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Deterministic pushdown automata; language equivalence

M= (Q,X%,T,6,q0, )

finite control unit

3x(5+47) q

YES/NO
(empty stack
acceptance)

stack (LIFO)

=[] [w—

Decidability of L(M;) L L(M>) was open since 1960s (Ginsburg, Greibach).
First-order schemes (1970s, 1980s, ..., B. Courcelle, ....).
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@ Sénizergues G.:
L(A)=L(B)? Decidability results from complete formal systems.
Theoretical Computer Science 251(1-2): 1-166 (2001)
(a preliminary version appeared at ICALP'97; Godel prize 2002)

@ Stirling C.: Decidability of DPDA equivalence.
Theoretical Computer Science 255, 1-31, 2001

@ Sénizergues G.: L(A)=L(B)? A simplified decidability proof.
Theoretical Computer Science 281(1-2): 555-608 (2002)

° ‘Stirling C.: Deciding DPDA equivalence is primitive recursive.
ICALP 2002, Lecture Notes in Computer Science 2380, 821-832
Springer 2002 (longer draft paper on the author’s web page)

@ Sénizergues G.: The Bisimulation Problem for Equational Graphs of
Finite Out-Degree.
SIAM J.Comput., 34(5), 1025-1106 (2005)
(a preliminary version appeared at FOCS'98)
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Part 1

o Deterministic case is in TOWER.
Equivalence of first-order schemes (or det-FO-grammars, or
deterministic pushdown automata (DPDA)) is in TOWER, i.e.
“close” to elementary. (The known lower bound is P-hardness.)

Part 2

@ Nondeterministic case is Ackermann-hard.
Bisimulation equivalence of first-order grammars (or PDA with
deterministic popping e-moves) is Ackermann-hard, and thus not
primitive recursive (but decidable).
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Equivalence of det-FO-grammars (or of DPDA) is in TOWER.
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(Det-)labelled transition systems (LTSs); trace equivalence

L= (SaAa (i)aEA)
S = {81,82,83,...}
A={a,b} HcSxS bYcsxs
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(Det-)labelled transition systems (LTSs); trace equivalence
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(Det-)labelled transition systems (LTSs); trace equivalence
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(Det-)labelled transition systems (LTSs); trace equivalence

ab is a witness for (s1,s5) ... EL drops by 1 in each step
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(Det-)labelled transition systems (LTSs); trace equivalence

Observation:

Plt1

T YkHLS o~y T

\

r Ty

ab is a witness for (sq,s5) ... EL drops by 1 in each step
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FO-grammar G = (N, A, R) ... rules A(x1,...,Xn) — E

Az, 22, 23) LN B(C(z2, 1), x1, A(z2, T1,22))

B(z1,79,73) — T2
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FO-grammar G = (N, A, R) ... rules A(x1,...,Xn) — E

Az, 22, 23) LN B(C(z2, 1), x1, A(z2, T1,22))

B(z1,79,73) — T2

F % G implies Fo % Go g xl“

Petr Jan&ar (TU Ostrava) Equivalences of pushdown systems Grenoble, 11 Apr 2014 13 /73



FO-grammar G = (N, A, R) ... rules A(x1,...,Xn) — E

Az, 22, 23) LN B(C(z2, 1), x1, A(z2, T1,22))

B(z1,79,73) — T2
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(D)pda from a first-order term perspective

Q = {a1, 2, g3} (pushing) rule gaA —=+ q1BC
configuration g, ABA

1

qu 1 ol N8

2 3 A

|qlB||q2B||qu| s s 11 2505 2] DT zf
’ (

1 223> 2| 33T 3 )
%gjj )] [ [ [o]
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1,2,3

1,2,3

»2 1,2,3

\ / g2 A
2

| L | R b
ENEER

] b
(popping) rule oA — ¢ qC SN g3
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Bounding lengths of witnesses (where EL keeps dropping)

b

Petr Jan&ar (TU Ostrava)

Theorem.

There is an elementary function g such that
for any

det-FO grammar G = (N, A,R) and T # U
of size n we have

EL(T,U) < tower(g(n)).

tower(0) =1
tower(n+1) = 2tower(n)
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Bounding lengths of witnesses (where EL keeps dropping)

Theorem.

There is an elementary function g such that
for any

det-FO grammar G = (N, A,R) and T # U

of size n we have

EL(T,U) < tower(g(n)).

tower(0) =1
tower(n+1) = 2tower(n)

Proof is based on two ideas:

© “Synchronize” the growth of Ihs-terms
and rhs-terms while not changing the
respective eq-levels. (Hence no repeat.)

@ Derive a tower-bound on the size of
terms in the (modified) sequence.

b
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Congruence properties of ~, and ~
~k
- 4

‘N'ﬁQ%‘ -

Petr Jan&ar (TU Ostrava) Equivalences of pushdown systems Grenoble, 11 Apr 2014 17 / 73



Congruence properties of ~, and ~
~k
- 4

‘N'ﬁQ%‘ -

1 ‘
i Lo H (for H # x;)

Petr Jan&ar (TU Ostrava) Equivalences of pushdown systems Grenoble, 11 Apr 2014 18 / 73



Balancing (the crucial tool for “synchronizing”)
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Balancing (the crucial tool for “synchronizing”)
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Balancing (the crucial tool for “synchronizing”)

A
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Balancing (the crucial tool for “synchronizing”)
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Balancing (the crucial tool for “synchronizing”)

pivot

bal-result
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Balancing (the crucial tool for “synchronizing”)

pivot

bal-result
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“Stair subsequence” of pairs (on balanced witness path)
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Stair subsequence of pairs (written horizontally)

A
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(¢, n)-(sub)sequences, with
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(¢, n)-(sub)sequences, with

(1, n)-sequence
21 pairs

n ... thickness
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(¢, n)-(sub)sequences, with

There is no EL-decreasing (1, 0)-sequence.

(1, n)-sequence
21 pairs

n ... thickness
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(¢, n)-(sub)sequences, with 2° pairs

There is no EL-decreasing (1, 0)-sequence.

(1, n)-sequence q ... cardinality of “alphabet”

1 .
2" pairs In |A(1) =1+ g |pairs (of thickness n)

n ... thickness .
there is some (1, n)-sequence.
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(¢, n)-(sub)sequences, with
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(¢, n)-(sub)sequences, with
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(¢, n)-(sub)sequences, with

(2,m)-sequence
22 = 4 pairs

n ... thickness
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(¢, n)-(sub)sequences, with 2° pairs

q ... cardinality of “alphabet”

(2,m)-sequence
h(1) =14 ¢q ... (1,n)-sequence

22 = 4 pairs

In |h(2) = h(1) - (1 + ¢"V)| pairs

n ... thickness
there is some (2, n)-sequence.

........... ‘tﬁﬂ G-
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(¢, n)-(sub)sequences, with 2° pairs
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(¢, n)-(sub)sequences, with 2° pairs

(3, n)-sequence
23 = 8 pairs

n ... thickness
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(¢, n)-(sub)sequences, with 2° pairs

In |h(3) = h(2) : (1 +qh<2>) pairs

(3,n)-sequence there is some (3, n)-sequence.

23 = 8 pairs

........... “ﬁﬁ \l
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Final (conditional) step of the “TOWER-proof”

Recall: There is no EL-decreasing (1, 0)-sequence.
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Final (conditional) step of the “TOWER-proof”

Recall: There is no EL-decreasing (1, 0)-sequence.

Claim. Any EL-decreasing (¢+1, n+1)-sequence gives rise to
an EL-decreasing (¢, n)-sequence.
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Final (conditional) step of the “TOWER-proof”

Recall: There is no EL-decreasing (1, 0)-sequence.

Claim. Any EL-decreasing (¢+1, n+1)-sequence gives rise to
an EL-decreasing (¢, n)-sequence.

Corollary. There is no EL-decreasing (n+1, n)-sequence.
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Final (conditional) step of the “TOWER-proof”

Recall: There is no EL-decreasing (1, 0)-sequence.

Claim. Any EL-decreasing (¢+1, n+1)-sequence gives rise to
an EL-decreasing (¢, n)-sequence.

Corollary. There is no EL-decreasing (n+1, n)-sequence.

Recall that
h(1) =1+gq, _
h(j+1) = h(j) - (1 + ¢"D)

and that h(j) “stairs” gives rise to (j, n)-sequence
(n being the “small” thickness).
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Final (conditional) step of the “TOWER-proof”

Recall: There is no EL-decreasing (1, 0)-sequence.

Claim. Any EL-decreasing (¢+1, n+1)-sequence gives rise to
an EL-decreasing (¢, n)-sequence.

Corollary. There is no EL-decreasing (n+1, n)-sequence.

Recall that
h(1) =1+gq, _
h(j+1) = h(j) - (1 + ¢"D)

and that h(j) “stairs” gives rise to (j, n)-sequence
(n being the “small” thickness).

Corollary. There are less than h(n+1) stairs, and h(n+1) < tower(g(n)).
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Repeating heads yield an “equation”

e > ez Fest1

€2

7681-1-1

€1
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Repeating heads yield an “equation”

e > ez Fest1

i 1

At

~k

61>€22k‘
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Repeating heads yield an “equation”

e > e2 Fest1

i 1

A-a

e1>ey >k

82—k—|—1

' 61_ .
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Repeating heads yield an “equation”

e > ez Fest1

r\./e2

7681-1-1

Nel

' ~ei—k . €2 k+1. ex—k+1)\ ea—htl regular term
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Repeating heads yield an “equation”

e > ez 7éez+1
76624-1
N€2

' ~ei—k . €2 k+1. ex—k+1)\ ea—htl regular term
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From (¢, n) to ({—1,n—1) ... decreasing thickness

(2,n)-sequence

BT
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From (¢, n) to ({—1,n—1) ... decreasing thickness

(2,n)-sequence

A
THY .
R 1t
A

Grenoble, 11 Apr 2014 47 /73



From (¢, n) to ({—1,n—1) ... decreasing thickness

(3, n)-sequence

A
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From (¢, n) to ({—1,n—1) ... decreasing thickness

uivalences of pushdown systems Grenoble, 11 Apr 2014 49 / 73



Bounding lengths of witnesses (End of Part 1)

Theorem.

There is an elementary function g such that
a for any

det-FO grammar G = (M, A,R) and T % U
of size n we have

EL(T,U) < tower(g(n)).

Proof is based on two ideas:

© “Synchronize” the growth of Ihs-terms
and rhs-terms while not changing the
respective eq-levels. (Hence no repeat.)

@ Derive a tower-bound on the size of
terms in the (modified) sequence.

b
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Bisimulation equivalence for FO-grammars is Ackermann-hard.

Note:
Benedikt M., Goller S., Kiefer S., Murawski A.S.:

Bisimilarity of Pushdown Automata is Nonelementary. LICS 2013
(no e-transitions)
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Ackermann function, class ACK, ACK-completeness

Family fy, f1, f2, ... of functions:
fo(n) = n+1
fir1(n) = fi(Fe(.. . fi(n)...)) = k(n-i-l)(n)

Ackermann function fa: fa(n) = f(n).
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Ackermann function, class ACK, ACK-completeness

Family fy, f1, f2, ... of functions:
fo(n) = n+1
fir1(n) = fi(Fe(.. . fi(n)...)) = fk(n-i-l)(n)

Ackermann function fa: fa(n) = f(n).

ACK ... class of problems solvable in time fa(g(n))
where g is a primitive recursive function.
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Ackermann function, class ACK, ACK-completeness

Family fy, f1, f2, ... of functions:
fo(n) = n+1
fir1(n) = fi(Fe(.. . fi(n)...)) = k(n-i-l)(n)

Ackermann function fa: fa(n) = f(n).

ACK ... class of problems solvable in time fa(g(n))
where g is a primitive recursive function.

Ackermann-budget halting problem (AB-HP):

Instance: Minsky counter machine M.
Question: does M halt from the zero initial configuration
within fa(size(M)) steps ?

Fact. AB-HP is ACK-complete.
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Control state reachability in reset counter machines

Reset counter machines (RCMs).
nonnegative counters c1, ¢, .. ., 4,
control states 1,2,...,r,
configuration (¢, (n1, n2, ..., ng)), initial conf. (1,(0,0,...,0)),
(nondeterministic) instructions of the types

¢S (increment c;),
dec(c;
J/ i ec() ¢' (decrement ¢;, if ¢; > 0),
t(c;
0= (C 0 (reset c;, ie., put c;=0).
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Control state reachability in reset counter machines

Reset counter machines (RCMs).
nonnegative counters c1, ¢, .. ., 4,
control states 1,2,...,r,
configuration (¢, (n1, n2, ..., ng)), initial conf. (1,(0,0,...,0)),
(nondeterministic) instructions of the types

¢S (increment c;),
dec(c;
J/ i ec() ¢' (decrement ¢;, if ¢; > 0),
t(c;
0= (C 0 (reset c;, ie., put c;=0).

CS-reach problem for RCM:

Instance: an RCM M, a control state fpy .
Question: is (1,(0,0,...,0)) —* (e, (--.)) 7
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Control state reachability in reset counter machines

Reset counter machines (RCMs).
nonnegative counters c1, ¢, .. ., 4,
control states 1,2,...,r,
configuration (¢, (n1, n2, ..., ng)), initial conf. (1,(0,0,...,0)),
(nondeterministic) instructions of the types

¢S (increment c;),
dec(c;
J/ i ec() ¢' (decrement ¢;, if ¢; > 0),
t(c;
0= (C 0 (reset c;, ie., put c;=0).

CS-reach problem for RCM:

Instance: an RCM M, a control state fpy .
Question: is (1,(0,0,...,0)) —* (e, (--.)) 7

Fact. CS-reach problem for RCM is ACK-complete.
(See [Schnoebelen, MFCS 2010].)
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Bisimulation equivalence as a game

Assume LTS £ = (S, A, (—=).c4).
In a position (s, t),
© Attacker chooses either some s — s’ or some t —s t'.

@ Defender responses by some t — t’ or some s — ', respectively.
The new position is (s', t).
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Bisimulation equivalence as a game

Assume LTS £ = (S, A, (—=).c4).
In a position (s, t),

@ Attacker chooses either some s —— s’ or some t — t'.

@ Defender responses by some t — t’ or some s — ', respectively.
The new position is (s', t).

These rounds are repeated. If a player is stuck, then (s)he loses.
An infinite play is a win of Defender.

We put s ~ t (s, t are bisimulation equivalent) if Defender has a winning
strategy from position (s, t).
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Bisimulation equivalence as a game

Assume LTS £ = (S, A, () ac4)-
In a position (s, t),
@ Attacker chooses either some s —2+ s’ or some t — t'.
@ Defender responses by some t — t’ or some s — ', respectively.
The new position is (s', t).
These rounds are repeated. If a player is stuck, then (s)he loses.

An infinite play is a win of Defender.

We put s ~ t (s, t are bisimulation equivalent) if Defender has a winning
strategy from position (s, t).

Observation. For deterministic LTSs, bisimulation equivalence coincides
with trace equivalence.
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Reduction of CS-reach for RCM to FO-bisimilarity

Given an RCM M, i.e.,
counters c1,Ca, ..., Cd,
control states 1,2, ...,r,

and instructions of the types

inc(¢;)

¢ —3" 0 (increment c;),
dec(c;
J i ec() ¢ (decrement ¢;, if ¢c; > 0),
1 reset( C' 0 (reset c;, i.e., put ¢; =0),
and fpy,

we construct G = (N, A, R) and Ey, Fy so that
(1,(0,0,...,0)) —* (o, (-..)) iff Eg o Fo.
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CS-reachability as bisimulation game

Example with counters ¢y, ¢p; we start with the pair
(Ag(L, L, L, 1,),By(L, L, L,1)).
The pair after mimicking (1, (0,0)) —* (£,(2,1)) | might be
A El
L) L[]
L L) [T ]
1]

Grenoble, 11 Apr 2014 56 / 73



Attacker’s win

Attacker wins in

(Ao () B (- )

due to the rule Ay, (x1, X2, X3,X3) — ... (while there is no rule for By,,.).
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Counter increment

For |ins = ¢ i%) A

we have rules
AZ(X17X27X3)X4) E} AZ'(X17X27 /(X3)7

Bi(x1, x2, X3, xa) —> By (x1, %2, 1(x3),
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Counter increment

. inc(c
For | ins = ¢ #)E’
we have rules

Acxi, %2, x3, %) = Av(x1, %2, 1(x3), xa),
By(x1, x2, X3, Xa) LN By (x1, %2, 1(x3), xa),

Grenoble, 11 Apr 2014
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Counter increment

. inc(c
For | ins = ¢ #)E’
we have rules

Acxi, %2, x3, %) = Av(x1, %2, 1(x3), xa),
By(x1, x2, X3, Xa) LN By (x1, %2, 1(x3), xa),
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Counter reset

For |ins = ¢ rese—t(fz) A

we have rules

ins

AZ(X17X27X3)X4) — Ae’(X17X27 J—7 J—)'

ins

BK(X17X27X37X4) — Bﬁ/(xla X2, J—v J—)r

Grenoble, 11 Apr 2014
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Counter reset

For |ins = ¢ rese—t(fz) A

we have rules

ins

AZ(X17X27X3)X4) — Ae’(X17X27 J—7 J—)'

ins

BK(X17X27X37X4) — Bﬁ/(xla X2, J—v J—)r

Grenoble, 11 Apr 2014
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Counter reset

For |ins = /¢

reset(cp)

—r

we have rules

AZ(X17X27X3)X4) — Ae’(X17X27 J—7 J—)'
BK(X17X27X37X4) — Bﬁ/(X17X27J—7J—)r

ins

ins

Grenoble, 11 Apr 2014
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Counter decrement

dec(cz) v

For |ins = ¢ we have two phases the first-phase rules are

ins ins

Ar — A 2y, Av — B 2,2), Ae—>3(z 2,b)

ins ins

Bi — B 2,2, Be — B 2,p),

Grenoble, 11 Apr 2014 64 / 73



Counter decrement

dec(cz) v

For |ins = ¢ we have two phases the first-phase rules are

ins ins

Ar — A 2y, Av — B 2,2), Ae—>3(z 2,b)

ins ins

Bi — B 2,2, Be — B 2,p),
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Counter decrement

For|ins = /¢

dec(cz) v

ins

ins

we have two phases the first-phase rules are

Ar — A 2y, Av — B 2,2), Ae—>3(z 2,b)

ins

ins

Bi — B 2,2, Be — B 2,p),

B 2,0)
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Counter decrement (option a)

b
A 2y(x1, X2, X3, Xa) S Ap(x1,x2,x3,1(xa)), Av 2(x1, X2, X3, xa) — X3,

Bl 2,2)(x1, %2, %3, xa) = By (x1, X2, x3, 1(xa)),

b
B(e/,z,a)(X1,X27X37X4) — X3,

B 2,0)
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Counter decrement (option a)

b
A 2y(x1, X2, X3, Xa) S Ap(x1,x2,x3,1(xa)), Av 2(x1, X2, X3, xa) — X3,

Bl 2,2)(x1, %2, %3, xa) = By (x1, X2, x3, 1(xa)),

b
B(e/,z,a)(X1,X27X37X4) — X3,

B 2,0)
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Counter decrement (option a)

b
A 2y(x1, X2, X3, Xa) S Ap(x1,x2,x3,1(xa)), Av 2(x1, X2, X3, xa) — X3,
8(517273)(X1,X2,X3,X4) _a) Bgl(Xl,X2,X37 /(X4)),

b
B(e/,z,a)(X1,X27X37X4) — X3,
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Counter decrement (option b)

b
A 2)(x1, %2, X3, Xa) LN Ap(x1,x2,x3,1(xa)), A 2(x1, X2, X3, X4) — X3,
B(Z/72,b)(X17X27X37X4) i> Agl(X17X27X37 /(X4))’
b
Bpr 2,p)(x1, X2, X3, Xa) — xa,
I(Xl) L} X1
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Counter decrement (option b)

b
A 2)(x1, %2, X3, Xa) LN Ap(x1,x2,x3,1(xa)), A 2(x1, X2, X3, X4) — X3,
B(Z/72,b)(X17X27X37X4) i> Agl(X17X27X37 /(X4))’
b
Bpr 2,p)(x1, X2, X3, Xa) — xa,
I(Xl) L} X1
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Counter decrement (option b)

b
A 2)(x1, %2, X3, Xa) LN Ap(x1,x2,x3,1(xa)), A 2(x1, X2, X3, X4) — X3,
B(Z/72,b)(X17X27X37X4) i> Agl(X17X27X37 /(X4))’
b
Bpr 2,p)(x1, X2, X3, Xa) — xa,
I(Xl) L} X1
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Concluding remarks

We have shown

@ (Trace) equivalence of deterministic first-order grammars is in
TOWER.

@ Bisimulation equivalence of first-order grammars is Ackermann-hard.

Questions/problems/related results:

@ more precise complexity bounds ...

@ subcases (simple grammars, one-counter automata, ...)
@ higher orders ...

o ...
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