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Psychologists must be able to test both for the presence of an effect and for the absence of
an effect. In addition to testing against zero, researchers can use the Two One-Sided Tests
(TOST) procedure to test for equivalence and reject the presence of a smallest effect size
of interest (SESOI). TOST can be used to determine if an observed effect is surprisingly
small, given that a true effect at least as large as the SESOI exists. We explain a range
of approaches to determine the SESOI in psychological science, and provide detailed
examples of how equivalence tests should be performed and reported. Equivalence
tests are an important extension of statistical tools psychologist currently use, and
enable researchers to falsify predictions about the presence, and declare the absence, of
meaningful effects.

Acknowledgements

This work was funded by VIDI grant 452-17-013. We would like to thank Courtney Soderberg for
creating the first version of the TOST function to test two independent proportions, Dermot Lynott
and Katie Corker for their helpful responses to our inquiries about Lynott et al. (2014), and Jim
Everett and Brian Earp for their helpful responses and for providing the raw data for study 4 in
Kahane et al. (2015).

Author contributions

DL: Article conceptualization, programming TOSTER package and spreadsheet, main contributor
to the introduction section and discussion section. AMS and PMI: Main contributors to examples
and figures. All authors contributed to manuscript conceptualization, editing, review for submis-
sion, and additional software development. AMS and PMI contributed equally to the manuscript,
and order was determined by executing the following commands in R:
set.seed(7998976/5271)

x <- sample(c("Anne", "Peder"), 1)

print(paste("The winner is", x, "!"))

mailto:D.Lakens@tue.nl


EQUIVALENCE TESTING TUTORIAL 2

Psychologists should be able to falsify predictions. A common prediction in psychological
research is that an effect that differs from zero exists in the population. For example, we might
predict that priming American Asian women with their Asian identity will increase their perfor-
mance on a math test compared to women who are primed with their female identity. To be able
to design a study that allows for strong inferences (Platt, 1964), it is important to specify which test
result would falsify this hypothesis.

Equivalence testing can be used to test whether an observed effect is surprisingly small, assuming
a meaningful effect exists in the population. The test is a simple variation of widely used null
hypothesis significance tests (NHST). To understand the idea behind equivalence tests, it is useful
to realize the null hypothesis we test against can be any numerical value. When we compare two
groups, we often test whether we can reject that the difference between these groups is zero (see
Figure 1A), but we may sometimes want to reject other values than zero. Imagine a researcher who
is interested in voluntary participation in a national program to train young infants’ motor skills.
The researcher wants to test whether more boys than girls are brought into the program by their
parents. Because the human sex ratio of newborn boys to girls is not exactly 1:1, we should not
expect 50% of participants to be boys. On average, 103 boys are born for every 100 girls (United
States & Central Intelligence Agency, 2016), so approximately 50.74% of applicants should be boys,
and 49.26% should be girls. If boys and girls were exactly equally likely to be brought into the
program by their parents, we would not expect a difference of zero, but 50.74% - 49.26% = 1.5%
more boys. Rather than testing against a null hypothesis of 0 difference, the researcher tests against
a null hypothesis of 0.015.

Alternatively, the researcher could decide that even if the true ratio in the population is not
exactly 0.015, the null hypothesis should consist of a range of values around the difference in
proportions of 0.015 that can be considered trivially small. The researcher could for example test if
the difference is smaller than -0.005, or larger than 0.035. This test against two bounds, with H0

being a range rather than one value (see Figure 1B), is known as a minimal effects test (Murphy,
Myors, & Wolach, 2014).

Equivalence tests can be seen as the opposite of minimal effects tests: They examine whether the
presence of effects that are large enough to be considered meaningful can be rejected (see Figure
1C). In our example, the researcher can perform an equivalence test to examine whether the gender
difference in participants is not as large or larger than the smallest effect size of interest (SESOI).
After an extensive discussion with experts, the researcher decides that as long as the difference in
proportions is not more extreme than 6%, the gender difference is too small to care about. Given an
expected true difference in the population of 0.015, the researcher will test if the observed difference
falls outside the boundary values (or equivalence bounds) of -0.055 and 0.075. If differences more
extreme than these boundary values can be rejected in two one-sided tests (TOST), the researcher
will conclude statistical equivalence, the gender difference will be considered trivially small, and
no money will be spent on addressing a gender difference in participation.

In any one-sided test, for an alpha level of 5%, we can reject H0 when the 90% confidence
interval around the observed estimate is in the predicted direction, and does not contain the value
tested against (e.g., 0). In TOST, the first one-sided test is used to test against values smaller than
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the lower equivalence bound (∆L), and the second one-sided test is used to test against values
larger than the upper equivalence bound (∆U ). It is not necessary to control for multiple tests
when using the TOST procedure because both tests need to be statistically significant to conclude
equivalence. This means that when reporting a TOST result, it suffices to report the one-sided test
with the smaller test parameter (e.g. t or r) and thus the larger p-value. Statistical equivalence can
be concluded when the largest of the two p-values is smaller than alpha.

Note that in this paper we will control the Type 1 error rate at 5% for all examples, mirroring
the studies we reanalyze (but we recommend to justify the Type 1 error rate in original research
based on substantive arguments, Lakens et al., 2017). It might be easiest to think of an equivalence
test as checking whether the confidence interval excludes the SESOI, but for any given study an
equivalence test could also be conceptualized as determining whether effect sizes or test statistics
are closer to zero than some critical value, or even whether the p-value for a NHST is larger than
some p-value bound.

In this article we provide five reproducible examples of equivalence tests which illustrate the
procedure in easy-to-use free software (R, jamovi, and a spreadsheet). But first, we discuss different
approaches to determining the SESOI for psychological research, which determines the statistical
question an equivalence test answers.

Justifying the smallest effect size of interest

TOST is performed against equivalence bounds that are considered the smallest effect size of
interest. The SESOI can sometimes be determined objectively, for example based on just noticeable
differences. In lieu of objective justifications, the SESOI should ideally be based on a cost-benefit
analysis. Since both costs and benefits are necessarily subjective, the SESOI will vary across
researchers, fields, and time. The goal of setting a SESOI is to clearly justify why designing a
study that has a high probability of rejecting effects more extreme than the specified equivalence
bounds contributes to our knowledge base. A SESOI should be chosen such that inferences based
on it answer a meaningful question. Although we use bounds that are symmetric around 0 in all
examples in this manuscript for equivalence tests (e.g., ∆L = −0.3, ∆U = 0.3), it is also possible to
use asymmetric bounds (e.g., ∆L = −0.2, ∆U = 0.3).

Objective justification of a SESOI

An objectively determined SESOI should be based on quantifiable theoretical predictions, such
as computational models. Sometimes, the only theoretical prediction is that an effect should be
noticeable. In such circumstances, the SESOI can be set based on just noticeable differences. For
example, Burriss and colleagues (2015) examined whether women displayed an increase in redness
in the face during the fertile phase of their ovulatory cycle. The hypothesis was that a slightly
redder skin signals greater attractiveness and physical health, and sending this signal to men
yields an evolutionary advantage. This hypothesis presupposes that men can detect the increase
in redness with the naked eye. Burriss and colleagues collected data from 22 women and showed
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Figure 1: Illustration of null hypotheses (H0) and alternative hypotheses (H1) for different types of signif-
icance tests. A) NHST: Tests if the hypothesis (H0) that an effect is equal to 0 can be rejected. B)
Minimal effects test: Tests if the hypothesis (H0) that an effect is larger than ∆L and smaller than
∆U can be rejected. C) Equivalence test: Tests if the hypothesis (H0) that an effect is smaller than
∆L or larger than ∆U can be rejected. D) Inferiority test: Tests if the hypothesis (H0) that an effect
is larger than ∆ can be rejected.
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that there was indeed an increase in redness of the facial skin during their fertile period. However,
this increase was not large enough for men to detect with the naked eye, thus falsifying their
hypothesis. Because the just noticeable difference in redness of the skin can be measured, it is
possible to establish an objective SESOI.

Another example of an objectively determined SESOI can be found in Button et al. (2015),
where the minimal clinically important difference on the Beck Depression Inventory – II was
determined by asking 1039 patients when they subjectively felt less depressed (i.e., when they
personally noticed an improvement) and relating this to the corresponding difference score on
the depression inventory. Similarly, Norman, Sloan, and Wyrwich (2003) proposed there is a
surprisingly consistent minimally important difference of half a standard deviation, or d = 0.5, in
health outcomes.

Subjective justification of a SESOI

We distinguish between three categories of subjective justifications for the SESOI. First, researchers
can use benchmarks. For example, one might set the SESOI to a standardized effect size of d = 0.5,
which would allow rejecting effects more extreme than a “medium” effect size (Cohen, 1988).
Similarly, effect sizes smaller than a Cohen’s d of 0.1 are sometimes considered trivially small
(Maxwell, Lau, & Howard, 2015). Relying on a benchmark is the weakest possible justification
of a SESOI, and should be avoided. Based on a review of 112 meta-analyses, Weber and Popova
(2012) conclude that setting a SESOI to a medium effect size (r = 0.3, or d = 0.5) corresponds to
rejecting the highest 25% of effect sizes reported in communications research, and Hemphill (2003)
suggests that a SESOI of d = 0.5 would imply rejecting effects as large as the upper 33% of effect
sizes reported in the psychological literature.

Second, the SESOI can be based on published studies in the literature. Ideally, researchers who
publish novel research would always specify their smallest effect size of interest, but this is not
yet common practice. It is thus up to researchers who build on earlier work to decide which
effect size is too small to be meaningful when examining the same hypothesis. Simonsohn (2015)
recently proposed to set the SESOI to the effect size that an earlier study would have had 33%
power to detect. With this so-called “small telescopes” approach, the equivalence bounds are thus
determined primarily based on the sample size in the original study. For example, consider a study
in which 100 participants answered a question, and the results were analyzed with a one-sample
t-test. For a two-sided test with an alpha of 0.05, this test had 33% power to detect an effect of
d = 0.15. Another example of how previous research can be used to determine the SESOI can be
found in Kordsmeyer and Penke (2017), who defined the SESOI based on the mean of effect sizes
reported in the literature. Thus, they examined whether their replication study could reject effects
as large or larger than had on average been reported in the literature. Given random variation and
bias in the literature, a more conservative approach could be to use the lower end of a confidence
interval around the meta-analytic effect size estimate (cf. Perugini, Gallucci, & Costantini, 2014).

Another justifiable choice when choosing the SESOI based on earlier work is to use the smallest
observed effect size that could have been statistically significant in a previous study. In other
words, we decide that effects that could not have yielded a p < α in an original study will not be
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considered meaningful in the replication study either, even if they were found to be statistically
significant. Based only on the alpha level and the sample size, we can calculate the critical test
value (e.g., t, F, Z). This critical test value can be transformed to a standardized effect size (e.g.,
d = t

√
1
n1

+ 1
n2

), which can thus be interpreted as the critical effect size.1 All observed effect sizes
smaller than the critical effect size would not have been statistically significant in the original
study, given the alpha and sample size of that study. By setting the SESOI to the critical effect size,
an equivalence test can reject all observed effect sizes that could have been detected in an earlier
study.

Third, researchers can set the SESOI based on the sample size they are planning to collect. The
amount of data you can collect limits the inferences you can make. Given the alpha level and
the sample size, researchers can calculate the smallest effect size that they have sufficient power
to detect.2 This approach can be used when there are no quantitative predictions made by a
theory, and no previous studies have been performed, but researchers can justify their sample
size. In essence, this approach allows researchers to reject the presence of effects that can be
reliably detected given a specific sample size. For example, a researcher who plans to perform a
one-sample t-test using an alpha of 5% (two-sided), based on data from 100 observations, has 90%
power to detect an effect of d = 0.33. Using equivalence bounds of ∆L = −0.33 and ∆U = 0.33 in
an equivalence test allows to reject effects the study had high statistical power to detect.

Importantly, an equivalence test based on this approach does not answer any theoretical question
(after all, the equivalence bounds are not based on any theoretical predictions) but it answers a
resource question: Can effects be rejected that could reliably be detected given a specific sample
size? In this case, concluding equivalence would suggest that effects which could reasonably be
detected with a sample size of 100 can be rejected, and that future studies probably need larger
sample sizes to examine a specific question. Whether or not the answer such an equivalence test
provides is interesting depends on the sample size used in the study, and in part on how typical
the chosen sample size is for the research area. An equivalence test based on 15 observations
rejecting a SESOI of d = 1 cannot be expected to substantially increase our knowledge, given that
most effects in psychology are substantially smaller than these bounds and require larger sample
sizes to be detected. By transparently reporting the effects that can be detected and rejected based
on the study design, researchers can communicate the information their study contributes, and
provide a starting point for a discussion about what a reasonable SESOI may be.

Raw versus standardized equivalence bounds

The SESOI, and thus the equivalence bounds, can be set in terms of standardized effect sizes (e.g. a
Cohen’s d of 0.5) or as a raw mean difference (e.g. 0.5 points on a 7-point scale). The key difference

1This will typically, although not always, correspond to the effect size the study had 50% power to detect (see Lenth,
2007). This procedure will result in equivalence bounds that are wider than the ones obtained using the small
telescopes approach, which gives the effect size a study had 33% power to detect.

2This approach is conceptually very similar to the power approach, where the effect size you had 95% power to detect is
calculated, and the presence of effects more extreme than this value is rejected after observing a p-value larger than
0.05 in a traditional NHST. However, Meyners (2012) explains that this approach is not recommended (even though
it is common) because it ignores the possibility that effects are significant and equivalent, and error rates are not
controlled accurately.



EQUIVALENCE TESTING TUTORIAL 7

is that equivalence bounds set in raw differences are independent of the standard deviation, while
equivalence bounds set as standardized effects are dependent on the standard deviation (since
they are calculated as X1−X2

SD ). The observed standard deviation randomly varies across samples.
In practice, this means that when using standardized differences as bounds (e.g., d = 0.35), the
equivalence test depends on the standard deviation in the sample. The equivalence bound for a
raw mean difference of 0.5 equals a standardized equivalence bound of d = 0.5 when the standard
deviation is 1, but a standardized equivalence bound of d = 1 when the standard deviation is 0.5.

Both raw equivalence bounds and standardized equivalence bounds have specific benefits and
limitations (for a discussion, see Baguley, 2009). When raw mean differences are meaningful
and of theoretical interest, it makes sense to set equivalence bounds based on raw effect sizes.
When the raw mean difference is of less theoretical importance, or different measures are used
across research lines, it is often easier to set equivalence bounds based on standardized differences.
Researchers should realize that equivalence bounds based on raw differences or standardized
differences ask slightly different questions, and justify their choice for either option. When setting
equivalence bounds based on earlier research, such as in replication studies, equivalence bounds
based on raw or standardized differences would ideally give the same result, and large differences
in standard deviations between studies are as important to interpret as large differences in means.

In the remainder of this article we will provide five detailed examples of equivalence tests
performed on published studies. These concrete and easy to follow examples will illustrate all
approaches to setting equivalence bounds discussed above, and demonstrate how to perform
and report equivalence tests. The code to reproduce these analyses is available at https://osf.io/
qamc6/3.

Example 1: Not statistically equivalent and not statistically different

Moon and Roeder (2014), replicating Shih, Pittinsky, and Ambady (1999), conducted a study
to investigate whether Asian-American women would perform better on a maths test when
primed with their Asian identity. In contrast to the original study, they found a negative difference
between the Asian primed group (n = 53,M = 0.46, SD = 0.17) and the control (n = 48,M = 0.50,
SD = 0.18) which was not significant, d = −0.21, t(97.77) = −1.08, p = .284, two-sided). The
non-significant null-hypothesis test does not allow us to distinguish between the absence of a
meaningful effect and data that are not sensitive enough to tell us whether a meaningful effect is
present or absent.

In order to distinguish between these possibilities, we can define what a “meaningful effect”
(SESOI) would be and use it as the bounds for an equivalence test. If grades for this test were
set at every 6.25% increase in correct answers (F = 0% to 6.25% . . . A+ = 93.75% to 100%) we
could decide that we are only interested in test score differences that correspond to an increase

3The OSF project contains all necessary files to reproduce examples 1–5 in R, jamovi (jamovi project, 2017), and in a
spreadsheet; as well as a preprint of this manuscript. The manuscript, including the figures and statistical analyses,
was created using RStudio (1.1.383, RStudio Team, 2016) and R (3.4.2, R Core Team, 2017) and the R-packages
bookdown (0.5, Xie, 2016), ggplot2 (2.2.1, Wickham, 2009), gridExtra (2.3, Auguie, 2017), knitr (1.17, Xie, 2015), lattice
(0.20.35, Sarkar, 2008), papaja (0.1.0.9492, Aust & Barth, 2017), purrr (0.2.4, Henry & Wickham, 2017), pwr (1.2.1,
Champely, 2017), rmarkdown (1.7, Allaire et al., 2017), and TOSTER (0.3, Lakens, 2017b).

https://osf.io/qamc6/
https://osf.io/qamc6/
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−0.10 −0.05 0.00 0.05 0.10
Effect (mean difference)

A: Example 1 (Moon & Roeder)

−1.0 −0.5 0.0 0.5 1.0
Effect (mean difference)

B: Example 2 (Brandt et al.)

−0.25 0.00 0.25
Effect (proportion difference)

D: Example 4 (Lynott et al.)
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Effect (pearson correlation)

E: Example 5 (Kahane et al.)
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Effect (Z)

C: Example 3 (Hyde et al.)

Figure 2: Example effects plotted with 90% TOST CIs (thick lines) and 95% NHST CIs (thin lines), the NHST
null hypothesis (solid vertical line) and the equivalence bounds (dashed vertical lines) displayed.
A) Example 1 - Mean Difference. B) Example 2 - Mean Difference. C) Example 3 - Meta-analytic
Effect Size. D) Example 4 - Proportion Difference. E) Example 5 - Pearson Correlation.

or decrease of at least 1 grade point. Thus, our SESOI becomes a difference in raw scores of
6.25%, or 0.0625. We can then perform an equivalence test for a two-sample Welch’s t-test, with
equivalence bounds of ± the SESOI of 0.0625. The TOST is non-significant, t(97.77) = 0.71, p = .241

(Figure 2A). Thus, we cannot reject a true effect as large or larger than 6.25%.4 When results are
neither statistically different from zero nor statistically equivalent, there is insufficient data to draw
conclusions. Further studies are needed, which can be analyzed using a (small-scale) meta-analysis.
The additional data will narrow the confidence interval around the observed effect, allowing us
to reject the null, reject the SESOI, or both. Analogous to the large sample sizes needed to detect
small effects, a lot of data is needed to reject the SESOI when very narrow bounds are used for the
equivalence test (e.g., ∆L = −0.1 and ∆U = 0.1).

Example 2: Statistically equivalent and not statistically different

Banerjee, Chatterjee, and Sinha (2012) reported that 40 participants who had been asked to describe
an unethical deed from their past judged the room to be darker than participants who had been
asked to describe an ethical deed (t(38) = 2.03, p = .049, d = 0.65). A close replication by Brandt,
IJzerman, and Blanken (2014) with 100 participants found no significant effect (Munethical = 4.79,

4Because this is a replication of a study, it would have been reasonable to assume that we only want to reject effects in
the same direction as the effect in the original study. After all, much smaller effects may indicate non-replication, but
so do large effects in the opposite direction. In that case, we would perform an inferiority test (see figure 1D) against
∆U . As can be seen in figure 2A, the 90% CI does not overlap with ∆U , so we can reject effects as large or larger than
0.0625.
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SDunethical = 1.09, Methical = 4.66, SDethical = 1.19, t(97.78) = 0.57, p = .573, d = 0.11). Using
the small telescopes approach, we can calculate the effect size the original study had 33% power to
detect (d = 0.49) and use this as the SESOI. A TOST procedure for Welch’s t-test for independent
samples and equivalence bounds of ∆L = −0.49 and ∆U = 0.49 reveals that the effect observed in
the replication study is statistically equivalent, t(97.78) = −1.90, p = .030 (Figure 2B).

Example 3: Statistically equivalent and statistically different

Hyde, Lindberg, Linn, Ellis, and Williams (2008) report that effect sizes for gender differences in
mathematics tests across the 7 million students in the US represent trivial differences, which the
authors specify as absolute effect sizes smaller than d = 0.10. For example, in grade 3 the difference
is d = 0.04, with a standard error of 0.002. When we perform equivalence tests on the meta-analytic
effect sizes of IQ difference for grades 2 to 11 (using an alpha level of .005 to correct for multiple
comparisons) and using equivalence bounds of ∆L = −0.1 and ∆U = 0.1, we see that all effect
size estimates are measured with such high precision that they are statistically equivalent, and can
be considered trivially small according to the authors’ definition (Figure 2C). In the case of grade 3,
z = 70.00, p < 0.001. However, note that all of the effects are also statistically different from zero,
as one might expect when there is no random assignment to conditions and samples sizes are very
large (e.g., for grade 3, z = 20.00, p < 0.001. We see how equivalence tests allow researchers to
distinguish between statistical significance and practical significance, which demonstrates how
equivalence tests improve hypothesis testing procedures in psychological research.

Example 4: Statistically inferior and not statistically different

Lynott et al. (2014) conducted a study to investigate the effect of being exposed to physically warm
or cold stimuli on subsequent judgments related to interpersonal warmth and prosocial behavior
(replicating L. E. Williams & Bargh, 2008). They observed that 50.74% of participants who received
a cold pack (ncold = 404) opted to receive a reward for themselves, while 57.46% of participants
who received a warm pack (nhot = 409) did the same. In a z-test for the difference between the
proportions, this effect is not statistically significant (Diff = −6.71%, z = −1.93, p = .054). Had
the authors planned to perform a NHST and an equivalence test, the latter would allow one to
distinguish between an inconclusive outcome, or a statistically equivalent result.

Since this is a replication, we could decide that we are interested in whether the observed effect
size is smaller than the smallest effect size that the original study could have detected. This means
that we use the critical z value (~1.96 in a two-tailed test with an alpha of 0.05) as equivalence
bounds (∆ = ±1.96). To calculate which difference corresponds to a critical z value in the original
study, we multiply the critical z value with the standard error (1.96 * 0.13) and find that the original
study could observe a significant effect for differences of 0.25 or more.

Since the original study had a clear directional hypothesis, in this replication study we are only
interested in whether receiving a warm pack increases the proportion of people who choose a gift
for a friend. This means we can test for inferiority (see Figure 1D) and conclude the absence of a
meaningful effect if the observed effect size is reliably lower than the SESOI. We find that we can
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reject effects larger than ∆U = 0.25, z = −9.12, p < .001 (see Figure 2D). Thus, we can conclude
that the statistically non-significant effect is also statistically smaller than our SESOI.

Example 5: Statistically equivalent and not statistically different

Kahane and colleagues (2015) investigate how responses to moral dilemmas in which participants
have to decide whether or not they would sacrifice one person’s life to save several other lives
relate to other indicators of moral orientation. Traditionally, greater endorsement for sacrificing
one life to save several others has been interpreted as a more “utilitarian” moral orientation (i.e. a
stronger concern for the greater good). Kahane et al. contest this interpretation in a number of
studies. In Study 4, they compare the traditionally used dilemmas with a set of new delimmas in
which the sacrifice for the greater good is not another person’s life, but something the participant
would have a partial interest in (e.g. buying a new mobile phone vs. donating the money to save
lives in a distant country). The authors find no significant correlation between the two set of
dilemmas, r(229) = −0.04, p = .525, N = 2315. The authors conclude that “a robust association
between ‘utilitarian’ judgment and genuine concern for the greater good seems extremely unlikely’
(p. 206), given the statistical power their study had to detect meaningful effect sizes.

This interpretation can be formalized by performing an equivalence test for correlations, where
equivalence bounds are set to an effect size the study had reasonable power to detect. With 231
participants, the study had 80% power to detect effects of r = 0.18. Performing the TOST procedure
given bounds of ∆L = −0.18 and ∆U = 0.18, the data is statistically equivalent, r(229) = −0.04,
p = .015. This means that values smaller than r = −0.18 and larger than r = 0.18 can be rejected
at an alpha level of 5%. If other researchers are interested in examining the presence of smaller
effect size, they can design studies with a larger sample size.

Discussion

Equivalence testing is a simple statistical technique to reject the presence of a smallest effect size
of interest. As long as we can calculate a confidence interval around a parameter estimate, we
can compare it to the SESOI. The result of an equivalence test can be obtained by mere visual
inspection of the CI (Seaman & Serlin, 1998; Tryon, 2001), or by performing two one-sided tests
(the TOST procedure).

As with any statistical test, the usefulness of the result of an equivalence test depends on the
question we ask. The question manifests itself in the bounds we set: Is our data surprisingly close
to zero, assuming a true effect exists that is as large as our smallest effect size of interest? If we test
against very wide bounds, observing statistical equivalence can hardly be considered surprising,
given that most effects in psychology are small to medium (Hemphill, 2003). Examining papers
citing Lakens (2017a), we found that some researchers state, but do not justify, the SESOI used in
the equivalence test (e.g., Brown, Rodriguez, Gretak, & Berry, 2017; Schumann, Klein, Douglas, &
Hewstone, 2017). An equivalence test using a SESOI of d = 0.5 might very well answer a question

5Study 4 in Kahane et al. (2015) had a final sample size of N = 232, but due to missing data in 1 case, the correlation
reported here is based on a sample of N = 231.
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Equivalence tests can be performed based on summary statistics (e.g., means, standard deviations, and
sample sizes) with the “TOSTER” package in the open-source programming language R. Using TOSTER in
R requires no more programming experience than reproducing three lines of code.

The code below reproduces the result of Example 2 in R, which can be typed into R or RStudio. The
parameters of the test are defined inside the parentheses. Simply copy the example to the console, replace
the values with the corresponding values of your own study, and run the code. Results and a plot will
automatically be printed. A help file provides more detailed information.

install.packages("TOSTER")

library(TOSTER)

TOSTtwo(m1 = 4.7857, m2 = 4.6569, sd1 = 1.0897, sd2 = 1.1895, n1 = 49,
n2 = 51, low_eqbound_d = -0.6401696, high_eqbound_d = 0.6401696, alpha = 0.05,
var.equal = FALSE)

Box 1. Calculating an equivalence test in R.

the researchers are interested in (for one possible justification based on minimally important
differences, see Norman et al., 2003), but researchers should always explain why they chose a
SESOI. It makes little sense to report a statistical test, without explaining why one would want
to answer this question to begin with. Equivalence bounds should be specified before results are
known, ideally as part of a pre-registration (cf. Piaggio et al., 2006). Researchers might be tempted
to set equivalence bounds after looking at their data, but like any other results-dependent decision,
this “boundary hacking” will increase error rates.

We recommend that researchers by default perform both a null hypothesis significance test
and an equivalence test on their data. The biggest challenge for researchers will be to specify
the smallest effect size of interest. Psychological theories are usually too vague to derive precise
predictions, and if there are no theoretical reference points, natural constraints, or prior studies a
researcher can use to define the SESOI for a hypothesis test, any choice will be somewhat arbitrary.
In some research lines researchers might simply use equivalence tests to reject consecutively
smaller effect sizes by performing studies with increasingly larger sample sizes while controlling
error rates, until no one is willing to invest the time and resources needed to examine the presence
of even smaller effects. Nevertheless, it is important to realize that not specifying a SESOI for
our research questions at all will severely hinder theoretical progress (Morey & Lakens, 2016).
Incorporating equivalence tests in our statistical toolbox will in time contribute to better — and
more falsifiable — theories.
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