Equivalences of pushdown systems are hard

Petr Jančar
Dept of Computer Science
Technical University Ostrava (FEI VŠB-TUO), Czech Republic www.cs.vsb.cz/jancar

FoSSaCS'14, part of ETAPS 2014
Grenoble, 11 Apr 2014

Deterministic pushdown automata; language equivalence

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}\right)
$$

finite control unit

Decidability of $L\left(M_{1}\right) \stackrel{?}{=} L\left(M_{2}\right)$ was open since 1960 s (Ginsburg, Greibach). First-order schemes (1970s, 1980s, ..., B. Courcelle,).

Solution

- Sénizergues G.:
$L(A)=L(B)$? Decidability results from complete formal systems.
Theoretical Computer Science 251(1-2): 1-166 (2001)
(a preliminary version appeared at ICALP'97; Gödel prize 2002)
- Stirling C.: Decidability of DPDA equivalence. Theoretical Computer Science 255, 1-31, 2001
- Sénizergues G.: $L(A)=L(B)$? A simplified decidability proof. Theoretical Computer Science 281(1-2): 555-608 (2002)
- Stirling C.: Deciding DPDA equivalence is primitive recursive. ICALP 2002, Lecture Notes in Computer Science 2380, 821-832, Springer 2002 (longer draft paper on the author's web page)
- Sénizergues G.: The Bisimulation Problem for Equational Graphs of Finite Out-Degree.
SIAM J.Comput., 34(5), 1025-1106 (2005)
(a preliminary version appeared at FOCS'98)

Outline

Part 1

- Deterministic case is in TOWER.

Equivalence of first-order schemes (or det-FO-grammars, or deterministic pushdown automata (DPDA)) is in TOWER, i.e. "close" to elementary. (The known lower bound is P-hardness.)

Part 2

- Nondeterministic case is Ackermann-hard. Bisimulation equivalence of first-order grammars (or PDA with deterministic popping ε-moves) is Ackermann-hard, and thus not primitive recursive (but decidable).

Part 1

Equivalence of det-FO-grammars (or of DPDA) is in TOWER.

(Det-)labelled transition systems (LTSs); trace equivalence

$\mathcal{L}=\left(\mathcal{S}, \mathcal{A},(\xrightarrow{a})_{a \in \mathcal{A}}\right)$
$\mathcal{S}=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$
$\mathcal{A}=\{a, b\} \quad \xrightarrow{a} \subseteq \mathcal{S} \times \mathcal{S} \quad \xrightarrow{b} \subseteq \mathcal{S} \times \mathcal{S}$

(Det-)labelled transition systems (LTSs); trace equivalence

$$
\begin{array}{ll}
s_{1} \xrightarrow{a b} s_{3} \xrightarrow{a} & s \sim_{k} t \ldots \forall w \in \mathcal{A} \leq k: s \xrightarrow{w} \Leftrightarrow t \xrightarrow{w} \\
s_{5} \xrightarrow{a b} s_{8} \xrightarrow{q} & s \sim_{\omega} t \ldots \forall k: s \sim_{k} t \\
s_{1}{\underset{\sim}{\sim}}_{2}^{\sim_{2}} s_{5} & E L(s, t)=\max \left\{k \mid s \sim_{k} t\right\}
\end{array}
$$

$E L\left(s_{1}, s_{5}\right)=2$

(Det-)labelled transition systems (LTSs); trace equivalence

(Det-)labelled transition systems (LTSs); trace equivalence

(Det-)labelled transition systems (LTSs); trace equivalence

Observation:

$$
r \sim_{k+1} s{\underset{\sim}{\sim}}_{k+1}^{\sim_{k}} t
$$

$$
r \underset{\sim}{\underset{\sim}{\nmid}}{ }_{k+1} t
$$

$a b$ is a witness for $\left(s_{1}, s_{5}\right) \ldots$ EL drops by 1 in each step

FO-grammar $\mathcal{G}=(\mathcal{N}, \mathcal{A}, \mathcal{R}) \ldots$ rules $A\left(x_{1}, \ldots, x_{m}\right) \xrightarrow{a} E$

$$
A\left(x_{1}, x_{2}, x_{3}\right) \xrightarrow{b} B\left(C\left(x_{2}, x_{1}\right), x_{1}, A\left(x_{2}, x_{1}, x_{2}\right)\right)
$$

FO-grammar $\mathcal{G}=(\mathcal{N}, \mathcal{A}, \mathcal{R}) \ldots$ rules $A\left(x_{1}, \ldots, x_{m}\right) \xrightarrow{a} E$

$$
A\left(x_{1}, x_{2}, x_{3}\right) \xrightarrow{b} B\left(C\left(x_{2}, x_{1}\right), x_{1}, A\left(x_{2}, x_{1}, x_{2}\right)\right)
$$

FO-grammar $\mathcal{G}=(\mathcal{N}, \mathcal{A}, \mathcal{R}) \ldots$ rules $A\left(x_{1}, \ldots, x_{m}\right) \xrightarrow{a} E$

$$
A\left(x_{1}, x_{2}, x_{3}\right) \xrightarrow{b} B\left(C\left(x_{2}, x_{1}\right), x_{1}, A\left(x_{2}, x_{1}, x_{2}\right)\right)
$$

FO-grammar $\mathcal{G}=(\mathcal{N}, \mathcal{A}, \mathcal{R}) \ldots$ rules $A\left(x_{1}, \ldots, x_{m}\right) \xrightarrow{a} E$

$$
A\left(x_{1}, x_{2}, x_{3}\right) \xrightarrow{b} B\left(C\left(x_{2}, x_{1}\right), x_{1}, A\left(x_{2}, x_{1}, x_{2}\right)\right)
$$

$$
B\left(x_{1}, x_{2}, x_{3}\right) \xrightarrow{a} x_{2}
$$

(D)pda from a first-order term perspective

$Q=\left\{q_{1}, q_{2}, q_{3}\right\}$ configuration $q_{2} A B A$

(pushing) rule $q_{2} A \xrightarrow{a} q_{1} B C$

(popping) rule $q_{2} A \xrightarrow{b} q_{2} \quad q_{2} C \xrightarrow{\varepsilon} q_{3}$

Bounding lengths of witnesses (where EL keeps dropping)

Theorem.

There is an elementary function g such that for any
det-FO grammar $\mathcal{G}=(\mathcal{N}, \mathcal{A}, \mathcal{R})$ and $T \nsim U$ of size n we have

$$
E L(T, U) \leq \operatorname{tower}(g(n))
$$

```
tower(0) = 1
tower(n+1)=2 tower(n)
```


Bounding lengths of witnesses (where EL keeps dropping)

Theorem.

There is an elementary function g such that for any
det-FO grammar $\mathcal{G}=(\mathcal{N}, \mathcal{A}, \mathcal{R})$ and $T \nsim U$ of size n we have

$$
E L(T, U) \leq \operatorname{tower}(g(n))
$$

tower $(0)=1$
tower $(n+1)=2^{\text {tower }(n)}$
Proof is based on two ideas:
(1) "Synchronize" the growth of Ihs-terms and rhs-terms while not changing the respective eq-levels. (Hence no repeat.)
(2) Derive a tower-bound on the size of terms in the (modified) sequence.

Congruence properties of \sim_{k} and \sim

Congruence properties of \sim_{k} and \sim

Balancing (the crucial tool for "synchronizing")

"Stair subsequence" of pairs (on balanced witness path)

Stair subsequence of pairs (written horizontally)

(ℓ, n)-(sub)sequences, with 2^{ℓ} pairs

(ℓ, n)-(sub)sequences, with 2^{ℓ} pairs

($1, n$)-sequence
2^{1} pairs
n... thickness

(ℓ, n)-(sub)sequences, with 2^{ℓ} pairs

There is no EL-decreasing (1,0)-sequence.

$(1, n)$-sequence
2^{1} pairs
n... thickness

(ℓ, n)-(sub)sequences, with 2^{ℓ} pairs

There is no EL-decreasing (1,0)-sequence.

$(1, n)$-sequence
q... cardinality of "alphabet"
2^{1} pairs
In $h(1)=1+q$ pairs (of thickness n)
n... thickness
there is some $(1, n)$-sequence.

(ℓ, n)-(sub)sequences, with 2^{ℓ} pairs

$(\ell, n)-($ sub $)$ sequences, with 2^{ℓ} pairs

(ℓ, n)-(sub)sequences, with 2^{ℓ} pairs

$(2, n)$-sequence
$2^{2}=4$ pairs
$n \ldots$ thickness

(ℓ, n)-(sub)sequences, with 2^{ℓ} pairs

$q \ldots$ cardinality of "alphabet"
$(2, n)$-sequence

$$
\begin{aligned}
& h(1)=1+q \ldots(1, n) \text {-sequence } \\
& \text { In } h(2)=h(1) \cdot\left(1+q^{h(1)}\right) \text { pairs }
\end{aligned}
$$

$2^{2}=4$ pairs
n... thickness
there is some $(2, n)$-sequence.

(ℓ, n)-(sub)sequences, with 2^{ℓ} pairs

$(\ell, n)-($ sub $)$ sequences, with 2^{ℓ} pairs

(3, n)-sequence
$2^{3}=8$ pairs
n... thickness

(ℓ, n)-(sub)sequences, with 2^{ℓ} pairs

In $h(3)=h(2) \cdot\left(1+q^{h(2)}\right)$ pairs
$(3, n)$-sequence \quad there is some $(3, n)$-sequence.
$2^{3}=8$ pairs
n... thickness

Final (conditional) step of the "TOWER-proof"

Recall: There is no EL-decreasing $(1,0)$-sequence.

Final (conditional) step of the "TOWER-proof"

Recall: There is no EL-decreasing $(1,0)$-sequence.
Claim. Any EL-decreasing ($\ell+1, n+1$)-sequence gives rise to an EL-decreasing (ℓ, n)-sequence.

Final (conditional) step of the "TOWER-proof"

Recall: There is no EL-decreasing $(1,0)$-sequence.
Claim. Any EL-decreasing $(\ell+1, n+1)$-sequence gives rise to an EL-decreasing (ℓ, n)-sequence.

Corollary. There is no EL-decreasing ($n+1, n$)-sequence.

Final (conditional) step of the "TOWER-proof"

Recall: There is no EL-decreasing $(1,0)$-sequence.

Claim. Any EL-decreasing $(\ell+1, n+1)$-sequence gives rise to an EL-decreasing (ℓ, n)-sequence.

Corollary. There is no EL-decreasing ($n+1, n$)-sequence.
Recall that

$$
\begin{aligned}
& h(1)=1+q \\
& h(j+1)=h(j) \cdot\left(1+q^{h(j)}\right)
\end{aligned}
$$

and that $h(j)$ "stairs" gives rise to (j, n)-sequence (n being the "small" thickness).

Final (conditional) step of the "TOWER-proof"

Recall: There is no EL-decreasing $(1,0)$-sequence.

Claim. Any EL-decreasing $(\ell+1, n+1)$-sequence gives rise to an EL-decreasing (ℓ, n)-sequence.

Corollary. There is no EL-decreasing ($n+1, n$)-sequence.
Recall that

$$
\begin{aligned}
& h(1)=1+q \\
& h(j+1)=h(j) \cdot\left(1+q^{h(j)}\right)
\end{aligned}
$$

and that $h(j)$ "stairs" gives rise to (j, n)-sequence (n being the "small" thickness).

Corollary. There are less than $h(n+1)$ stairs, and $h(n+1) \leq \operatorname{tower}(g(n))$.

Repeating heads yield an "equation"

Repeating heads yield an "equation"

$e_{1}>e_{2} \geq k$

Repeating heads yield an "equation"

$e_{1}>e_{2}$

$$
e_{1}>e_{2} \geq k
$$

Repeating heads yield an "equation"

Repeating heads yield an "equation"

From (ℓ, n) to $(\ell-1, n-1) \ldots$ decreasing thickness

(2,n)-sequence

11

From (ℓ, n) to $(\ell-1, n-1) \ldots$ decreasing thickness

(2, n)-sequence

($1, n-1$)-sequence

From (ℓ, n) to $(\ell-1, n-1) \ldots$ decreasing thickness

$(3, n)$-sequence

From (ℓ, n) to $(\ell-1, n-1) \ldots$ decreasing thickness

(2, $n-1$)-sequence

Bounding lengths of witnesses (End of Part 1)

Theorem.

There is an elementary function g such that for any
det-FO grammar $\mathcal{G}=(\mathcal{N}, \mathcal{A}, \mathcal{R})$ and $T \nsim U$ of size n we have

$$
E L(T, U) \leq \operatorname{tower}(g(n))
$$

Proof is based on two ideas:
(1) "Synchronize" the growth of Ihs-terms and rhs-terms while not changing the respective eq-levels. (Hence no repeat.)
(2) Derive a tower-bound on the size of terms in the (modified) sequence.

Bisimulation equivalence for FO-grammars is Ackermann-hard.

Note:
Benedikt M., Göller S., Kiefer S., Murawski A.S.:
Bisimilarity of Pushdown Automata is Nonelementary. LICS 2013 (no ε-transitions)

Ackermann function, class ACK, ACK-completeness

Family $f_{0}, f_{1}, f_{2}, \ldots$ of functions:

$$
\begin{aligned}
& f_{0}(n)=n+1 \\
& f_{k+1}(n)=f_{k}\left(f_{k}\left(\ldots f_{k}(n) \ldots\right)\right)=f_{k}^{(n+1)}(n)
\end{aligned}
$$

Ackermann function $f_{A}: f_{A}(n)=f_{n}(n)$.

Ackermann function, class ACK, ACK-completeness

Family $f_{0}, f_{1}, f_{2}, \ldots$ of functions:

$$
\begin{aligned}
& f_{0}(n)=n+1 \\
& f_{k+1}(n)=f_{k}\left(f_{k}\left(\ldots f_{k}(n) \ldots\right)\right)=f_{k}^{(n+1)}(n)
\end{aligned}
$$

Ackermann function $f_{A}: f_{A}(n)=f_{n}(n)$.
ACK ... class of problems solvable in time $f_{A}(g(n))$ where g is a primitive recursive function.

Ackermann function, class ACK, ACK-completeness

Family $f_{0}, f_{1}, f_{2}, \ldots$ of functions:

$$
\begin{aligned}
& f_{0}(n)=n+1 \\
& f_{k+1}(n)=f_{k}\left(f_{k}\left(\ldots f_{k}(n) \ldots\right)\right)=f_{k}^{(n+1)}(n)
\end{aligned}
$$

Ackermann function $f_{A}: f_{A}(n)=f_{n}(n)$.
ACK ... class of problems solvable in time $f_{A}(g(n))$ where g is a primitive recursive function.

Ackermann-budget halting problem (AB-HP):
Instance: Minsky counter machine M.
Question: does M halt from the zero initial configuration within $f_{A}(\operatorname{size}(M))$ steps ?

Fact. AB-HP is ACK-complete.

Control state reachability in reset counter machines

Reset counter machines (RCMs).
nonnegative counters $c_{1}, c_{2}, \ldots, c_{d}$,
control states $1,2, \ldots, r$,
configuration $\left(\ell,\left(n_{1}, n_{2}, \ldots, n_{d}\right)\right)$, initial conf. $(1,(0,0, \ldots, 0))$, (nondeterministic) instructions of the types

$$
\begin{aligned}
& \left.\ell \xrightarrow{\text { inc }\left(c_{i}\right)} \ell^{\prime} \text { (increment } c_{i}\right), \\
& \ell \xrightarrow{\operatorname{dec}\left(c_{i}\right)} \ell^{\prime}\left(\text { decrement } c_{i} \text {, if } c_{i}>0\right), \\
& \ell \xrightarrow{\text { reset }\left(c_{i}\right)} \ell^{\prime}\left(\text { reset } c_{i}, \text { i.e., put } c_{i}=0\right) .
\end{aligned}
$$

Control state reachability in reset counter machines

Reset counter machines (RCMs).
nonnegative counters $c_{1}, c_{2}, \ldots, c_{d}$,
control states $1,2, \ldots, r$,
configuration $\left(\ell,\left(n_{1}, n_{2}, \ldots, n_{d}\right)\right)$, initial conf. $(1,(0,0, \ldots, 0))$, (nondeterministic) instructions of the types

```
\(\ell \xrightarrow{\text { inc }\left(c_{i}\right)} \ell^{\prime}\) (increment \(\left.c_{i}\right)\),
\(\ell \xrightarrow{\operatorname{dec}\left(c_{i}\right)} \ell^{\prime}\left(\right.\) decrement \(c_{i}\), if \(\left.c_{i}>0\right)\),
\(\ell \xrightarrow{\text { reset }\left(c_{i}\right)} \ell^{\prime}\left(\right.\) reset \(c_{i}\), i.e., put \(\left.c_{i}=0\right)\).
```

CS-reach problem for RCM:
Instance: an RCM M, a control state $\ell_{\text {FIN }}$.
Question: is $(1,(0,0, \ldots, 0)) \longrightarrow^{*}\left(\ell_{\mathrm{FIN}},(\ldots)\right)$?

Control state reachability in reset counter machines

Reset counter machines (RCMs).
nonnegative counters $c_{1}, c_{2}, \ldots, c_{d}$,
control states $1,2, \ldots, r$,
configuration $\left(\ell,\left(n_{1}, n_{2}, \ldots, n_{d}\right)\right)$, initial conf. $(1,(0,0, \ldots, 0))$, (nondeterministic) instructions of the types
$\ell \xrightarrow{\text { inc }\left(c_{i}\right)} \ell^{\prime}$ (increment c_{i}),
$\ell \xrightarrow{\operatorname{dec}\left(c_{i}\right)} \ell^{\prime}\left(\right.$ decrement c_{i}, if $\left.c_{i}>0\right)$,
$\ell \xrightarrow{\text { reset }\left(c_{i}\right)} \ell^{\prime}\left(\right.$ reset c_{i}, i.e., put $\left.c_{i}=0\right)$.
CS-reach problem for RCM:
Instance: an RCM M, a control state $\ell_{\text {FIN }}$.
Question: is $(1,(0,0, \ldots, 0)) \longrightarrow^{*}\left(\ell_{\mathrm{FIN}},(\ldots)\right)$?

Fact. CS-reach problem for RCM is ACK-complete.
(See [Schnoebelen, MFCS 2010].)

Bisimulation equivalence as a game

Assume LTS $\mathcal{L}=\left(\mathcal{S}, \mathcal{A},(\xrightarrow{a})_{a \in \mathcal{A}}\right)$. In a position (s, t),
(1) Attacker chooses either some $s \xrightarrow{a} s^{\prime}$ or some $t \xrightarrow{a} t^{\prime}$.
(2) Defender responses by some $t \xrightarrow{a} t^{\prime}$ or some $s \xrightarrow{a} s^{\prime}$, respectively. The new position is $\left(s^{\prime}, t^{\prime}\right)$.

Bisimulation equivalence as a game

Assume LTS $\mathcal{L}=\left(\mathcal{S}, \mathcal{A},(\xrightarrow{a})_{a \in \mathcal{A}}\right)$.
In a position (s, t),
(1) Attacker chooses either some $s \xrightarrow{a} s^{\prime}$ or some $t \xrightarrow{a} t^{\prime}$.
(2) Defender responses by some $t \xrightarrow{a} t^{\prime}$ or some $s \xrightarrow{a} s^{\prime}$, respectively.

The new position is $\left(s^{\prime}, t^{\prime}\right)$.
These rounds are repeated. If a player is stuck, then (s)he loses. An infinite play is a win of Defender.

We put $s \sim t(s, t$ are bisimulation equivalent) if Defender has a winning strategy from position (s, t).

Bisimulation equivalence as a game

Assume LTS $\mathcal{L}=\left(\mathcal{S}, \mathcal{A},(\xrightarrow{a})_{a \in \mathcal{A}}\right)$.
In a position (s, t),
(1) Attacker chooses either some $s \xrightarrow{a} s^{\prime}$ or some $t \xrightarrow{a} t^{\prime}$.
(2) Defender responses by some $t \xrightarrow{a} t^{\prime}$ or some $s \xrightarrow{a} s^{\prime}$, respectively.

The new position is $\left(s^{\prime}, t^{\prime}\right)$.
These rounds are repeated. If a player is stuck, then (s)he loses. An infinite play is a win of Defender.

We put $s \sim t(s, t$ are bisimulation equivalent) if Defender has a winning strategy from position (s, t).

Observation. For deterministic LTSs, bisimulation equivalence coincides with trace equivalence.

Reduction of CS-reach for RCM to FO-bisimilarity

Given an RCM M, i.e.,
counters $c_{1}, c_{2}, \ldots, c_{d}$, control states $1,2, \ldots, r$,
and instructions of the types

$$
\begin{aligned}
& \left.\ell \xrightarrow{\text { inc }\left(c_{i}\right)} \ell^{\prime} \text { (increment } c_{i}\right), \\
& \ell \xrightarrow{\operatorname{dec}\left(c_{i}\right)} \ell^{\prime}\left(\text { decrement } c_{i} \text {, if } c_{i}>0\right), \\
& \ell \xrightarrow{\text { reset }\left(c_{i}\right)} \ell^{\prime}\left(\text { reset } c_{i}, \text { i.e., put } c_{i}=0\right),
\end{aligned}
$$

and ℓ_{FIN},
we construct $\mathcal{G}=(\mathcal{N}, \mathcal{A}, \mathcal{R})$ and E_{0}, F_{0} so that

$$
(1,(0,0, \ldots, 0)) \longrightarrow^{*}\left(\ell_{\mathrm{FIN}},(\ldots)\right) \quad \text { iff } E_{0} \nsim F_{0} .
$$

CS-reachability as bisimulation game

Example with counters c_{1}, c_{2}; we start with the pair

$$
\left(A_{1}(\perp, \perp, \perp, \perp,), B_{1}(\perp, \perp, \perp, \perp)\right)
$$

The pair after mimicking $(1,(0,0)) \longrightarrow *(\ell,(2,1))$ might be

Attacker's win

Attacker wins in

$$
\left(A_{\ell_{\mathrm{FIN}}}(\ldots), B_{\ell_{\mathrm{FIN}}}(\ldots)\right)
$$

due to the rule $A_{\ell_{\text {FIN }}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} \ldots$ (while there is no rule for $\left.B_{\ell_{\text {FIN }}}\right)$.

Counter increment

For ins $=\ell \xrightarrow{\text { inc }\left(c_{2}\right)} \ell^{\prime}$
we have rules

$$
\begin{aligned}
& A_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{i n s} A_{\ell^{\prime}}\left(x_{1}, x_{2}, I\left(x_{3}\right), x_{4}\right), \\
& B_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{i n s} B_{\ell^{\prime}}\left(x_{1}, x_{2}, I\left(x_{3}\right), x_{4}\right),
\end{aligned}
$$

Counter increment

For $i n s=\ell \xrightarrow{i n c\left(c_{2}\right)} \ell^{\prime}$
we have rules

$$
\begin{aligned}
& A_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{i n s} A_{\ell^{\prime}}\left(x_{1}, x_{2}, I\left(x_{3}\right), x_{4}\right), \\
& B_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{i n s} B_{\ell^{\prime}}\left(x_{1}, x_{2}, I\left(x_{3}\right), x_{4}\right),
\end{aligned}
$$

Counter increment

For $i n s=\ell \xrightarrow{i n c\left(c_{2}\right)} \ell^{\prime}$
we have rules

$$
\begin{aligned}
& A_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{i n s} A_{\ell^{\prime}}\left(x_{1}, x_{2}, I\left(x_{3}\right), x_{4}\right), \\
& B_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{i n s} B_{\ell^{\prime}}\left(x_{1}, x_{2}, I\left(x_{3}\right), x_{4}\right),
\end{aligned}
$$

Counter reset

For ins $=\ell \xrightarrow{\text { reset }\left(c_{2}\right)} \ell^{\prime}$
we have rules

$$
\begin{aligned}
& A_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{\text { ins }} A_{\ell^{\prime}}\left(x_{1}, x_{2}, \perp, \perp\right), \\
& B_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{\text { ins }} B_{\ell^{\prime}}\left(x_{1}, x_{2}, \perp, \perp\right),
\end{aligned}
$$

Counter reset

For ins $=\ell \xrightarrow{\text { reset }\left(c_{2}\right)} \ell^{\prime}$
we have rules

$$
\begin{aligned}
& A_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{\text { ins }} A_{\ell^{\prime}}\left(x_{1}, x_{2}, \perp, \perp\right), \\
& B_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{\text { ins }} B_{\ell^{\prime}}\left(x_{1}, x_{2}, \perp, \perp\right),
\end{aligned}
$$

Counter reset

For ins $=\ell \xrightarrow{\text { reset }\left(c_{2}\right)} \ell^{\prime}$
we have rules

$$
\begin{aligned}
& A_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{\text { ins }} A_{\ell^{\prime}}\left(x_{1}, x_{2}, \perp, \perp\right), \\
& B_{\ell}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{\text { ins }} B_{\ell^{\prime}}\left(x_{1}, x_{2}, \perp, \perp\right),
\end{aligned}
$$

Counter decrement

For ins $=\ell \xrightarrow{\operatorname{dec}\left(c_{2}\right)} \ell^{\prime}$ we have two phases; the first-phase rules are $A_{\ell} \xrightarrow{i n s} A_{\left(\ell^{\prime}, 2\right)}, A_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, a\right)}, A_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, b\right)}$,

$$
B_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, a\right)}, B_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, b\right)},
$$

Counter decrement

For ins $=\ell \xrightarrow{\operatorname{dec}\left(c_{2}\right)} \ell^{\prime}$ we have two phases; the first-phase rules are $A_{\ell} \xrightarrow{i n s} A_{\left(\ell^{\prime}, 2\right)}, A_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, a\right)}, A_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, b\right)}$,

$$
B_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, a\right)}, B_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, b\right)},
$$

Counter decrement

For ins $=\ell \xrightarrow{\operatorname{dec}\left(c_{2}\right)} \ell^{\prime}$ we have two phases; the first-phase rules are $A_{\ell} \xrightarrow{i n s} A_{\left(\ell^{\prime}, 2\right)}, A_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, a\right)}, A_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, b\right)}$,

$$
B_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, a\right)}, B_{\ell} \xrightarrow{i n s} B_{\left(\ell^{\prime}, 2, b\right)},
$$

Counter decrement (option a)

$$
\begin{array}{r}
A_{\left(\ell^{\prime}, 2\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} A_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), A_{\ell^{\prime}, 2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{3}, \\
B_{\left(\ell^{\prime}, 2, a\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} B_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), \\
B_{\left(\ell^{\prime}, 2, a\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{3},
\end{array}
$$

Counter decrement (option a)

$$
\begin{array}{r}
A_{\left(\ell^{\prime}, 2\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} A_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), A_{\ell^{\prime}, 2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{3}, \\
B_{\left(\ell^{\prime}, 2, a\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} B_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), \\
B_{\left(\ell^{\prime}, 2, a\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{3},
\end{array}
$$

Counter decrement (option a)

$$
\begin{array}{r}
A_{\left(\ell^{\prime}, 2\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} A_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), A_{\ell^{\prime}, 2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{3}, \\
B_{\left(\ell^{\prime}, 2, a\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} B_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), \\
B_{\left(\ell^{\prime}, 2, a\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{3},
\end{array}
$$

Counter decrement (option b)

$$
\begin{aligned}
& A_{\left(\ell^{\prime}, 2\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} A_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), A_{\ell^{\prime}, 2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{3}, \\
& \left.B_{\left(\ell^{\prime}, 2, b\right)}, x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} A_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), \\
& B_{\left(\ell^{\prime}, 2, b\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{4}, \\
& I\left(x_{1}\right) \xrightarrow{c} x_{1}
\end{aligned}
$$

Counter decrement (option b)

$$
\begin{aligned}
& A_{\left(\ell^{\prime}, 2\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} A_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), A_{\ell^{\prime}, 2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{3}, \\
& B_{\left(\ell^{\prime}, 2, b\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{\xrightarrow{l} A_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right),} \\
& B_{\left(\ell^{\prime}, 2, b\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{4}, \\
& I\left(x_{1}\right) \xrightarrow{c} x_{1}
\end{aligned}
$$

Counter decrement (option b)

$$
\begin{aligned}
& A_{\left(\ell^{\prime}, 2\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} A_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), A_{\ell^{\prime}, 2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{3}, \\
& B_{\left(\ell^{\prime}, 2, b\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{a} A_{\ell^{\prime}}\left(x_{1}, x_{2}, x_{3}, I\left(x_{4}\right)\right), \\
& B_{\left(\ell_{1}, 2, b\right)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \xrightarrow{b} x_{4},
\end{aligned}
$$

Concluding remarks

We have shown

- (Trace) equivalence of deterministic first-order grammars is in TOWER.
- Bisimulation equivalence of first-order grammars is Ackermann-hard.

Questions/problems/related results:

- more precise complexity bounds ...
- subcases (simple grammars, one-counter automata, ...)
- higher orders ...
-

