hyperarithmetical function which gives us, for every n,
an index of the atomic diagram of An.

Let L be a finite relational language. A result of A. Nurtazin [15] shows that
there is a universal computable numbering of all computable L-structures, i. e.
there exists a computable sequence {An}n∈ω of computable L-structures, such
that for every computable L-structure B we can effectively find a structure An

which is isomorphic to B. Fix such a universal computable numbering.
One of the approaches from [10] involves the notion of index set.

Definition 3. An index set of an L-structure B is the set I(B) of all indices of
computable structures isomorphic to B in the universal computable numbering
of all computable L-structures. For a class K of structures, closed under iso-
morphism, the index set I(K) is the set of all indices of computable members
in K.

We can use a similar idea to study the computable classification of classes of
structures up to some equivalence relation. There are many interesting equiva-
lence relations from the model-theoretic point of view. We can consider classes of
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structures up to isomorphism, bi-embeddability, or elementary bi-embeddability,
bi-homomorphism, etc. There has been a lot of work on the isomorphism problem
for various classes of computable structures (see, for example, [2,3,6,10]). There
also has been some work on the computable bi-embeddability problem in [5],
where the relation between the isomorphism problem and the embedding prob-
lem for some well-known classes of structures is studied. The approach used in
the mentioned papers follows the ideas from [10] and makes use of the following
definition.

Definition 4. Let {An}n∈ω be as before the universal computable numbering
of all computable L-structures. Let K be a class of L-structures closed under
isomorphism, and let I(K) be its index set. Then

– the isomorphism problem for K is the set of pairs (a, b) ∈ I(K)× I(K) such
that Aa

∼= Ab;
– the bi-embeddability problem for K is the set of pairs (a, b) ∈ I(K)× I(K)

such that there is an embedding of Aa into Ab and an embedding of Ab into
Aa (for any language L, for L-structures A and B we say that A embedds
into B, A � B, if A is isomorphic to a substructure of B).

Generalizing this idea, every binary relation E on a class K of structures can
be associated with the set I(E, K) of all pairs of indices (a, b) ∈ I(K) × I(K)
such that the structures Aa and Ab are in the relation E. We can measure the
complexity of various relations on computable structures via the complexity of
the corresponding sets of pairs of indices.

2.2 Computable Trees

In further constructions we will often use computable trees. Here we give some
definitions useful for describing trees. Our trees are isomorphic to subtrees of
ω<ω. For the language, we take a single unary function symbol, interpreted as
the predecessor function. We write ∅ for the top node (our trees grow down),
and we think of ∅ as its own predecessor. Thus, our trees are defined on ω with
their structure given by the predecessor function, but we often consider them
as subtrees of ω<ω and treat their elements as finite sequences. In particular,
following [14], we define a relation ≤ on tree nodes s, t ∈ ω<ω of the same
length in the following way: s ≤ t iff for all i, the i-th coordinate of t is greater
than or equal to the i-th coordinate of s. We also define the operation s + t as
coordinate-wise addition.

2.3 Σ1
1 Sets

Kleene defined the analytical hierarchy, starting with computable relations on
numbers and functions (from ω to ω) and closing under projection and comple-
ment. We need only the bottom part of this hierarchy. We use symbols f, g, . . .
(possibly with indices) as function variables, and x, y, . . . (possibly, with indices)
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as number variables. A relation R(x, f) is computable if there is some e such
that for all x ∈ ω<ω and all f ∈ ωω,

ϕf
e (x) ↓=

{
1 if R(x, f)
0 otherwise

Definition 5. Let S(x) be a relation.

1. S(x) is Σ1
1 if it can be expressed in the form (∃f)(∀y)R(x, y, f), where

R(x, y, f) is computable,
2. S(x) is Π1

1 if it can be expressed in the form (∀f)(∃y)R(x, y, f), where
R(x, y, f) is computable,

3. S(x) is Δ1
1 if it is both Σ1

1 and Π1
1 .

If S(x) is a k-place relation, we may consider the set S′ of codes for k-tuples
belonging to S. It is clear that S is Σ1

1 iff S′ is Σ1
1 . The same is true for Π1

1 and
Δ1

1 relations. The next result gives familiar conditions equivalent to being Σ1
1

[1,16]. We identify finite sequences with their codes.

Proposition 1 (Kleene)
The following are equivalent:

1. S is Σ1
1 ,

2. there is a computable relation R(n, u), on pairs of numbers, such that n ∈ S
iff (∃f) (∀s)R(n, f � s),

3. there is a c.e. relation R(n, u), on pairs of numbers, such that n ∈ S iff
(∃f) (∀s)R(n, f � s),

4. there is a computable sequence of computable trees {Tn}n∈ω such that n ∈ S
iff Tn has a path.

2.4 Sets of Indices

We review the formal approach of [10] to the problem of determining whether
or not a class of computable structures can be nicely characterized or classified
relative to some natural equivalence relation.

According to [10], we say that a class K has a computable characterization, if
its index set is hyperarithmetical. This condition is equivalent to existence of a
computable infinitary sentence ϕ such that Kc (the set of computable structures
in K) consists exactly of all computable models of ϕ. This definition expresses the
fact that the set of all computable members of K can be nicely defined among all
other structures for the same language. Note, that if I(K) is hyperarithmetical
and E is the isomorphism or bi-embeddability relation, then the corresponding
equivalence relation I(E, K) on indices is a Σ1

1 set. In the worst case, when this
equivalence relation is properly Σ1

1 , the easiest way to say that two computable
structures from K are in the relation E is to say “There are functions between
the structures that are isomorphisms (embeddings) between them”. Often there
are easier ways to verify the relation (such as counting basis elements of vector
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spaces to determine the isomorphism). Within this approach we say that there is
a computable classification for K up to E if the corresponding equivalence rela-
tion I(E, K) on indices of computable structures from K is a hyperarithmetical
set. The standard way to measure the complexity of equivalence relations on
computable models from K is the following.

Definition 6. Let Γ be a complexity class (e.g., Σ0
3 , Π1

1 , etc.). I(E, K) is m-
complete Γ if I(E, K) is Γ and for any S ∈ Γ , there is a computable function
f such that

n ∈ S iff f(n) ∈ I(E, K).

By universality of the fixed computable numbering of L-structures, this condition
is equivalent to the condition that there is a computable sequence of pairs of
computable L-structures {(An,Bn)}n∈ω from K for which n ∈ S iff AnEBn.

3 A Complete Σ1
1 Equivalence Relation

We can also measure the complexity of a relation E on a class of computable
structures not as a set but as a relation, i. e. in a class of relations. This approach
can be considered as a computable analog of the study of Borel-reducibility be-
tween analytic equivalence relations [12]. For this we need an appropriate notion
of reducibility which allows us to compare relations on computable structures.

Let K be a class of structures with hyperarithmetical index set I(K). As
we have mentioned before, using indices we can identify every relation E on
computable members of K with the corresponding relation I(E, K) on natural
numbers. Therefore, it is natural to restrict our attention to relations on ω.

Definition 7. For equivalence relations E′, E′′ on ω we say that E′ is h-reducible
to E′′, E′ ≤h E′′, if there is a hyperarithmetical function f such that for all x, y,
xE′y iff f(x)E′′f(y).

If E is an equivalence relation on Kc (the set of all computable members of K),
then we often make no difference between E and I(E, K) in the following sense.
If E′ is an arbitrary equivalence relation on ω then we say that E′ h-reduces to E
iff there exists a hyperarithmetical sequence of computable structures {Ax}x∈ω

from K such that for all x, y, xE′y iff AxEAy (this is equivalent to E′ ≤h I(E, K)
in the sense of Definition 7).

Definition 8. Let R be a class of relations. A relation R ∈ R is an Σ1
1 h-

complete for R, if it is Σ1
1 and every Σ1

1 relation R′ ∈ R h-reduces to R.

Proposition 2. Let R be the class of all isomorphism relations on classes Kc,
where K is any class of structures with hyperarithmetical index set. The isomor-
phism relation on computable undirected graphs is Σ1

1 h-complete for R.

Proof. Let K be a class of structures with hyperarithmetical index set. Using
the effective transformations from [9] or [11], we get an h-reduction of the iso-
morphism relation on computable models of K to the isomorphism relation on
computable graphs.
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Theorem 1. 1. There is a class K of structures with hyperarithmetical index
set and an equivalence relation on Kc which is an h-complete Σ1

1 equivalence
relation.

2. There is a class K of structures with hyperarithmetical index set and a pre-
order on Kc which is an h-complete Σ1

1 preorder.

The former statement of the theorem follows from the latter, as a complete
Σ1

1 equivalence relation results from any complete Σ1
1 preorder. The converse

is also true: the proof of the corresponding fact from [14] can be carried out
effectively, and the Borel reducibility in the proof can be, in fact, substituted by
h-reducibility:

Proposition 3. Any h-complete Σ1
1 equivalence relation on ω is induced by an

h-complete Σ1
1 preorder on ω.

Theorem 1 can be regarded as a computable analog of results from [14]. Below
we sketch the proof, which closely follows the proof of the non-effective version
in [14]. First, we need a technical result on the representation of Σ1

1 preorders.

Theorem 2. Let R be a Σ1
1 preorder on ω. Then there exists a computable

sequence of computable trees {T R
n }n∈ω, such that

1. xRy ⇔ T R
〈x,y〉 has a path;

2. ∀s, t ∈ ω<ω of the same length, such that s ≤ t, if s ∈ T R
〈x,y〉 then t ∈ T R

〈x,y〉;
3. ∀xT R

〈x,x〉 = ω<ω;
4. If s ∈ T R

〈x,y〉, t ∈ T R
〈y,z〉 and |s| = |t|, then s + t ∈ T R

〈x,z〉.

Proof. For every natural number m we define the function 〈m〉 by:

〈m〉(x) =
{

1 if x = m + 1
0 otherwise.

We turn the preorder R on ω into a Σ1
1 preorder R0 on 2ω in the following

way:
xR0y ⇐⇒ ((∃m, n)x = 〈m〉 ∧ y = 〈n〉 ∧ mRn) ∨ (x = y).

By [14], we get a tree S on 2 × 2 × ω, such that:

1. for all x, y ∈ 2ωxR0y iff for some z ∈ ωω, (x|n, y|n, z|n) ∈ S for all n;
2. if (u, v, s) ∈ S and s ≤ t then (u, v, t) ∈ S;
3. if u ∈ 2<ω and s ∈ ω<ω have the same length, then (u, u, s) ∈ S;
4. if (u, v, s) ∈ S and (v, w, t) ∈ S then (u, w, s + t) ∈ S.

Note that the construction from [14] is highly effective and the resulting tree S is
computable. Now we define a sequence of trees on ω using S. For every s ∈ ω<ω

of length k, we let s ∈ T R
〈m,n〉 iff (〈m〉|k, 〈n〉|k, s) ∈ S. The sequence {T R

n }n∈ω

has all the necessary properties.
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Proof (of Theorem 1). We define a computable structure A from K. Every such
structure will code a computable sequence of computable trees with some ad-
ditional property. The language for the class consists of one unary predicate
symbol V and two unary function symbols g, h. In each model the function g is
a successor function on V = {v0, v1, . . . , vn, . . .}, and it defines on V a copy of ω.
Each vn ∈ V is a root of a tree TA

n , with its structure given by h as a predecessor
function. As we have mentioned before, we often consider TA

n consisting of finite
strings s ∈ ω<ω. For a structure A of this kind to be in K we require that for
all n, if s ∈ TA

n , |s| = |t| and s ≤ t then t ∈ TA
n . From the definition it follows

that I(K) is hyperarithmetical.
Consider a preorder ≤∗ on K given in the following way.

A1 ≤∗ A2 ⇔ ∃ϕ[ ∀s(|s| = |ϕ(s)|) and ∀s, t(s � t → ϕ(s) � ϕ(t))
and ∀s ∈ ω<ω{z|s ∈ TA1

z } ⊆ {z|ϕ(s) ∈ TA2
z }].

Then ≤∗ is a Σ1
1 preorder.

Consider an arbitrary Σ1
1 preorder R on ω and prove that R is h-reducible to

≤∗. That is, for every x we need to hyperarithmetically build (uniformly in x) a
computable structure Ax ∈ K such that xRy ⇔ Ax ≤∗ Ay.

By Theorem 2, for R there is a computable sequence of computable trees T R
n

with the properties 1–4. We define the structure Ax as follows. For every z,
the tree TAx

z (under the z-th element of V Ax) equals T R
〈z,x〉. Then {Ax}x∈ω is

a hyperarithmetical (even computable) sequence of computable structures from
K. We check that xRy ⇔ Ax ≤∗ Ay.

(⇒): Suppose xRy. Then there is a path f in the tree T R
〈x,y〉. Define a function

ϕ(s) = s + f � |s|, where s ∈ ω<ω. Then ϕ has the necessary properties. Let
z ∈ ω and s ∈ ωk be such that s ∈ TAx

z . By definition it means that s ∈ T R
〈z,x〉.

As xRy, we have that f � k ∈ T R
〈x,y〉. By property 4 of the sequence {T R

n },
s + f � k ∈ T R

〈z,y〉, which gives us ϕ(s) ∈ T
Ay
z .

(⇐): Suppose Ax ≤∗ Ay , and ϕ is the function witnessing this fact. Consider
the tree TAx

x = T R
〈x,x〉. By property 3 of {T R

n }, the function f , defined by f �
k = 0k is a path in TAx

x . Therefore, by the definition of ≤∗, ϕ(0k) ∈ T
Ay
x , for all

k. Hence, by property 1, xRy.

In fact, the proof of Theorem 1 gives us an even stronger result. In the defi-
nition of the reducibility (Definition 7) we can replace “hyperarithmetical” by
“computable” and still get the correct statements for the new reducibility. The
following definition was first introduced in [4] as an effective analog of the Borel
reducibility on classes of structures (for arbitrary structures, not necessarily com-
putable). The universe of a structure is a subset of ω, possibly finite. As above,
for a class K, the structures all have the same language, and K is closed under
isomorphism (modulo the restriction on the universe).

Definition 9. 1. A Turing computable transformation from K ′ to K ′′ is a
computable operator Φ = ϕe such that for each A ∈ K ′, there exists B ∈ K ′′

with ϕ
D(A)
e = χD(B). We write Φ(A) for B.
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2. We say that ∼=K′ tc-reduces to ∼=K′′ if for A,A′ ∈ K ′,

A ∼=K′ A′ iff Φ(A) ∼=K′′ Φ(A′).

We can use the same approach to compare arbitrary equivalence relations on
classes of structures. Namely,

Definition 10. For equivalence relations E′, E′′ on K ′, K ′′ respectively, E′ is
tc-reducible to E′′, E′ ≤tc E′′, if there is a computable transformation Φ from
K ′ to K ′′ such that for A,B ∈ K ′, AE′B iff Φ(A)E′′Φ(B).

As we study the relations on computable members of K, we can again restrict
our attention on relations on ω.

Definition 11. For equivalence relations E′, E′′ on ω, E′ is tc-reducible to E′′,
E′ ≤tc E′′, if there is a computable function f such that for all x, y, xE′y iff
f(x)E′′f(y).

As before, we identify an equivalence relation E on Kc with I(E, K). Then for
an arbitrary equivalence relation E′ on ω, we say that E′ tc-reduces to E iff
there exists a computable sequence of computable structures {Ax}x∈ω from K
such that for all x, y, xE′y iff AxEAy.

Corollary 1. 1. There is a class K of structures with hyperarithmetical index
set and an equivalence relation on Kc which is a tc-complete Σ1

1 equivalence
relation.

2. There is a class K of structures with hyperarithmetical index set and a pre-
order on Kc which is a tc-complete Σ1

1 preorder.
3. The isomorphism relation on computable undirected graphs is a tc-complete

Σ1
1 isomorphism relation.

4 Σ1
1 Complete Bi-Embeddability Relation

Theorem 3. 1. The embeddability relation � on the class of computable trees
is an h-complete Σ1

1 preorder.
2. The bi-embeddability relation ≡ on the class of computable trees is an h-

complete Σ1
1 equivalence relation.

Proof. We sketch the proof of the first statement of the theorem. The second
statement follows from it in the obvious way. As before, we use the ideas from
[14]. We have only to take care that there is enough effectiveness and uniformity
of the arguments. Let K be the class of structures constructed in Theorem 1.
We give a uniform effective procedure of constructing a computable tree from
every computable member of K, which allows us to reduce ≤∗ to � on the class
of trees.

Let G0 be a tree defined in the following way. For every vertex x of a complete
infinitely branching tree ω<ω, except for the root, we add a new vertex x′ between
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x and its predecessor. We use G0 as a base to construct the tree GA corresponding
to a structure A ∈ Kc. To code A into a tree, we add to G0 new vertices of the
form (x, s, 0k) and (x, s, 02x+21̂̂0k), where x ∈ ω, s ∈ ω<ω, k ∈ ω and s ∈ TA

x .
We connect (x, s, w) to (x, s, w′) iff w′ is the predecessor of w and we connect
(x, s, ∅) to s, considered as an element of G0. The resulting tree is GA. If A is
computable then obviously GA is computable and the procedure is uniform.

Suppose A1 ≤∗ A2. We prove that there is an embedding of GA1 into GA2 .
By definition of ≤∗, there is a function ϕ : ω<ω → ω<ω (which, in fact, can
be taken 1-to-1 due to Property 2 of all TAi

x ). We send every element s ∈ ω<ω

into ϕ(s), and every s′ into ϕ(s)′. Thus, we have defined an embedding of G0

into itself. Every vertex of the form (x, s, w) we send into (x, ϕ(s), w). This
map will define an embedding of GA1 into GA2 , as by definition of ≤∗ we have
s ∈ TA1

x ⇒ ϕ(s) ∈ TA2
x .

On the other hand, if GA1 � GA2 , then let g be the function witnessing the
embedding. For every vertex z of GA1 , the number of its neighbors does not
exceed the number of neighbors of g(z), moreover the distance between any two
vertices z1, z2 of GA1 is the same as between g(z1) and g(z2) in GA2 . In particular,
all elements of ω<ω must be sent to elements of ω<ω. This map ϕ : ω<ω → ω<ω

has the necessary properties and witnesses A1 ≤∗ A2.

Again, all the procedures are in fact computable, thus, we get the following
corollary.

Corollary 2. 1. The embeddability relation � on the class of trees is a tc-
complete Σ1

1 preorder.
2. The bi-embeddability relations ≡ on the class of trees is a tc-complete Σ1

1

equivalence relation.

5 Questions

We conclude the paper with the following questions. In descriptive set theory
there are many examples of Borel equivalence relations that cannot be Borel-
reduced to the isomorphism relation on any class Modϕ for any countable in-
finitary sentence ϕ. The computable analog of this statement is false, as any Δ1

1

equivalence relation on ω is h-reducible to equality on ω. However the following
remains open:

Question 1. Is there a class K with hyperarithmetical index set, such that its
isomorphism relation is an h-complete (a tc-complete) Σ1

1 equivalence relation?

We do not know if there exists a hyperarithmetical class of computable structures
with Σ1

1 (but not Δ1
1) isomorphism relation which is not h-complete among all

isomorphism relations on hyperarithmetical classes of computable structures. An
affirmative answer to the following question may help solve this problem:

Question 2. Does there exist a hyperarithmetical class K of computable struc-
tures which contains a unique structure of non-computable Scott rank (up to
isomorphism)?
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If such a class exists then the isomorphism relation on the class of computable
graphs cannot be h-reduced to the isomorphism relation on K. Indeed, there
exist non-isomorphic graphs of high (i.e. ≥ ωCK

1 ) Scott rank. They must be
sent to non-isomorphic structures in K. However, no computable structure of
high Scott rank can be sent to a computable structure of computable Scott rank
under hyperarithmetical reducibility.

The main result of [8] shows that in the non-effective setting, every Σ1
1 equiv-

alence relation is Borel-equivalent to the bi-embeddability relation on the class
of all countable models of an infinitary sentence ϕ.

Question 3. Let E be a Σ1
1 equivalence relation on ω. Does there always exist a

class K of structures with hyperarithmetical I(K), such that E is h-equivalent
to the bi-embeddability relation on computable members of K?
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