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0. INTRODUCTION
p.

The notion of behavioral equivalence is a fundamental part of the study

of automata theory. Two definitions of behavioral equivalence occur in the

literature for deterministic machines. One, due to Burks [5], calls two ma-

chines behaviorally equivalent if they define the same function from input

strings to output strings. The other, part of Rabin-Scott automata theory,

calls two machines behaviorally equivalent if they accept the same set of

tapes. The two definitions can be shown to be the same for deterministic ma-

chines by recoding arbitrary output symbols into strings of zeros and ones.

Both definitions have been generalized for probabilistic machines. However,

for probabilistic machines the resulting generalizations are not equivalent.

This paper is concerned with certain kinds of equivalences between prob-

abilistic machines. Two models will be discussed later in this section in

order to gain insight into the main kinds of equivalences which will be

studied. Of particular interest will be when a probabilistic sequential ma-

chine is equivalent in some sense to a finite deterministic machine.

0.1 THE CONCEPT OF PROBABILISTIC SEQUENTIAL MACHINE

By a probabilistic sequential machine is meant a system which satisfies

one of the following two definitions:

Definition 0.1: A (Moore-type) probabilistic sequential machine

A is a system A - < n, I, S, Z, A(O),...,A(k-l), F, 0 >

where
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n: a natural number, the number of states

I: a n-dimensional stochastic vector, the initial state vector

S: set of state vectors = (S1 = (1,0,...,O),..,Sn = (0,...,0,i))

Z: alphabet set Z = (0,1,2,...,k-l)

A(i): i = 0,1,...,k-1 n x n switching matrix for input symbol .. A(i)m

is the probability of a transition from state .8 to state m via

symbol i.

F: output vector, a n-dimensional column vector whose entries are

real numbers.

0: output function O(Si) = Si x F = Fi: Si e S

Definition 0.2: A (Mealy-type) probabilistic sequential machine.

A = < n, I, S, E, A(0),...,A(k-1), W, P >

where n, I, S, Z, A(O),...,A(k-1) are as in 0.1 and where the output function

P satisfies

P(Si,j) = Wij Si e, i e

It is an easy matter to show that Definition 0.1 and 0.2 are equivalent

in the following sense: For every Moore-type probabilistic sequential ma-

chine there is a Mealy-type sequential machine whose output is the same ran-

dom variable over each input and vice-versa. Consequently, we will be con-

cerned only with the properties of Moore-type probabilistic sequential ma-

chines, which from now on will be called "sequential machines."

There seem to be many instances of systems like probabilistic sequential

machines from other fields of study not generally thought to be automata the-

ory. Braines and Svechinsky discuss a system like Definition 0.1 in their

paper "Matrix Structure in Simulation of Learning" (1]. If one takes the
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cartesian product of machines of Definition 0.2, one gets the Markov processes

with rewards and alternatives as studied in sequential decision theory as pre-

sented by Howard (2]. Matrix games as discussed by Thrall [5] can be con-

sidered as instances of Definition 0.1 in which I and F are strategy vectors

and game matrix A(x) is defined by a string x. A simple correspondence shows

that the noisy discrete channel of Shannon [8] is equivalent to the system of

Definition 0.2. One would hope that someday probabilistic sequential machines

could become a unifying concept, organizing and providing results for these

diverse fields.

Probabilistic sequential machines are generalizations of the work of

Rabin [4] for probabilistic automata. If one restricts I to elements of S and

Fi = 0 or 1 for i = 1,2,...,n then Definition 0.1 defines probabilistic autom-

ata. Following Rabin, we remark that:

Remark 1: Let x = il.. .ir~ij 1 Z,j =

Then A(x) = A(iL)...A(ir) i.e. the switching matrix for a string x is found

by multiplying the matrices for the symbols of x together in order.

0.2 MDDELS OF PROBABILISTIC SEQUENTIAL MACHINES

We consider here two models, one of which can be considered probabilis-

tic and one of which can be considered deterministic, although both fall with-

in the framework of probabilistic sequential machines.

Example 0.1. Probabilistic internal operation: A slot-machine

A simple model of a probabilistic sequential machine is a slot-machine.

The static position of the dials represents the present state of the machine.
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Usually there are 20 different positions on the dial and 3 dials for a total

of 8,000 states. The input consists of putting in a coin and pulling a lever,

causing the machine to travel transiently through many states until it settles

down in one state. An output is associated with each state. Nothing (which

is associated with 0) comes out unless the dials all display the same object.

In that case, some change tumbles out (which is associated with the correspond-

ing real number) usually dependent only on the kind of object being displayed,

i.e., the state of the machine. Such a machine whose output is controlled by

its states is known as a "Moore machine" [7]. Each state can be associated

with a number between 1 and 8,000, and the output for each state can be tab-

ulated in a column vector or 8,000 x 1 matrix. In the formalism, this column

vector will be called the "output vector" and designated by the symbol "F".

The output for state i will be written as "Fi".

The enormous number of distinct ways the lever can be pulled are pre-

vented from significantly influencing the outcome by spring loading. Hence

for all practical purposes there is only one kind of transition law associ-

ated with pulling the lever. If the randomness of transition of the dials

caused by variable factors like dust friction, humidity, heating and small

vibrations does not change over long periods of time, the probability of a

transition from any state of the dials to any other can be determined ex-

perimentally to any required precision. This situation is swnarized for-

mally in the assumption for probabilistic sequential machines that the transi-

tion probabilities are stationary. Symbolizing the usual lever play of the

machine by L, the transition probabilities can be tabulated in a matrix
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A(L), with the entry in the i'th row and j'th column (written A(L) ij) being

the probability of a transition from state i to state j via input L.

If there were no other permissible way to affect the rotation of the

dials than by a pull of the lever, then the behavior of a slot-machine A

could be described as a finite state Markov chain with rewards and transition

matrix A(L). However, sudden small external shocks during the rotation of

the dials can influence the state transitions of the machine. In order to

model completely how such machines are played, we can consider a finite re-

peatable set of such non-standard inputs to the machine. For instance, one

such input might be described as the application of a kick with a prescribed

kinetic energy on a certain spot on the machine occurring 1/5 of a second

after the lever is released. Symbolizing this manner of playing the machine

by K, the transition matrix A(K) could be determined experimentally since

the input is repeatable. A finite set of such repeatable inputs could be

defined and their effects on the behavior of the machine ascertained.

To find out how strings of S and K inputs to the machine affect its

operation, it is sufficient to multiply the matrices A(S) and A(K) together

in the order specified by the string, e.g., if a string X is SKRMK then the

transition matrix A(X) is the product A(S).A(K).A(K0.A(S)-A(K).

Consider how the dials of the machine might be found initially. If

the dials can be completely observed, the initial state of the machine is ob-

servable. In this case, in the formalism the initial state i is represented

by a vector I (or a 1 x 8,000 matrix) with a I in the i'th component and

zeros elsewhere. On the other hand, the dials may not be completely visible,

t5
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and we may wish to specify the average behavior of a large number of machines

run simultaneously, or we may wish to consider the average return from play-

ing one machine only when it is left by other players on one of a set of pre-

ferred states. In any one of these cases, I can be a stochastic vector

(I1,...,8,000) where Ii is the probability of being in state i at time to.

In the general case, the next state probabilities starting with an ini-

tial state vector I and an input string X are given by I.A(X). Hence the

expected value of output of a machine A starting with initial state distribu-

tion I and output vector F after a string X of inputs has occurred is just

EA(X) = I.A(X) .F

which is a bilinear form in I and F with form matrix A(X). The variance in

output and other higher moments can be defined analogously.

Example 0.2. Deterministic internal structure: Chemical production cell

Suppose a chemical tank A is divided into several isolated compartments

Ai,...,An by partitions which are interconnected by an electronically con-

trolled system of pumps and valves. Suppose that there is a finite set of

controls Z = O,l,...,K-1 and that for each control c a fixed fraction of the

chemical in compartment Ai, vC, is pumped into compartment Aj. For all con-

trols c in Z, the full influence on redistribution of liquid in the tank can

be described in a n x n matrix A(c) with vC being A(c)ij. Furthermore, sup-

pose that the liquid being pumped between compartments is a catalyst which

causes production of a desired end product in each compartment with a differ-

ent efficiency, i.e., if the mass fraction of catalyst in Ai is Pi and Fi is

the efficiency of Ai , then the output of end product is PiFi. Note that it
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is assumed that the output of the compartment depends linearly on the catalyst

present.

The initial state I is an n component vector with the i'th component Ii

n

being the mass fraction of catalyst in compartment i. Note i, = 1 since

i=l

the tank is a closed system as far as the catalyst is concerned. The dis-

tribution of mass fractions of catalyst over the compartments after a se-

quence of controls X = il...im is just

I-A(i,)....A(im) I-A(X)

That is, (I.A(X)) i is the mass fraction of catalyst in compartment i after

starting with initial distribution I of catalyst fractions over compartments

ond the string of control inputs X = il...im.

The total end product from the tank is the sum of the outputs from each

n

compartment: (I.A(X))iFi which can be written I.A(X).F in matrix nota-

i=l

tion. This expression has the same form as the expectation of output for the

probabilistic slot-machine, but there are no overt probabilities involved

here. The mass fractions of catalyst play the same role as the probabilities

in the first example. However, the output will still be written like an ex-

pectation as EA(X).

The total end product accumulated, TX. for the string of controls X

from time to to time t0 + m is given by adding the output from each substring,

i.e.,

TX  = EA(il) + EA(ili2)+...+EA(ili2...im)

7.1



1. DETERMINING WHETHER A PROBABILISTIC SEQUENTIAL MACHINE IS

EXPECTATION EQUIVALENT TO A FINITE DETERMINISTIC MACHINE

1.1 THE CONCEPT OF EXPECTATION EQUIVALENCE

In the two models discussed in the introduction, the expected value of

output, EA(x), played an important role in the physical interpretations. Let

us repeat the definition of the expected value of output.

Definition 1.1: The expected value of output for a probabilistic sequential

machine A is given by

EA(x) = I.A(x).F for x in

Definition 1.2: Machines A and A' are expectation equivalent, written A - EAo,

if

EA(x) = EA,(x) for all x in 7

Recall from example 0.2 that EA(x) was the actual output of the chemical

cell and not an expectation. Hence the basic concept of expectation equiva-

lence is analogous to the definition of behavioral equivalence of Burks for

the model 0.2. However for example 0.1, the slot-machine, expectation equiv-

alence is not the generalization of this kind of behavioral equivalence.

The concept of indistinguishability discussed in Chapter 5 seems to be the

appropriate generalization of this kind of behavioral equivalence. Let us

now turn to an example to show how proper coding of the outputs could make

the concept of expected value of output relevant to an unreliable digital

computer.
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Example 1.1. Proper choice of output code can make the expected value of

output relevant to the study of real computers. We encode the output so

EA(x) is approximately the code for output for string x. Then expectation

equivalent machines have nearly the same input-output behavior when one

averages it over a large number of programs.

Suppose from some machine A we have

IA(x) = (.0000, .0625, .8750, .0625, .0000,...)

IA(y) = (.8750, .0625, .0000, .0000, .0625,...)

IA(z) = (.0000, .0000, .0000, .1250, .8750, ... )

and

F - ( T, 2, A, A*, *, ... )

with the intent that

x causes an "A" as output

y causes a "T" as output

z causes a "*" as output

We can recode the output symbols by the following (FT' is FT recoded)

FT = (100, Oil, 010, 001, 000, ... )

and

EA(x) = 0102 which is the code for A

EA(Y) = 1002 which is the code for T

EA(Z) = (.001)2 which is not a code, but

if decoding is used which picks the closest code number, z is associated with

output "*".

A more careful choice of code numbers could have made each expectation

equal to a code, simplifying the decoding problem.* However in a practical

situation, only a sample expectation to be decoded can be obtained and a more

elaborate statistical decision rule than just comparing for equality must be

9



used in decoding the output symbol.

*Proof: Let Xibe the code weight. (Xi = Fi) and I.A(zi) = (pil, Pi2,... Pin)

i =

The condition that EA(zi) = Xi i = 1,2,...,n implies that

PnXi + P12X2 + . + P1 nXn = Xi

PnX!i + Pn2X2 + -. + PnXn = in

or equivalently

P'X = P2 P2 -  ... P2n =0

Pni .. Pnnl Xn

which has a non-zero solution ifi Determ.(P') = 0.

By definition an eigenvalue of a matrix M is some number Xi such that

/ mll-'i in1 2  ... Min

Determ. M21  m22-Xi ... man = 0

Mni ... ... mnn-Xi

For any stochastic matrix, 1 is an eigenvalue.

Hence Determ.(P') = 0 is al-ways true for any choice of probabilities

and the result follows.

In order for the encoding to be unique we also need Xi Xj, i # J but

conditions on the probabilities for this to occur will not be considered here.

Example 1.2.

Machines A and A' which are expectation equivalent: A EA'

IA(x)F = I'A'(x)F' Vx e Z*

10
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A < I, A(O), A(l), F > and A' = < I, A'(0), A'(1), F >

A(O) = 1( 0 0 A~l) /5 1/5 1/5l
1/2 1/4 l 1/5 4/5 0

1/4 o 3/1 4/5 15 0

A'() (1 0 0 A'(l) = 17/10 0 3/lo\

15/8 0 3/8) 3/5 0 2/5 1

0 1/2 1/2 9/10 0 1/10)

F =F' 5
3

These machines are expectation equivalent from any initial probability dis-

tribution, I, over states.

The previous example shows that two machines can have very different

switching matrices and still be expectation equivalent. Frequently, studies

of Markov processes are concerned with the location of the zeros in the trans-

ition matrices. The example shows that the locations of zeros in the transi-

tion matrices is not the only relevant factor in the study of expectation

equivalence. Since the graph theoretic properties of the transition matrices,

such as the accessibility of a state,depend on where the zeros are, one

would not expect a purely graph theoretic approach to be very fruitful in

the study of this problem. Hence some of the tools of linear algebra will be

used in addition to the above approaches.

1.2 TIE REDUCTION RELATION RF

In this section a congruence relation, RF, will be defined so that a

quotient machine can be constructed. States of the quotient machine will

correspond to the distinct values of expectation which occur for input strings.

If the rank of RF happens to be finite, the machine constructed has a finite

11*1



number of states. By attaching a deterministic output device to each state

of the constructed machine, the expectation equivalent deterministic machine

is obtained.

If the rank of RF is finite, some class of the relation must contain in-

finitely many strings. A necessary condition for RF to be finite in rank is

that it be non-trivial, i.e. at least two different strings are contained in

some class. This necessary condition produces strong constraints on the form

of the symbol matrices of such probabilistic machines.

Definition 1.3: The reduction relation RF is given by

x RF y iff EA(x) = EA(y) & EA(xz) = EA(yz) Vz 6 Z VI e S

If Z contains A, a semigroup identity, the definition reduces to

x RF y iff EA(xz) = EA(yz) z C E, VI e S .

RF is a congruence relation on because of the reflexivity, transitivity

and symmetry of "=" and the substitution property in its definition.

In order to discuss congruence relations between stochastic matrices

which may not be generated by strings of symbol matrices a matrix congruence

analogous to RF will be defined.

Definition 1.4: The matrix reduction relation z between n x n stochastic

matrices B and B'"

B RM B' iff IBF = IB'F' and there exist machines

A and A' such that IBA(z)F = IB'A'(z)F' for all I e S, for all z e

Hence two strings x and y which are in the same class of the relation

RF will have equal expectations from any initial state of the machine and

12



1
will continue to have equal expectations for any finite input continuation z.

As far as expectation of output is concerned, the behavior of the machine A

is the same after either string x or string y. Returning to Example 1.1, we

can interpret x and y as program segments which produce the same final output

code and from which any continuation will give the same output code. If in-

termediate outputs are suppressed, x and y in RF can be regarded as equivalent

microprograms in the machine A.

1.3 CONSTRUCTION OF THE QUOTIENT MACHINE

Definition 1.5: The equivalence class of x' of R, a congruence relation, is

given by

R[x'] = (x : x R x1

It is a well known result [10] of automata theory that given a right

congruence relation R on Z*, one can construct a quotient automaton with no

output T(R)

T(R) = < a, S, M >

where

a =R[A]

I S = R[x: x eZ*)

M is a function from S x E into S such that

! R[xl,) = R[xaJ x E * ; a e E

Definition 1.6: Let g C*. A congruence R refines if

j x Ry -ix e iffye .

I
13
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Theorem 1.1 (Nerode)

Let 0 be a subset of Z*. is the behavior of a finite (deterministic)

automaton A = < T(R), 7f > over Z where-/; = IR[x] : x E P) iff there exists

a right congruence relation R of finite rank which refines P.

Theorem 1.2

if the congruence relation RF has finite rank, then for any ?\ there is

a finite deterministic automaton A' such that the tapes accepted by A' are

T(A,N).

Proof: Let = T(A,?\) = (x : EA(X) > ?'j. Note that RF refines P i.e.

x RF y = x E T(A,A) iff y E T(A,?\). If RF has finite rank, by definition

(RF[X]) has a finite number of members. Using theorem 1.1 we construct

T(RF) = < a, S, M > and

A' = < a, S, M, Z'> which accepts T(A,N)

Q.L.D.

Definition 1.7: rPA(X) is the response of A to input string x. if A is

deterministic, rPA(x) is the state of A after an input of x. If A is probabil-

isticrPA(x) is a random variable taking on values which are states.

We use the above construction to give a sufficient condition for the re-

duction of a probabilistic sequential machine into an expectation equivalent

finite deterministic machine whose output function is either a constant C(s)

R R
for each state s or a random device A(s) with expectation E(OA(s)) = C(s).

Theorem 1.3

The reduction relation RF defined by a probabilistic machine A has

finite rank if and only if there exists a finite deterministic machine A'

14
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with a deterministic output OA, such that OA,(rPA,(x)) = EA(X) Vx E

Proof: (sufficiency) By theorem 1.1 let A' = < a, S, M, $ > where

is the empty set. Note any congruence R refines $ vacuously. We attach an

output function 0 A to elements of S.

OA,(s) = EA(x) s = RF[x]

For a deterministic machine, M is extended to M* which operates on

strings rather than symbols by

M*(s,C) = M(s,a) s G S aEZ

M (s,cxx) = M*(M*(s,a),x) x e

We note that M*(a,x) = rpA,(x) so we need show only that rPA,(X)

= RF[X]. Let X = ili2...im for ij e E; j = 1,2,...,M.

rPA,(x) = M*(z,x) = M*(M*(a,il),i 2 ...im)

= M*(M (a, ii),i 2 ... i m)

= M *(M(RF[A],il),i2...im)

= M*(RF[Ai1),i2... im)

= M*(M(RF[i1],i2),is...im)

= RF(ii ...iM] - F[X]

Hence the constructed sequential machine is A' - < a, S, M, OA, >

(necessity)

Given A' = < a, S, M, OA' > such that

OA , (rPA'(x)) = EA(x) Vx C

OCA, (rpA, (xz)) = EA(xz) Vz *

SI Let rpA,(x) =Sx x e Z*

Define 
Sx B0 SY iff X RF Y

15



Let n' be the cardinality of S - finite.

rank R0  = rank RF

rank H0 < n'

Hence rank RF is finite. Q.E.D.

R
Instead of the deterministic function OA, a random device OA,(s) such that

E(OR,(s)) = EA(x) could have been used in the construction

1.4 THE PARTITION OF THE SET OF ACCESSIBLE STATE DISTRIBUTIONS INDUCED BY RF

Definition 1.8: V(A) = {IA(x) : x e *") - the set of all stochastic vectors

which can occur as distributions over the states of A. We sometimes call

V(A) the "state vectors accessible in A".

Definition 1.9: A set of vectors V = (VlV 2 ,...) is convex if for any finite

set of indices I ci > 0 andyX ci = 1X civi e V. The convex closure of a

iGI ieI

set of vectors V, written V+ (v' : v' =Zcivi andZ ci = I and ci > 0 and

ieI icI

vi e V).

Theorem 1.4

If RF has finite rank r, there exists a partition II = (IIo,...,IIr) on

V(A) and an integtr valued function g(l,m) such that

fliA(a) = flg(i,a) i = a,...,r; e Z

Proof: We use RF to induce an equivalence on the set of stochastic

vectors accessible by the machine.

Since RF is of finite rank, we form a set of an arbitrary distinct rep-

resentative from each congruence class, say xi,...,Xr where xi xj

16



i = ,2,..,r;j < i.

Define IIj = ) (IA(x))
x E RF~xj]

We show that (IIli*)e**Ir) is a partition of V(A)
r

Let W = U "i

IA(x') e V(A) # xt r: RFI~xk] for some k = 1..,

=-IA(x') E I1k for some k = 1,. ..,r

=IA(x) eW

Hence

n

W= U I-i =V(A)

i=1

We show

1IIin 1ij =$ i j

suppose that

where

vy = IA(y)

IA(y) e IIi =y e RF(xi] =10-Y RF xi

IA(yr) e IIj 3r. 6 RF(XJJ I p-3 RF xj

Hence we get

3YRF xi =4xi RF y byrsyminetry

and transitivityr of RF gives

Xi RF Xj --i*xi 6 RFIXJ]I

17



But since xi and x are representatives and there is only one represen-

tative from each class

xi = xj i i

which is a contradiction.

Finally we show there exists an integer valued function g(i,a) such that

IliA(a) = TIg(i,c) ( 7

v1 e i =p- v, = IA(wj) for some w, e *

vA(a) = A(wD)A(c) = IA(wla) e Ilj

for some j as has been shown above

v2 eI i => v2  = IA(w 2 ) for some w2e 2

v2 A(a) = IA(w 2 a) F TIJ

since elements of RF have the substitution property, i.e.

w, RFxi =4 w l c RF xfl a6 2

w2 RF xi=w2a RF xic a

xia is an element of a class with representative xj for some J and de-

pends only on xi and a. So there is a function g(l,m) such that

g(i,a) = j a e 7 Q.E.D.

1.5 NECESSARY AND SUFFICIENT CONDITIONS THAT STRINGS BE IN THE SAME RF CLASS

The relation RF has occupied an important place in the development of

this theory. We now study the structure of the matrices of strings which 8re

in the same RF class.

Definition 1.10: A relation R is non-trivial if there exist x and y in the

domain of R with x y such that x R y.

18



Definition 1.11: The kernel of F = Kern. (F)

-- (ve Rn v.F = 0)

where R is the set of reals.

Definition 1.12: The span of a set of vectors (vi,...,vr) is denotedby

< fVl,...,Vr) > =v CV Ci 6 R}

Theorem 1.5

A necessary and sufficient condition for x and y to be in the same class

of the reduction relation RF is:

(x,y)RF< a a subspace U of Kern. (F) such that

(i) UA(z) C Kern. (F) z e

(ii) A(x) = A(y) + with ui e U i =1,...,n

Proof:I --
(x,y) e RF = IA(xz)F = IA(yz)F VI e S V--eZ*

Ihence

A(x) F - A(y) F

since

I S a n(i,o,...,o),...,(o,...,o,1)) d A e

by linear algebra

IA(x) = A(y) + where hi e Kern. (F), i = 12.,,

Imultiplying by A( z)

I
19
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A(X)A(z) =A(y)A(z) + A(z) Vx e 2
-An

A(xz) = A(yz) + A( z)

h1n

we can multiply by any initial state distribution I so

IA(xz)F = IA(yz)F + I A(z) F I e S+

But since x and y are in RF

IA(xz)F = IA(yz)F Yz e2 I e S+

Hence

I: A(z)F = 0 ==>hi A(z) e Kern.(F), i = 1,2,..n.

In

Let U < hi,...,hn >

We get UA( z) C Kern.( F) Vz e2

Notation: we denote by Aj the i'th row of the matrix A.

Let H= where h ie UC Kern.(F), i 7-l,2,...,n.

fln

*A(x) = A(y) + H

multiplying the equality by I on the left and F on the right we obtain

(h, F~

:EA(x) F = IA(y) F + I I eS+

hn'F)

but h iF = 0 since hi e Kern.(F) i =1,.n

IA(x)F = IA(y)F

20



using * again and the same argument we get

A(xz) = A(yz) + HA(z)

IA(xz)F = IA(yz)F + IHA(z)F

= IA(yz)F

Ui

since HA(z) where ui e Kern.(F) Q.E.D.
fun

We now simplify the restriction (i) of Theorem 1.6, to symbol matrices

rather than string matrices.

Theorem 1.6

Let U = < ( (A(x)i-A(y)i) : i = 1,...,n for x,y such that (x,y) e RF >

xeZ

then

U.A(z) C Kern.(F) <=> [aV a subspace of Rn:

(i) UA(i) Z V : Vi e

(ii) VA(i) = VCKern.(F) Vi e]

Proof:

UA(z) C Kern.(F)

Let V = < (u.A(z); u e U, z e >

VA(i) = (uA(z) A(i); u e U, z e

Consider an arbitrary v e V. There must be some set of indexes J and con-

stants ci such that:

21
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v = ~ cjujA( zj) by definition of V.

JEJ

v-F Y,=UA~j

X I cj(ujA(zj) F)

JEJ

But

ujA(zj)F = 0 by UA(z) CKern.(F)

so

v'F = 0

Hence

V- Kern. (F)

UA(z) V already shown

.. UA(z) C Kern.(F) Q.E.D.

Definition 1.13: A subspace V is invariant under a set of linear transforma-

tions

(Ti i = 1,2,...,m) if V'T i = V i = 1,2,...,m

Using Theorems 1.5 and 1.6, we get the following directly:

Theorem 1.7

Strings x and y are in the same class of RF if and only if there exists

a subspace V of Kern.(F) such that

(i) V is invariant under fA(i); Vi F_

(ii) A(x) = A(y)+H where Hi 6 V i = 1,...,n

22



1.6 NECESSARY AND SUFFICIENT CONDITIONS THAT RF BE NON-TRIVIAL

A very weak necessary condition that RF have finite rank is that it at

least be non-trivial. From theorem 1.7 it is immediate that:

Theorem 1.8

The reduction relation RF is non-trivial<=- a subspace V of Kern.(F)

such that

(i) V is invariant under (A(i); Vi e Z)

(ii) A(x) = A(y)+H where Hi 6 V i = 1,...,n

(iii) x y .

Hence we now know that given strings x and y in RF, the difference be-

tween the rows of the matrices A(x) and A(y) must be elements of a subspace

V which has special properties. Namely V must be invariant under all symbol

matrices and contained in the kernel of the output vector.

Theorem 1.9

A necessary and sufficient condition that RF be non-trivial is that

A(i) : Vi e Z be reducible for the same change of basis to V. In other words,

there exists a linear transformation W of the state vectors S to a basis for

V such that
basis for V

W iA(i W A, 0

A

i i i
Where 0 denotes a submatrix of zeros and A,, A2 , and A3 are .submatrices which

for all i in E have the same number of columns and rows.

1
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Proof: By theorem 1.7 and standard matrix theory [see Jacobson, Lectures

in Abstract Algebra, V. II: Linear Algebra, Van Nostrand, New York, 1952, pp.

116-117).

Consequently, Theorem 1.9 gives us a matrix reformulation of the statement

that RF be non-trivial.

Example 1.3. We now show a probabilistic sequential machine A which illustrates

theorems 1.3 and 1.7. The method by which this example was generated will

be discussed in a latter report.

A = < I, A(O), A(1), F >

where

T-- (8/10, 1/10, 1/10, 0, 0, 0)

0 1 0 0 0 0 10

0 1 0 0 0 0 (5
AoO 0 o 1/2 0 1/2 0 F 1

0 0 0 0 0 0 2

0 0 3/4 o 1/4 o1
0 0 0 0 0 1

/0 0 0/ 1 0 0
A(1)-- 0 0 48 0 4/8 0

0 0 3/8 0 5/8 0

0 0 2/8 0 6/8 0

1 0 0 0 0 0

The state diagram for A:
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I

1/2(0), 7/8(l)

ra)
2 1/(0), 1/2(l)

- ~/8 /1(1 )

0 2 ' "  1/4(o)1, 3/4(1)

1 0

- 2

1
where the following labeling conventions are used.

p(K) pe[O,1]; K e Z means probability of transition of p via symbol K.

18 : Fj : Output of F1 occurs when the machine is in state 1.

PI(Kj) P(K), P 2 (K2 )

0 ====) 0 : is replaced by 0 7 0
, P2(K2)

We note that

OORFO

Isince:

25



A(00) 0 1 0 0 0 0 01 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0

o 0 1/2 0 1/2 0 0 0 1/2 0 1/2 0

0 0 0 0 1 0 0 0 0 0 1
0 o 3/4 o 1/4 o 0 0 3/4 o 1/4 o

0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0 0

0 1 0 0 0 0
0 0 5/8 0 3/8 o
0 0 0 0 0 1
o 9/16 0 7/16 0

0 0 0 0 0 1

which gives

(A(00) - A(O))F = 0 0 0 0 0 10
/0 0 0 0 0 0 /5
0 0 +1/8 0 -1/8 0 = (0,0,0,0,0,0)

0 0 0 0 0 0 2

0 0 -3/16 o 3/16 0
0 0 0 0 0 0C2

Hence A(00)F = A(O)F or IA(OO)F = IA(O)F for all I.

Furthermore, for all P e [0,i]

(0, 0, P, 0, 1-P, O)A(O) = (0, 0, P, , 1-P, 0)

(0, O, P, 0, 1-P, O)A(1) = (0, 0, P, 0, 1-P, 0)

that is

W < (0, O, P, 0, i-P, 0)) >

is invariant under the symbol matrices A(O) and A(l).

V < ((o, o, P, o, -P, o) >C W and VA(O) - V

VA(1) = V

Hence for z e Z

26



0 0 0 0 0 0

0 0 0 0 0 0

(A(O0) - A(O))A(Z) = Cz  0 0 +1/8 0 -1/8 0 D0 0 0 0 0 0
0 0 -3/16 0 3/16 0

0 0 0 0 0 0

where Cz is a constant depending on the string z

and

(A(00) - A(O))A(z)F = DF = 0

,* +

consequently Vz e VI : S

IA(00)A(z)F = IA(0)A(z)F

or

EA(00z) = EA(Oz), which shows OORF0.

By the same method one can show that

10 RF 1 Oll RF 11 01011 RF 11 111 RF 11 01010 RF 0

and all strings are in the classes

RF(A), RF[0], RF[I], RF[ll], RF[10], RF[00), RFOl01]

which means that RF has finite rank.

We compute the expectations and construct the expectation equivalent

deterministic machine A'. Note that the values of expectation depend on

the initial state I.

EA) = IA(A)F = IF = 8.6
EC(O) = (0, 9/10, 1/20, 0, 1/20, O)F = 4.6
EA(1) = (0, 0, 3/20, 2/20, 15/20, o)F 1.1

EA(01) = (0, 0, 3/80, 72/80, 5/80, O)F = 1.9
EA(IO) = (0, 0, 3/20, 0, 15/20, 2/20)F = 1.1 = EA(l) (since lORFI)

EA(ll) = (0, 0, 9/40, 0, 31/40, O)F = 1.0

EA(010) = 1.9

EA(010 ) = 9.1

27
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Hence the expectation equilvalent deterministic machine is

0
7' 9.1

g 0 0 ip: 1. 92. 4. 6! 0.
0 3 1.9

A' : Q : 8.61

0 (5) 1.0
1 1

We note that A' has 7 states while A has Just 6 states. The determinis-

tic cycle 0101 appears in both machines

28



2. DETERMINING WHETHER A PROBABILISTIC SEQUENTIAL MACHINE IS N-MOMENT

EQUIVALENT TO A MACHINE WITH DETERMINISTIC

SWITCHING AND RANDOM OUTPUTS

In this section the concept of expectation equivalence is generalized to

N

N-moment equivalence. A congruence relation R is defined which partitions
F

the input strings into classes whose members all produce the same expectation

N

and first N-1 central moments in a given machine. If RF has finite rank, a

finite quotient machine can be constructed which is deterministic with each

state corresponding to a congruence class. Each state can be connected to a

random device having the same expectation and N-1 moments as the class repre-

sented by the state, giving a deterministic machine with random outputs. The

deterministic machine constructed is N-moment equivalent to the probabilistic

machine. After the first theorem concerning a necessary and sufficient con-

N
dition that two strings be in the same RF class, it is obvious that a simple

substitution gives generalizations of the results of section 1 and they are

presented in this section without proofs.

2.1 DISTRIBUTION EQUIVALENCE: ED

The random variable structure of probabilistic sequential machines will

be investigated in this section.

Definition 2.1: OA(x) = the output random variable of the machine A after

A

a string x has occurred as input.

The distribution of O (x) is IA(x) and values of OA(x) are the entries

of F.

29

.I



Definition 2.2: A and A' are distribution equivalent written ADA' if for

JA= : (IA(x)1 Fj / 0) there is a 1-1 map h between JA and JA' such that

IA(x) h(J) = I'A'(x)1  j F J A' x *

Fh(j) =- J 6 JAI

Distribution equivalence corresponds to the conventional definition of equiv-

alence for discrete random variables except for random variables Fi F for

i J .

Referring back to example 0.2 note that two chemical cells are distribu-

tion equivalent if (i) We neglect those partitioned areas which have either

zero efficiency or a zero fraction of the catalyst. (2) Of the remaining

partitioned areas there is a correspondence between the partitioned areas of

one cell and the other such that corresponding areas have the same fraction

of catalyst regardless of the sequence of controls entering the cells. (3)

Corresponding partitioned areas have the same efficiencies.

2.2 MOMENTS OF THE OUTPUT RANDOM VARIABLE

Definition 2.3: Let

F = Fi e R i =l,2,...,n

iFn

call

(F) = nl

Then the i'th central moment of o(x) is

30



A ( x* E- i = 2 3 ...

A

x)=EA[(OA(X)-EA(X)) ~1 i = 2,5,..

Sometimes A(x) = EA(x) will be used informally,

Theorem 2.1

A (x) (k)(_1)IA(x)(F 
-)EA(x)k i 2,3,...

k=O

Proof: By the binominal theorem

k=A~) EAL (~kO(jLk E•xi-k)

To compute the expectation of the discrete random variable OA(x) k note

. i-k i-k
it has the same distribution as OA(x) but takes on values F1  ,...,Fn for

i-1

±A(x) -- (-l) k ( o. ox) IEA(x) + (-li .EA(x)i

k=O

1-1
S\' k i Fi-k) k - iEA(X) i

L (-) • IA(x)( EA(X) + (-1) Q.E.D.

k=O

2.3 SPECIAL PROPERTIES OF RABIN PROBABILISTIC AUTOMATA

Definition 2.4: A Rabin probabilistic automaton [4] is a probabilistic se-

quential machine such that Fi = 0 or F. = 1 1 = 1,2,...n.

We now observe that Rabin probabilistic automata have rather special

features as far as the random variable of the output is concerned.

3
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Corrollary 2.1: For a Rabin probabilistic automaton A

i-i

4A = -i (k()EA(x) kl + (-) EA(x)i 2,,...

k=O

Proof: Fi = 0 or 1 hence

(F ' ) - F for i k

and the result from Theorem 2.1.

Corrollary 2.2: If EA (x) = EA(y) for some Rabin probabilistic automaton A,

then all central moments for x and y are equal also, i.e.

A A
i(x) = AIi(y) for i = 2,3,...

Note: for i = 2 we get the variances of the outputs are equal.

Corrollary 2.3: If two Rabin probabilistic automaton A and A' are expectation

equivalent then

A A'
41 (x) = pi (x) i=2,5,... xe*

2.4 THE CONCEPT OF N-MOMENT EQUIVALENCE: N

Even if two machines are expectation equivalent, the statistics of their

behavior may be so different that for many purposes we would not want to 0on-

sider the machines behaviorally equivalent. Returning to example 0.1, two

slot-machines can be expectation equivalent, meaning that the average payoff

is the same for both, but one can be much more desirable than the other for

a player of limited resources. For a player with limited resources might have

a far longer average time until "gambler's ruin" on one machine rather than

the other. Hence in order to lump those machines in the same class whose
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statistics of behavior are somewhat alike, we introduce the notion of N-

moment equivalence.

Definition 2.5: Probabilistic sequential machines A and A' are N-moment

equivalent, written ON, if

EA(x) - EA,(x)

Ai = i (x) i = 2,...,N for all x in *

2.5 THE REIATIONSHIP BETWEE ED AND MN

Theorem 2.2

For probabilistic sequential machines A and A'

A -D A' =2oA -=N A' for all finite N

Proof: bistribution equivalence means there exists an h such that

Fhci) = Fi

(IA(x))h(i) = (I'A'(x))i Vx e

when

(I'A'(x))iFi 0 O

£Hence
n n

(A(x)h (I'A'(x)) F1

ori i=l

I EA(x) - EA, (x)

which is expectatiou equivalence. For any finite N

I ~'h(i)= (F)

t3
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The fact that

A A'i(x) -- (x)
N N

comes from inspection of Theorem 2.1. Symbolically, we have shown

A =D A' -- A =N A' for any N. How close one can come to a converse to

Theorem 2.2 depends on the form of the entires of F.

Lemma 2.1 (Gantmacher [11])

Given a sequence So, S,... of real numbers S, if one determines positive

numbers ri > 0, r2 > 0,...,rn > 0

00> Vm > Vm.l,..., V1 > 0

such that the following equations hold

m

(*) s= r V (p 0,1,2,...)
p L-j i J

J=1

then the solution to (*) is unique. We can apply the lemma to get the

following partial converse.

Theorem 2.3 If machines A and A' meet the following requirements (Letting

h(i) = i W.L.G.)

(i) (IA(x))iFi = 0 iff (I'A'(x))iFi = 0 i = 1,2,...,n.

(ii) All states in a given machine have distinct output symbols

(iii) EA(x) = EA,(x) yx e

A~x At

=-i ((x) i = 2,3,...

Then A and A' are distribution equivalent.

Proof: We use Lemma 2.1

Since the central moments and expected values of output are equal for

any string, the moments of OA(x) and OAI(x) about zero are equal for any string.
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so  = Ei(IA(x))i such that Fi # 0]

s, = EA(x) EAt I(X)

A 2 A' 2

S2 = 42(x) + EAX = 2 (x) + EA,(x)

We discard those components whose contribution to the moment is zero and re-

label the non-zero components by the index J. Let

J = (i : IA(x)iFi 0)

Because of assumption (i) we also have

IJ + fi : I'A(x)'F' 0)

IHence

Sp J(IA(x)) (F )P P = 0,1,2,...

1 ,JEJ

(I'A'(x)) (F') P 0,1,2,...

~jej

By the lemma the solution is unique.

(IA(x))j (I'A'(x))j J e J

Fj F' J e J

Hence A and A' are distribution equivalent.

I Example 2.1

The condition (ii) of theorem 2.3 is a necessary condition as shown by

the following:

IA(x) = (.5, .3, .2) F = F' = )

I I'A'(x) = (e5, .4, .1)
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EA(X) = IA(x)F = .5

EA,(x) = I'A'(x)F' = .5

Since A and A' are Rabin automata, by Corollary 2.3

A A
Si(x) = 4i(x) i = 2,3,...

However, A and A' have different distributions over states for the string x.

2.6 THE N-REDUCTION RELATION

N N
Definition 2.5: The N-reduction relation RF: XRFY if for all I in S

A A
[EA(x) = EA(y) and 4i(x) = (y) i = 2,3,...,N]

. EA(xz) = EA(yz) and A (xz) = 4i(yz) Vz Z , i = 2,3,...,N]

The relation RF is a congruence relation and RF = HF. Elements in the

N

same congruence class of RF have expectations and the first N-l central

moments equal. Hence the machine Z mod RN can have random devices attached

N
to the states (which are RFxl) such that the first N-1 central moments and

expectation of each device is the same as the congruence class represented

by the state. The resulting machine has deterministic switching and random

output functions and is equivalent by -N to the probabilistic machine defin-

ing RF.

Theorem 2.4

The N-reduction relation is non-trivial iff there are strings x and y:

h1 , N i
A(x) = A(y) + where < (hl,...,hn) >C n Kern.(Fi)

lini i=l

N

and < (h1,...th n] > A(a) C r Kern.(Fi)

i=l



I

Proof: Suppose that RN is non-trivial.

EA(X) = EA(Y) x / y

4.<=> IA(x) F = IA(y) F VI E S

r,

4' A(x) =A(y) +

rn

r, e Kern.(F)

i =12,...n

2(X) = IA(x)(F
2 ) - EA(X)

2

= IA(y)(F
2 ) - EA(y) 2

IA(x)(F) 2 = IA(y)(F
2 ) VI . S

<=> A(x) =A(y) + r i e Kern.(Fe )

rn

A

For any i, Ai(x) can be written as a recursive function of IA(x)(Fi) and

smaller powers of F, i.e.,

1
. i - 1

A i 7 kii-k k
i(x) = IA(x)(F ) + (-I ()IA(x)(F EA(x k + (-1) EA(x)

k--k

k=1

1Hence by induction we assume

IA (x)(Fk) = IA(y)(F ) k = 1,2,...i-1; VI

Hence

I Ai(x) = IA(x)(F i ) + 0

A iI p(y) = IA(y)(F ) + 0

I
I
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SA(x) A A(y)<> IA(x) (Fi) IA(y) (Fi VI

K=a'A(x) = A(y) + where r i e Kern.(F i )
I rn

The rest of the proof is analogous to Theorem 1.5. Q.E.D.

N N i
If we substitute RF for RF and Q- Kern.(F ) for Kern.(F) the proofs of

i=l.

Theorems 1.4, 1.6, 1.8, and 1.9 go through exactly as before and we state the

dual theorems which are obtained.

Theorem 1.4D

N
If RF has finite rank r there exists a partition g = ( i 1 ,... ,lr) on

V(A) and an integer valued function y(i,m) such that niA(a) = ny(i,a)

i = 1.2,...,r a 6 T..

Theorem 1.6D

Let U :< L (A(x)i-A(Y)i) i = 1,2,...,n > for (xy) e R then

for any z e Z*

N

UA(z)" Kern.(Fi -.here exists V
i =l

a subspace of Rn such that for any i e Z

(i) UA(i)C V

N

(ii) VA(i) = VC.Q') Kern.(F i )

i=1
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Theorem 1.8D

N
RF is non-trivial =- (aV) a subspace Rn such that

N

(i) VCl Kern.(Fi)
i--1

(ii) V is invariant under (A(i))

(iii) A(x) = A(y) + H where Hi e V

some Hi 0.

Example 2.2

We extend Example 1.3 to illustrate theorems 1.4D and 1.8D.

N lon
< (0, 0, P, 0, -p, 0] >C( Kern 5 n

n=1 / n

2n

ln

2n

for any finite N.

Hence we can replace the output from any state with a random device

with the same first N central moments as the probabilistic sequential machine.

By way of illustration, we compute the variances. Note that here the classes

of RF are also the classes of RNF.

A(A) - (8/10, 1/10, 1/10, o, o, o) -0o (8.6)2

(10

4
1

4

= 8.84

I
'9
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Likewise, we get

A
112(0) =1.44

A
4.2(1) = .09

A
412(01) = .09

A
4.2(10) = .09

=1(1 (0, 0, 9/40, 0, 31/4o, o) ioo (1.0)2

251

1

4

1

4

= 0.0

1(1)= (0, 0, 21/320, 0, 11/320, 72/80) 100 -3.61

25
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4

1

4

= 0.0

L(001 (72/80, 0, 53/1280, 0, 75/1280, 0) 1.oo (9.1)2

= 7.29

Hence a machine A' which has the same expectation and variance for each

string can be constructed with deterministic switching and random output de-

vices symbolized by

attached to states S which supply random numbers with mean e and variance N.
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The machine A' is then just the machine of example 1.3 with the outputs

connected to devices such as the above.

0 0 : 9.1, 7.29

1
0

8.,8.4 2 : 4.6, .406 i I
0

1 1

d .1 09

1

0, 1

where j is the initial state of A'.

Fig. 2.1 Machine A' which has the same expectation and variance for all

strings as probabilistic machine A of Example 1.3.

Example 2.3. Probabilistic sequential machines A and A' such that

EA(X) = EA,(x) •

and

A AI
Vi(x) = gi(x) Vx e i = 2,3,..

A(0)= 1 0 0 AM1 3/5 1/5 1/5\
1/2 1/4 1 1/5 4/5 0
1/4 0 3/4 4/5 1/5 0

I
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A'(0) = 0 0) 1 A ( ) = 4/5 1./ 5 00 14 3 /4I 0 4 /5 /

0 0 1 4 /5 1/ 0

For both machines

F = F2  for F1 , F2 arbitrary real numbers

FN

Note that RN is non-trivial since there is an invariant subspace

U - < {(, O, -)) >

such that

[A(O)-A'(O) ]e C U

[A(l)-A'(l)]j e U j = 1,2,...n.

Theorem 1.9D

N.
RF is non-trivial< --- the symbol matrices A(i) :i e E be reducible for

the same change of basis (f)r V) i.e. a a linear transformation W from the

state basis S to a basis for V such that

basis for V

W=IA(i)W - A0

IA2  A3 1

where 0 denotes a block of all zeros the same size for all symbols i

N

and V C . Kern.(Fi).

i=4
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3. THE NOTION OF INDISTINGUISHABILITY AS A CRITERION

OF BEHAVIORAL EQUIVALENCE

If probabilistic sequential machines A and A' are behaviorally equivalent

in an intuitive sense, taking into consideration how machines are built and

repaired, one would expect them to be interchangeable as a submachine of any

larger machine. Indistinguishability of two machines in any machine in which

they can be plugged into is a strong criterion, the ramifications of which we

shall investigate. The following example [9] illustrates how the notion of

equivalence through accepting the same set of tapes, ET, fails to meet this

indistinguishability requirement.

3.1 EXAMPLE OF TWO DISTRIBUTION EQUIVALENT MACHINES WHICH PERFORM DIFFERENTLY

AS COMPONENTS OF A MACHINE

A, = < I, A(O), Al(l), F, >

where

A(O) A(l) 1/2 1/2 0
0 0 0 10

0 0 0 0 1

0

F1  = 1, = (1, 0, 0,0 , 0)

J1

A = (I 2 , A2(O), A(l), F2 )

where 12 - Ii, F2  = F1

I
4,3
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o 1/2 1/2 0 0

o 0 0 1/2 i/2

A2(o) = A2 (l) = 0 0 1/2 1/2

O 0 0 0 1

O 0 0 0 1

Note that machines A, and A2 happen to be independent of the input as Al(O)

= Al(1) and A2 (O) = A2 (l) and hence are both markov processes.

TABLE 3.1

COMPARISON OF MACHINES A, AND A2

x EA, (x) IAl(x) EA2 (x) 1 2 A2 (x)

A 0 (i, 0, 0, 0, 0) 0 (1, 0, 0, 0, 0)

0 or 1 1/2 (0, 1/2, 1/2, 0, 0) 1/2 (0, 1/2, 1/2, 0, 0)

00, 01, 10 or 11 1/2 (0, 0, 0, 1/2, 1/2) 1/2 (0, 0, 0, 1/2, 1/2)

all x: 2g(x) > 3 0 (0, 0, 0, 0, 1) 0 (0, a, a, O, i)

From the above table we see that A, and A2 are distribution equivalent

as well as expectation equivalent. We later will show the existence of a ma-

chine which behaves differently with A, and A2 as submachines despite the fact

that the state behaviors of A, and A2 are Markov processes.

Definition 3.1. A -* B denotes the machine obtained from plugging the outputs

of A into the inputs of B, subject to the provision that the inputs of B be

compatible with the outputs of A.

Definition 5.2. A and A' are tape equivalent machines, written A ET A' if for

some specified %I and X2
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T (A, hl = T(A',%)

Definition 3.3. A and A' are tape indistinguishable for a class C of ma-

chines if

T(A4C ,)) = T(A'+C,

for all % and C c C.

We may sometimes let C be a larger class than finite deterministic or

probabilistic automata.

Theorem 3.1

If probabilistic sequential machines A and A' are distribution equivalent

they are not necessarily tape-indistinguishable for the class of finite de-

terministic automata.

Proof (by example): Let C be a finite deterministic machine which ac-

cepts 01, 10 with probability I and all other types with probability 0. We

tabulate the expectation of A, * C and A2 + C in Table 3.2.

TABLE 3.2

EXPECTATION OF A, * C AND A2 * C

xEAjL.C Wx E Aa'*C Wx

00 0 1/4

01 1/2 1/4

10 1/2 1/4

11 0 1/4
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Hence T(A.C,) T(A2 -C,p) for any % e (1/2, o). The reason for this dif-

ference is because the conditional probabilities of output random variables

differ for A, and A2 . For example,

Prob. (0* (01) = 1) = 1 given 0* (1) = 0
Al A2

While

Prob. (0* (01) = 1) = 1/2 given 0* (1) = 0
A2  A2

Theorem 3.2

For probabilistic sequential machines A and A' if for all finite de-

terministic machines C and any cutpoint X.

T(A-C, %) T(A"I C, '

=> A =E A'

Proof: Suppose EA(x) / EA,(x) for some tape x of length k. Without

loss of generality pick EA(x) > EA,(x). Let kc be a rational such that

EA(x) > %c > EA'(x). Let C be a deterministic machine which beginning at

time k computes the number ik-\c where ik is the input at time k. Since %c

is rational C needs only a finite number of states. C accepts the string x

ff ik-X% > 0, which can be done in a finite number of steps.

x e T(B-C,%c) iff EBC(x) >

but since C is deterministic

x e T(B+CX 0 ) iff EB(x) >

hence let B = A and B = A':

x e T(A4C, \C) and x e T(A',C,Ac)

so
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By logical equivalence we have shown for the class C of finite determin-

istic machines

(J(C) (T(A+C,%) = T(A'-C,,\3] = (x)[EA(x) = EA,(x)]

Q.E.D.

By the example presented in Theorem 3.1 we know the converse is not true.

3.2 A MORE SATISFACTORY TECHNICAL NOTION OF INDISTINGUISHABILITY

The example at the beginning of this section shows that notions of ma-

chine equivalence such as T equivalence and even distribution equivalence,

D) break down under composition of machines.

In order to get a more satisfactory definition of behavioral equivalence,

the conditional probability structure of probabilistic sequential machines

will be explored. A stronger concept of equivalence, called indistinguishabil-

ity, based upon equality for the two machines of the probabilities of all pos-

sible output strings given all possible input strings will be formulated.

Following the development of Carlyle [6), a bound will be found for the length

of strings needed for deciding whether two machines are indistinguishable.
*

In what follows it is assumed that contains a string of one symbol A

so that A(A) = En the matrix identity.

Definition 3.4. The conditional probability for a sequence of outputs y

= yiy2...ym given a string of inputs x = cy...am starting from an initial dis-

tribution II = (fIi,1ii 2 ,...,iI n) in a machine A will be written

or if the machine involved is clear from context, Just P1 i(y/x).

I
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We note that the symbols of the output alphabet are real numbers which

occur as components of the output column vector F, i.e. the output alphabet

Y can be written

n

Y = (Fi)
i=l

Definition 3.5. The probability of a sequence of transitions Si1-Si 2+... Sij

with output sequence y because of input sequence x will be written

PSi .. S ij(y/x)

Definition 3.6. The conditional probability transition matrix A(yi/0) is

formed from A(a) by zeroing out all columns except those corresponding to

states with output yi. More formally,

Let

J Yi= (J : Fj yi )  Yi 6 Y

and let Q be the matrix with[Q i = i for J J and (Q I 0

Yi
otherwise. Then A(yi/a) = A(a)Q yi e Y, a e Z. Note that [A(Yk/a)Q)j is

is Just Psi..sj(Yk/G).

Remark 3.6: Let y e Y*, x e Z*, Yj e Y, a e Z such that g(y) = Zg(x).

Then

A(yyi/xa) = A(y/x)A(yi/a)

By definition [A(yyi/xa)]l,m is Psl.Sm(yyi/xa)

For any state Sk
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P SIeSm ( y i/x c ) = PS.Sk(Y/X) P skSm(Yi/a)

since transitions to different states Sk are mutually exclusive events.

PS4+Sm(yYi/xa) S PSX-Sk(Y/X) PSk4Sm(yi/a)

k=l

using the definitions again

n

(A(Yyi/xa) ]i,m = Y [A(y/x) ]Ik[A(yi/a) ]k,m

k=l

or in matrix form

A(yyi/xa) = A(y/x)A(yi/ci)

Hence the conditional probability transition matrices for strings can be gen-

erated by the conditional probability transition matrices for symbols as was

the case for the transition matrices A(x).

Remark 3.7: Given initial distribution over states I3 the probability of get-

ting output string y from input string x is just

n n

P A(y/x) = C I Ili[A(y/x) ]i,

j=1 i=l

with S -(:) we can write

PA(y/x) = flA(y/x)S

Remark 3.8: We note the following identity
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A \1-A

P (y/x) = P(YYi/xa) for all a c Z
yj cY

since

S A (yy /xa) - rIA(y/x)A(yi/a)s

yi6Y YiEY

=IIA(y/x) A(yi/) S = IIA(y/x) A(a) S

YiE Y

But for any n x n stochastic row matrix C

CS = S

Hence

IIA(y/x)A(a)S = IIA(y/x)S = Pyi(Y/X) .

Definition 3.7. The terminal distribution II*(y/x) for a sequence of outputs

y given inputs x

II*(y/x) = IIA(y/x)
IIA(y/x)S

The i'th component of II*(y/x) is the probability of being in state i after

input string x has occurredand output string y has been observed.

The following identity holds whenever PA(y/x) > o.

A A A
PI I ( yyi/xa) = P (Y/X)Pl*(y/X)(YI/a) yi E y, a IE

Definition 3.8: Machines A and A' are indistinguishable written A =I A' if
A A'

PII(y/x) = PI,(y/x) Vx C y C Y

Hence our concept of indistinguishability for machines depends on observable

identity when both machines are started from their initial state distributions.

50



Definition 3.9: Machines A and A' are k-indistinguishable if

A A' m 
P rl(y/x) = Pri,(y/x) x 6 (Z) , y e (y) for m = 0,,...,k.

Definition 3.10: In a machine A, two initial state distributions TI and \ are

indistinguishable if

A A 7

PA(y/x) = F A(y/x) Vy 6 Y* Vx e

Definition 3.11: In a machine A, two initial state distributions TI and . are

k-indistinguishable if

PA (Y/x) = pA(y/x)

Vx such that

£g(x) < k,

Vy such that

cg(y) = £g(x) .

Checking whether the indistinguishability definition (3.8) for machines

or for initial distributions (5.10) holds using only the definitions involves

calculation of an unbounded sequence of conditional probabilities. In the

next section is shown a bound for the length of strings whose probabilities

need to be calculated. As in the deterministic machine case, if n is the

number of states, then only strings of length n-2 or less need be considered

in establishing indistinguishability.

I
3.3 THE RELATIONSHIP BETWEEN THE INTUITIVE AND TECHNICAL CONCEPTS OF

jINDISTINGUISHABILITY
We have yet to relate the intuitive notion of indistinguishability to

I
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the technical definition 3.8. In the next theorem will be shown that two ma-

chines indistinguishable in the technical sense are indeed indistinguishable

when plugged into C, any finite state probabilistic or deterministic machine.

Since C has a finite number of states, it is assumed that finite strings of

Z = C(Y*), the random variable taking on values of strings of outputs of C

given strings of inputs from the random variable Y, depend only on finite

strings Y

Theorem 3.4

Let C* be the class of finite state probabilistic and deterministic

sequential machines. For any C e C*

A-)C A I -C
PIc. (z = c(Y*)/x) = P11 , (z = c(Y*,)/x)

A Ar

if

A A'
P11 (yA/x) = PI,(yA,/X)

for YA and YA' having the same range YA 6 
Y *

Proof: For any fixed value yA of the output string random variable of

A, YA

P AC ( z = C(YA)/x) = PAI(YA/x)PC(z = C(YA)/YA)

since the occurence of different yA are disjoint events, for all yA e Y*:

Xg(yA) = lg(x).

A-*C yA)C

P.1 (z = C(YA)/X )  PrI(YA/x)'pC(z = C(YA)/y A)
YAE(Y) g(x)

Likewise
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A'C C C
PII (z' = c(yA)/x) PI(yA/X)P (z' C(YA)/yA )

But since Z and A' and YA and YA' range over the same sets respectively, and

the indistinguishability of A and A', i.e.

A A'
P I ( YA = YA/X) PI-I' ( YA' YA'/X)

we get

A-C A ' C
PII (z = C(YA)/x) : PII (z' C(YA,)/x)

which means A.C and A'+C are indistinguishable. Q.E.D.

Since the machine C might ignore its inputs, it is clear that the converse

to Theorem 3.4 does not hold.

Hence the criterion of indistinguishability as a submachine has lead

us to the technical definition 3.8 as a kind of behavior equivalence.
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4. FINITE COMPLETE SETS OF INVARIANTS FOR THE BEHAVIORAL

EQUIVALENCES E' -EN, AND -- AND THE REDUCTION

CONGRUENCE RELATIONS RF AND RN

The results of the previous sections involve relations defined over all

finite strings of the input alphabet. In this section are found bounds for

the length of strings necessary to consider in order to decide whether two

elements of the domains of the relations are in the same class.

Definition 4.1. A set of functions fl,...,fm is a complete set of invariants

for the relation R if for all x and y in the domain of R

xRy<=>fi(x) = fi(y) i = 1,...,m

We now show sets of functions which are invariants for the above rela-

N
tions. A set of functions which are invariant over RF and RF are:

f (x) E E(xz)f(A,l,z) ( x  . A(Z
A for all z: Ig(z) < i, for all I e S

fA )(x) " A(xz)
f(A,N,z) () N (z

While for the relation =I_, the set of functions below is a set of invariants:

g~x~y(A) = PlA (y/x) for all x and y: Xg(x) = Lg(y) < i

Likewise the set

h(xl) (A) = EA(x) for all x: g(x) < i

h(x r)(A) = i4r(x) for r = 2,...,N

is a set of invariants for the relations E and -N.

It is clear that for an unbounded i, the above are complete sets of in-

variants. However, in what follows a finite value of i will be found for

each of these cases. In the case of RE the bound will be the same as the
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well known Moore bound for deterministic automata but in the case of -N it

will be lower for most machines. The main tool used in finding the various

values of i is the following simple lemma.

4.1 THE FJNDAMENTAL LEMMA

Lemma 4.1

Given an n-dimensional vector space V, a finite set T = (Ti) where each

Ti E V x V is a linear transformation on V and some finite set of vectors

VoC V such that dim <Vo> = r > 1.

Define

MO = Vo

Mk = (Vo.Ti : Ti k T, vo E Vo)

= ..Ti k Til ,..., Tik

and let

Li < KU Mj>
J=O

Then there exists an integer J(T) such that for any v0 e Vo: vO  0

(i) LJ(T) = LJ(T)+1
C

(ii) L k-1 Lk for k 4,-J(T)

(iii) J(T) < n-r

Proof: Io C L, C... C Li C... C Lk as a consequence of the definition.

CO

The sequence (dim Lj)J=0 is bounded above by n, the dimension of V. Call

J(T) the smallest index k such that Lk+l = Lk. Showing that the sequence

J(T)
(dim Lj)j=0 is strictly increasing requires that for all J+l < J(T)
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Lj+l Lj+2 -- Lj+l Lj

which is logically equivalent to

=j+ Lj =wILj +2  Lj+

Hence it is sufficient to show

Lj +1 Lj =>-Lj+ 2 C-Ll

Assume

L J 1C L i

W.L.G. pick

V =VO-Til... Ti J+2 6 Lj+2 = Cvo.Til ... Tij.)*T J2

But

W = Vo Til. .. Tjl e Lj+l

So there is a finite set of indices I = (ii- of a spanning set U for Lj

U = (voTi.-Tij... Ti i£)
BiB Br'i

such that ri < j and constants ci

so

v = w-Tij+2  = ErivT Ti *j+ e Lj+l

i.e.

Lj+2 C: Lj+1

Now consider the sequence of dimensions

dim Lop dim k-1,...,dim tJ(T)

since

Lk 5 Lk+l for k+l < J(T),p dim Lk < dim Lk+l for k+l < J(T)
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1Noting that

dim Lo  = r, dim Lo + J(T) < dim LJ(T) < n

1 which gives

J(T) < n - r

Q.E.D.

4.2 A BOUND FOR TESTING FOR MEMBERSHIP IN -I

Theorem 4.1

If A is a probabilistic sequential machine with n states, then (n-l)-

indistinguishability of initial distributions r and iT' is sufficient to

guarantee indistinguishability of initial distributions v and n'.

Proof: Using lemma 4.1 let

1 V0  = (S) (1) and dim <v>= 1

T = [A(yi/a) Yi e Y, a e

by the 
lemma. 

VoTi 
= A(yi/a)S

jFor any string x = ii... ir ,: for r' finite, A(y/x)S can be expressed as

A(y/x)S = ciA(y i...Y /1 i"". S N)
Bi Br Ji ini

with

ri < n - 1 for i e I, y1 e Y, a i e (for k = l,...,ri)BjJk

Hence for initial distributions g and n'
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PAI(y/x) = IIA(y/x)S ' ciIIA(y ... Y / a )
iEI B Br ii Jri

Let

y i = B yBi and x = a ... ±yB 
ii

A y/) A i i i i

P II (Y/x) c i P1 (y /x) with lg(y ) = Ag(x ) < n - 1

ieI

multiplying (*) by xr' gives

P1 1 (y/x) = ciPiI,(yi/x )

iEI

By the assumption of (n-l)-indistinguishability for ir and Tr'

A i i A i

Pl(y /x ) = PAt(yi /x i) g(xi) = Ag(yi) < n - 1

Hence

P A(Y/x) -- PAI(y/x) Q.E.D.

4.3 EQUIVALENCE OF DISTRIBUTIONS IN ONE MACHINE

Using Lemma 4.1, we can now make effective the definition of the rela-

N
tions RF and RF of Section 2. A bound will be obtained for the lengths of

strings necessary to consider to decide whether x and y are in the same con-

gruence class.

Definition 4.2: Distributions n and X are equivalent for a machine A,

written i - , if t A(x)F = \A(x)F x e

Definition 4.3: Distributions v and % are K-equivalent for a machine A,
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K
written i t -, if

IiA(x)F %A(x)F x *: 0 < g(x) < K

Theorem 4.2

If A is a probabilistic sequential machine with n states and if g and

% are (n-1) -equivalent in A then i - %.
A

Proof: Let x be in Z and let us use Lemma 4.1 with

VO  = (F) and dim <Vo> = 1 T = {A(a) : Oe) Vo'Ti = A(i)'F

Hence there is a finite set of vectors A(xi)F for i e I with Zg(xi) < n - 1

such that

A(x) F = , ciA(xi)F g(x') < n - I

ie I

Hence

ITA(x)F = j. ciIIA(x x)F %A(X) = ciA(xi) F

ieI ieI

(n-l) -equivalence gives

rIA(x )F = \(A(x )F i e I

So

IIA(x)F = %A(x) F Q.E.D.

4.4 BOUNDS FOR TESTING FOR MEMBERSHIP IN ME AND RF

Definition 4.4: The abstract Join of probabilistic sequential machines

A - < ir,A(O),...A(k-l),F > with n states and A' = <%,A'(O),...A'(k-1).F'>

with n' states is the abstract n+n' state machine A written

AA' = < ,A(O),...A(k-1),F >
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where

Ai) i A'(i)

and

F

i and X can be embedded in the n+n' dimensional space as

n' zeroes n zeroes

U= (o,..,, Q

The problem of deciding whether two machines A and A' are expectation equivalent,

i.e.

irA(x)F = %A'(x)F vx c

is logically equivalent to deciding when r@ and are equivalent in AA',

i.e. whether

AA'

Hence following Caryle [6], we use Theorem 4.2 to state

Remark 4.1:

A<> n+n'-l

A&A' X =lAA,

which gives the following theorem.

Theorem 4.3

Let A and A' be probabilistic sequential machines having n and n' states

respectively.

Then a necessary and sufficient condition that A and A' are expectation

equivalent:

rNA(z) F = %A'(z) F' Vz e *](=[4A(x)F = NA'(x) F' vx: Ig(x) < n+n'-l]
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Theorem 4.3 makes the experimental determination of expectation equiva-

lence possible provided the number of states of both machines are known.

Furthermore, it gives a bound on the process of finding whether two strings

are in the same equivalence class under the reduction relation RF of Chapter 1.

This result is summarized in the following theorem.

Theorem 4.4

Strings x and y are in the same equivalence class under the reduction

relation RF of an n state probabilistic sequential machine AK=>EA(xz) = EA(YZ)

for all strings z: eg(z) < n-l and all I e S.

Proof:

XRFy-EA(xz) = EA(yz) for all z e , for all I e S

<=>IA(x) A(z) F = IA(y) A(z) F

Let ir = IA(x) and X = IA(y)

*

K=)7A(z)F = \A(z)F vz e

By Theorem 4.2 and its obvious converse, we get

n -I
<-> IA( x) A IA(y)

which gives the theorem.

N

4.5 BOUNDS FOR TESTING FOR M4MBERSHIP IN MN AND RF

Definition 4.5: nF = the independence number of an n state machine A with

output vector F.

nF = dim < [(Fi) i = l,2,...,n) >

It follows from vector space arguments that

I
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nF = 0 (Fk : Fk 0)

The independence number is Just the dimension of the space generated by

powers of the components of the output vector F. For a Rabin automata nF =1

and all central moments reduce to polynominals in what we may consider the

first "central moment" EA(X). In general, if the independence number is
* A

nF, then for all x in Z*, the (nF+l) 'st central moment nF+l(X) reduces to a

polynomial in the lower central moments since

A (x) = IA(x)(F n F+ l ) + Q(x)

where Q(x) is a polynomial in which IA(x)(Fi), i = l,...,nF occur. Hence

n

A IA(x) C' (Fi) + Q(x)nF+lo. 
i

i=l

since nF is the dimension of the space <(Fi) : i = 1,2,...,n)>

n 
F

= L ciIA(x)(Fi) + Q(x)
i=l

Theorem 4.5

Let A be a probabilistic sequential machine with output vector F and n

states. Then for any r < nF and strings x and y in *:

fEA(xz) = EA(yz) 1 EA(xz') = EA(yz')1

2(XZ) A 9Ai(.Z') .= .(YZ) -

,(xz) =Pr(Yz) zE Lr(xz') gr~i(y~t z' :4)

Proof: Using Lemma 4.1 with

Vo = [F,(F2),...,(Fr)
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dim <Vo> = r < nF

(Ti) = (A(i) : i e

for any vo e <Vo>

r

vo T i = A(i)vo  = _ ckA(i)( F
k)

k=l

Consider any string

z: g(z) = m' finite

Then there exists a spanning set A(xi)vo with i e I and constants ci(vo) so

that

A(z)vo  = ci(vo)A(xi)vo : Ig(x i ) < n - r

ieI

Let vo range over the (Fi) i = 1,2,...,r. For any 7 and X there are constant

functions depending on (Fi), ci((Fi)), such that

inA(z)(Fi) Z ci((Fi)) nA(xi) (Fi)

%kA(zF i  = zF ci((Fi)) XA(x± ) (Fi)
~iel

Hence the moments about zero from 7c and X are equal if they are equal for all

strings of length < n-r. Let x - IA(x) and X = IA(y). Then we have for any

z and any initial distribution

IA(xz)(Fi) = IA(yz)(F i ) i = 1,2,...,r

holds if and only if for i = 1,2,...,r

IA(xz')(F) = IA(yz')(F
i )

for all strings z of length less than or equal to n-r. Noting by Theorem 2.1

I
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that any central moment A(x) is a function of IA(x)(F),...,IA(x)(F m) the

result is established. Q.E.D.

Corollary 4.5 (Bound for the relation RN to hold)

Let A be a probabilistic sequential machine with n states and with

N
N < nF. Then xRFy<=>for all strings z': Ig(z') < n-N

jEA(xz') = EA(Yz')

A(xz,) = 2(yz') for all I e S

A(xz,) = 4A

Theorem 4.6

Let A and A' be probabilistic sequential machines having n and n' states

respectively. Then for all

r <F nF , - {y : y Y(hY and ' 0)

and for any initial distributions it in A and X in A' then

IEA(x) = EA(x) EA(x') = EA,(x')
A1x) = 2 2 Vx' : _<g(x') n+n'--

'= r4'(x) = P(x,)

Proof: Construct A% = AA' and let VO in Lemma 4.1 be

FF n+n'
Vo  = F(F,),...,(Fn+n'9) nF = dim <Vo>

= [(:(qY or jYl) and ? 0 and Wyny )

= nF+nF-#f . Y n Y ' and 0)

Using Lemma 4.1 and an argument like the one in Theorem 4.4 establishes the

theorem. Q.E.D.
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4.6 DISCUSSION OF THE GENERALIZATION OF THE MOORE BOUND

Corollary 4.6

Let A and A' be n-state deterministic machines with two-valued output

alphabet Y = Y' = (1,2). Then A and A' are indistinguishable for all strings

if they are indistinguishable for all strings of length at most 2n-2.

Proof: In Theorem 4.6 we have nF 2+2-2 = 2 so that r < 2. For

deterministic machines, indistinguishability reduces to EA(X) = EA,(x) for

Z*
all x e Z and also

EA(x) EA(x) A (x) A

Hence the right side of Theorem 4.6 gives the result. Q.E.D.

Theorem 4.6 can be regarded as a generalization of the Moore result [71

to probabilistic machines with arbitrary rather than binary output alphabets.

Note that Moore's bound is 2n-1 since he considers the initial output as

part of the experiment. We consider the initial outputs when considering

strings of length 1 since the symbol A has identity symbol matrix.

The role of the zero output symbol in Theorem 4.6 is a significant de-

parture from Moore's deterministic results. In order to get the same result

as Moore in Corollary 4.6 it was necessary to pick a two-valued output set

(1,2) rather than (O,1) with the implicit assumption that such recoding of

output symbols cannot affect indistinguishability between deterministic ma-

chines. Without the recoding, r = 1 and the bound is one higher than the

Moore bound.

However, in the probabilistic case, a different bound for machines with

a zero output symbol than those with nonzero symbols seems reasonable. A
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zero annihilating some probabilities in the expectation and higher moments

can mask significant changes in distributions. It is clear from Theorems 1.8

and 1.8D that changes in Fi from zero to nonzero can affect the kernel of F,

perhaps to the extreme of making RN of infinite rather than finite rank and

preventing the construction of an N-moment equivalent finite machine with

deterministic switching.

66



I

REFERENCES

(1] Braines, S. N. and Svechincky, V. B., "Matrix Structure in Simulation

of Learning" I.R.E. Transactions on Information Theory Vol. IT-S, No.

5, September 1962, pp. 186-190.

(2] Howard, Ronald A., Dynamic Programming and Markov Process, M.I.T. Press

and John Wiley and Sons, Inc., New York, 1960 (Chapter 3).

[3] Thrall, Robert M. and Tornheim, Leonard, Vector Spaces and Matrices,

John Wiley and Sons, Inc., New York, 1957, pp. 298-300.

[41 Rabin, M. 0., "Probabilistic Automata," Sequential Machines, Selected

Papers, Edited by E. F. Moore, Addison-Wesley Publishing Co., Inc.,

Reading, Mass., 1964, pp. 98-114.

[5] Burks, Arthur W., "Computation, Behavior and Structure in Fixed and

Growing Automata," Behavioral Science, Vol. 6, N . 1, January 1961.

[6] Carlyle, J. W., "Equivalent Stochastic Sequential Machines," Institute

of Engineering Research Report Series, No. 60, Issue No. 415, Elec-

Itronics Research Laboratory, University of California, Berkeley, Cal-
ifornia, 1961.

j (7] Moore, E. F., "Gedanken-experiments on Sequential Machines," Automata

Studies, C. E. Shannon and J. McCarthy eds., Princeton University Press,

1956.

[8] Shannon, C. E. and Weaver, Warren, The Mathematical Theory of Communica-

tion, University of Illinois Press, Urbana, 1948, pp. 34.

[9] Arnold, Richard, unpublished communication.

1 (10] Rabin, M. 0., and Scott D., "Finite Automata and Their Decision Prob-
lems," IBM Journal Res. and Dev., 3, 1959, PP. 114-125.

(ii] Gantmacher, F. R., The Theory of Matrices, Vol. 2, Chalsea Publishing

Co., N.Y., N.Y., 1959, pp. 236-237.

I
I

I
67

I



DISTRIBUTION LIST

(One copy unless otherwise noted)

Technical Library Naval Electronics Laboratory

Director Defense Res. & Eng. San Diego 52, California

Room 3C-128, The Pentagon Attn: Technical Library

Washington, D.C. 20301
Dr. Daniel Alpert, Director

Defense Documentation Center 20 Coordinated Science Laboratory

Cameron Station University of Illinois

Alexandria, Virginia 22314 Urbana, Illinois

Chief of Naval Research 2 Air Force Cambridge Research Labs

Department of the Navy Laurence C. Hanscom Field

Washington 25, D.C. Bedford, Massachusetts

Attn: Code 437, Information Attn: Research Library, CRMXL R

Systems Branch

U. S. Naval Weapons Laboratory

Director, Naval Research Laboratory 6 Dahlgren, Virginia 22448

Technical Information Officer Attn: G. H. Gleissner, Code K4
Washington 25, D.C. Asst. Dir. for Computation

Attention: Code 2000

National Bureau of Standards

Commanding Officer 10 Data Processing Systems Division

Office of Naval Research Room 239, Building 10

Navy 100, Fleet Post Office Box 39 Washington 25, D.C.

New York, New York 09599 Attn: A. K. Smilow

Commanding Officer George C. Francis

ONR Branch Office Computing Laboratory, BRL

207 West 24th Street Aberdeen Proving Ground, Maryland

New York 11, New York

Office of Naval Research

Office of Naval Research Branch Branch Office Chicago

Office 230 N. Michigan Avenue

495 Summer Street Chicago, Illinois 60601

Boston, Massachusetts 02110

Commanding Officer

Naval Ordnance Laboratory ONE Branch Office

White Oaks, Silver Spring 19 1030 E. Green Street

Maryland Pasadena, California

Attn: Technical Library

Commanding Officer

David Taylor Model Basin ON Branch Office

WashingtonD.C. 20007 1000 Geary Street

Attn: Code O42, Technical Library San Francisco 9, California

.I



DISBIUTION LIST (Concluded)

The University of Michigan Lincoln Laboratory

Department of Philosophy Massachusetts Institute of Technology

Attn: Professor A. W. Burks Lexington 73, Massachusetts
Attn: Library

National Physical Laboratory

Teddington, Middlesex, England Office of Naval Research

Attn: Dr. A. M. Uttley, Supt. Washington 25, D.C.

Autonomics Division Attn: Code 432

Commanding Officer Kenneth Krohn

Harry Diamond Laboratories 6001 Dunham Springs Road

Washington, D.C. 20438 Nashville, Tennessee

Attn: Library

Mr. Laurence J. Fogel

Commanding Officer and Director General Dynamics/Astronautics

U. S. Naval Training Device Center Division of General Dynamics Corp.

Port Washington San Diego, California

Long Island, New York

Attn: Technical Library

Department of the Army

Office of the Chief of Research

and Development

Pentagon, Room 3D442

Washington 25, D.C.

Attn: Mr. L. H. Geiger

National Security Agency

Fort George G. Meade, Maryland

Attn: Librarian, C-332



Unclassified

Security Classification
DOCUMENT CONTROL DATA -R&D

(f0"Noty e5iIDetlatio of tile. body of biae me and asto Ui*Nosie Ul * mutbe eiwe n die o.vil MD,e to #mod)

I. ORIGINATING ACTIVITY (CO#peate athor) So. RE9PORT 4ECURITY C 6AISIPICATION

Logic of Computers Group Unclassified

The University of Michigan a .60141.00

Ann Arbor, Michi&M_ 48104
3. REKPORT TITLK

EQUIVALENCES BETWEEN PROBABILISTIC AND DETERMINISTIC SEQUENTIAL MACHINES

4. oescaIPTIVS: NO0YSS (typo of r.eot and Ineeive dales)

S. AuTHOR(S) (Lost namne. tinme em. Uinal)

Page, Carl V.

6. R6PORAT DATE 1.TTLN.O AC 6 o rls'

April, 1965 6

Ga. CONTRACT OR GRANT NO. Sol. ORIGINATORS9 REPORT NUhISER(S)

Nonr 1224(21) 03105-37-T
I. PROJEICT No.

c Sol. SYM90 R4 PGRT NO(8) (Any .aaeinmbleme miet ay be soalpIed

d.

10. A V-A IL ASILITY/LIMITA*ION NOTICES

Qualified requesters may obtain copies of this report from DDC.

11. GUPPLE611111TARY NOTEKS IS. SPONSORING MILITARY ACTIVITY

Office of Naval Research

IDepartment of the Navy

_______________________________I Washington 25, D.C.
IS. AMTRACT

The concept of probabilistic sequential machines (PSM), a generali-

zation of Rabin' s concept of probabilistic automata, is defined. Such di-

verse devices as unreliable digital computers, slot machines, and chemical

cells are presented as examples of PSM. Using the examples as motivation,

various kinds of equivalences between machines are discussed. The funda-

mental question of when a PSM is equivalent in some sense to a determinis-

tic machine, perhaps with random devices attached to output states, is con-

sidered. Finally various tests involving finitely many random variables

are devised for eatch of the kinds of equivalences between PSM and for re-

duction, if possible, to deterministic machines. One of the tests is a

further generalization of the Moore bound for deterministic machines than

has previously appeared in the literature. (U)

D D IJANG4 1473 UNCLASSIFIED

Secuity Cesifmilcall"



UNCLASSIFIED
Secuuity Classification

14. 9yWORDS LINK A -LJONKSa LINK C
"O1.6 WT moi WY 0O1.9 MT

1. probabilistic

2. sequential machine

3. automata theory

4. communications channel

5. stochastic machines

6. discrete stochastic processes

7. markov processes with rewards

8. congruence relations

9. probabilistic automata

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statements
of the contractor, subcontractor, grantee, Department of De- such as:
fense activity or other organization (corporate author) issuing (1) "Qualified requesters may obtain copies of this
the report. report from DDC."

2a. REPORT SECUITY CLASSIFICATION: Enter the over- (2) "Foreign announcement and dissemination of this
all security classification of the report. Indicate whether
"Restricted Date" ia included, Marking is to be in accord- report by DD is not authorized."
ance with appropriate security regulations. (3) "U. S. Government agencies may obtain copies of

this report directly from DDC. Other qualified DDC
2b. GROUP: Automatic downgrading Is specified in DoD Di- users hall request through
rective S200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author- (4) "U. S. military agencies may obtain copies of this
ized. report directly from DDC. Other qualified users

3. REPORT TITLE: Enter the complete report title in all shall request through
capital letters. Titles in all cases should be unclassified.
I a meaningful title cannot be selected without classifica
tion, show title classification in all capitals in parenthesls (5) "All distribution of this report is controlled Qual.
immediately following the title. ified DDC users shall request through

4. DESCRIPTIVE NOTES If appropriate, enter the type of to_

report, e.g., Interim, progress, summary, annual, or final. If the report has been furnished to the Office of Technical
Give the inclusive dates when a specific reporting period is Services, Department of Commerce, for sale to the public, indi-
covered. cate this fact and enter the price, if known.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on IL SUPPLEMENTARY NOTES: Use for additional explans-
or in the report. Entei lsat name, first name, middle initial, tory notes.
If .ilitary. show rank and branch of service. The name of
the principal tuthor is an absolute minimum requirement. 12. SPONSORING MILITARY ACTIVITY: Enter the name of

the departmental project office or laboratory sponsoring ('par
6. REPORT DAT r

L
- 

Enter the date of the report as day, ing for) the research and development. Include address.
month, year. or month, year. If more than one date appears
on the report, use date of publication. 13. A1STRACT: Enter an abstrct giving a brief and factual

summary of the document indicative of the report, even though
7a. TOTAL NUMBER OF PAGES: The total page count it may also appear elsewhere in the body of the technical re-
should follow normal pagination procedures, i.e., enter the port. If additional space is required, a continuation sheet shall
number of pages containing information. be attached.
7b. NUMBER OF REFERENCES: Enter the total number of It is highly desirable that the abstract of classified reports
references cited in the report. be unclassified. Each paragraph of the abstract shall end witla
B. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
the applicable number of the contract or grent under which formation in the paragraph, represented as (TS). (s). (c). or (u)
the report was written, There is no limitation on the length of the abstract. How.

8b, 8c. as Sd. PROJECT NUMBER: Enter the appropriate ever, the suggested length is from IS0 to 225 words.
military department identification, such as project number,
subproject number, system numbers, task number, etc. 14. KEY WORDS: Key words ore technically meaningful terms

or short phrases that characterize a report and may be used as
9. ORIGINATOR'S REPORT NUMBER(S): Rater the offi- index entries for catalogitg the report. Key words must be
cial report number by which the document will be identified selected so that no security classiflcatiUt is required. Identi-
and controlled by the originating activity. This number must fiers, such as equipment model designation, trade name. military
be unique to this report. project code same, eographic location. may be used as hey
96. OTHER REPORT NUMBER(S): If the report has been words but will be followed by an indication of technical con-
assigned any other rert numbers (either by the oridlnator text. Te asaigamlt of links, rules. and weights is optional.

or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES; Enter any Its. I
itation on further dissemination of the report, other than t"

UNCLASSIFIED

Security Classification


