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SUMMARY

This paper considers a model for the difference of two proportions in a paired or matched design of clinical
trials, case-control studies and also sensitivity comparison studies of two laboratory tests. This model
includes a parameter indicating both interpatient variability of response probabilities and their correlation.
Under the proposed model, we derive a one-sided test for equivalence based upon the efficient score.
Equivalence is defined here as not more than 100* per cent inferior. McNemar’s test for significance is
shown to be a special case of the proposed test. Further, a score-based confidence interval for the difference
of two proportions is derived. One of the features of these methods is applicability to the 2]2 table with
off-diagonal zero cells; all the McNemar type tests and confidence intervals published so far cannot apply to
such data. A Monte Carlo simulation study shows that the proposed test has empirical significance levels
closer to the nominal a-level than the other tests recently proposed and further that the proposed confidence
interval has better empirical coverage probability than those of the four published methods. ( 1998 John
Wiley & Sons, Ltd.

1. INTRODUCTION

Recently, two groups of authors have proposed methods for testing equivalence in proportions
arising from a paired-sample study design. Lu and Bean1 considered a sensitivity comparison of
two medical diagnostic laboratory tests. Morikawa and Yanagawa2 discussed a comparison of
two treatments in clinical trials. They have derived test statistics similar to McNemar’s test
statistic using Wald-type asymptotic standard errors.

Equivalence3 is usually defined as not more than 100* per cent inferior, where *('0) is
a prespecified acceptable difference between two proportions. A naive question about the
approaches above is whether a McNemar’s type of test statistic comparing off-diagonal cells is
the only valid approach for inference about equivalence. Motivated by this question, in this
paper, we first formulate a reasonable model representing the structure of this kind of comparison
study. This model includes parameters indicating interpatient variability of response probabilities
and their correlation. Under the proposed model, we derive a test for equivalence of two
proportions and also a confidence interval for their difference based upon the efficient score.
Despite my initial question, the derived method is also shown to be of McNemar’s type but to
have better small sample properties. Further, one feature of this method is that we can make



reasonable inferences for data in a 2]2 table having zero frequencies in the off-diagonal cells; all
methods published so far do not apply to such data.

Monte Carlo simulation studies are conducted to compare empirical significance levels
of the proposed test with the two tests above and also to compare empirical coverage probabilit-
ies of the proposed method for confidence interval estimation with those of published methods,
both unconditional and conditional. Finally, we illustrate our methods using data from a
cross-over trial of soft contact lenses and an epidemiological study of sleeping difficulties in
marijuana users.

Score-based methods for hypothesis testing and interval estimation have been widely proposed
and used in many fields; Cox and Hinkley4 provide theoretical justification for them. Vollset5
reported favourable properties for the Wilson6 score method for setting a confidence interval
for a single proportion. Yanagawa et al.7 have recently proposed Mantel—Haenszel type
tests for testing equivalence for comparative parallel design clinical trials, based on the
efficient score.

2. MODEL

Consider the comparison of a new and standard treatment (or diagnostic test) independently
performed on the same patient (or matched-pairs of patients) and suppose we have n patients
(or pairs). Further we assume that the probability of response to a treatment is a function
of the individual patient’s unobserved characteristics. Let h

k
(k"1, . . . , n) denote the kth

patient’s (matched-patients’s common) characteristics which might be multivariate, though
in this paper, we assume them to be univariate for simplicity. Further let N

k
and S

k
denote

the dichotomous response random variable having values 1 (response) and 2 (non-response)
of the new treatment and standard, respectively. Then, we have the following conditional
probabilities:

PrMN
k
"1 D h

k
N"p

N
(h

k
) (1)

PrMS
k
"1 D h

k
N"p

S
(h

k
). (2)

In a matched case-control study, these two random variables N
k

and S
k

denote the incidence
probability of some ‘event’ under study in the case and control groups, respectively. Given h,
N

k
and S

k
are mutually independent, then the 2]2 matrix Q(h)"(q

ij
(h)), of response probabilities

is shown as

Q(h)"A
p
N
(h)p

S
(h)

(1!p
N
(h))p

S
(h)

p
N
(h)(1!p

S
(h))

(1!p
N
(h)) (1!p

S
(h))B (3)

where

q
ij
(h)"PrMN"i, S"j D hN"PrMN"i D hN PrMS"j D hN. (4)

In general, we do not know the population distribution for h. However, it can be assumed
that h

k
’s are mutually independent and identically distributed with unknown distribution
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function F. Thus, we have
EhMp

N
(h)N"n

N
(5)

EhMpS(h)N"n
S

(6)

»hMpN(h)N"p2
N

(7)

»hMpS(h)N"p2
S

(8)
and

EhMp
S
(h)p

N
(h)N"n

S
n
N
#op

S
p
N

(9)

where o is the correlation coefficient over patients. Therefore, the expected 2]2 response matrix
Q"(q

ij
)"(EhMqij (h)N ) is given as

Q"A
n
N
n
S
#op

N
p
S

(1!n
N
)n

S
!op

N
p
S

n
N
(1!n

S
)!op

N
p
S

(1!n
N
) (1!n

S
)#op

N
p
S
B . (10)

If the two treatments are truely identical, then, of course, o"1 and the 2]2 response matrix
will be

Q"A
n2#p2

n(1!n)!p2

n (1!n)!p2

(1!n)2#p2 B . (11)

Now consider the two extreme cases. When p"0, that is, the response probability is constant
regardless of h, then the matrix will be

Q"A
n2

n (1!n)

n (1!n)

(1!n)2 B . (12)

When p2"n(1!n), on the other hand, the matrix will be

Q"A
n
0

0

1!n B . (13)

The latter suggests the deterministic nature of treatment with threshold level h
0
. Namely, p(h)"1

for h'h
0

and 0, otherwise. In this special case, n"1!F (h
0
).

From my experience with the analysis of clinical laboratory data where we can easily make
repeated measurements or diagnostic tests by splitting one blood sample into two, it seems to me
that well-recognized diagnostic tests might have the latter characteristic, that is, p2 can be nearly
equal to n (1!n). Therefore, the equivalence in the sensitivities between two diagnostic tests can
be reduced to the equivalence problem for the n’s only. It should be noted here that, as Lu and
Bean1 have already pointed out, equivalence for diagnostic tests should focus on both sensitivity
and specificity, but the same principles can apply to examine the latter comparison using
a different study population.

As to the response probability to treatments in clinical trials, on the other hand, variability p2

will probably lie between 0 and n (1!n) depending on both the treatment under study and the
patients entered into the trial. Therefore, if we could apply the same treatment to the same patient
(or matched-pairs of patients), we could estimate not only n but also p:

n̂"
2a#b#c

2n
, p̂2"

4ad!(b#c)2

4n2
(14)
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where a, b, c and d are observed frequencies defined in (15) in the next section. This implies that
in equivalence testing in clinical trials, we have to evaluate not only n but also p2. Since p2

can be at most n (1!n), it only characterizes variability in the context of a given value
of n. Therefore, the ideal procedure is (i) apply an equivalence test for n and then (ii) under
the equivalence of n, conduct an equivalence test for p2. However, I admit that it will usually
be impractical to repeat the same treatment in the same patient and so we can not obtain such
measures of variability in practice. Therefore we are obliged to estimate n only in clinical
trials.

Nevertheless, the proposed modelling is useful to consider the structure of the problem under
study and also can give some insight. For example, Lu and Bean1 suggested that the primary
evidence of equivalence in sensitivity is the probability of discordance and thus the smaller the
probability the more likely the two sensitivities will be equivalent. This view is based on the
property that the overall degree of discordance q

12
#q

21
is the upper bound for the degree of

marginal heterogeneity q
12
!q

21
"n

N
!n

S
. However, this view is not always correct. As shown

above, whether the probability of discordance is small or large depends on the unknown size of
variability p2.

3. SCORE TEST FOR EQUIVALENCE TESTING

Consider a random sample from the multinomial distribution defined in (10), then we have

Q
DATA

"

1

n A
a

c

b

dB. (15)

Then, by letting

/"op
N
p
S

the log-likelihood for this sample can be written

¸ (n
N
, n

S
, /)"a log(q

11
)#b log(q

12
)#c log(q

21
)#d log(q

22
)#constant. (16)

An equivalence hypothesis will be formulated as

H
0
:n

N
"n

S
!*, H

1
: n

N
'n

S
!* (17)

where * ('0) is a prespecified acceptable difference in two proportions. Let

b"n
N
!(n

S
!*) (18)

then the above hypothesis is equivalent to the following:

H
0
:b"0, H

1
: b'0 (19)

where the expected 2]2 response matrix Q"(q
ij
) is given as

Q"A
(b#n

S
!*)n

S
#/

(1!b!n
S
#*)n

S
!/

(b#n
S
!*)(1!n

S
)!/

(1!b!n
S
#*) (1!n

S
)#/B . (20)
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Therefore, the score test can be applied to the log-likelihood function ¸(b, n
S
, /) and its test

statistic is given by

Z"C
L¸
Lb KnS/nL S,(/(K ,b/0

DIM (IK ~1)
33

DnS/nL S,(/(K ,b/0
N

"C
anL

S
qL
11

#

b (1!nL
S
)

qL
12

!

cnL
S

qL
21

!

d (1!nL
S
)

qL
22

DSA
qL
12
#qL

21
!*2

n B (21)

where (n̂
S
, /K ) is the maximum likelihood estimator under the null hypothesis b"0, which is

usually the unique solution to the following equations:

L¸
Ln

S

"

L¸
L/

"0. (22)

Further (IK ~1)
33

indicates the (3, 3)th element of the inverse Fisher information matrix evaluated
at maximum likelihood estimators and is algebraically simplified to (qL

12
#qL

21
!*2)/n. The

details of the Fisher information matrix are given in Appendix I. The test statistic Z is known to
have asymptotically a standard normal distribution under H

0
. In terms of n

S
and /, equations

(22) can be solved iteratively by the scoring method as follows:

C
n̂
S

/K D
k

"C
nL
S

/K D
k~1

#C
IK
11

IK
21

IK
12

IK
22
D
~1

k~1 C
LK ¸
Ln

S
LK ¸
L/ D

k~1

(23)

where the possible ranges of parameters are restricted by the conditions that 0)q
ij
(1, that is,

the range for the n
S
is

0)*)n
S
(1

and the range for / is

!n
S
(n

S
!*))/)(1!n

S
) (n

S
!*) for *)n

S
)(1#*)/2

!(1!n
S
) (1!n

S
#*))/)(1!n

S
) (n

S
!*) for (1#*)/2)n

S
(1.

However, it is easily understood that we do not have to obtain these estimators directly for testing
purposes and we need only a maximum likelihood estimator qL

21
. In fact, as described in

Appendix II, the test statistic Z can be simply expressed as

Z(b, c; n, *)"Z"

b!c#n*
IMn(2qL

21
!*(*#1))N

(24)

where the estimator qL
21

is the larger root of the quadratic equation Ax2#Bx#C"0, that is

qL
21
"

I (B2!4AC)!B

2A
(25)

where

A"2n, B"!b!c!(2n!b#c)*, C"c* (*#1) (26)

and qL
12
"qL

21
!*, qL

11
"

a

a#d
(1!qL

12
!qL

21
) and qL

22
"

d

a#d
(1!qL
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!qL
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).
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It should be noted that if an observed sample has one or more cells with zero frequencies then
the log-likelihood (16) tends to take the maximum value on the boundary of the parameter space
and thus equations (22) are no longer a necessary condition. However, as is shown in Appendix II,
the estimator qL

21
defined in (25) still provides the correct maximum likelihood estimator, which is

summarized as follows. If

b"0 and c(
2n*

1#*
(*'0) (27)

then the maximum likelihood occurs at QK with qL
12
"0 and qL

21
"* which is a boundary point of

the parameter space and equations (22) are no longer satisfied. However, qL
21

defined in (25) also
equals to *.

It is well known that if the true parameter value is on the boundary of the parameter space then
the regular asymptotic property of the likelihood ratio test breaks down whilst the score test may
be applied as usual (for example, see Chant8 and Self and Liang9). However, it seems to be not
well known whether the score-based method still works if the maximum likelihood estimator is
on the boundary of the parameter space. Therefore, as a way of checking the validity of Z defined
by (24) in this boundary situation, we shall calculate Z (0, c; n, *) and compare it with the
predicted value. First, we can easily prove the following inequality:

DZ (b, c; n, *) D'DZ(b#1, c#1; n, *) D for b'0 (28)

where Z(b, c; n, *) with b'0 is free of the boundary problem. The prediction considered here is
an extrapolation of this trend, that is, to predict Z (0, c; n, *) by applying a low-order polynomial
regression to a series of Z’s

MZ(k, k#c; n, *), k"1, 2, . . . , KN

for some K. We shall use a cubic polynomial regression and K"10. The precision for this sort of
prediction scheme is examined by predicting Z (b, c; n, *) for b'0 that is free from the boundary
problem, and, as a result, cubic polynomials with K"10 have been confirmed good enough. The
results are shown in Table I for data with n"30, 50 and 80 and c"0, 1 and 2, indicating that the
predicted Z’s are surprisingly consistent with Z’s. In general, as n become large, the predicted Z’s
are shown to be very close to Z’s. Therefore, we conclude that the proposed test works even if the
maximum likelihood estimator lies on the boundary of the parameter space.

As special cases, consider the following:

1. Zero off-diagonal cells, b"c"0. In this case, qL
21
"* and thus the test statistic Z reduces

simply to

Z(0, 0; n, *)"SA
n*

1!*B. (29)

That is to say, we can declare ‘clinically equivalent’ if

n'n
.*/

"

1!*
*

Z2a . (30)

For example, when *"0)1 and a"0)05, we have n
.*/

"9]1)6452"24)35.
2. *"0 and b#c'0. In this case, qL

21
"(b#c)/2n and thus this test coincides with the

well-known McNemar test for significance testing, namely,

Z(b, c; n, *"0)"(b!c)/J(b#c). (31)
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Table I. Comparison of the propossed Z and j and their predicted values via cubic polynomial
regression models for the case b"0 and *"0)1, where qL

12
"0)0 and qL

21
"0)1, maximum likelihood

estimates on a boundary point of the parameter space

n c Test statistic (*"0)1) 90% confidence interval
Z predicted Z j

-08
, j

61
predicted j

-08
, j

61

30 0 1)83 1)81 (!0)083, 0)083) (!0)086, 0)086)
1 1)22 1)18 (!0)136, 0)052) (!0)138, !)
2 0)61 0)57 (!0)183, 0)022) (!0)186, !)

50 0 2)36 2)37 (!0)051, 0)051) (!0)054, 0)054)
1 1)89 1)88 (!0)085, 0)032) (!0)086, !)
2 1)41 1)40 (!0)114, 0)013) (!0)114, !)

80 0 2)98 2)99 (!0)033, 0)033) (!0)034, !0)034)
1 2)61 2)61 (!0)054, 0)021) (!0)054, !)
2 2)24 2)24 (!0)073, 0)009) (!0)073, !)

When c'0, predicted j
61

is not shown here for c'0 since jª
61

is free from the boundary problem

4. CONFIDENCE INTERVAL

Testing clinical equivalence with an acceptable difference * at one-sided significance level a is
equivalent to judging whether the lower limit of the 1!2a level confidence interval is greater
than !*. The score-based approximate confidence limits for the difference of two proportions

j"n
N
!n

S
"q

12
!q

21
(32)

are the two solutions to the equation

Z(b, c; n,!j)"$Za (33)

where the plus and minus signs indicate the lower j
-08

(b, c; n, 1!2a) and the upper limit
j
61

(b, c; n, 1!2a), respectively, and Za is the upper a percentile of the standard Normal distribu-
tion. These two limits can be easily found by the secant method (see, for example, Gart and
Nam11).

In Appendix III, the relationship between qL
21

and jª is described to show a solution in the
boundary situation. The results are summarized as follows:

1. b"0 and c'0: Qª that attains a lower limit lies on the boundary with qL
12
"0 of the

parameter space. Qª that attains an upper limit lies on the boundary with qL
12
"0 if

Z2a)c (n!c)/2n and on an interior point, otherwise.
2. b'0 and c"0: Qª that attains an upper limit lies on the boundary with qL

21
"0. Qª that

attains a lower limit lies on the boundary with qL
21
"0 if Z2a)b(n!b)/2n and on an

interior point, otherwise.
3. b"c"0: Both Qª that attains a lower limit and QK that attains an upper limit lie on the

boundary:

Using a similar method as the prediction for Z’s, we shall examine the validity of the confidence
interval based on a boundary value of Qª by applying a cubic polynomial regression to predict
one or both limits. For example, we predicted the limits of the 90 per cent confidence interval, for
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the data with b"0, c"0, 1, 2 and n"30, 50, 80 using a series:

Mjª
-08

(k, c#k; n, 0)90), k"1, 2,2, 10N

for the lower limit, and

Mjª
61

(k, c#k; n, 0)90), k"1, 2,2 , 10N

for the upper limit. The results are also shown in Table I, which also indicates very good
consistency. It should be noted that when b"0 and c"1, 2, each of the Qª ’s attaining an upper
limit is an interior point of the parameter space and thus the corresponding predicted limit is
unnecessary and not shown there.

Here also, let us consider the special case of zero off-diagonal cells, b"c"0. From (29), we
easily have

[jª
-08

(0, 0; n, 1!2a), jª
61

(0, 0; n, 1!2a)]"C!
Z2a

n#Z2a
,

Z2a
n#Z2a D . (34)

It should be noted that when n"0, that is, we have no information, this interval becomes a quite
reasonable interval [!1, 1].

5. SIMULATION

5.1. Equivalence Test

So far, three tests have been proposed for this purpose. Lu and Bean1 proposed an unconditional
test based on McNemar’s test as

Z
LB
"

b!c#n*
I (b#c!n*2)

(35)

for the problem of testing one-sided equivalence in the sensitivities of screening tests. They also
proposed a conditional version

Z
CLB

"SA
b#c

bc BA
b!c#n*

2 B . (36)

Morikawa and Yanagawa2 proposed, on the other hand, a test statistic similar to Z
LB

for the
problem of clinical equivalence of drugs:

Z
MY

"

b!c#n*
IMb#c!(b!c)2/nN

. (37)

This statistic is based on the asymptotic Normality of some function of the multinomial
distribution.10 When *"0, the three tests above are not equivalent and only Z

LB
is equivalent to

McNemar’s Z statistic. To investigate the small-sample distribution of the proposed and two
others tests, Z

LB
and Z

MY
, under the null hypothesis, some Monte Carlo simulations were

performed for *"0)1 n
S
"0)5, 0)8, /"0, 0)1, 0)14, 0)15 and 0)20 where applicable. Lu and

Bean’s conditional test Z
CLB

was excluded from this comparison since the test cannot apply to
data with b"0 or c"0. Samples of multinomial proportions of size n ("30, 50, 80) whose
parameters are defined as the matrix Q in equation (20) with b"0, were randomly generated. For
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Table II. Empirical significance level of the proposed score test with *"0)1 based on
10,000 trials

n
S

n / q
12

Test statistic

Z Z
LB

Z
MY

0)5 30 0)0 0)2 4)8 5)7 5)7
0)1 0)1 5)0 6)3 6)3
0)15 0)05 4)2 7)7 7)7
0)20 0)0 4)4 18)7 18)7

50 0)0 0)2 5)2 5)5 5)5
0)1 0)1 5)2 6)2 6)2
0)15 0)05 4)3 6)4 6)4
0)20 0)0 3)7 11)2 11)2

80 0)0 0)2 5)0 5)0 5)1
0)1 0)1 5)2 5)4 5)9
0)15 0)05 4)4 5)9 6)5
020 0)0 3)6 8)7 8)7

0)8 30 0)0 0)14 5)1 5)8 5)8
0)1 0)04 4)2 9)2 9)2
0)14 0)0 4)1 18)6 18)6

50 0)0 0)14 5)1 6)2 6)2
0)1 0)04 4)8 7)2 7)2
0)14 0)0 4)0 11)9 11)9

80 0)0 0)14 5)3 5)4 5)6
0)1 0)04 4)9 6)7 7)4
0)14 0)0 3)8 8)6 8)6

each simulated sample of proportions each of the three test statistics was computed and
compared with the 95th quantile of the standard Normal distribution.

Table II presents empirical significance levels based on 10,000 replications. It appears that the
empirical significance levels for the proposed Z are generally closer to the nominal a-level than
those for the other two tests. Especially as n becomes small and / becomes large, the empirical
significance levels for Z

LB
and Z

MY
tend to inflate whereas that of Z tends to decrease gradually.

When q
12
"0, the inflation is clear for Z

LB
and Z

MY
.

It should be noted that (i) simulated samples with b"c"0 are replaced by b"c"1 (with
n unchanged) for the two test statistics Z

LB
and Z

MY
, and (ii) samples with the square root of

negative values of Z
LB

or Z
MY

are excluded from this comparison since these data cannot be used
with these two tests. These samples occurred mainly when /"0)1&0)2 in which the off-diagonal
cell probability q

12
tends to be small. Therefore the results of this simulation are biased in favour

of Z
LB

and Z
MY

.
It should also be noted that Lu and Bean1 gave their formulae for use in hypothesis testing only

in passing, as an adjunct to establishing sample size requirements and they are not claiming good
properties for these formulae.

Table III shows empirical powers for the case when n
N
"n

S
based on 10,000 replications with

parameter values similar to those in Table III. The difference in powers between Z and Z
LB

or
Z

MY
seems to be due to the difference in empirical significance levels.
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Table III. Empirical power of the score test with *"0)1 for the case n
N
"n

S
based on 10,000 trials

n
S

n / q
12

Test statistic

Z Z
LB

Z
MY

0)5 30 0)0 0)2 18)4 20)9 20)9
0)1 0)1 25)1 27)3 27)3
0)15 0)05 29)6 36)9 36)9

50 0)0 0)2 26)1 26)8 26)8
0)1 0)1 34)9 38)8 38)8
0)15 0)05 44)0 49)8 49)8

80 0)0 0)2 35)4 35)4 35)9
0)1 0)1 49)1 49)5 51)4
0)15 0)05 60)7 64)0 66)1

0)8 30 0)0 0)14 24)5 26)5 26)5
0)1 0)04 33)7 53)3 53)3

50 0)0 0)14 33)6 37)5 37)5
0)1 0)04 58)1 67)4 67)4

80 0)0 0)14 48)1 48)4 50)0
0)1 0)04 77)2 83)5 84)2

5.2. Confidence Interval

In this section, we evaluate the coverage probability of the proposed confidence interval by
comparing several existing methods, including both unconditional and conditional ones. The
most well-known unconditional textbook formula (for example, Altman12) is

¼ :
b!c

n
$

Za
n SGb#c!

(b!c)2

n H. (38)

Recently, Vollset5 has compared thirteen methods for computing binomial confidence intervals
in the one-sample problem and recommended (a) continuity corrected score intervals mainly
because of simplicity and good coverage probabilities. Further, he recommended (b) exact
intervals and (c) Mid-p exact intervals. Therefore, we use these three in our comparison as
conditional methods. To obtain conditional confidence intervals, we have only to apply these
three methods for the proportion pL "b/(b#c) where b#c is fixed:

b

n
!

c

n
"

b#c

n G 2
b

b#c
!1H"

b#c

n
M2pL !1N.

A (1!2a) level confidence continuity corrected score interval (SCC) for p is given by

SCC :

(b$0)5)#
Z2a
2
$ZaSG(b$0)5)!

(b$0)5)2

b#c
#

Z2a
4 H

b#c#Z2a
. (39)
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Exact confidence intervals for p, called Clopper—Pearson intervals, are calculated from the
cumulative binomial distribution and the lower and upper limits are solutions to the following
polynomial equations:

EX
-08%3

"Gp :
b~1
+
i/0
A

b#c

i B pi(1!p)b`c~i"1!aH (40)

EX
611%3

"Gp :
b
+
i/0
A

b#c

i B pi(1!p)b`c~i"aH. (41)

Needless to say, these limits can also be obtained by using percentiles of the F distribution. We
used these equations mainly because we can easily use the secant method to find the roots. Mid-p
exact limits for p are found from similar equations with half the probability assigned to the
observed outcome:

MID
-08%3

"Gp :
1

2A
b#c

b B pb(1!p)c#
b~1
+
i/0
A

b#c

i B pi(1!p)b`c~i"1!aH (42)

and

MID
611%3

"Gp :
1

2A
b#c

b B pb (1!p)c#
b
+
i/0
A

b#c

i B pi(1!p)b`c~i"aH. (43)

For the conditional methods, 0 and 1 are utilized as lower and upper limits when b"0 and c"0,
respectively. Using a similar method as the evaluation of equivalence testing procedures,
simulated data with b"c"0 are replaced by b"c"1 (with n unchanged) for the conditional
methods due to their inapplicability to these data. Therefore the results of this simulation also
have biases in favour of the conditional approaches.

Table IV shows empirical coverage probabilities of the above five methods for computing 95
per cent confidence intervals based on 1000 replications under the hypothesis n

N
"n

S
!* where

n
S
"0)8, /"0)0, 0)1 and 0)14 and *"0)0 and 0)1. It is seen that the proposed confidence interval

performs very well except when q
12
"0 where we have conservative confidence intervals for small

n. The unconditional simple method also performs well with relatively large sample sizes and
large discordant probability but not so well for other cases. On the other hand, conditional
methods are shown to be no good. Especially when q

12
is small, their empirical coverage

probabilities seem to depend strongly on the parameter values and sample sizes. When /"0)1
and *"0)1, the coverage probabilities extend down to 80 per cent. On the other hand, when
/"0)1 and *"0, they go up to 99)9 per cent. These phenomena are probably the result of
discreteness as clearly seen in Figures 1—3 of Vollset’s paper.5 Further, when q

12
"0, the

empirical coverage probabilities of conditional methods are around 34—40 per cent, indicating
that we cannot recommend conditional methods when the discordant cell frequencies are small.
We have also carried out the same simulation study for the case n

S
"0)5, 0)6, 0)7 and 0)9 but we

have not shown the results here since the resultant performances are similar to those shown in
Table IV and no new features have been observed.
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Table IV. Comparison of five methods for computing 95 per cent confidence intervals via their coverage
probabilities under the null hypothesis n

N
"n

S
!* where n

S
"0)8, based on 1000 trials for each simulation

/ * q
12

n Unconditional methods Conditional methods
W Proposed SCC Exact Mid-p

0)0 0)1 0)14 30 92)8 95)4 97)7 97)8 96)1
50 93)8 95)1 97)0 96)7 94)9
80 94)4 94)7 96)2 96)0 94)5

0)0 0)16 30 93)3 95)3 97)6 97)6 95)6
50 94)5 95)0 98)2 97)3 95)1
80 94)6 94)8 97)2 97)2 95)9

0)1 0)1 0)04 30 91)7 96)5 81)2 81)2 80)0
50 92)9 96)0 87)3 87)3 86)3
80 94)1 94)6 91)7 91)3 88)6

0)0 0)06 30 92)5 95)6 99)9 99)9 99)6
50 94)0 95)6 98)4 98)4 97)5
80 94)3 95)0 97)4 97)6 95)6

0)14 0)1 0)0 30 80)0 98)4 36)5 36)5 34)5
50 87)7 98)0 37)5 37)0 36)5
80 91)5 94)3 39)4 39)0 37)2

6. EXAMPLES

6.1. Cross-over Clinical Trials on Soft Contact Lenses

First, let us consider cross-over clinical trials in which patients are randomized to one of two
treatment sequences AB or BA. Under the assumption that there is no carry-over effects and no
period effects, dichotomous data for the efficacy are summarized in the same form of 2]2 table
as (15).

Miyanaga13 conducted cross-over clinical trials comparing a chemical (hydrogen peroxide)
disinfection system SA806 with a thermal disinfection system for soft contact lenses. It seems well
recognized that appropriate conditions for carrying out cross-over trials are likely to be met in
this field. 44 patients were randomized to one of two treatment sequences and the results are
summarized in Table V. In this trial, we are interested in the equivalence of two disinfection
methods. In this trial, the Fisher exact test was applied to test for equivalence; the one-tailed
p-value was p"(1

0
)1
2
"0)5 indicating clear non-significance and so it was concluded that two

methods are equivalent. However, this sort of inference is not acceptable. So, let us apply tests for
equivalence. With the small off-diagonal cell frequency, however, we cannot apply Z

LB
and

Z
MY

as is shown in Table II. Instead we apply our test. We have

Z"1)709'Z
0>05

"1)645 (one-tailed p-value"0)044)

and the 90 per cent confidence lower limit is

j
-08

"!0)096'!*"!0)1.

Based on these results, it will be concluded that the two methods are equivalent at the 5 per cent
significance level. To examine the empirical significance level of Z for this kind of data with
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Table V. Clinical assessment of treatments in cross-over trials of disinfection systems
for soft contact lenses

Thermal disinfection
Effective Ineffective Total

Hydrogen peroxide Effective 43 0 43
Ineffective 1 0 1
Total 44 0 44

Table VI. Empirical significance level of the four tests with *"0)1 for such data with
n"44 and small off-diagonal cell frequencies as shown in Table II, based on 10,000 trials

q
12

n
S

/ Test statistic
Z Z

LB
Z

MY

0)0 0)95 0)0425 5)4 17)2 17)2
0)90 0)08 5)7 16)8 16)8

0)02 0)95 0)0225 4)3 9)6 9)6
0)90 0)06 4)6 10)0 10)0

n"44 and small off-diagonal cell frequencies, we performed a simulation study (the same as that
in Section 5) for each of the combinations of parameter values shown in Table VI. The resultant
empirical significance levels for Z are shown to be around 4)3—5)7 per cent, reasonably close to
the nominal 5 per cent level.

6.2. Epidemiological Study

Here we consider the data analysed by Karacan et al.14 and also by Altman.12 Karacan et al.
compared a group of 32 marijuana users with 32 matched controls with respect to their sleeping
difficulties. Data are reproduced in Table VII. In this example, we are interested in the statistical
significance of the difference of the proportions experiencing sleeping difficulties, not in their
equivalence. Therefore, by letting *"0, the test statistic Z coincides with the McNemar test and
we have

Z"

b!c

I (b#c)
"

9!3

I (9#3)
"1)73

which gives two-tailed p"0)08, indicating weak evidence that marijuana users experience fewer
sleeping difficulties than controls. The unconditional simple Wald type 95 per cent confidence
interval for the difference in the proportions is !0)014 to 0)389. The proposed score-based
confidence interval is !0)027 to 0)390.

It should be noted that the 95 per cent confidence interval calculated in Altman’s textbook
(page 237) is !0)03 to 0)41. This calculation is wrong since the standard error of the difference in
proportions is falsely calculated as 1

32
I(3#9#62/32). The correct standard error is

1
32

I (3#9!62/32).
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Table VII. Numbers with (#) or without (!) sleeping difficulties
among marijuana users and matched controls (Karacan et al.14)

Marijuana group
# ! Total

Control group # 4 9 13
! 3 16 19

Total 7 25 32

7. DISCUSSION

Regarding the model proposed in Section 2, as an alternative, but more restricted one, we might
consider the following mixed-effects model:

PrMN
k
"1 D h

k
N"h

k
#j

and
PrMS

k
"1 D h

k
N"h

k

where Mh
k
N, k"1, 2,2 , n is assumed to be a sequence of unobserved independent and identically

distributed random variables which have unknown distribution F with mean n and variance p2.
In this model, j indicates the common difference in proportions but the variability p2 is assumed
to be the same for the two treatments and the correlation coefficient is 1)0. Even this simpler
model can lead to the same score-based test statistic and its associated confidence interval
procedure since the proposed statistical inference procedure starts from the parameterization
/"op

N
p
S
as in equation (16). Liang and Zeger15 considered a similar model to propose a new

estimator of the common odds ratio in a matched case-control study, in which the link function
used is logit.

One of the characteristics of the proposed procedure was shown to be applicability to tables
with zero off-diagonal cells since other published methods do not apply to such data. We have
carried out simulation study to evaluate the performance of the proposed procedures. The
proposed test for equivalence has been shown to have empirical significant levels closer to
a nominal a-level compared with the other two tests. The evaluation of confidence intervals has
focused on the coverage probabilities since it is very important to confirm the designed 1!a
coverage at least. The proposed confidence interval has been shown to perform well in general,
however, it has been shown to be conservative when one of the off-diagonal cell probabilities is
zero. On the other hand, all the conditional approaches including the exact one have been shown
to be inadequate when one or both discordant probabilities are small.

Since these Monte Carlo experiments have been based on a relatively small number of sets of
parameter values and sample sizes, the conclusions derived here may not be representative.
However, as I have examined typical sets of parameter values and sample sizes, I expect that
drastically different conclusions would not be derived for the parameter values not examined
here, although we need a further simulation study for more detailed comparisons.

In this paper, we have considered tests for the class of hypotheses that have **0, which
includes McNemar’s test for significance and a test for equivalence. We can also generalize the
test to cope with the hypothesis with *(0. The latter alternative indicates that the true difference
is greater than some medically significant difference (!*) which is not zero.
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APPENDIX I: CALCULATION OF PARTIAL DERIVATIVES

For simplicity, let

m"1!(n
N
#n

S
)"1!2n

S
!b#*.

Then, the three scores are given by:

L¸
L/

"C
a

q
11

!

b

q
12

!

c

q
21

#

d

q
22
D

L¸
Lb

"n
S

L¸
L/

#

b

q
12

!

d

q
22

L¸
Ln

S

"(1!m)
L¸
L/

#

b

q
12

#

c

q
21

!

2d

q
22

where Mq
ij
N’s are defined by (20). The ijth element of the Fisher information matrix I are given by

the following:

I
11
"EC!

L2¸

Ln2
S
D"nC

(1!m)2

q
11

#

m2

q
12

#

m2

q
21

#

(1#m)2

q
22

D
I
12
"EC!

L2¸

Ln
S
L/D"nC

1!m
q
11

!

m
q
12

!

m
q
21

!

(1#m)

q
22

D
I
13
"EC!

L2¸

Ln
S
LbD"nC

(1!m)n
S

q
11

#

m (1!n
S
)

q
12

!

mn
S

q
21

#

(1#m)(1!n
S
)

q
22

D
I
22
"EC!

L2¸

L/2D"nC
1

q
11

#

1

q
12

#

1

q
21

#

1

q
22
D

I
23
"EC!

L2¸

L/LbD"n C
n
S

q
11

#

n
S
!1

q
12

#

n
S

q
21

#

n
S
!1

q
22
D

I
33
"EC!

L2¸

Lb2 D"nC
n2
S

q
11

#

(n
S
!1)2

q
12

#

n2
S

q
21

#

(n
S
!1)2

q
22

D.
Needless to say, we have I

ij
"I

ji
.

APPENDIX II: DERIVATION OF EQUATIONS (24)— (26)

The simultaneous equations (22) yield

a

q
11

#

d

q
22

"

b

q
12

#

c

q
21

"2
d

q
22

.

Then we have

L¸
Lb

"

1

2A
b

q
21
!*

!

c

q
21
B .
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Further, by noting that

a

q
11

"

d

q
22

"

a#d

q
11
#q

22

"

n!b!c

1!q
12
!q

21

it is shown that q
21

is a solution of the equation

b

q
21
!*

#

c

q
21

"!2
n!b!c

2q
21
!*!1

(44)

which reduces to the quadratic equations described in Section 3:

f (x)"2nx2!(b#c#(2n!b#c)* )x#c* (*#1)"0.

So does the following equation:

b

q
21
!*

!

c

q
21

"2
b!c#n*

2q
21
!* (*#1)

.

Therefore the score statistic Z is given by (24).
Next, we describe why qL

21
should be the larger root of f (x)"0 as defined in (25). We consider

here not only the case *'0 but also *(0 since the result below can be applied to the problem
of confidence limits (Appendix III).

Consider the following four cases.

1. b'0 and c'0. Since 0(qL
21
"x(1 and 0(qL

12
"x!*(1, the appropriate root of

f (x)"0 must satisfy

*(x(1 for *'0

0(x(1#* for *(0.

When *'0, we have

f (0)"c*(*#1)'0, f (1)"(1!*)(2n!b!c(1#*))'0, and f (*)"!b*(1!*)(0,

which indicates the larger root satisfies *(x(1. When *(0, we have

f (0)(0, and f (1#*)"(1#*)(2n!c!b(1!*))'0

and thus the larger root satisfies 0(x(1#*. Therefore, when b'0 and c'0, regardless
of the sign of *, qL

21
is the larger root.

2. b"0 and c'0. In this case, we have two roots:

x
1
"*, and x

2
"

c (1#*)

2n
.

However, equation (44) has a single root x
2
. The root x

1
is a boundary point of the

parameter space since qL
12
"0. This means the following:
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(a) Case *'0: the condition that the simultaneous equations (22) have the unique root
x
2

is 0)qL
12
"x

2
!x

1
, that is

c*
2n*

1#*
. (45)

If x
2
(x

1
, then the simultaneous equations (22) are no longer a necessary condition for

maximality and the log-likelihood (16) attains its maximum at qL
21
"x

1
"* on

a boundary point.
(b) Case *(0: x

2
is always the unique root of (22) since 0(qL

12
(1.

In this case also, qL
21

is the larger root of f (x)"0.
3. c"0 and b'0. In this case, we have two roots:

x
1
"0, and x

2
"*#

b (1!*)

2n

but equation (44) has a single root x
2
.

(a) Case *'0: x
2

is always the unique root of (22) since 0"x
1
(x

2
(1 and 0(qL

12
(1.

(b) Case *(0: we always have 0(qL
12
(1. Then the condition that equations (22) have

the unique root should be 0)x
2
(1, that is

b*!

2n*
1!*

.

If x
2
(0"x

1
then equations (22) have no roots and the log-likelihood (16) takes its

maximum at qL
21
"x

1
"0.

Here also, qL
21

is shown to be the larger root of f (x)"0.
4. b"c"0. We have two roots x

1
"0 and x

2
"*. In this case, equations (22) have no roots,

but the log-likelihood (16) is maximized at qL
21
"x

2
"* if *'0, and at x

1
"0, otherwise.

In this case also, the larger root is qL
21

.

In summary, regardless of the sign of * and of the values of (b, c), qL
21

is always shown to be the
larger root of f (x)"0; hence the positive root value of the square root is taken in equation (25).

APPENDIX III: RELATIONSHIP BETWEEN jª AND qL
21

From the results of Appendix II, by letting j"!*, we have the following results:

1. b'0 and c'0. Each of the two confidence limits can be calculated by using qL
21

which is
the unique root of equations (22).

2. b"0 and c'0. Using (45), we have the following relationship:

qL
21
"G

!jª
c (1!jª )/2n

(boundary point)

(interior point)

if jª )!c/(2n!c)

otherwise.

It should be noted that if qL
21
"!jª then qL

12
"0. If j*!c/(2n!c) then

Z(0, c; n,!j)(0, indicating that the lower limit is always based on the boundary value
qL
21, -08

"!jª
-08

. The upper limit requires c#nj'0, which means

qL
21,61

"G
!jª

61
c(1!jK

61
)/2n

if Z2a)c(n!c)/2n

otherwise.
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3. b'0 and c"0. In a similar manner, jª
61

is always based on the boundary value of
qL
21,61

"0. The lower limit jª
-08

is based on qL
21, -08

defined as

qL
21, -08

"G
0

!jª
-08

#b (1#jª
-08

)/2n

if Z2a)b (n!b)/2n

otherwise.

4. b"0 and c"0. Clearly, we have that qL
21, -08

"!jª
-08

and qL
21,61

"0.
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