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Equivalent Linearization Techniques

Tinowas K CAtGHEY

California Institute of Technology, Pasadena, California

The methad of equivalent linearization of Kryloff and Bogoliubov is generalized Lo the case of nonlinear
dynamic systems with random excitation. The method is applied to a variety of problems, and the results
are compared with exact solutions of the Fokker—Planck equation for those cases where the Fokker-Planck
technique may be applied. Alternate approaches to the problem are discussed, including the characteristic

function method of Rice.

INTRODUCTION

IN the first paper of this symposium,! the derivation

and application of the Fokker-Planck equation to
discrete nonlinear dynamic syvstems was discussed.
This method was used when the nonlinearities depended
only on the displacements in the system. It was also
pointed out that, if the nonlinearities involved the
velocities as well as the displacements, or if the exci-
tation was not white, then the FFokker-Planck method
was inapplicable. The purpose of this paper is to discuss
an approximale technique that will allow us to obtain
solutions to the problem of the response of weakly or
slightly nonlinear svstems to random excitation where
(a) the nonlinearities involve both the velocity and
displacement, or (b) the nonlinearity is of hereditary
tyvpe, or (¢) the excitation is nonwhite. This method is
based on the well-known technique of equivalent
linearization of Krvloff and Bogoliubov.? The extension
of this technique to problems of random excitation was
made independently and more or less simultaneously
by Booton? and Caughey,* and has been used extensively
by Caughey.57

1 T. K. Caughey, “Derivation and Application of the Fokker—
Planck Equation to Discrete Nonlinear Systems Subjected to
White Random Excitation,” J. Acoust. Soc. Am. 35, 1683
(1963). [ This issue.]

2N. Minorsky, Nonlinear Mechanies (J. W. Edwards, Ann
Arbor, Mich., 1947).

3R. C. Booton, “The Analysis of Nonlinear Control Systems
with Random Inputs,” in Proceedings of the Symposium on Non-

I. EQUIVALENT LINEARIZATION OF THE SINGLE-
DEGREE-OF-FREEDOM NONLINEAR SYSTEM

To illustrate the development of the theory, let us
consider the following nonlinear oscillator subjected
to stationary (aussian random excitation, which does
not necessarily have a white spectrum:

F4Bitwlv+ng(x,i,0)= f(0). (1.1)

It is assumed that 3 and 5 are small in some sense, such
that the system is lightly damped and weakly non-
linear. In addition, the nonlinearity g(x,Z,f) may
contain both velocity and displacement terms and may
depend on the past history of the system; ie., the
system may have hereditary characteristics. A tvpical
hereditary syvstem has the characteristics shown in
Fig. 1. Rewriting Eq. (1.1),

P Bt twelcte(a, D)= f(1), (1.2)

where 8., is the “equivalent linear damping” coefficient
per unit mass, we,® is the “equivalent linear stiffness”

linear Cirenit Analysis (Polytechnic Inst. Brooklyn, New York,
1953), Vol. 2.

4T. K. Caughey, “Response of Nonlinear Systems to Random
Excitation,” Lecture Nole, California Inst, Technol. (1953)
(unpublished).

5T. K. Caughey, “Response of Nonlinear String to Random
Loading,” J. Appl. Mech. 26, 341-344 (1953).

¢ T. K. Caughey, “Random Excitation of a Loaded Nonlinear
String,” J. Appl. Mech. 27, 575-578 (1960).

7T. K. Caughey, “Random Excitation of a System with Bilinear
Hysteresis,” J. Appl. Mech. 27, 649-652 (1960).
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coefficient per unit mass, and e(x,#
tion deficiency term.

If e(x,4.) is neglected, Eq. (1.2) is linear and may be
readily solved. The smaller that the error term is, the
smaller the error in neglecting it. The logical choice
of woq and B, is, therefore, those values that make
e(x,£) a minimum. The choice of minimization
procedure is somewhat arbitrary, but, by analogv with
Galerkin’s method and for mathematical expediency,
it 1s desirable to use the minimization of the mean-
squared error. From the above equations,

1) 1s Lthe error or equa-

e(xri-)t) = (B_ ch) L+ (w(l2—w<‘f12)x+ ﬂg(x,-i',t) (1'3)

The mean-squared ecrror is given by

- 1 r
e lim— e*(x,2,1)d!t
=2 AT | _p
T
—lim— [ [@—Budit (i —wne-tng(ed O Tl
e T (1.4)

Now, let us minimize €? with respect to 8., and cw,2:

&)

. _2[(13 .Bul)l +(w0 wt([)\l‘l"r]lg(l /):I“':(),
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If the process is stationary, xi=0. Hence,

Bea=Bnig(x,5,0)/4; (1.6)
we? = wit+nxg (x,5,8) /22
From Eq. (1.3),
e _
=2 >0;
B’
P
— =27 >0;
6(“4‘«12)0
i . .
—=2x2=0 (1.7)
awm 0Beq

Thus, Eq. (1.6) does indeed define a minimum for €.
Under the assumption that the system is lightly
damped and weakly nonlinear, the motion of the system
will approximate that of sinusoid with a slow random
modulation of amplitude and frequency. Thus,

x=a(l) sin[wed+¢(¢) ]=a sind, (1.8)

where the envelope ¢(f) and the phase ¢(Z) are both
slowly varying functions of time. Hence,

Bea=B+n[wea cosfg(a sinfw.qa cosd,g) ]/

a3, [weq?a® cosd];
_ Wl = w1 e sinfg(a sind weqa cos0,9) |/
de* T
=L (o ) PG T =0, _ [@sid]; (1.9)
dw. g (1.3) which may be written as
¥ 1 (4+1)2x
lim — 3 / a cosfg(a sinfwe,a cosd,8)do
N e ') \ - N '),”.
Bea=8-1+1n )
v (41327
lim — Y / wa,@* c0s*0d0
A AN - N 2
(1.10)
1 v o1 G+1)21
lim — >, — a sinfg (a sinfd,w.,a cosd,f)ds
ANomn 2_\' — X 2,"_
we 2=w 4y
1 o 1 p(+D2e
lim — ——f a® sin*8da
AN# 2N =N 2
Since a and ¢ are slowly varving functions of time, where
they do not change appreciably over one cycle. Thus, | e
1 s (.'(a,-):—/ a; cosfg(x,,1)ds;
- a cosfg (x,4,0d0=~((a,); 2rJa
m S 1) (1.12)
1 (iH1)27 ’ 1 por
— a sinflg (x,24,0d8=S(a.); S(a,)——f a; sinfg (x,1,0)db.
21 J i2n 2rJy
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A Fix,x,t)

Fic. 1. Force vs displacement characteristic for a typical
hereditary system.

Thus,
2n 1 ~
Beq=ﬂ+—[ i — ¥ C(a.~>]

N—oo T oo A
Weq 2N =N

1 x~ !
xl:lim— > a.{l ;
N0 2_\7 =N
(1.13)

1 ~
weq2=w02+2’q|: lim > 8 (a.-):l

N-a 2.\1 =Y

1 ~ L.
Xl: lim — Y a,{I .
Ao N 5§

By the assumption that ¢; varies slowly, the summations
may be replaced by integrals without serious error.
Therefore,

Bor=B+ (20/0)[C(a)/a"];
weg=wae+ 2 S (a)/a*].

If the process is ergodic, time averages may bhe
replaced by ensemble averages:

(1.14)

LEGO)
wea (2 (1.13)

(S(a))

Weq = g 277W.

1f e(x,%,2) is neglected in Eq. (1.2) and if 8. is small,
the distribution of the envelope may be approximated
by the Rayleigh distribution of peaks for the corre-
sponding linear system, whose probability density is

p2(@)=(a/(s?)) exp{—a?/2(s?)}. (1.16)

CAUGHEY,

AND LYONXN

Thus,

(@)= [ [/ expt—a/2eda=20e);

(@)= / [aC(@)/(:2)]

Xexp{—a’/2{a)}da=e((«")); (1.17)

(S(a)y= f [aS(2)/ )]

Xexp{—a*/2(x?)}da= S((x?)).

By neglecting e(x,4,0) in Eq.
density of the response is given by

W 22(w) = [(weq® =P+ (@Bea)’ T W ss (w),

(1.2), the spectral

(1.18)

where the spectral density of the excitation is W ,(w)
=W (f)/2r. Therefore, the mean square displacement
of the response is

()= / [t =P @Be TV s (@)oo, (1.19)

If Bey is small and if the spectral density of the
excitation is a relatively smooth function, then Eq.
(1.19) may be approximated by

m Wi(weq
(2 Wil (1.20)
2 Beqweq®
Using Eqgs. (1.15) and (1.17),
() [wa*+28(())/ ()]

K[B+2nC({a))/ (W wd™+ 208 ((£*))/ ()]

™
zEIVII(U-‘cq)~ (1.21)

Equation (1.21) may then be solved graphically or
numerically to obtain (x?).

A. Nonhereditary Nonlinearity

If g{x,&,t) in Eq. (1.1) does not depend on the past
history of the motion, the analysis is somewhat simpler.
In Eq. (1.6), the time averages may be replaced by
ensemble averages:

Bea=B+n(ig(x,£))/(d%);
weq”=wit+n(xg (x,£))/{a?).

If e(x,%,) is neglected in Eq. (1.2), the response is

(1.22)
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Gaussian when the excitation is Gaussian. Therefore,

p(x,8)= 2m) (&)@

9 )

Xexp{—%((x;)—}-(;&;))}. (1.23)

The distribution takes this simple form since (xi)=0
for a stationary process. Hence,

(%)= / [(wea? =P+ (@Bea)* TN s (w)deo;
0 (1.24)

()= [ L=+ B T

For any specific Wys(w), (= and (4% may he
numerically determined by substituting Eqs. (1.22)
into Eqgs. (1.24). In the case where 8., is small and
W ys(w) is smooth, Eqgs. (1.24) may be approximated by

7 Wyp(weq) _
(1.25)

2 Bu

Thus, we have two equations relating the two unknowns
from which these quantities may be determined.

B. Example

To illustrate the equivalent linearization technique,
let us show that the mean square displacement of a
“hardening spring” oscillator is always less than that
of the corresponding linear oscillator when both systems
are exposed to the same white spectral density of the
excitation. Assuming that n=wd, glx,2)=g(x), and
certain “hardening spring” restrictions,® the equivalent
linear damping and stiffness per unit mass are

.Beqzﬂ

and
we”= w1+ (g (x))/ () ]. (1.26)
From Egs. (1.23),
(%)= (Wo/4Bud)[ 1+ e(xg (x))/ (+*) ]
and
(@)=Wo/48=0?, (1.27)

where IV is the white spectral density of W,(f)

= 27!‘“/[[ (w) ThUS,
(=0 —elxg(x)) <ol (1.28)

which is the desired result.

8 Relerence 1, Eq. (2.12).
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C. Calculation of Mean Square Displacement

If the exact probability density p(x) is used, then
Eq. (1.28) is identical with the exact solution obtained
by using the Fokker-Planck equation.®

However, p(x) may be approximated by the Gaussian
probability density given in Eq. (1.23). Applying this to
the Duffing oscillator, where g(x)=x?, the mean square
displacement may be determined from Eq. (1.28):

3e((a)P+ (%) —0.2=0, (1.29)

where it may be shown that (x*)=3((2?))? for a Gaussian
process.!? Solving this quadratic and utilizing only the
positive root (since (x2)>0),

(=)= (66 [ (14125 22 —1].
(D =52—3er,? (ev.21).

(1.30)
(1.31)

Comparison of Eq. (1.30) with the exact solution shows
good agreement for es,2<1, while Eq. (1.31) concurs
with the approximate solution obtained by the pertur-
bation method."

II. EXTENSION TO n-DEGREE-OF-FREEDOM SYSTEMS

The extension of the foregoing technique to the
general 11-degree-of-freedom system is quite involved so
we shall not discuss the most general case, but restrict
our discussion to the case where the nonlinearity is
a function of the displacements alone.

Consider the following system of equations in
matrix notation:

avt

I{fé}+61{i}+[92]{x}+#‘ }={f(z>}, @1

X

where (a) [©*] is an N XN symmetric positive definite
matrix, (b) u>0, (¢) [01"[0]=1, (d) [0]7[*][0]= [*],
and (e) f.(#) are uncorrelated Gaussian processes with
means of zero; i.e.,

(ft(t))':() (L:l) 21 "',"‘);
(fi) fit))=Rs(ta—11);
(f:(8) fi(2))=0  (i77).

Letting {x} =[6]{£} and {Q(0)} =[61"{f()},

(2.2)

vt
HB+61H +12K8 +M[0]T[EI —0W). (23)

It may be shown that [817{aV1/dx}={aV1/at}). Also,
the correlation matrix ({Q(¢)}{Q{2)}T) is a diagonal

matrix. Hence, the Qs are uncorrelated. Thus, the

9 Reference 1, Fqgs. (2.10) and (2.17).

WH. Cramer, Mathematical Methods of Statistics (Princeton
University Press, Princeton, N. J.. 1946), p. 184.

1S 1. Crandall, “Perturbation Techniques for Random Vibra-
tion of Nonlinear Systems,” J. Acoust. Soc. Am. 35, 1700 (1963),
L. (2.14). (THis issue.]
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ith row of Eq. (2.3) is

EitBEtwiitudV1/0ti=Qu(), (2.9
which may be written as
ErtBEitwiedbirtedfnty, - 8)=0:0). (2.5
Minimizing & with respect to w,e® yields
vt )
Wieg =witub—— [ XE2 (2.6)

i

If the process is ergodic, the time averages may be
replaced by the ensemble averages:

wltulE0V1/08:)/(E3). 2.7

If e;(£1,6s,0 -+ E.) 1s neglected in Eq. (2.3), then the
equation is linear and may be solved by standard
techniques. Thus,

2__
Wieq =

Weato (@) = [ @ia— )+ (BT W 00 (@) (2.8)
(&)= /‘Umm—— BT W ag (@) (2.9)

Maam@FUMWQ@M%
Xam«—éswﬂ@ﬁy (2.10)

If 8 is small and Wy, (w) is a smooth function, then
Eq. (2.9) becomes

™ Wo,0 (‘*’Leq)

(E)~— (211
2 Bwied
Using Eq. (2.7), Eq. (2.11) reduces to
7 Wo,0:(Wieq) avT
gy < ) an
dE;

A. Example

Using equivalent linearization, let us show that the
mean square displacements in a nonlinear n-degree-of-
freedom system are less than those of the corresponding
linear system when the nonlinearities are of the “harden-
ing spring” type and when both systems are subjected
to the same spectral density of the excitation.

It £.(0V1/08,) =0 for all &, then from Eq. (2.12),

T oo (Wiea)
g2y T el (2.13)
2 ﬁwiz

In addition, if the fs are white random excitations,

CAUGHEY,

AND LYON

then the Q,'s are also white and Eq. (2.9) yields

L avt
—L &; > < gl
(.L!i.2 6&

Utilizing the procedure discussed in the first paper of
this symposium,'?

<£1‘2> = ‘Tfi2_

(2.14)

<w#§mmwﬁ<§wwwe%auﬁ>

which is the desired result.

B. Calculation of Mean Square Displacement

Since the nonlinearity is a function of the displace-
ments alone, then

oVt
(e > EOH (B k). (216
Inserting Eq. (2.16) into Eq. (2.12),
x W 1( teq)
ey~ B At (2.47)

o

where wied=wi+ul;(£1,80, - ,6n). When uH,/wi<1
and the f;’s are white, a good approximation is given by

(=0 2(1—pH /u). (2.18)

III. N-DEGREE-OF-FREEDOM QUASILINEAR SYSTEM
Again, consider the system studied in the first paper!?:
I8+ DV = (0, (3D

where f;(t)’s are stationary, Gaussian, white random
excitation with means of zero, and

(filt) [i(te)) =3 W od (to—11).
Using the transformation {x}=[67]{¢} on Eq. (3.1},

(3.2)

KE s+ 1+ 2V ][ HE = (00}, (3.3)
The ith row of Eq. (3.3) is
EtBEALw2EANU/8E]=Qu(1), (3.4)
where
N N
U=12 ¥ wlwlélEe.
j=1 k=1
Let us now apply the equivalent linearization

technique to Eq. (3.4):

.-é,"f'ﬁé;—f‘w.;eq‘lff}‘t’f[(:‘(,.if,i) - Ot(’) (35)

2 Reference 1, s, (2.46)—(2.30).
14 I\elerencel Fas. (2.35)-(2.40).
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Minimization of e?2 yields for an ergodic process

al
wi«-q2:wi?+)\<£1 >/<E{"). (3.0
d¢;
Hence,
()= / i =) (@811 gy, ()
J0
Vo0
SI 6
2 Bwi(-q?

since the s are white. Substituting Eq. (3.6) into

Eq. (3.7),
, NIIA
() =ae—— Ez—>-
wr’ 651

(3.8)

1t should be noted that, if the exact probability
density is used to calculate (£,0U/8&.), then Eq. (3.8)
is identical with the exact solution. In general, however,
p 15 not known and the assumption is mace that it is
Gaussian, with variances to be determined. Thus,

plELE, -y =[(2m)™ H EHT

X exp ~>: 2250, (3.9)

Using this probability,

ol x
(s ) =at e S wi e F2rte)). (310

N
If S=XY w*E?), then, as Caughey has shown,®

i=1

S={—1+[1H4(VF20a;, 2] /2014 2/)  (3.11)

IN NONLINEAR STRUCTURES

and
E&)={— A+)+LA+S) -8 a1 ]1} /Ahwi?,  (3.12)
which for small nonlinearities gives
(£2)=[1— (N4+2)hog 2oy 2 (3.13)

1f, however, we make the approximate evaluation of
Eq. (3.8) by evaluating {(¢,0U/3%;) using the Gaussian
distribution for the linear system, then as before

<Ek2>:[1_ (LV-!—Z))\GE'::IGEL_Z. (314)

This corresponds with the first-order solution obtained
by Ariaratnam!* by expanding the exact solution from
the Fokker—Planck equation.

IV. OTHER TECHNIQUES FOR EQUIVALENT
LINEARIZATION

The Booton—Caughey technique is only one of many
different methods for obtaining approximate solutions
to nonlinear random excitation problems. Rice!® has
developed a number of techniques for analyzing
frequency-independent nonlinear elements. These tech-
niques can easily be modified for use in equivalent
linearization, as done hy Sewaragi and Takahashi'® and
Caughey.!” They are somewhat more difficult to use
and, for this reason, have not been used very often for
the class of problems discussed in this paper. However,
they are ideally suited to problems involving both
random and detcrministic parts in the solution.

4§ I Ariaratnam, “Random Vibration of Non-Linear Suspen-
sions,” J. Mech. Eng. Sci. 2, 195-201 (1960).

15§, 0. Rice, “Mathematical Analysis of Random Noise,” Bell
System Tech. J. 23, 282-332 (1944); 24, 46-156 (1945). [Also,
N. Wax et al., Selected Papers on Noise and Stochastic Processes
(Dover Publications, Inc., New York, 1954), pp. 133-294.]

16 Y, Sewaragi and S. Takahashi, “Statistical Analysis of Con-
trol Systems Containing Zero-Memory Non-Linearization under
Ra%(é())m Inputs,” Proc. Japan Natl. Congr. Appl. Mech. 5th
(1955).

11T, K. Caughey, “Response of Van der Pol’s Oscillator to
Random Excitation,” J. Appl. Mech. 26, 345-348 (1959).



