EQUIVALENT FORMULATIONS OF THE HIRSCH CONJECTURE FOR ABSTRRACT POLYTOPES

John A. Lawrence, Jr.

California University

Prepared for:
Office of Naval Research National Science Foundation

November 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERSE

5285 Port Royal Road, Springfield Va. 22151

EQUIVALENT FORMULATIONS OF THE

 HIRSCH CONJECTURE FOR ABSTRACT POLYTOPESby
JOHN A. LAWRENCE, JR.

OPERATIONS

COLLEGE OF ENGINEERING UNIVERSITY O: CALIFORNIA• BERKELEY
by

John A. Lawrence, Jr. Operations Research Center University of California, Berkeley

This research has been partially supported by the Office of Naval Research under Contract N00014-69-A-0200-1010 and the National Science Foundation under Grant GK-23153 with the University of California. Reproduction in whole or in part is permitted for any purpuse of the United States Government.

Unclassified
Securti) Claccification

Abstract polytopes are mathematical creations which are defined by three axioms. It has been shown that simple polytopes are a proper subclass of abstract polytofes. Hence theorems proving Facts about abstract polycopes in general, prove facts about simple polytopes in particular.

Klee and Walkup [2] showed the following four statements were mathematically equivalent for simple polytopes:
i) Any two vertices of a simple polytope can be joined by a W_{v} (nonreturning) path.
ii) $\Delta(n, d) \leq n-d \quad$ (Hirsch conjecture).
iii) $\Delta\left(2 \mathrm{~d}_{\mathrm{f}} \mathrm{d}\right) \leq \mathrm{d}$.
iv) For a Dantzig figure, $(p, x, y), \delta_{p}(x, y)=d$.

The purpose of this paper is to show that the four statements above are equivalent for the larger class of abstract polytopes as well. Thus, it is possible to tackle the problem of the well-known Hirsch conjecture by applying the well defined structure and theorems, of abstract polytopes to any of the above statements.

In Adler [1], it was showr that the class of sinple polytopes is a proper subclass of the class of abstract polytopes. Because of the simplicity and mathematical precision which define abstract polytopes, they become interesting and practical tools for investigating properties of simple polytopes.

Klee and Walicup [2], showed that the well known lirsen conjecture is mathematically equivalent to three other statements. In this paper it will be shown that a corresponding set of statements are equivalent for abstract polytopes, and hence abstract polytope theory may shed isiw light in proving or disproving the Hirsch conjecture.

The method of proof will br the method of consecutive implication, i.e. for statements, i, i, i ii, $i v$, it is shown $i \Rightarrow i i \Rightarrow i i i \Rightarrow$ iv $\Rightarrow i$. Three implications are trivially proved. A constructive proof cor the fourth implication is developed strictly from abstract polytope theory and is based on Klee and Walkup [2].

Finally an example of the construction is presented in the appendix.

2. NOTATLONS AND DEELNLTIONS

Let C be a set of distinct symbols.
Any subset v, of d distinct symbols contained in C is called a vertex.

$$
\text { |v| denotes the number of symbols in } \gamma \text {. }
$$

Vertices u, v of d symbols are said to be neighbors iff $|u r i v|=d-1$. A path from v_{0} to v_{k} is a series of vertices $v_{0}, v_{1}, \ldots, v_{k}$ s.t. $\mathbf{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}$ are neighbors, $\mathrm{i}=0, \ldots, \mathrm{k}-1$.

Definition of an Abstract Polytope

P is a labeled abstract polytope consisting of vertices $V(P)$ iff
(A1) $v \in V(P) \Rightarrow|v|=d$.
(A2) $V \in V(P) \Rightarrow$ for any symbol $T \in V, \exists$ exactly one other vertex $w \in V(P)$, s.t. $v-T \subset w$.
(A3) For any $v_{0}, v_{k} \in V(P), \exists$ a path $R: v_{0}, v_{1}, \ldots, v_{k}$ s.t. $v_{i} \cap v_{k} \subset v_{i} \forall v_{i} \in R . \quad(R$ is called an A3 path.)

Note: We will use P also to denote the union of all symbols used in the vertices of $V(P)$.

$$
\begin{aligned}
P(n, d) \equiv & \text { set of all abstract polytopes } \\
& \text { s.t. } \quad|P|=\mathfrak{n},|v|=d .
\end{aligned}
$$

If $v e v(P)$ and some set $S \subset v$ such that $|S|=k(>0), S$ is said to generate $a d-i x$ face on P; i.e., $F_{p}(S)$, the face generated by S on P, consists of all $v \varepsilon V(P)$ s.t. $S \subset v$. It is easily verified that after the k symbols
common to $V \in V\left(F_{p}(S)\right)$ have been dropped we have formed a rew abstract polyt"pe $Q \varepsilon P\left(n^{\prime}, d-k\right)$ where $n^{\prime} \leq n \cdots k$. We say Q corresponds to $F_{P}(S)$ and the vertices of Q have a one to one correspondence to the vertices of $F_{p}(S)$, thus $q \in V(Q)$ ccrresponds to $q \cup S \in V\left(F_{p}(S)\right)$.

$$
\delta_{p}(x, y) \equiv \text { the distance from } x \text { to } y \text { on } p \text {, i.e., the length of the }
$$ shortest path between x and y.

$$
\begin{aligned}
\Delta_{a}(n, d) & \equiv \text { the max diameter of } P(n, d ; \\
& \equiv \max _{\max (n, d) x, y \in V(p)} \delta_{p}(x, y)
\end{aligned}
$$

A nonreturning (NR) path from $v_{0}, v_{1}, \ldots, v_{k}$ on p is a path s.t. the symbol $T \varepsilon v_{i}, T \notin \mathbf{v}_{i+1} \Rightarrow T \neq \mathbf{v}_{j} \quad i+1 \leq j \leq k$.

A Dantzig figure (P, x, y) is an abstract polytope $P \in P(2 d, d)$ s.t. \exists vertices $x, y \varepsilon \forall(P)$ s.t. $x \cap y=\varphi$.

3. THEOREM

The following four statements are equivalent for abscract polytopes:
i) \ddagger an $N R$ path between any two vertices $x, y \in V(p)$.
ii) $\Delta_{a}(n, d) \leq n-d$.
iii) $\quad \Delta_{a}(2 d, d) \leq d$.
iv) For every Dantzig figuze $(P, x, y), \delta_{P}(x, y)=d$.

Proof: (by consecutive implication)
(a) i => ii) if \exists an NP. nath between $x, y \in V(P)$ then

$$
\begin{aligned}
& \delta_{P}(x, y) \leq n-(|x \cap y|+d) \text {. If } x \cap y=\phi \text { result follows. } \\
& \text { Say } x \cap y=S,|S|=k \text {. Consider } F_{P}(S) \text {. Then } \\
& \delta_{F_{P}(S)}(x, y) \leq n^{\prime}-(d-k) \leq n-k-(d-k)=n-d . \\
& \therefore \delta_{P}(x, y) \leq n-d \forall P \in P(n, d) .
\end{aligned}
$$

(b) ii => iii) trivial. Let $n=2 d$.
(c) iii \Rightarrow iv $\quad \delta_{p}(x, y) \leq d$ by iii). But since $x \cap y=\phi, \delta_{p}(x, y) \geq d$ $\therefore \quad \delta_{P}(x, y)=d$.
(d; iv => i)

Consider $x, y \in V(P)$. Assume $x \cap y=\phi$ for coovenience. If $x \cap y=S$ ($\neq \phi$) consider $F_{p}(S)$. Aiter eliminating S from each vertex of $F_{p}(S)$ we have a new abstract polytope, Q, whose vertices correspond to $F_{P}(S)$. In particular the vertices which correspond to x and y have an empty intersection. Thus, we can apply the following theory to Q and make the corresponding transformation back to $F_{p}(S)$ and hence P.

Assume $n>2 d$. (If $n=2 d$ result follows trivially since $\delta_{p}(x, y)=d$.)

Notation

Let $\quad M=P-(x \cup y) ;$ say $|M|=m$, i.e., $m=n-2 d$.
Form a set M^{\prime} of new symbols sot. $T \varepsilon M \Rightarrow T^{\prime} \varepsilon M^{\prime}$.
Now we form P^{*} by the algorithm, illustrated in Figure 1.
We now show $p^{*} \varepsilon(n+m, d+m)$. We show the more general fact:

Lemma 1:
$p^{j} \in P(n+j, d+j)$.

Proof: (by induction)
Trivially P^{0} e $P(n, d)$.
Suppose $p^{j-1} \in P(n+j-1, d+j-1)$.
Consider p^{j}. It is easily verified $A 1$ and $A 2$ are satisfied.
To show A3, consider the following three cases. Suppose $u^{j}, v^{j} \in V\left(P^{j}\right)$.

Case I: $T^{\prime} \in u^{j}, T^{\prime} \varepsilon v^{\mathbf{j}}$
$\exists u^{j-1}, v^{j-1} \in V\left(P^{j-1}\right)$ s.t. $u^{j-1}=u^{j}-T^{\prime}, v^{j-1}=v^{j}-T^{\prime}$.
Since \exists an $A 3$ path $u^{j-1}=u_{0}^{j-1}, \ldots, u_{k}^{j-1}=v^{j-1}$ on p^{j-1}.
Let $u_{i}^{j}=u_{i}^{j-1} U T^{\prime}$. This is the required A3 path on p^{j}.

Case II: $T^{\prime} \in u^{\mathbf{j}}, T^{\prime} \notin v^{j}$
By construction, $T^{\mathbf{\prime}} \notin \mathrm{v}^{\mathbf{j}} \Rightarrow T \varepsilon \mathrm{v}^{\mathbf{j}}$ and $\exists \mathrm{y}^{\mathbf{j}} \in \mathrm{V}\left(\mathrm{F}^{\mathbf{j}} ;\right.$ sot. $\mathrm{y}^{\mathbf{j}}=\mathrm{v}^{\mathbf{j}} \cup T-T^{\prime}$. By Case $I \quad \exists$ an $A 3$ path, R, on P^{j} from u^{j} to y^{j}. . The required A3 path from u^{j} to v^{j} is R amended with the edge $\left(y^{j}, v^{j}\right)$.

Case III: $T^{\prime} \notin u^{j}, T^{\prime} \notin v^{j}$
Let $y^{j}, z^{\mathbf{j}} \in V\left(P^{j}\right)$ be such that $y^{\mathfrak{i}}=u^{\mathbf{j}} \cup T^{\prime}-T, z^{j}=v^{j} \cup T^{\text {r }}-T$.

Construction 1

$$
\text { Let } j=0, P^{0}=P, M^{0}=M, M^{\prime 0}=M^{\prime} .
$$

Figure 1

We know 3 an A3 path R from y^{j} to z^{j} on $P^{j} \cdot i K: y^{j}=w_{0}^{j}, \ldots$, $w_{f}^{j}, \ldots, w_{\ell}^{j}, \ldots, w_{k}^{j}=z^{j}$ where for $f \leq i \leq \ell, T \varepsilon w_{j}^{j}$. (It is not necessary that $T \in w_{i}^{j}$ for any i or for only one interval.)

Consider the path $\bar{R}: u^{j}=\bar{w}_{0}^{j}, \ldots, \overline{w_{f}^{j}}, \ldots, \overline{w_{\ell}^{j}}, \ldots, \bar{w}_{k}^{j}=v^{j}$ s.t. for $0 \leq i \leq f-1$ and $\ell+1 \leq i \leq k, \overline{w_{i}^{j}}=w_{i}^{j} \cup T^{\prime}-T$ and for $E \leq i \leq \ell, \overline{w_{i}^{j}}=w_{i}^{j}$.

It is not difficult to verify $\overline{\mathrm{R}}$ exists and is the required A 3 path from u^{j} to v^{j} on F^{j}.

Corollary 1:

$$
P^{*} \varepsilon P(n+m, d+m), \text { i.e., } P^{*} \varepsilon(2(n-d),(n-d))
$$

We now make the following observations:

Observation 2: As noted in Lemma 1, for $w \in V\left(P^{*}\right), T^{\prime} \notin W \Rightarrow T \varepsilon W$ and \exists a vertex $y \in V\left(P^{*}\right)$ s.t. $y=w U T$ - T.
Observation 3: P corresponds to $F_{P^{*}}\left(M^{\prime}\right)$.
Observation 4: $\left(P^{*}, x^{*}, y^{*}\right)$ is a Danzig figure. . . Since $\delta_{P}^{*}\left(x^{*}, y^{*}\right)=$ $d^{*}(=d+m), \exists$ an $N R$ path between $x^{\dot{*}}$ and y^{*} on P^{*}.

Notation

$$
\begin{aligned}
& \text { Let } R^{*} \text { be the Nr } F \text { on } P^{*} \text { between } x^{*} \text { and } y^{x} \cdot \therefore R^{*}: x^{*}=v_{1} \text {, } \\
& \ldots, V_{d}=y^{*} \text {. } \\
& \text { Let } B_{v_{i}}^{\prime}=M^{\prime} \cap v_{i} \text {, ide., all primed symbols in } v_{i} \text {. } \\
& A_{\mathbf{v}_{\mathbf{i}}}^{\prime}=M^{\prime}-\mathbf{B}_{\mathbf{v}_{\mathbf{i}}}^{\prime} . \\
& A_{v_{i}}=\left\{T \in M \mid T^{\prime} E v_{i}, T \notin Y_{i}\right\} .
\end{aligned}
$$

Observation 5:

$$
\forall v_{i} \in V\left(P^{*}\right), v_{i}=y_{i} U B_{v_{i}}^{\prime} U A_{v_{i}} \text { where } y_{i} \varepsilon V(P)
$$

Construction 2:

Form a sequerce of vertices $R^{\prime}: w_{1}, \ldots, w_{d}^{*}$ s.t. $w_{i}=v_{i} U A_{v_{i}}^{\prime}-A_{v_{i}}$, where $v_{i} \in R^{*}$.

Lemma 2:

i) $\quad W_{1}=\pi \cup M^{\prime} \in F_{A^{*}}\left(M^{\prime}\right)$.
ii) $\quad w_{i} \varepsilon \underset{P}{F} *^{\left(M^{\prime}\right)} \quad \forall_{i}$.
iii) $\mathrm{W}_{\mathrm{d}^{\star}}=\mathrm{y} \cup \mathrm{M}^{\prime} \in \mathrm{F}_{\mathrm{P}^{\star}}\left(\mathrm{M}^{\prime}\right)$.
iv) $\quad w_{i}, w_{i+1}$ are either neighbors or the same vertex, \forall_{i}.
v) If w_{i}, w_{i+1} are the same vertex, delete one of them from R^{\prime}. Then R^{\prime} is an $N R$ path from $x U M^{\prime}$ to $y U M^{\prime}$ on $F_{A^{*}}\left(M^{\prime}\right)$.

Proof:
i) $\quad w_{1}:=v_{i} U \phi-\phi=x^{*}=x \cup M^{*} \varepsilon F_{P^{*}}\left(M^{\prime}\right)$.
ii) $w_{j}=v_{i} U A_{v_{i}}^{\prime}-A_{v_{i}}$

$$
\begin{aligned}
& =\left(y_{i} \cup B_{v_{i}}^{\prime} \cup A_{v_{i}}\right) \cup A_{v_{i}}-A_{v_{i}} \quad \text { (by Observation 5) } \\
& =y_{i} U B_{v_{i}}^{\prime} \cup A_{v_{i}}^{\prime}=y_{i} \cup M^{\prime} . \quad \therefore \quad w_{i} \varepsilon F_{f^{*}}\left(I^{\prime}\right) .
\end{aligned}
$$

iii)

$$
\begin{aligned}
w_{d}^{*} & =v_{d^{*}} \cup{\underset{v}{d}}_{A^{*}}^{\prime}-A_{v^{*}} \\
& =y^{*} \cup A_{y^{\prime}}{ }^{*}-A_{y^{*}} \\
& =(y \cup M) \cup M^{\prime}-M \\
& =y \cup M^{\prime} \varepsilon F_{P^{*}}\left(M^{\prime}\right) .
\end{aligned}
$$

iv) Consider the transition from v_{i} to v_{i+1} on R^{*}. There are three possible cases.

Case 1: $v_{i+1}=v_{i} U S-S^{\prime}$ where $S^{\prime} \varepsilon M^{\prime}, S \in M$

$$
\therefore w_{i+1}=v_{i+1} \cup A_{v_{i+1}^{\prime}}^{\prime}-A_{v_{i+1}}
$$

$$
\left.=v_{i+1} \cup\left(A_{v_{i}}^{\prime}\right\lrcorner s^{\prime}\right)-\left(A_{v_{i}} \cup s\right)
$$

$$
=\left(v_{i+i} \cup S^{\prime}-s\right) \cup A_{v_{i}}^{\prime}-A_{v_{i}}
$$

$$
=v_{i} U_{v_{i}}^{\prime}-A_{v_{i}}
$$

$$
=w_{i} .
$$

$$
\therefore w_{i+1}=w_{i} .
$$

Case 2: $v_{i+1}=v_{i} \cup S-T$ where $S \varepsilon P, T \varepsilon P$
$\therefore w_{i+l}=v_{i+1} \cup A_{v_{i+1}}^{\prime}-A_{v_{i+1}}$

$$
=\left(v_{i} \cup s-T\right) \cup A_{v_{i}}^{\prime}-A_{v_{i}}
$$

$$
=\left(v_{i} \cup A_{v_{i}}^{\prime}-A_{v_{i}}\right) \cup s-T
$$

$$
=w_{i} \cup S-T
$$

$$
\therefore w_{i} \text { and } w_{i+1} \text { are neighbors. }
$$

$$
\text { Case 3: } \begin{aligned}
v_{i+1}=v_{i} & \cup S-T^{\prime} \text { where } S \varepsilon P, T^{\prime} \varepsilon n^{\prime} \\
\therefore w_{i+1} & =v_{i+1} \cup A_{v_{i+1}}^{\prime}-A_{v_{i+1}} \\
& =\left(v_{i} \cup S-T^{\prime}\right) \cup\left(\Lambda_{v_{i}}^{\prime} \cup T^{\prime}\right)-\left(A_{v_{i}} \cup I^{\prime}\right) \\
& =\left(v_{i} \cup A_{v_{i}}^{\prime}-A_{v_{i}}\right) \cup S-T \\
& =w_{i} \cup S-T .
\end{aligned}
$$

4 $\quad \therefore w_{i}$ and w_{i+1} are neighbors.
Since R^{*} is an $N R$ path on P^{*}, these are the only three possible cases.
v) Immediate from i - iv).

Corollary 2:

\exists an NR path R fron x to y on P.

Proof:

Immediate from Lemma 2, Pirt V, and Observation 3.

4. APPENDIX

Example of Construction 1

Suppose we have a Polytope P^{\prime} as follows:

and want NR path from x to y.
Eliminate symbols in comon to form face P

J.teration 1: Choose symbol F

Iteration 2: Chouse symbol c

Below are examples of paths R^{*} from x^{*} to y^{*} on P^{*} and corresponding R from x to y on P according to Construction 2 .
(1) $\mathrm{K}^{*}: ~ A B C^{\prime} \mathrm{F}^{\prime}-\mathrm{ABC} C^{\prime} F-B C C^{\prime} F-C C^{\prime} D F-C D E F$

(2) R^{*} : $\mathrm{ABC}^{\prime} \mathrm{F}^{\prime}$ - $\mathrm{ABCF}{ }^{\prime}$ - $\mathrm{ACFF} \mathrm{F}^{\prime}$ - CEFF' - CDEF

(3) $R^{*}: A B C^{\prime} F^{\prime}-B C C^{\prime} F^{\prime}-C C^{\prime} D F^{\prime}-C C^{\prime} D F-C D E F$
$R: A B — B C \longrightarrow C D \longrightarrow D E$
(4) $R^{\mathrm{R}^{\prime}}: A C^{\prime} \mathrm{F}^{\prime}-A C^{\prime} F F^{\prime}-C^{\prime} E F F^{\prime}-C^{\prime} D E F-C D E F$
$\mathrm{R}: \mathrm{AB} \longrightarrow \mathrm{AF} \longrightarrow \mathrm{EF} \longrightarrow \mathrm{DE}$
(5) $R^{*}: A B C^{\prime} F^{\prime}-B C C^{\prime} F^{\prime}-B C C^{\prime} F-C C^{\prime} D F-C D E F$
$R: A B — B C \longrightarrow C D — D$
(6) $R^{*}: A B C^{\prime} F^{\prime}-A C^{\prime} F^{\prime}$ - $A C F F^{\prime}-C E F F^{\prime}$ - CDEF
$R: A B — A F \longrightarrow D E=D E$

References

[1] Adler, I., "Abstract Polytopes," Ph.D. Thesis; Department of Operations Research, Stanford University, Stanford, California, (1971).
[2] Klee, V. and D. W. Walkup, "The d-Stop Conjecture for Polyhedra of Dimension $\dot{a}<6, "$ Acta Mathematics, 117, (1967), 53-78.

