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Let O be a complete local noetherian ring, whose field of fractions has character-
istic zero and residue field has non—zero characteristic. A block algebra over O is an
indecomposable summand of the algebra of a finite group over O.

We introduce briefly (and justify through examples) several types of equivalences.
Three levels of equivalences between block algebras seem to be relevant: Morita equiv-
alence, Rickard (derived) equivalence, stable equivalence of Morita type.

We give a classification of various classical “invariants” of block algebras (such as nu-
merical defect, decomposition matrices, defect of irreducible characters, etc.) depending
on the type of equivalence we consider between block algebras.

After recalling why, when switching from the algebra point of view to the group
point of view, the source algebra is a suitable replacement for the basic algebra, we try
to give suitable “group theoretic” refinements of the previous equivalences.

This is an introductory survey : almost no proof is given, the comments are brief and
the applications short. We emphasize the “algebra—theoretic approach”, which should
be viewed as a first approximation to the methods used in block theory, as we try to
explain in the last paragraph. In order to simplify the exposition, we restrict ourselves,
most of the time, to the case of principal blocks.

1. BASIC CONTEXT AND NOTATION

Let A be a left and right noetherian ring.

We denote by jgmod the abelian category of finitely generated left A-modules,
and by 4proj the category of finitely generated projective left A-modules. We de-
note by R(A) the Grothendieck group of 4mod and by RP'(A) the Grothendieck
group of sproj. If X is an object of smod (resp. of 4proj), we denote by [X] its
representative in R(A) (resp. in RP*(A)).

We denote by mod 4 the abelian category of finitely generated right A-modules,
and by proj, the category of finitely generated projective right A-modules. For
B another ring, we denote by smodp the category of finitely generated (A, B)-
bimodules.
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Let G be a finite group, and let p be a prime number. Let K be a finite extension
of the field of p—adic numbers QQ, which contains the |G|-th roots of unity. Thus the
group algebra KG is a split semi—simple K—algebra. Let O be the ring of integers of
K over Z,. We denote by p the maximal ideal of O, and we set k := O/p. If JkG
denotes the Jacobson radical of the group algebra kG, the algebra kG /JkG is a split
semi—simple k—algebra.

By extension of scalars we get two functors

ocmod — ggmod and pgmod — pgmod.

Zp _ Fp = Zp/pr

The Cartan—Decomposition triangle.

For the following classical facts, we refer the reader to [Se|, part III.
The set Irr( K G) of representatives in R(KG) of the irreducible K G-modules is an
orthonormal basis of R(KG) for the scalar product defined by

([X],[X']) := dimHomga(X, X').

The set Irr(kG) of representatives in R(kG) of the irreducible kG—modules is a
Z—basis of R(kG), while the set Pim(kG) of representatives in RP*(kG) of the inde-
composable projective kG—modules is a Z-basis of RP*(kG). The pairing

RPYEG) X R(kG) — Z
defined by
([P],[X]) := dim Homg(P, X)

(P an object of ygproj, X an object of ygmod) defines a duality between RP*(kG)
and R(kG).

Let X be a finitely generated K G—module. Let X, be a finitely generated O—free
OG-module such that X = K @0 Xo. Then the corresponding element [k @ X;] in
R(kG) depends only on X, and this defines the decomposition map

dec”: R(KG) — R(kG).

The reduction modulo p defines an isomorphism RP*(OG)-—=RP*(kG). Identifying
RPY(OG) and RPY(kG) through this isomorphism, the adjoint of the decomposition
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map is the linear map fdec: RPY(OG) — R(KG) which sends the representative of

a projective OG—module X onto the representative of the K G—module K @ X.
Finally, the Cartan map Car®: RPY(kG) — R(kG) is the linear map which sends

the representative in RP"(kG) of a projective kG—module X onto its representative

in R(kG).

(T(@)) \

1.1. Theorem.

R(EG)

(1) The cokernel of Car® is a finite p—group, whose exzponent is the order of a
Sylow p—subgroup of G.

(2) The map dec is onto, and the image of 'dec” is a pure submodule of RIKG).

(3) Car® = dec” - tdec” .

2. BrLocks

The decomposition of the unity element of OG into a sum of orthogonal primitive
central idempotents 1 = > e corresponds to the decomposition of the algebra OG
into a direct sum of indecomposable two—sided ideals OG = @ A (A = OGe), called
the blocks of OG. For A a block of O, we set KA := K @0 A and kA .= k Qe A.

By reduction modulo p, a primitive central idempotent remains primitive central,
and consequently kG = € kA is still a decomposition into a direct sum of indecom-

posable two—sided ideals, called the blocks of kG.

0G = @ A4
| |
G = @ kA

The augmentation map OG — O factorizes through a unique block of OG called
the principal block and denoted byAo(OG).

2.A. The invariants of a block.

Let e be a central idempotent of OG and let A := OGe be the corresponding
algebra (note that we are not assuming e necessarily primitive, so what follows applies
to direct sums of blocks). The idempotent e is the unity element of the algebra A,
and A is a symmetric O-algebra for the form

t:A— O, Za(g)gHa(l).

geG

Center and projective center. View A as an (A, A)-bimodule. The ring End4(A4)4
of its endomorphisms is the center Z(A) of A. The set of projective endomorphisms
(endomorphisms which factorize through a projective (A, A)-bimodule) is an ideal of

Z(A) which is denoted by ZP"(A) and called the projective center of A.
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2.1. Proposition. We have ZP"(A) = {3 c9ag™" [(a € A)}.

The set of projective endomorphisms of the (kA,kA)-bimodule kA is denoted
by ZP"(kA). It is equal to the image of ZP"(A) through the reduction modulo p
Z(A) — Z(kA).

c-d-triangle and associated invariants. The Grothendieck groups R(KA), R(kA)
and RPT(kA) are summands of the Grothendieck groups R(KG), R(kG) and RP*(kG),

and the maps dec?, dec”, Car® restrict to maps which define the “c-d-triangle” of
the block A,

(T(4)) \

RP(A)

R(kA)

which we view as endowed with its “metric structure” given by the dualities
R(KA) x R(IKA) = Z and RP(kA)x R(kA) — Z.

We denote by Irr(KA) (resp. Irr(kA), Pim(kA)) the set of representatives in the
corresponding Grothendieck group of the irreducible I A-modules (resp. of the ir-
reducible kA-modules, of the projective indecomposable kA-modules), called the
canonical basis of the corresponding Z—modules.

The matrix of Car® on the canonical basis is called the Cartan matrix of A and
denoted by C#, while the matrix of dec” on the canonical basis is called the decom-
position matrix of A and denoted by D*.

It is traditional to set

k(A) = |Irr(KA)] and 1(A) :=|Irr(kA)| = |[Pim(kA)|.

The O-rank of Z(A) equals k(A), while the rank of ZP"(kA) equals the number of

trivial invariant factors of the map Car®. We set
IP(A) := dim ZP*(kA).

The exponent of the cokernel of Car”t divides the order of a Sylow p-subgroup of
G and so has the shape p“4). The integer d(A) is called the defect of the block A.

Defects of irreducible K A-modules.

If X is an irreducible K A-module, we set p*X) .= (ﬂ

- , and we call the
dim X »

integer d(X) the defect of X.

2.2. Proposition.
(1) We have d(A) = sup{d(X)|(X € Irr(KA))}.
(2) Let X be an O—free A—module such that X = K @0 Xo. Let End’ (X)) be the

ideal of Enda(Xo) consisting of the projective endomorphisms of Xo. Then
End 4 (Xo)/Endy (Xy) = pdA—400.
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Remark.

Let P be a p-group. Then we have JOP = pOP + AOP where JOP denotes the
Jacobson radical of OP and AOP denotes the augmentation ideal of OP. So OP is
itself a block and we have I(OG) = 1. The c-d-triangle is trivial :

R(KP) dim R(kP)

reg |P|
RPT(kP)

where the map “reg” maps the generator | P| of RP*(kP) onto the representative of the
regular representation of K P. Notice that, on the other hand, the category o pmod
is far from being trivial. If P is neither cyclic nor (for p = 2) dihedral, semidihedral
or generalized quaternion, then the algebra OP is wild.

2.B. Problems of block theory.

Block theory, as introduced and developed by Richard Brauer, originated mainly in
the problem of the classification of finite simple groups. As a first approximation, we
may say that the main problem of block theory is to compare the category ogmod
to the “local” categories pn,(pymod, where P runs over the set of non-trivial p-
subgroups of G, and Ng(P) denotes the normalizer of P in G.

Remark.

o Let Ay be the principal block of OG. The structure of 4,mod is closely related
to the structure of the group G itself — more precisely, to the structure of G/O, (G),
where O,/(G) denotes the largest normal subgroup of G whose order is relatively
prime to p.

For example, let P be a Sylow p—subgroup of G. The following assertions are
equivalent:

(i) 1(4o) = 1,

(ii) a,mod is equivalent to o pmod,

(iii) G is p-nilpotent, i.e., isomorphic to the semi-direct product O, (G) x P.

e The situation is more complicated for non-principal blocks. Indeed, there are
blocks A of non—abelian simple groups G which satisfy one of the following equivalent
properties (“defect zero”) :

(i) There is X € Irr(/{A) such that (dim X ), equals the order of a Sylow p—
subgroup of G,
(ii) amod is equivalent to pmod.

For example, the block defined by the Steinberg character of GL,(p™) has the above
properties.

More generally, the “nilpotent blocks” A (see [BrPu], [Pu]) are such that 4mod =~
opmod for a certain p—group P. We give here an example of such a block in GL,,((™)
for { # p (see [Brl] for more details). We view GL,({™) as the group of fixed
points of the algebraic group G := GL,(F,) under the action of the usual Frobenius
endomorphism F. Let T be a maximal torus of G and §: T — K> a character of
T' such that :

e the order of € is prime to p,
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e 0 isin general position in GL,({™) (i.e., an element which normalizes T and
fixes 6 must centralize T).

We denote by RS : R(KT) — R(KGT) the linear map defined by Deligne and
Lusztig (see [DeLu]). There is a block A(T,6) of OGL,,({™) such that

Irr(KA(T,0)) = {egeT RS (60)},

where n runs over the set of characters of T whose order is a power of p. The category
A(T,9ymod is equivalent to oTrF mod where Tf denotes the Sylow p-subgroup of T

3. MORITA EQUIVALENCES BETWEEN BLOCKS

From now on, we denote by G and H two finite groups, by e and f respectively
two central idempotents of OG and OH. We set A := OGe and B := OH f.
3.A. Preliminaries : bimodules and adjunctions.

We first recall in this context well known properties of functors induced by bimod-
ules. Let M be an (A, B)-bimodule. Let X (resp. Y) be an A-module (resp. a
B-module).

1. We have Hom (M @Y, X) ~ Homp(Y,Hom4(M, X)) through the maps
B

(a: M%Y—>X> = (a:Y = Homa(M,X), y— (m— a(m@y)))
(#:Y - Homa(M, X)) — <B mQy |—>ﬂ(y)(7ﬂ)>

2. Let us set MY := Homa (M, A) viewed as an object of pmod,s. We denote
by <,>: M x MY — A the natural A-pairing between M and M". Suppose that
M € smodp N 4proj. Then the map

MY @ X — Homa(M, X)
A

(mv @ x) = (m <m,mv>:1;)
A
is an isomorphism in pmod.

3. Let us set M* := Home(M,O), viewed as an object of pmod,. Since the
linear formt4: A — O, EgEG a(g)g — a(l) is a symmetrizing form for A, the maps

m” —=ty-m’ and m*— |m— Z m* (g m)g
ge€G

are inverse isomorphisms (in pmody) between MY and M*.

Suppose given a (B, A)-bimodule N and a duality M x N — O which is (A, B)-
compatible, z.e., <m,bna> = <amb,n> for a € A, b€ B,m € M, n € N. From
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what preceds, we deduce two explicit isomorphisms (respectively in smod,4 and in
BmodB) :

Homp(N, N)——~Hom4(M @ N, A)
B

Hom 4 (M, M)~—~Hompg(B,N @ M).
A

We denote by ea7, v the image of Idys through the first isomorphism, and by nar n
the image of Idy through the second isomorphism. The maps ey, n and 5y, N are
called the adjunctions associated with the pair (M, N).

3.1. Proposition. With the previous hypothesis and notation, the maps ey N and
nm,N are computed as follows :

eMN: MON —-A, m@dn— Z<g_1m,n>g
B B =

NM,N - B—-N@M, b|—>Zn1®ml
A - A
el
n; @ my 1s the element of N @ M such that, for all m € M,
A A

Z Z <nig”t,m>gn; = bm.

geG el

where Y . c;

3.B. Morita theorem and block invariants.

The following statement is a variation on Morita’s theorem, applied in the partic-
ular case of symmetric algebras.

3.2. Theorem. The following assertions are equivalent :

(i) The categories smod and pmod are equivalent.
(ii) There exist
o an (A, B)-bimodule M which is projective both as an A-module and as a
module-B,
e « (B, A)-bimodule N which is projective both as a B—module and as a
module-A,
e an (A, B)-compatible O—duality between M and N
such that M%N ~ A i smody and N%M ~ B m gmodg.

Moreover, if the preceding statements are satisfied, then all of the adjunctions ey n,
NM,N, EN, M, N,M 6re 1somorphisms.

Morita equivalence and triangle invariants. If (M, N), as above, defines an equiva-
lence between 4mod and pmod, the pairs (K @o M, K @0 N) and (k@o M, k@0 N)
define equivalences respectively between gamod and xrpmod and between ;smod
and rpmod. So the Morita equivalence defined by (M, N) induces bijections

Irr(KA) ~Ire(KB), Irr(kA) ~ Irr(kB) , Pim(kA) ~ Pim(kB).

Moreover, by construction of the c-d-triangles (see §1 above), it is clear that the
induced isomorphisms R(KA) ~ R(KB), R(kA) ~ R(kB), RP"(kA) ~ RP'(kB),

commute with the Cartan and the decomposition maps. To summarize :
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3.3. Proposition. A Morita equivalence between A and B induces an isomorphism
between the c-d-triangles T(A) and T(B), which preserves the canonical basis.

R(KB) dec”? R(kB)
/ .
oh \ Car®
R(KA) e R(kA) RP*(kB)
ec Rpr(kA) ar

As a consequence, a Morita equivalence between A and B preserves all the invari-
ants determined by the c-d-triangles and their canonical basis :

k(4) =k(B),(A)=1B), C*=C? D*=DP d(A)=d(B).

Morita equivalence and centers. As it is well known, a Morita equivalence between
A and B induces an algebra isomorphism between the centers Z(A) and Z(B), since
Z(A) may be viewed as the center of the category amod. It also results from what
follows (see [Ri2]), which also proves the preservation of projective centers.

We denote by A°P the opposite algebra of A, and A" := A®e A°P the “enveloping
algebra”. Assume that (M, N) induces a Morita equivalence between A and B. Then
M @0 N is endowed with a natural structure of (A", B°" )-bimodule defined by

(a @ a')(m @n)(b® b') = amb @ b'nd

and similarly N ®@o M is endowed with a natural structure of (B°", A°™)-bimodule.
The map

M@oNxN@oeM—-0 |, (m@nn @m)—<mn><m' n>

is an (A", B°" )—compatible duality.

3.4. Proposition. With the previous notation, (M @o N, N @ M) defines a Morita
equivalence between A" and B which exchanges A and B.

3.5. Corollary. A Morita equivalence between A and B induces an algebra isomor-
phism between Z(A) and Z(B) which restricts to an isomorphism between ZP*(A) and
ZP'(B).

Morita equivalence and defects of irreducible K A—modules. By 3.3, a Morita equiv-
alence induces a bijection I: Irr(K B)—=Irr(K A), and it results from 2.2, (2), that
I preserves the defects : for all Y € Irr(K B), d(I(Y)) = d(Y). This is also a con-
sequence of what follows, which will be generalized later on to the case of a Rickard
equivalence.
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For X € Irt(KA) (resp. Y € Irr(KB)) we denote by ex (resp. fy) the cor-
responding primitive idempotent of ZK A (resp. of ZKB). We denote by e (resp.
f) the unity element of A (resp. B), so A = OGe and e = EXeIrr(KA) ex (resp.
B=0OHf and f = ZYGIH(I(B) fy). The set {ex}xenr(xa) is a K-basis of ZK A,
and if Y Axex € Z(A), then Ax € O for all X € Irr(KA).

Let (M,N) as in 3.2 which induces an equivalence between smod and pmod.
It induces a bijection Irr(K A)-—Irr(K B) which we denote by X +— Yx. The ad-
junctions ny a and ey y are isomorphisms in 4modya, hence nyy ar - e,y 1s an
automorphism of A in 4smody and it restricts to an automorphism of Z(A) viewed
as an O—-module.

3.6. Proposition. With the previous notation,

‘ |G|/dim X
INMTEMN € Z H[/dim Yy
Xelrr(KA)
G|/dim X
In particular, wi 18 wnvertible modulo p and the defects are preserved :
|H|/dimYx
d(X)=d(Yx).
dim X
3.7. Corollary. If e is primitive (i.e., if A is a block), then M is constant
|H|/dimYx

modulo p for X € Irr(KA).

3.C. Examples of Morita equivalences.

Clifford Theory. “Clifford theory” is the name of a set of theorems relating repre-
sentations of a group G with representations of a normal subgroup N of G. It can be
viewed as a series of Morita equivalences. We present here the first (and easy) part
of Clifford theory : the “reduction to the inertial group”.

Let N be a normal subgroup of G. Let f be a central primitive idempotent of
ON. We denote by H the stabilizer of f in G (which acts by conjugation on the
set of central idempotents of ON). Then f is a central idempotent of OH. We set
B :.=0HY.

We set ¢ := EgE[G/H] gfg~!, where [G/H] denotes a set of representatives of the
cosets of G modulo H. Then e is a central idempotent of OG. We set A := OGe.

Let M = eOGf = OGf, endowed with left multiplication by A and right mul-
tiplication by B. Let N := fOGe = fOG, viewed similarly as a (B, A)-bimodule.
Since M % N ~ Ain smody and N g@ M ~ B in pmodp, and since the functors

M ®@.and N @ . are respectively f - Resg and Indg, we get :
B A

3.8. Proposition. The functors f-Resg and Indg are 1nverse equivalences between
amod and gmod.

p—nilpotent groups. Let G be a p-nilpotent group, i.e., G ~ S x P where P is a
p—group and S is a normal p'—subgroup (group with order prime to p) of G.

For every irreducible K S—module X, we denote by fx the corresponding central
primitive idempotent of KS (since S is a p'—group, fx € ZOS) and by Px the
stabilizer of fx in P.
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3.9. Proposition. We have

OGmodz @ O Px mod.
Xelrr(KS) mod P

Sketch of proof. Set ex := E[P/PX] gfxg !, and Gx := S x Px. By 3.8 above, we see
that ogeymod is equivalent to oGy ry mod. Since OG = @XEIH(I(S) mod p OGex,
it suffices to prove that pg sy mod >~ pp, mod.

We may assume Px = P. Let Xy be an O-free OS-module such that X = K®p X
(note that Xy is unique up to isomorphism). Because dim X and |P| are relatively
prime, there is an action of S x P on X which extends the action of S. This allows

us to define on M := OG @ Xj a structure of (OGex, OP)-bimodule as follows :
oS

g.(gn @ x)m:=gg1 @ 7 *(z) forg,q1 €G,x€ Xy, 7EP.
os os

Similarly, the module N := X} @ OG is endowed with a structure of (OP, OGex )-
as

bimodule, and it is not difficult to check that (M, N) induces a Morita equivalence
between pgey mod and ppmod. [

Remark. There are lots of Morita equivalences in the theory of blocks of p—solvable
groups, analogous (although sometimes far deeper) to the ones just described for the
case of a p—nilpotent group. The classical “Fong reduction theorem” (see [Fo]) may be
viewed as the description of a Morita equivalence between two blocks of two p-solvable
groups (see for example [Pul]). The description of blocks of groups of p-length one
relies on some highly non trivial Morita equivalences (see [Dal).

On the other hand, Morita equivalences between blocks seem far less frequent for
non abelian simple groups. In this case, the equivalence must be weakened to what
we call a Rickard equivalence.

4. RICKARD EQUIVALENCES BETWEEN BLOCKS

4.A. Complexes : Notation and conventions.

As in the previous section, we denote by G and H two finite groups, by e and f
respectively two central idempotents of OG and OH, and we set A := OGe, B :=
OHf.

Homomorphisms and tensor product of two complexres. The definitions we use here
for the differentials of the homomorphisms and the tensor product of two complexes
are slightly different from the usual ones (although they provide complexes isomorphic
to the usual ones).

1. Let X = (---Hdeng+1H--->andY:: (---—>Ymd—>$Ym+1—>--->

be complexes in  mod A. We set

Hom', (X,Y) := ( C & Hom™(X, V) & Hom™H(X,Y) — )
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where o
Hom}(X,Y) := H Homa(X*,Y’) and

Za]a]_Z:m

d™: Homa (X', Y7) — Homa (X', Y7 x Homa (X1, YY)
a <(—1)md{/ Co, —a dg(_1>
We set X* := Homy (X, O), viewed as a complex in mod 4, and d¥. = —td;((m—i_l).
2. Assume now that Y is a complex in mod 4. We set

VoX: = <..-—>(Y®X)md—>m(Y®X)m+1—>--->
A A A

where

Y o X)" = Vi@ X! d
(V@ X) ijg?:m( 2X') an

d™: (Yo X)) - (Y @ XY) o (Y7 oXi
A A A

yoz ()" By o) @ (y© dy()

. . d .
Some classical maps. We denote now by M := ( — M H M - ) a

bounded complex of (A, B)-bimodules.

& ‘
Let N := (- — NJ S N/l — ... ) be a complex in pmods. An (4,B)-

compatible O—duality between M and N is the following datum :
(1) for all i, an (A4, B)-compatible duality <,>: N' x M=% — O,
(2) such that the maps d%; and —d;}i—H) are adjoint for this duality.
e We denote by eppi n-i: M % N~% — A the map defined by

ey N-i(m @n) = Z <n,g 'm>gq,
ge€G
and we denote by ey nv: M @ N — A the chain map defined by
B
EM,N = Z(—l)iaSMi’N—i .

e We denote by Ty-j it N7 @ M* — Hom (M7, M*) the map defined by
’ A

!

TN-i mi(n@m):m' = epn y-i(m' @ n)m,
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and we denote by 7x ar: N @M — Homy (M, M) the chain map defined by the family
A

(Tn=i,mi )i
e Finally, we denote by aﬁi : B — Hom 4(M*, M*) the morphism which defines the
structure of module-B on M, and we denote by % : B — Hom'y(M, M) the chain

map defined by
b [ ok ().

The adjunctions. Let gcom be the category of complexes in ymod with chain
maps as morphisms, and let ycomp be the category of complexes in ymodp with
chain maps as morphisms.

Assume that, as above, M is a bounded complex of (A, B)-bimodules, N is a
bounded complex of (B, A)-bimodules with a given (A, B)—compatible duality with
M. Assume moreover that each component M? of M is projective both as an A-
module and as a module—B. Then the functors

M ® .. gcom — gcom and N ®.: 4com — gcom
B A

are adjoint one to the the other on both sides.
The chain map 7y p7: N @ M — Hom'y (M, M) is an isomorphism in gcomp. We
A

denote by nay,nv: B — N @ M the chain map defined by nar, N := T&lM . aﬁ )
A b

Definition. We call adjunctions the two pairs of chain maps of complexes of bimod-
ules

emNn: MON —A and nun:B—->NQM
B A

enm: NOM —=B and nyy:A—-MON
A B

which define respectively adjunctions for the adjoint pairs (M @ N @ .) and (N @
B A A
WM @),
B

4.B. Rickard equivalences and block invariants.

Definition. We say that A and B are Rickard equivalent if there exists

o a bounded complex M in scomp, each component of which s both projective
as an A-module and as a module-B,

o a bounded complex N in gcomy, each component of which s both projective
as an B-module and as a module-A,

e an (A, B)-compatible O—-duality between M and N,

M @ N s homotopy equivalent to A in scomy
B

N @ M 1s homotopy equivalent to B in pcomp .
A

such that

In this case, the complexes M and N are called “Rickard tilting complezes” for A and
B.

We denote by D?(A) the derived bounded category of 4mod.
The following theorem is due to J. Rickard ([Ril], [Ri3]). Note that it may be

viewed as a generalization of Morita theorem 3.2.
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4.1. Theorem. The following assertions are equivalent :

(i) The derived bounded categories D*(A) and D°(B) are equivalent as triangu-
lated categories.
(ii) The algebras A and B are Rickard equivalent.

Moreover, in this case, the adjunctions ey N, NMm,N, EN,M, IN,M are all homotopy
equivalences between the corresponding complexes of bimodules.

Like in the case of a Morita equivalence (see §3 above), any pair of complexes
(M, N) which induces a Rickard equivalence between A and B defines pairs (K ®@o
MK ®o N) and (k ®o M,k @0 N) which induce Rickard equivalences between
respectively KA and KB, kA and kB.

An object of DP(A) is called perfect (see [Gro]) if it is isomorphic to a bounded
complex of projective A—modules. Let Dgerf(A) be the full subcategory of D(A)
consisting of perfect complexes. A Rickard equivalence between A and B induces an

equivalence of categories between Dgerf(A) and Dgerf(B).

Rickard equivalences and triangle invariants. The Grothendieck groups of the tri-
angulated categories (see [Gro], and also [Ha]) D*(KA), D°(kA), Dgerf(kA) are re-
spectively the groups R(K A), R(kA), RP"(kA). Hence a Rickard equivalence induces
isomorphisms between these groups. By construction, these isomorphisms commute
with the maps of the c-d-triangle (see §1).

The metric structure on the c-d-triangle may be defined in terms of the derived
category. For example, the duality between R(kA) and RP"(kA) is defined as follows.
For P = ( o> Pt pitl ) a bounded complex of projective A-modules,
object of Dgerf(kA), and X := ( o X X ) an object of DP(kA), we
have ‘

<[P],[X]> =) (=1)*dim Homps g 4)( P[], X) .
Hence the isomorphisms between triangles defined by a Rickard equivalence preserve
the natural Z—dualities.

Since Irr(/{A) is an orthonormal basis of the Z-module R(I A), it follows that
the isomorphism R(KA)-——R(KB) sends an element of Irr(K A) onto an element
of {+Y [(Y € Irr(KB))} (while a Morita equivalence induces a bijection between
Irr(KA) and Irr(K B)). There is no analogous property for Irr(kA) or Pim(kA).

4.2. Proposition. A Rickard equivalence between A and B induces an 1somorphism
between the c-d-triangles T(A) and T(B) (viewed as endowed with their natural “met-
ric”).

dec?
R(KB)

\
- dec? \ Car®

R(KA) R(kA) RP"(kB)

h Car?

R(kB)
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As a consequence, a Rickard equivalence between A and B preserves all the invari-
ants determined by the c-d-triangles and their metrics :

o k(A)=k(B),l(A)=1UB), dA)=d(B),

o the Cartan matrices C and C? are equivalent as matrices of quadratic forms
over Z (in particular they have the same invariant factors, and 1"'(A4) =
" (B)),

e the decomposition matrices are equivalent as follows : there exists an orthonor-
mal matrix U in Maty4)(Z) and an invertible matrix V' in Mat; 4y(Z) such
that DP = UD?AV (and in particular D and D? have the same invariant
factors).

Rickard equivalence and centers. A Rickard equivalence between A and B induces
an algebra isomorphism between the centers Z(A) and Z(B), since Z(A) may be
viewed as the center of the category D°(A4).

Like in the case of Morita equivalences (see §3), it also results from the following
proposition.

4.3. Proposition. If (M,N) induces a Rickard equivalence between A and B, then
(M @0 N,N @0 M) defines a Rickard equivalence between A®™ and B®" which ex-
changes A and B.

Since a morphism between two modules factorizes through a projective module if
and only if it factorizes through a perfect complex, we get as a consequence :

4.4. Corollary. A Rickard equivalence between A and B induces an algebra 1somor-
phism between Z(A) and Z(B) which restricts to an isomorphism between ZP*(A) and
ZP'(B).

Rickard equivalence and defects of irreducible K A-modules. Like in §3, for X €
Irr(KA), we denote by ex the corresponding primitive idempotent of ZKA. We
denote by e (resp. f) the unity element of A (resp. B).

Let (M, N) be a pair of complexes which induces a Rickard equivalence between
Db(A) and D(B). It sends an element X € Irr(K A) onto e xYx where ex = 41 and
Yx € Irr(K B). The adjunctions ny,a and ey, v are homotopy equivalences between
objects of gcomy, hence ny ar - em,n 1s an automorphism of A4 in 4mod, and it
restricts to an automorphism of Z(A) viewed as an O-module.

4.5. Proposition. With the previous notation,

G|/dim X
3 G/

NN,M*EM,N: € : .
Xerr(KA) |H|/exdim Yy
- G|/dimX . | .
In particular, G|/ — 15 wnvertible modulo p and the defects are preserved :
|H|/exdim Yy

d(X) = d(Yx).
|G|/dir‘nX .
|H|/€Xd1mYX

4.6. Corollary. If e is primitive in Z(A) (i.e., if A is a dblock),
constant modulo p for X € Irr(K A).
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4.C. Examples of Rickard equivalences. Although derived equivalences are con-
jecturally very frequent in block theory, only a very small number of them is actually
proved.

Groups with cyclic Sylow p—subgroups. The following result is a particular case of
results proved by Rickard and Linckelmann (see [Ri2] and [Li]) as a consequence of
the structure theorem of blocks with cyclic defect groups.

4.7. Theorem. Assume that G has a cyclic Sylow p—subgroup P. Let us denote by
Ay and By respectively the principal blocks of G and of the normalizer of P in G.
Then Ay and By are Rickard equivalent.

Remark. At this date (december 1992), no explicit construction of a Rickard tilting
complex is known.

The principal 2-block of As and A4. Let us denote by G the alternating group s
on 5 letters, and by H the normalizer of a Sylow 2-subgroup of G, isomorphic to the
alternating group 4. Let p = 2. Let A (resp. By) be the principal block of G (resp.

It is easy to check that Ay and By are not Morita equivalent (since, for example,
they have different decomposition matrices). Nevertheless, the functors Indg and
Resg induce a stable equivalence between Ay and By. The following unpublished
result of Rickard shows that one can “twist” this stable equivalence to get a Rickard
equivalence.

Let AOG be the augmentation ideal of OG and let P(AOG) L. AOG be the
projective cover of AOG viewed as a (OG, OH )-bimodule. We set

Mi= (= 0= P(AOG) 5 0G -0 — - )

and N := M*.
4.8. Theorem. The pair (M,N) defines a Rickard equivalence between Ay and By.

A conjecture. The preceding two examples are particular cases of a conjectural
general result (see [Brl]).

4.9. Conjecture. Let G be a finite group whose Sylow p—subgroups are abelian. Let
H be the normalizer of one of the Sylow p—subgroups of G. Then the principal blocks
of G and H are Rickard equivalent.

4.D. Perfect isometries.

The preceding conjecture seems hard to prove (or even to check on examples) at the
moment. Nevertheless, one of its non—trivial consequences, which should be viewed
as the “shadow”, at the level of characters, of a Rickard equivalence, has already been
checked on a long series of cases.

For the definitions and properties stated in this paragraph, see [Brl].

As in §3, we denote by G and H two finite groups, by e and f respectively two
central idempotents of OG and OH, and we set A := OGe, B := OH f. From now
on, we identify R(KG) with the group of virtual characters of K G-representations,
and Irr( K G) with the set of irreducible characters.
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Let 1 be a virtual character of G x H, element of R(K[G x H]). Then p corresponds
to a linear map I,: R(KH) — R(KG) as follows : for ( € Irr(KH), the function

I,(C) is defined by I,(¢)(g) := |;I—| EheH /,L(g,h_l)C(h).

Definition. We say that ¢ virtual character p of G x H s perfect if :

(pe.l) for allg € G and h € H, |Cq(g)|p and |Cy(h)|p both divide p(g,h),

(pe.2) if u(g,h) # 0, then either g and h are both p—reqular, or g and h are both
p-singular.

If moreover the map I, defined by p induces an isometric bijection from R(KB) to

R(KA), we say that I, 1s a perfect isometry between B and A, and that A and B are

perfectly 1sometric.

The connection with Rickard equivalences is made by the following statement.

4.10. Proposition. Assume that M is a Rickard tilting complex for A and B. Let
par be the virtual character of G x H defined by

pna(g,h) =Y (=1)er((g, A7) M),

13
Then pp; defines a perfect isometry between B and A.

The point is that, if A and B are perfectly isometric, their invariants behave “as
if” they were Rickard equivalent (see [Brl]) — compare with assertions 4.2, 4.4, 4.5
above.

4.11. Theorem. Suppose that A and B are perfectly isometric.
(1) There is an isomorphism between the c-d-triangles T(A) and T(B) (viewed as
endowed with their natural “metric”). In particular,
K(4) = K(B), I(4) = (B), d(4) = d(B),
the Cartan matrices C* and CP are equivalent as matrices of quadratic forms
over 7,
o the decomposition matrices are equivalent as follows : there exists an orthonor-
mal matriz U in Maty4)(Z) and an invertible matriz V' in Maty 4)(Z) such
that D = UDAV.

(2) There is an algebra isomorphism between Z(A) and Z(B) which restricts to an
isomorphism between ZP'(A) and ZP'(B).
(3) There is an automorphism of (A, A)-bimodules of Z(A) such that, if Iu_z\14 (X) =
exYyx, then
|G|/dim X

e Z : .
Xelrr(KA) |H|/exdim Yy

|G|/dim X
|H|/€XdimYX

In particular, 18 wnvertible modulo p and the defects are preserved :

d(X) = d(Yy).

The following conjecture is a weaker form of 4.9.
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4.12. Conjecture. Let G be a finite group whose Sylow p-subgroups are abelian.
Let H be the normalizer of one of the Sylow p—subgroups of G. Then the principal
blocks of G and H are perfectly isometric.

The preceding conjecture is known to be true in the following cases :

for all p, if G is p—solvable ;

for p = 2, in all cases ([FoHal) ;

for all p, if G is a sporadic simple group ([Rou]) ;

for all p, if G is a symmetric group ([Rou]) or an alternating group (Fong,
private communication) ;

o if G is the group of rational points of a connected reductive algebraic group
G defined over F, and p is a prime number which does not divide ¢ and which

is good for G ([BMM], [BrMi]).
4.E. The case of the finite reductive groups.

In the case where G is a “finite reductive group”, the conjecture 4.9 can be made
more precise and closely linked with the underlying algebraic geometry (for more

details, see [BrMal).

Notation. In this paragraph, we temporarily change our notation to fit with the
usual notation of finite reductive groups : our prime p (the characteristic of our field
k:= O/p) is now denoted by ¢, and ¢ denotes a power of another prime p = (.

Let G be a connected reductive algebraic group over F,, endowed with a Frobenius
endomorphism F which defines a rational structure on F,. Let P be a parabolic
subgroup of G, with unipotent radical U, and with F—stable Levi subgroup L. We
denote by Y(U) the associated Deligne-Lusztig variety defined (¢f. for example [Lu])
by

Y(U) = {g(UNF(U)) € G/UNF(U); g~ F(g) € F(U)},

and we recall that G" acts on Y(U) by left multiplication while L acts on Y(U) by
right multiplication. It is known (c¢f. [Lu]) that Y(U) is an LY torsor on a variety
X(U), which is smooth of pure dimension equal to dim(U/U N F(U)), and which
is affine (at least if ¢ is large enough). In particular X(U) is endowed with a left
action of GI'. If O is a commutative ring, the image of the constant sheaf O on Y (U)
through the finite morphism #: Y(U) — X(U) is a locally constant constant sheaf
7+(O) on X(U). We denote this sheaf by Forr.

Let ¢ be a prime number which does not divide ¢ and let O be the ring of integers of
a finite extension of the field Qg of (~adic numbers. For any G —equivariant torsion
free O—sheaf F on X(U), we denote by Ho(X(U), F) the algebra of endomorphisms of
the “(—adic cohomology” complex RI'.(X(U), F) viewed as an element of the derived
bounded category D?(OG!) of the category of finitely generated OG -modules.
We set RI'.(Y(U)) := RI'(X(U), Forr) and Ho(Y(U)) := Ho(X(U), Forr) -
Note that the algebra Ho(Y(U)) contains the group algebra OLY" as a subalgebra.
For K an extension of O, we set Hg(X(U),F) := K ®p Ho(X(U),F).

The data.

e Let ( be a prime number, ¢ # p, which does not divide |Z(G)/Z°(G)| nor
|Z(G*)/Z°(G")|, and which is good for G. We assume that the Sylow (-

subgroups of G" are abelian.
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o Let O be the ring of integers of a finite unramified extension k of the field
of (—adic numbers Q,, with residue field %k, such that the finite group algebra
EGT is split.

o Let A = OGTe be the principal block of OG!". Let S be a Sylow (-subgroup
of GI') let L := Cg(S), and let f be the principal block idempotent of OL".

The group L is a rational Levi subgroup of G. We have Ngr(S) = Ngr(L), and
we set Wgr(L) := Ngr(L)/LY. The group S is a Sylow (~subgroup of Z(L)¥", and
¢ does not divide |Wgr(L)|.

Conjectures. There exist

e a parabolic subgroup of G with unipotent radical U and Levi complement L,

e a finite complex ¥ = (--+ — Y"1 — Y — Y+l - ...) of (OGI, OLY)-
bimodules, which are finitely generated projective as OGT —modules as well as OL -~
modules,
with the following properties.

(C1) Viewed as an object of the category D’(pgrmodprr), the complex Y is
isomorphic to RI'.(Y(U)). In particular, for each n, the n-th homology group
of Y is isomorphic, as an (OGY, OLY")-bimodule, to O @z, HX(Y(U),Zy).

(C2) The idempotent e acts as the identity on the complex Y.f,

(C3) e the structure of complex of (4, OLY f)-bimodules of Y.f extends to a struc-
ture of complex of (A, fHo(Y(U))f)-bimodules, all of which are projective
as right fHo(Y(U))f-modules,

o the complexes (Y.f @ o (v(uy s f-X*) and A are homotopy equivalent as
complexes of (A, A)-bimodules,

e the complexes (f.X*@pgr.YX.f) and fHo(Y(U))f are homotopy equivalent
as complexes of (fHo(Y(U))f, fHo(Y(U))f)-bimodules.

(C4) The algebra fHo(Y(U))f is isomorphic to the principal block ONgr(5)f.

5. STABLE EQUIVALENCES OF MORITA TYPE

5.A. Definition and first remarks.

An example. Some blocks may look very similar without being Morita equivalent
nor even Rickard equivalent. This is often the case in the following situation :

(p-t.i.) We assume that the Sylow p-subgroups of G are t.i., i.e., for S a Sylow
subgroup, for all ¢ € G, one has SNgSg~"' = {1} or S. We set H := Ng(5)
and we denote respectively by A and B the principal blocks of G and H.

It is easy to see that the functors Ind$ and Res% induce inverse stable equivalences
between y4mod and pmod. Such a stable equivalence has certain properties we shall
formalize below : it is a “stable equivalence of Morita type”.

The known examples show that, under hypothesis (p—t.i.), if S is non abelian and
G is a non abelian simple group, the algebras A and B are not necessarily Morita nor
Rickard equivalent, although they have the same numbers of irreducible characters :
k(A) = k(B) and [(A) = 1(B), according to Alperin’s conjecture ([Al]).

For example, if G = Sz(8) and p = 2, the algebras A and B have non isomorphic
centers (G. Cliff, private communication) and their Cartan matrices are not quadrat-
ically equivalent ([Br]).
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Stable equivalences, Morita and Rickard equivalences. As before, we denote by
G and H two finite groups, by e and f two central idempotents of OG and OH

respectively, and we set A := OGe, B := OHf. We denote by 4stab and gstab
the stable categories of A and B respectively. The stable categories have a natural
structure of triangulated categories (see for example [Ha).

Definition. We say that A and B are “stably equivalent ¢ la Morita” (or that there
is a stable equivalence of Morita type between A and B) if there exist

o an (A, B)-bimodule M which is projective as an A-module and as a module—
B,
a (B, A)-bimodule N which 1s projective as a B-module and as a module-A,
an (A, B)-compatible O-duality between M and N,

M @ N s stably equivalent to A in smody
B

h that . . .
e ¢ N @ M s stably equivalent to B in pmodp .
A

The following statement is trivial.

5.1. Proposition. A stable equivalence of Morita type between A and B induces an
equivalence of triangulated categories between the stable categories sstab and pstab

It is obvious that if A and B are Morita equivalent, then they are stably equivalent
a la Morita. Since the stable category astab is equivalent to the quotient category
DY (A)/ Dl (A) (see [Ri2]), we see that if A and B are Rickard equivalent, then they

perf
are stably equivalent. In fact, Rickard proved a more precise result ([Ri3], 5.5)!:

5.2. Proposition. Assume that A and B are Rickard equivalent. Then A and B
are stably equivalent a la Morita.
5.B. Stable equivalences of Morita type and block invariants.

Stable triangle invariants. Let us set

RYKA) = RIKA)/im(dec?) = “R(KA)/RP* (kA)”
REU(kA) = R(kA)/im(Car?) = “R(kA) /R (kA)” .

The triangle 7 (A) defines by quotient a morphism of abelian groups :

(T°'(4)) RM(KA) 290, Re(kA)

Since R¥*(kA) is the Grothendieck group of the stable category of kA (viewed as
triangulated category), a stable equivalence of Morita type induces an isomorphism

between R¥'(kA) and R (kB). More precisely :

5.3. Proposition. A stable equivalence of Morita type between A and B induces

(1) an isomorphism between T(A) and T(B),
(2) an wsometry between ker dec? and ker dec®.

IStrictly speaking, this result concerns group algebras over a field ; but it can easily be extended
to our context.
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dec?

R*Y(KB) - R* (kD)
/ B /
RSYKA) - RS EA)

As a consequence, a stable equivalence of Morita type preserves the numerical invari-
ants attached to the “stable triangles” 75'. For example :

k(A) =1(A) =k(B) = 1(B), 1(4) = 1""(4) =1(B) —1""(B), d(A) = d(B),

and the Cartan matrices C* and C'® have the same non trivial invariant factors.

Stable equivalences of Morita type and centers. We set Z5(A) := Z(A)/ZP"(A)
and we call this algebra the stable center of A.

It is not true in general that the stable center of an algebra is the center of its
stable category. Nevertheless :

5.4. Proposition. A stable equivalence of Morita type between A and B induces an
algebra 1somorphism between Z5(A) and Z5(B).

Proof. Let sastab, denote the stable category of A", and let 4stab’) denote the full
subcategory of gstab s whose objects are the (A, A)-bimodules which are projective
as A—module and as module-A. Assume that (M, N) induces a stable equivalence of

Morita type between A and B. Then the pair (M @ N, N @ M) (where M @ N is
(@] (@] (@]
viewed as an (A", B*")-bimodule and N @ M is viewed as a (B°", A°")-bimodule,
(@]

as in §3 above) induce inverse equivalences between gstab’ and pstably which
exchange A and B. The assertion follows from the fact that Z5*(A) is the algebra of
endomorphisms of A in 4stab’l. O

Example. Let QA denote the kernel of the multiplication map
ARpA— A, a®d — ad .

Then the pair of (A, A)-bimodules (QA4, (2A4)*) induces a self stable equivalence of
Morita type of A. Let X be an A—module and let 7: P — X be a surjective morphism,
where P is a projective A-module. Then there is a unique isomorphism kerm =

QA ® X in 4stab.
A

Remark. It is not known at the moment whether the existence of a stable equivalence
of Morita type between A and B implies that k(A) = k(B), and, if so, if there is a
bijection between Irr( K A) and Irr(K B) which preserves the defects.

6. INPUTTING THE GROUP ACTION

In all what has been stated so far, A and B might as well have been symmetric
algebras over O — the groups themselves did not play an essential role. In what
follows, we give brief indications on the actual methods of group representation theory.
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6.A. Defect groups and source algebras.

Let A: G — G x G be the diagonal morphism. As G x G—module, OG is isomorphic
to IndgéG(’).

6.1. Theorem—Definition. ([Gre], [Al2], [Pu2]) Let A be a block of OG.
(1) The vertices of the O[G x G]-module A are the G X G-conjugates of AD, where
D 1s a p—subgroup of G. The G—-conjugates of D are called the defect groups of A.
(2) Let S be an indecomposable summand of ResgigA with vertex AD. Such
an S, mewed as an A-module, s unique up to isomorphism, and is a progenerator
of amod. We call source algebra of A the algebra Sce(A) := Endog(S), viewed as
endowed with the natural morphism D — Sce(A)*.

Thus in particular a source algebra of A is Morita equivalent to A. But the source
algebra contains much more information than the Morita type of A. One can prove?
that it contains all the “local information” of the block A, such as the category of
subpairs ([AlBr]), the vertices and sources of indecomposable A-modules, and the
generalized c-d-triangles (see below). The source algebra may be seen as the “group

representation version” of the basic algebra.
6.B. Generalized c-d-triangles.

Definition. For x an element of finite order of a group, we let (, € Q be a root of
unity of the same order as x. If A is any ring, we set R,(A4) := Z[(,] ®z R(A).

Let G be a finite group. As in [Se], chap. 18, we identify now R(KG), R(kG) and
RP'(kG) with various subgroups of the group of O—valued class functions on G.

Let « be a p—element of G. We denote by Cg(x) its centralizer in G. The gener-
alized decomposition map dec®" . Re(KG) — Ry (kCq(x)) is defined as follows :

For y € R.(KG), decG’f(X) is the class function on Cg(x) defined by

x if y is a p'—element ,
Qe ()(y) i {x( y) ifyisap

0 if not .

The generalized c-d-triangle associated with z is

R (KG) Re(kCa(x))

(T(G.a) \ /

R (kCq(x

Notice that 7(G,1) = T(G).
The generalized decomposition matrix is the matrix of the map dec

natural basis Irr( KG) and Irr(kCq(x)).

@ on the

Zsee for example [Br4] for a brief account and some bibliographical references of Puig’s work along
these lines.
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The triangle of a block. To simplify the exposition, we assume from now on that
A is the principal block of OG3. For x a p-element of G, we denote by A, the
principal block of OCg(x). Then the combination of Brauer’s Second and Third
Main Theorems (see for example [Fe|) implies that the image of R,(K A) through
dec™" is contained in Ry(kA,), from which one defines the corresponding triangle :

dect®

R.(KA) Ro(kA,)
(T(A,2) \ /
REY(kA,)

Of course one has 7(A,1) =T (A).
6.C. Equivalences “with groups”.
Puig equivalences.

Definition. We say that two blocks A and B of two finite groups G and H are Puig
equivalent* if, denoting by D (resp. E) a defect group of A (resp. B), there exist a
group isomorphism D = E and an algebra isomorphism Sce(A) = Sce(B) such that
the following diagram s commmutative

0D ——— OFE

L

Sce(A) — == Sce(B)

Example. Let us use again the notation introduced in §4.E above : our prime p (the
characteristic of our field k := O/p) is now denoted by ¢, and ¢ denotes a power of
another prime p # (.

Let G be a connected reductive algebraic group over F,, endowed with a Frobenius
endomorphism F' which defines a rational structure on F,. We assume for simplicity
that (G, F) is split. Let W be the Weyl group of G.

Assume that ¢ does not divide |W| and divides (¢—1). Then the Sylow (—subgroups
of GT" are abelian, and the centralizer in G of a Sylow (~subgroup is a Levi subgroup
of an F—stable parabolic subgroup of G. Let H be the normalizer in G of a Sylow
(—subgroup of G

Then ([Pu4]) the principal (-blocks of GI" and of H are Puig equivalent.

6.2. Puig Conjecture. ° Given a finite p-group D, there exists only a finite number
of interior D-algebras over O which are the source algebras of some block of some
finite group.

The validity of this conjecture would imply in particular that there is only a finite
number of Morita types for blocks with a given defect group.

3otherwise we would have to introduce the subpairs and the Brauer elements as in [AlBr].
4Puig says “isomorphic”.
>Stated in the conference on representation of finite group, Oberwolfach, 1982.



blocks o (hroup Algebras

Puig equivalences as “equivalences with groups”.

Let us first recall the definition of the “Brauer functor” (see [Br3]). For V an
OG-module and P a p—subgroup of GG, we set

Brp(V):= V(Y Teh (V@) +pV?),
Q<P

where VT denotes the set of fixed points of V under P, and where Trg(v) =
ZxE[P/Q] z(v) for Q a subgroup of P and v € V?. It defines a functor

BI'Pl (’)GmOd — k[NG(p)/p]mOd.

In particular, if V' is a permutation P—module, Brp(V') is a permutation (Ng(P)/P)-
module.

From now on, to simplify the exposition, the following hypothesis will be in force :

(Al) G and H are two finite groups with a common Sylow p-subgroup D, and D
is abelian,
(A2) Ng(D)/Ca(D) ~ Ng(D)/Cr(D) — note that this implies that the Frobenius
categories §t,(G) and §r,(H) (see for example [Br4]) are equivalent.
We denote by A and B the principal blocks of OG and OH. Whenever P is a subgroup
of D, we denote by Ap and Bp the principal blocks of OCg(P) and OCy(P).

Assume that A and B are Puig equivalent. Then there exists a family (Mp, Np) (P

runs over the set of subgroups of D) where, for each P, Mp is an (Ap, Bp)-bimodule
and Np is a (Bp, Ap)-bimodule such that :

(pul) (Mp,Np) induces a Morita equivalence between Ap and Bp.

(pu2) As an O[Cu(P) x Cy(P)]-module, Mp is a summand of Indifg;)xcH(P)(’)7
where O is the trivial D-module.
Naxa(A(P))

(pu3) k@ Mp ~ ReSCG(P)xCH(P) BI"A(p)(M{l}).

Such a family (Mp, Np) induces in particular an isomorphism between all gener-
alized “local” c-d-triangles

T(Ap,z) «— T(Bp,z) (forallz € D)

which preserves the canonical basis.

Rickard equivalences with groups. As just seen, a Puig equivalence may be seen as
a “Morita equivalence with groups” The preceding formulation of a Puig equivalence
allows us to define (still under the hypothesis (A1) and (A2)) what is a “Rickard
equivalence with groups”.

We still denote by A and B the principal blocks of OG and OH and, for P a
subgroup of D, by Ap and Bp the principal blocks of OCx(P) and OCy(P).

We say that A and B are "Rickard equivalent with groups” if there exists a family
(Mp,Np) (P runs over the set of subgroups of D) where, for each P, Mp is a bounded
complex of (Ap, Bp)-bimodules and Np is a bounded complex of (Bp, Ap )-bimodules
such that :

(ril) (Mp, Np) induces a Rickard equivalence between Ap and Bp.
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C(;(P)XCH(P)

(ri2) As O[Cq(P) x Cy(P)|-modules, M} is a summand of Ind\(p)

where X} is a permutation D-module.

. Nesm(A(P
(1"13) k@ Mp ~ Rescs(lf)(xc(“HE;D) BI"A(p)(M{l}).

7
XP7

Such a family (Mp, Np) induces in particular an isometry between all generalized
“local” c-d-triangles

T(Ap,z) «— T(Bp,z) (for z € D)

corresponding to what is called an “isotypie” in [Brl].

Some unpublished work of J. Rickard shows the relevance of the preceding defini-
tion. In particular, complexes with properties (ri2) and (ri3) above occur naturally
for finite reductive groups in the context of étale cohomology (see [Ri]).

On stable equivalences. Let us end with a result which has been often used in
applications to structure of finite groups. Consider a slighly more general situation
than (Al) and (A2). Now G and H are two finite groups with a common Sylow
p—subgroup D. The group D is not necessarily abelian, but we still assume that G
and H have “the same fusion” on p—subgroups, i.e., the embedding of D in both G
and H defines an equivalence between the Frobenius categories §t,(G) and §v,(H ).

Let e and f be central idempotents of OG and OH respectively. We set A := OGe
and B := OHf. For P a subgroup of D, we set €p := Brp(e), fp := Brp(f), and
Ap = kCG(P)Ep, Bp = kCH(P)fP

Let M be an (A, B)-bimodule and N be a (B, A)-bimodule. For each subgroup P
of D, we set Mp := Bra¢py(M) and Np = Bra(py(IV).

6.3. Theorem. Assume that
(stl) M is a summand of Indg(xl%X, where X s a permutation D-module.

(st2) For each non trivial subgroup P of D, (M p, N p) induces a Morita equivalence
between Ap and Bp.

Then (M, N) induces a stable equivalence of Morita type between A and B.

Example. The following situation is a direct generalization of the (p—t.i.)-case men-
tioned in §5.

6.4. Assume that H is a subgroup of G with index prime to p, and with the following
property :

(p—s.c.) whenever P is a p—subgroup of H, we have Ng(P) = Ng(P)O,Ca(P).

Let A and B be the principal blocks of OG and OH respectively, with unity elements
e and f. Then the functors e.Indg and f. Resg induce inverse stable equivalences of
Morita type between A and B.

The preceding statement has several applications to some “non—simplicity criteria”
for finite groups. In this spirit, an important open question is to find a direct and
“representation theoretic” proof to the Z7-theorem for p odd, which would provide a
significant simplification in the classification of finite simple groups.

6.5. Theorem. Let H be a subgroup of G which controls the fusion of p—subgroups
in G (ie., the inclusion of H in G induces an equivalence between the Frobenius
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categories §t,(G) and Fr,(H)). Assume that H is the centralizer in G of a p—subgroup
of G. Then G = HOp(G).

For p = 2, the preceding theorem is due to Glauberman ([Gl]). For p odd, it
is a consequence of the classification of finite simple groups. An important work of
G. Robinson ([Rol], [Ro2]) makes plausible to find a direct proof using representation
theory.
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