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Abstract 

An accelerating structure designed as described previously is nearing completion. An 

equivalent circuit analysis, elaborated to take account of both the lower two dipole bands 
and the nonuniform properties of the damping manifolds, has been carried out. The 

equivalent circuit has nine parameters per cell, determined by matching the dispersion 
curves of the three lowest modes (two dipole modes plus the manifold mode) as computed 
by MAFIA. This procedure is carried out for eleven selected cells, after which 
interpolation is used to determine the parameters for the remaining 195 cells. Because the 
manifold-cell coupling is strong, a numerically challenging non-perturbative treatment is 
required. Wakefield and other results are presented. 
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shunt capacitance of the manifold and the capacitance of 
the TE component of the corresponding accelerator cell: 1. ABSTRACT AND INTRODUCTION 

(1) 
The Damped Detuned Structures (DDS) currently under 

construction to serve as accelerating cavities for the NLC 

Test (NLcTA) both and where (C, ,c,) represent the manifold shut capacitance 
detuning as a means of suppressing the transverse 

and TE cell capacitance respectively, (V, ,vn)  the 
wakefield. Detuning is accomplished by systematic 

the frequencies of the dipole modes excited by the beam, currents through them. Thus the dimensionless quantity 
and damping is accomplished by coupling the individual K, provides the manifold-cell coupling. 

cells to four waveguide-like structures (called damping 
manifolds) that run parallel to the cavity and propagate 

dipole mode energy to loads coupled to the ends of these 
manifolds. The details of the DDS as well as the rationale 

underlying its design are discussed in [ 11. It differs from 
previously considered designs [2] in that the manifolds 
have only one propagating mode in the frequency range 
of interest and also in that, like the cells, their parameters 
vary along the structure. The previously reported 

equivalent circuit analysis [2] has been elaborated in the 
following respects: (1) The treatment of the manifolds 
has been modified so as to take account of the effect of its 
coupling to the cells on its propagation characteristics and 
also to include the effect of their cell-to-cell variation. (2) 

The manifold-to-cell coupling network has been modified 

to take account of the TE,, like character of the manifold 
propagating mode. (3) The chain of resonant circuits 

(following Bane-Gluckstern [3]) to take account of the 
mixed TE-TM character of the dipole modes. 

V, =-j(I,, /c, + i , q  / K ) / o  

v, = -j(in /c ,  +I,K, /=)/a 

variation of cell parameters so as to produce a spread in corresponding across and ( I n  the 

gd!!$-i$pf3 TE 

g-F$$X$$E-$ TM 

d " + l  
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intended to represent the cells has been doubled 1,-1 I" ',+1 

Figure 1: Circuit Model of DDS 

2. EQUIVALENT CIRCUIT ANALYSIS 

The equivalent circuit which we use to represent the 
structure is shown in Fig. 1. The LC circuits represent 
the TE and TM components of the dipole field of the 

individual cells. Each componeni is magnetically coupled 
to both components of the adjacent cells. The electron 
beam excitation of the cavity is modeled by the input 

currents to each of the TM cells. The manifold structure 
is modeled by the uppermost sequence of transmission 
line sections each carrying a TE,, waveguide mode and 
shunted by an LC circuit at the junction of adjacent 
transmission lines. Coupling of the accelerator cells to 

the manifolds is represented by a coupling between the 

The network equations for the circuit in Fig. 1 can be 
written in the form given below (the detailed relations 
between the circuit parameters are given elsewhere [4]). 

RA = Ga (a) 

(H- l / f2 )a  + H$ = GA = GR-IGa 

( H - l / f * ) i  + H:a = B / f 2  (c) 
Here a, i ,  and A are N (N=206) component vectors 
proportional to the loop currents ( in )  in the TE circuits, 

the loop currents (in) in the TM circuits, and the shunt 

voltages (V,), in the manifolds respectively. B is also an 

N component vector proportional to the driving currents. 

R, H, H, H, and its transpose H:, and G are (N x N) 
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matrices. Their non-zero matrix elements have the 
following form: 

R,  COS@,, Rnnfl = 1 (3) 

cos@, =COSI$~, - a , ( n L f l ~ ) ~ F :  l(F: -f’)sinc@,, (4) 

(5 1 

(6) 

(7) 

(9) 

There are nine n-dependent parameters per cell exhibited 

in the above equations. We discuss them below. The 
quantity +,, represents the local phase advance .per section 

of the manifold regarded as a quasi-periodic structure 
with slowly varying properties. Three parameters are 

required for its description: F, corresponding to the 

cutoff of the local waveguide section, F to the resonant 
frequency of the series capacitance-inductance shunt, and 

a to the shunt capacitance itself. The n-independent 

parameter L is the section length, and for our structure is 

equal to one third the wavelength of the accelerating 
field. In writing eqs. (3) and (4) we have omitted terms 
second order in the section-to-section variation. The 

quantities f, , f, correspond to the resonant frequencies of 

the TE and TM component of the cells, respectively, 

when the T‘s and q‘s are neglected. The three q’s 

represent the mutual inductances of Fig. (1) in an 

obvious way. The ninth parameter, r, represents the 

manifold-to-TE coupling. It is a function of cx and K and 

is used in place of K. 

With r, set equal to zero, the cell equations become 

identical to those of [3], and the explicit connection of the 
relevant parameters to the circuit can be found there. The 
source vector B in eq. (2c) is expressed in terms of cell 
kick factors in precisely the same manner as in sections 
2.3 and 3.2 of [3]. Also we follow [3] in terminating the 
chain of cells as implied by requiring, n, n f l  to all 
belong to the set { 1, ..., N).  In this paper, we terminate the 
manifold with an outgoing wave boundary condition, 
which can be shown to require that we replace R,, and 

R,, by -exp(j@,) and -exp(j@,) respectively. For 

most purposes we eliminate the explicit appearance of the 
manifold amplitude vector A by using eq. (2a) to bring 
the RHS of eq. (2b) to the second form shown. 

@on = (2nL / c ) J q  

H,, = 1 / f : + r ~ l a , / ( F , Z - f 2 )  

H n n f I  = Vln*1/2 1 (2fnfnil) 

Hx,nn*l  = + q x , n i 1 / 2  1 (2fnfn*l) 
I 

, . a  

H, = 11 f,’, Hm*l = - q n * 1 / Z  1 (2ini,,,,*l) (8) 

G,, = r, (XL I C)F: (F: - f 2  ),/- 

3. THE DETERMINATION OF THE PARAMETERS 

The parameters are determined by fitting to the 
frequency versus phase advance dispersion curves of the 
three lowest modes of strictly periodic structures having 

the dimensions of a selected representative set of cell 
dimensions. These are determined from MAFIA 
frequency domain simulations of a single section with 

specified phase advance boundary conditions. The 

dispersion relation is obtained from eqs. (2) using the 
definitions in eqs. (3) to (9) and is as follows: 

{[(1+ qcosty) / f i  + r2 /a / (Fz - f ’) - f-’1 

[costy-cos@]= 
(10) 

rZF2 /(F’ -f’)(nL/c)’[(l -ficosty)?,,-’ -f-’]sinc@ 

As an example of the procedure, we illustrate its 
application to cell 106 in Fig. (2). 
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Figure 2: Brillouin Diagram for Cell 106 (Avoided 
Crossing shown inset) 

The parameters are determined by requiring that the three 
curves pass through nine selected phase-frequency pairs 
(the large dots in Fig. (2)) determined from simulations. 

The 0 and n phase advance points provide six pairs, and 

three points near the avoided crossing provide the rest. 
The dashed curves are obtained by setting the RHS of eq. 

(10) to 0. They represent the dispersion curves of the 

lower and upper dipole modes and of the manifold mode 

when direct manifold-cell coupling is suppressed. The 

smaller dots in Fig, (2), also from simulations, are used to 
assess the quality of the fit rather than for parameter 
determination. As discussed in [2], effective damping is 

associated with the crossing of the lower dipole mode 
and the manifold mode. When the coupling is included 

the crossing is avoided as shown by the solid curves. The 
cell kick-factors required both to relate the current source 
to a driving bunch and to compute the transverse kick 
which it imparts to a trailing bunch [3] are also 
determined from the simulations. 

The parameter determination is carried out as above 
for eleven selected cells. A smooth fit as a function of 
cell number is then formed to provide values for all of the 
cells and also for quantities with half integer designations. 

4. DETERMINATION OF THE WAKE FUNCTION 

We have evaluated the wake function functtion (rather 
loosely referred to as a wakefield in [ 1,2 &3]) by means 
of the modal expansion method, both perturbative as 
discussed in [2] and non-perturbative as discussed in [ l ]  
(see eq. (2)). The unperturbed mode distribution function 
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and the kick-factor weighted mode distribution function, 
both obtained by setting G equal to zero in eq. (2b), are 

shown in Fig. (3 inset) and Fig. (3) respectively. They 
should be compared to Fig. (19) a and c of [3]. Because 
of the f dependence in H,, the computational problem of 
obtaining the modes is somewhat more involved than for 
the corresponding problem in [3], but a straightforward 
iteration procedure proved to be rapidly convergent. 
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Figure 3: Kick-Factor Weighted Density Function 

(Density Function, Waf, shown inset) 

It also leads to a slight change in the expression for the 
modal kick-factors. Over the synchronous frequency 
band of the lower dipole mode the perturbative Q varies 
from 753 to 1089 with a mean value of 956. The upper 
dipole mode is not significantly damped by the manifolds 
because they are non-propagating over most of the band 
and lack avoided crossings where they are propagating. 
In contrast to our previous experience [l], the non- 
perturbative method proved to be numerically quite 
challenging and excessively time consuming. As pointed 

out previously [ 1,2], the complication arises from the fact 

that the matrix is complex symmetric rather than real 

symmetric, with all elements dependent upon frequency 
in a complicated way. An iterative method based upon 
repeated determination of eigenvalues was used rather 
than the determinental method described in [ 11. 
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Figure 4: Envelope of Wake Function 

Both the real and imaginary parts of the frequency shift 
showed large rather regular oscillations about the 

perturbative values, large changes in the kick-factors, and 
large phase shifts in the modal sinusoids [ 13. (These phase 
shifts represent the phase of the complex modal kick 
factors whose absolute value is given by Kp[4]). The 
resultant wake function, shown in Fig. (4) and including 
the upper band contribution, is significantly but not 

drastically degraded from the perturbative form (not 
shown). On the other hand, the short range behavior 
(inset) is hardly changed. This is just what one expects on 
physical grounds, but the fact that it emerges from very 
different input data encourages us to trust our results. As 
discussed in [5] the short range behavior is determined by 

K,,Sn/i5f in Fig. (3), and the differences between it and Fig 

(19c) of [3] accounts for the poorer short distance 
damping achieved by this version of the DDS design. 

5. DISCUSSION 

While we believe that the short range behavior of the 
wake function shown in Fig. 5 can be improved by a 
redesign, the overall behavior is considered to be quite 

satisfactory. There are, however, a number of departures 
in the actual structure from the design analyzed here. The 
termination of the structure on each end will involve 
modification of the last few cells and also a loading 
structure. Our method is flexible enough to take these 
changes into account once the appropriate input data has 
been obtained. The fact that the current design is too 
strongly coupled to allow us to rely upon perturbation 

theory has been a handicap, however. In order to 
ameliorate this problem we have developed a new 
method involving integration along real branch cuts rather 
than the modal expansion. It has turned out to be much 

more efficient numerically and is also closer to an exact 

treatment. Its comparison with the method reported here 

and its application to the structure including the 

modifications mentioned above will be reported in [4,5]. 
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