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Abstract: One of the development directions of new-generation mobile communications is using
multiple-input multiple-output (MIMO) channels with a large number of antennas. This requires
the development and utilization of new approaches to signal detection in MIMO channels, since the
difference in the energy efficiency and the complexity between the optimal maximum likelihood
algorithm and simpler linear algorithms become very large. The goal of the presented study is the
development of a method for transforming a MIMO channel into a model based on a sparse matrix
with a limited number of non-zero elements in a row. It was shown that the MIMO channel can
be represented in the form of a Markov process. Hence, it becomes possible to use simple iterative
MIMO demodulation algorithms such as message-passing algorithms (MPAs) and Turbo.

Keywords: MIMO; sparse matrix; Turbo coding

1. Introduction

This paper is an extended version of the conference paper [1]. The study introduces and
compares various multiple-input multiple-output (MIMO) channel matrix sparsification
methods. A description of the Turbo detection algorithm in a MIMO system with a sparsed
equivalent channel matrix based on a minimum mean square error (MMSE) detector is also
considered. Finally, a comparison of the link-level performances for all of the analyzed
algorithms is provided.

One of the directions of the development of new generations of mobile communica-
tions is the use of MIMO channels with a large number of antennas. The MIMO technology
is one of the most efficient technologies, providing a significant increase in the throughput
and an increase in the number of active users. Moreover, the performance grows linearly
with an increase in the number of transmitting and receiving antennas. This addresses the
requirements for communication systems of 5G and 6G generations [2–4].

However, an increase in the number of antennas leads to a significant complication
of signal-processing algorithms in MIMO systems. There are many options for construct-
ing MIMO detectors, which differ both in their characteristics and in the complexity of
implementation [5,6]. Among the variety of options for constructing MIMO detectors, two
limiting cases can be distinguished [7]. At one extreme is the optimal maximum likelihood
(ML) receiver, which has the best characteristics but is also the most difficult to implement.
Its complexity grows exponentially with the number of antennas and modulation order.
At the other extreme, there is a linear MMSE receiver, which has a simple implementation
(the complexity grows in proportion to the third power of the number of antennas), but it
significantly loses the characteristics to an ML receiver.
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In [5], a comprehensive overview of MIMO detectors is given, of which the characteris-
tics are between those of ML and MMSE receivers. There are two directions for improving
MIMO detectors: simplifying the ML detector with losses in the energy efficiency and
complicating the MMSE detector by increasing the energy efficiency. The first direction
includes algorithms based on spherical decoding, e.g., K-best [6,8,9]. The second direction
includes various iterative algorithms using the MMSE detector as a basis, e.g., ESA, EPA,
and V-BLAST detector [2,10–16].

It should be noted that a similar problem also exists in the implementation of mul-
tiuser detectors in communication systems with multiple access, especially in systems
of non-orthogonal multiple access (NOMA) [17–19]. However, unlike MIMO systems,
communication systems with NOMA have the ability to select various templates and user
signals matching a specific type of processing at the receiver. This makes it possible to
provide good energy performance with acceptable implementation complexity.

One of the effective approaches of signal detection is based on iterative methods, such
as low-density signature (LDS) [20] or sparse code multiple access (SCMA) [3,20–27]. A
necessary condition for their use is the ability to represent the channel model in the form of
a sparse matrix, as a result of which an individual observation is not a superposition of all
symbols at once but only a subset of the symbols. In this case, the number of combinations
for one observation will be significantly less than the number of combinations for the
entire set of symbols. This makes it possible to use the sequential (optimal) processing
of each observation and transfer the received information for the processing of the next
observation [8,16,19,28–32]. Similar algorithms are used in Markov processes with finite
fixed connectivity.

In MIMO systems, in the general case, the channel matrix is completely filled. There-
fore, it is impossible to directly use iterative algorithms to detect MIMO channel sig-
nals [14,15,25,28]. This paper proposes a new direction in the development of MIMO
detectors. It is based on the transformation of the MIMO channel model to a form con-
venient for using simple algorithms, i.e., the processing algorithm is not adjusted for the
channel model, but the channel model is converted to the processing algorithm.

The goal of the paper is the development of a method for transforming a MIMO
channel model into a channel with a sparse matrix containing a limited number of non-
zero elements in a row or representing a MIMO channel signal in the form of a Markov
process. Hence, it becomes possible to use simple iterative MIMO demodulation algorithms
(message-passing algorithms (MPAs), Turbo, etc.). The utilization of these algorithms is
especially beneficial in low-power devices, such as, sensors, meter, Internet of things (IoT),
and reduced-capacity (RedCap) devices.

The rest of the paper is arranged as follows. In the next section, we introduced a
MIMO system model and lay down theoretical prerequisites and potential possibilities
of an accurate representation of the MIMO channel matrix in the sparse format. Then, in
Section 3, we derived several methods of the approximation of the MIMO channel matrix
by a sparse matrix. In Section 4, the modeling and verification of the efficiency of the
methods introduced above are presented. Finally, we drew the conclusions in Section 5.

In the paper, the following mathematical symbols, parameters, and operators are used:

• capital letter, e.g., H used for matrices;
• det: determinant of a matrix;
• tr: trace of a matrix;
• chol: Cholesky decomposition of a matrix;
• X′: transpose of matrix X;
• X−1: inverse of a matrix X;
• |hm,n|: modulo of hm,n;
• V(ij): block-component matrix of matrix V;
• ppr(x): the prior distribution;
• Λeq(x): the equivalent likelihood function.
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2. Representation of the MIMO Channel Matrix in the Sparse Format

Let there be an observation:
Y = HX + η, (1)

where Y is an N-dimensional complex vector of signal samples at the input of the MIMO
detector, which can be considered a vector of output samples of the MIMO channel, X is
an M-dimensional complex vector of transmitted QAM symbols, which can be considered
a vector of input samples of a MIMO channel, η is the N-dimensional vector of complex
samples of the observation noise with zero mathematical expectations and a correlation
matrix, R = 2σ2

η IN is an identity matrix of size (N × N), and H is a (N ×M)-dimensional
complex matrix of the MIMO channel, the elements of which are complex Gaussian random
variables with zero mathematical expectations and unit variance for Rayleigh fading. The
observation noise variance σ2

η determines the signal-to-noise ratio (SNR) at the input of the
receiving antenna:

SNRTx−Rx =
1

2σ2
η

.

It is known that for any square matrix H of full rank, there exists a QR decomposition:

H = QR, (2)

where R is an upper triangular matrix, which is completely described by N × (N + 1)/2 coef-
ficients, and Q is an orthogonal matrix, which is also uniquely determined by N × (N − 1)/2
coefficients.

From the point of view of the amount of information, such a decomposition does
not lead to the appearance of redundancy or to the loss of information, due to the follow-
ing equation:

N(N + 1)/2 + N(N − 1)/2 = N2, (3)

which is the amount of information contained in the original matrix H that is fully preserved.
Therefore, it can be assumed there exists such a decomposition of the channel matrix:

H = QS, (4)

for which matrix S contains N × (N + 1)/2 nonzero elements. The only problem is that
these non-zero elements are evenly distributed over all rows, with the average number of
non-zero elements in each row less than or equal to (N + 1)/2.

If such a transformation shown in Equation (4) is found, then it will allow the use of
simpler iterative algorithms for demodulation.

3. Methods for the Approximation of the Channel Matrix by a Sparse Matrix

Unfortunately, it is not possible to find the exact decomposition of the channel matrix
into an orthogonal and sparse matrix with a fixed number of non-zero entries in a row. The
application of numerical methods to test this approach aslo shows that, most likely, such
a decomposition does not exist. In addition, even if we assume that such a decomposition
exists, then it will allow using iterative demodulation algorithms with a complexity of
NitN2MMbit/2, instead of an optimal demodulator with a complexity of 2MMbit , where
Mbit = log2(M) is the number of bits in one M-QAM symbol. For large M, such an
algorithm will also be difficult to implement. Therefore, we considered approximate
methods for representing a MIMO channel in the form of decimated channels as belows,
i.e., such channels in which each observation contains only part of the symbols.
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3.1. Kullback Distance for the Approximated Channel Model

Let us consider as an approximation criterion the Kullback distance between two
distributions, which is determined as follows [33,34]:

D(p, q) =
∫
X

p(X) ln
(

p(X)

q(X)

)
dX, (5)

where p(X) is the original distribution and q(X) is the approximated distribution.
Let distributions p(X) and q(X) be multivariate complex Gaussian distributions and

are represented in the following forms:

q(X) = 1
πMdet(Q)

exp
{
−
(

X− X̃
)′

Q−1
(

X− X̃
)}

p(X) = 1
πMdet(V)

exp
{
−
(
X− X

)′V−1(X− X
)}

,
(6)

Substituting Equation (6) into Equation (5), we can obtain:

D(p, q) = − ln det
(
Q−1V

)
+

+tr
{(

Q−1V
)
− IM

}
+
(

X̂− X̃
)′

Q−1
(

X̂− X̃
)

.
(7)

Let us assume we need to approximate a distribution with a fully filled correlation
matrix V of which the distribution determined by a partially filled correlation matrix Q
(for example, diagonal, block-diagonal, or sparse) or by a correlation matrix with a certain
relationship between elements. In this case, minimizing the distance D(p,q) is reduced for
the fulfillment of the equality:

X̃ = X, (8)

and the minimization of the following functional:

D(p, q) = − ln det
(

Q−1V
)
+ tr

{(
Q−1V

)
− IM

}
, (9)

which is subjected to restrictions on the form of the matrix Q.
We use the criterion D(p, q) →

(X̃,Q)
min for minimizing the distance between the channel

matrix H by an approximate sparse matrix H̃, i.e., instead of Equation (1), we use the
following model:

Ỹ = H̃X + η, (10)

where matrix H̃ in each row has at most m non-zero elements. For now, we consider the
case when the placement of these elements in the matrix is given.

As the initial and approximated distributions, we use the posterior distributions
obtained for Equations (1) and (10) using the Gaussian prior distribution X ∼ N

(
Xpr, Vpr

)
.

The posterior distributions can be found from the Bayes’ theorem:

pps(X|Y ) =
L(Y|X )ppr(X)∫
L(Y|X )ppr(X)dX =

1
πMdet(V)

exp
{
−
(
X− X̂

)′V−1(X− X̂
)}

,
(11)

qps

(
X
∣∣∣Ỹ) =

L(Ỹ|X )ppr(X)∫
L(Ỹ|X )ppr(X)dX

=

1
πMdet(Q)

exp
{
−
(

X− X̃
)′

Q−1
(

X− X̃
)}

,
(12)

where L(Y|X ) and L
(

Ỹ|X
)

are likelihood functions that are Gaussian according to the
models (1) and (10).
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It is easy to show that the parameters of the distributions pps(X) and qps(X) are
MMSE solutions (i.e., from the estimates and correlation matrices perspectives) for the
corresponding models and are determined by the expressions [7]:

For an accurate model:

X̂ = Xpr + K(Y− HXpr)

V =
(

H′R−1
η H + V−1

pr

)−1
= Vpr − KHVpr

K =
(

H′R−1
η H + V−1

pr

)−1
H′R−1

η = VprH′
(

HVprH′ + Rη

)−1;

(13)

For the approximated model:

X̃ = Xpr + K̃(Ỹ− H̃Xpr)

Q =
(

H̃′R−1
η H̃ + V−1

pr

)−1
= Vpr − K̃H̃Vpr

K̃ =
(

H̃′R−1
η H̃ + V−1

pr

)−1
H̃′R−1

η = VprH̃′
(

H̃VprH̃′ + Rη

)−1.
(14)

According to Equation (8), the mathematical expectations of the original and approxi-
mated distributions should be fulfilled, which are MMSE estimates:

X̂ = X̃. (15)

From Equation (15), we obtain that:

K̃Ỹ = X̂

Ỹ = K̃−1X̂ =
(

H̃′
)−1(

H̃′H̃ + 2σ2
η IM

)(
H′H + 2σ2

η IM

)−1
H′Y.

(16)

Taking into account that combinations of QAM symbols Xpr = 0 and Vpr = IM
are independent and equiprobable, as well as the independence of the noise samples
Rη = 2σ2

η IN , and substituting the expression for the correlation matrix Q in Equation (9),
we find the conditions which must meet the channel matrix:

H̃ = argminD(p, q)
H̃

= argmin
H̃

(
− ln detQ−1V + tr

{
Q−1V − IM

})
=

argmin
H̃

(
− ln det

(
1

2σ2
η

H̃′H̃ + IM

)
+ tr

{(
1

2σ2
η

H̃′H̃ + IM

)
V
})

.
(17)

This condition is minimized under the given constraints on the form of the matrix H̃,
i.e., on the arrangement of non-zero elements. Obviously, the minimum value of D(p,q) also
depends not only on the value of these elements, but also on their locations.

3.2. Diagonal Matrix Approximation

The simplest form of the approximating matrix is the diagonal matrix
H̃ = diag

{
h̃ii, i = 1, N

}
. For it, we obtain:

H̃ =

argmin
H̃

(
− ln det

(
1

2σ2
η

H̃′H̃ + IM

)
+ tr

{(
1

2σ2
η

H̃′H̃ + IM

)
V
})

=

argmin
H̃

(
−

M
∑

m=1
ln
(

1
2σ2

η

∣∣∣h̃mm

∣∣∣2 + 1
)
+ 1

2σ2
η

M
∑

m=1

∣∣∣h̃mm

∣∣∣2vmm

)
,

(18)

where vmm are the diagonal elements of the correlation matrix V.
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Performing differentiation with respect to
∣∣∣h̃mm

∣∣∣2 and equating it to zero, we obtain
the system of equations:

− 1∣∣∣h̃mm

∣∣∣2 + 2σ2
η

+
vmm

2σ2
η

= 0. (19)

From here, we obtain the solution:

∣∣∣h̃mm

∣∣∣2 =
2σ2

η

vmm
(1− vmm). (20)

In this case, the accuracy of the approximation depends only on the modulus
∣∣∣h̃mm

∣∣∣2.

3.3. Block Diagonal Matrix Approximation

Let the matrix H̃ be represented as a block-diagonal matrix with blocks of size (m×m):

H̃ =


H̃
(11)

Omm · · · Omm

Omm H̃
(22) · · · Omm

...
...

. . .
...

Omm Omm · · · H̃
(KK)

, (21)

where Omm is a zero matrix of size (m×m).
In this case, the Kullback distance is equal to:

D = − ln detV −
K

∑
i=1

(
ln det

(
1

2σ2
η

H̃(ii)′ H̃(ii) + Im

)
+ tr

{(
1

2σ2
η

H̃(ii)′ H̃(ii) + Im

)
V(ii) − Im

})
, (22)

where V(ii) is the corresponding diagonal block of size (m×m) from the general correlation
matrix V.

Optimal matrices minimizing this distance are determined by the expressions:(
1

2σ2
η

H̃(ii)′ H̃(ii) + IM

)
=
(

V(ii)
)−1

. (23)

From this, we obtain:

H̃(ii)′ H̃(ii) = 2σ2
η

((
V(ii)

)−1
− IM

)
. (24)

To find the matrix H̃(ii), one can use known variants of matrix decomposition, for
example, SVD decomposition or Cholesky transform [35–40]:

H̃(ii) = chol
(

2σ2
η

((
V(ii)

)−1
− IM

))
. (25)
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In this case, the matrix H̃(ii) is the upper triangular matrix. As a result of this procedure,
we obtain the channel matrix of the following form:

H̃ =



x x x
0 x x
0 0 x

0 0 0
0 0 0
0 0 0

· · ·

0 0 0
0 0 0
0 0 0

x x x
0 x x
0 0 x

· · ·

· · · · · ·
x x x
0 x x
0 0 x


. (26)

The accuracy of such an approximation is determined by the following value of the
Kullback distance:

D = − ln detV +
K

∑
i=1

ln detV(ii). (27)

It can be noted that the value of D depends on how the original matrix is split into
blocks. Therefore, Equation (27) can be used as an optimization criterion for splitting V
into V(ii) blocks (groups of symbols).

The detection for Equation (10) with a matrix of Equation (26) was carried out sepa-
rately for each i-th block (i = 1, K). The complexity of the optimal demodulation of one
such block is proportional to 2mMbit .

3.4. Strip Matrix Approximation

The next version of the sparse matrix representation is a strip matrix, which for m = 2
has the following form:

H̃ =



h̃11 h̃12 0 · · · 0 0 0
0 h̃22 h̃23 · · · 0 0 0
0 0 h̃33 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · h̃M-2,M-2 h̃M-2,M-1 0
0 0 0 · · · 0 h̃M-1,M-1 h̃M-1,M
0 0 0 · · · 0 0 h̃M,M


. (28)

It is known that the correlation matrix can be represented by the Cholesky expansion:

V = U′U, (29)

where U is the upper triangular matrix. Likewise, Q−1 = G′G.
Then,

D = − ln det
(
Q−1V

)
+ tr

{
Q−1V − I

}
=

− ln detV − ln det(G′G) + tr{G′GV − I} =

− ln detV −
M
∑

i=1
ln|gii|2 + tr{GVG′ − I} =

ln detV −
M
∑

i=1
ln|gii|2 + tr{GU′UG′ − I} =

ln detV −
M
∑

i=1
ln|gii|2 +

M
∑

j=1

M
∑

i=1

∣∣∣(ug)ji

∣∣∣2 −M,

(30)
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where (ug)ij is the ij-th element of the matrix UG′. For a strip matrix G with m diagonals,
we obtain:

(ug)ji =
m−1

∑
n=0

g∗i,i+nuj,i+n, j ≤ i + n. (31)

3.5. Approximation by a Markov Process

The possibility of using sequential iterative procedures in MIMO detection is allowed
by the possibility of representing the evaluated process in the form of a Markov process. In
this case, the multivariate posterior distribution is represented as a product of conditional
distributions with a finite fixed connection:

pps(x1, . . . , xM) =

(
M−k−1

∏
i=1

pps(xi|xi+1 , . . . , xi+k)

)
pps(xM−k, . . . , xM), (32)

where k is the order (memory, connectivity coefficient) of the Markov process.
Having obtained the distribution parameters pps(xi+1, . . . , xi+k), it is possible to calcu-

late the parameters of the next distribution pps(xi, . . . , xi+k−1) in Equation (32). In this case,
the complexity is determined by the value of the parameter k, not by the dimension of the
entire vector M.

It should be noted that the representation of the channel matrix in the form of a
strip matrix with k non-zero diagonals also leads to the representation of the posterior
distribution in Equation (32). Next, we consider an approach that also follows the MMSE
solution, but without using a direct transition to the observation equation.

Let the posterior distribution be obtained as:

pps(x1, x2, x3, . . . xM) = pps(X/Y) =
1

πMdet(V)
exp

{
−
(
X− X̂

)′V−1(X− X̂
)}

. (33)

This distribution can be written in a factorized form:

pps(x1, x2, x3, . . . xM) = pps(x1|x2, x3, . . . xM )pps(x2|x3, . . . xM ) · · · pps(xM−k+1, . . . xM), (34)

where
pps(xi|xi+1, . . . xM ) =

pps(xi ,xi+1,...xM)
pps(xi+1,...xM)

=

1
πv2

i|i+1,...M
exp

{
− 1

v2
i|i+1,...M

|xi − x̂i(xi+1, . . . xM)|2
} (35)

This conditional distribution can be represented as the result of combining the prior
distribution ppr(xi) and the equivalent likelihood function:

pps(xi|xi+1, . . . xM ) =
Λeq,i(xi, xi+1, . . . xM)ppr(xi)∫

xi

Λeq,i(xi, xi+1, . . . xM)ppr(xi)dxi
. (36)

Hence, the equivalent likelihood function is determined by the expression:

Λeq,i(xi, xi+1, . . . xM) = C
pps(xi|xi+1, . . . xM )

ppr(xi)
. (37)

The concept of an equivalent likelihood function, in general, is associated with the
concept of external information, which was obtained from general observation and refers
only to the considered vector [xi, xi+1, . . . xM] [7].

The idea of representing a sequence x1, x2, x3, . . . , xM by a Markov process with a
connection of the k-th order is to approximate pps(xi|xi+1, . . . xM ) ≈ pps(xi|xi+1, . . . xi+k )
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and describe the general distribution in Equation (32). In this case, the equivalent likelihood
functions only depend on k + 1 symbols:

Λeq,i(xi, xi+1, . . . xi+k) = C
pps(xi|xi+1, . . . xi+k )

ppr(xi)
. (38)

For k = 0, we obtain a usual approximation by a diagonal matrix.
Taking into account Equation (32), the complete equivalent likelihood function is

the product:

Λeq(X) , C
pps(X|Y )

ppr(X)
=

(
M−k−1

∏
i=1

Λeq,i(xi, xi+1, . . . xi+k)

)
Λeq,M−k(xM−k, . . . xM), (39)

where

Λeq,M−k(xM−k, . . . xM) = C
pps(xM−k, . . . , xM)

ppr(xM−k) . . . ppr(xM)
. (40)

Below, we present the rules for calculating the parameters of equivalent likelihood functions.
Firstly, there is an initial distribution:

pps(x1, x2, x3, . . . xM) = pps(X|Y ) ∼ N
(
X, V

)
. (41)

From Equation (41), one can select the distribution parameters of the truncated vector:

pps(xi, xi+1, . . . xi+k) ∼ N
(
Xi...i+k, Vi...i+k

)
. (42)

We represent the vector of mathematical expectations and the correlation matrix in the
block form:

Xi...i+k =

[
xi

Xi+1...i+k

]
, (43)

Vi...i+k =

[
vii vH

i,i+1...i+k
vi,i+1...i+k Vi+1...i+k

]
. (44)

Conditional distribution parameters pps(xi|xi+1, . . . xi+k ) ∼ N
(

xi|i+1...i+k, vi|i+1...i+k

)
are determined by expressions:

xi|i+1...i+k = xi + Ti|i+1...i+k
(
Xi+1...i+k − Xi+1...i+k

)
= Fi|i+1...i+kXi...i+k + Ti|i+1...i+kXi+1...i+k

vi|i+1...i+k = vii − vH
i,i+1...i+kV−1

i+1...i+kvi,i+1...i+k = vii − Ti|i+1...i+kvi,i+1...i+k
(45)

where
Ti|i+1...i+k = vH

i,i+1...i+kV−1
i+1...i+k

Fi|i+1...i+k =
[

1 −Ti|i+1...i+k
]
.

(46)

The equivalent likelihood function is determined by the following expression:

Λeq,i(xi, xi+1, . . . xk) = C pps(xi |xi+1,...xk )
ppr(xi)

=

C
exp

(
−(xi−xi|i+1...i+k)

H
v−1

i|i+1...i+k(xi−xi|i+1...i+k)
)

exp(−xi
H xi)

=

C exp
(
− 1

2σ2
η
|zi − fiXi...i+k|2 + |xi|2

)
.

(47)

where
zi = fiXi...i+k

fi = Fi|i+1...i+k

√
2σ2

η√vi|i+1...i+k
.

(48)
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The equivalent likelihood function Λeq,M−k+1(xM−k+1, . . . xM) used as the initial
one for constructing the demodulation procedure is determined based on its definition—
Equation (40)—and has the following form:

Λeq,M−k(xM−k, . . . xM) =

C exp
{
−
(
XM−k...M − XM−k...M

)HV−1
M−k...M

(
XM−k...M − XM−k...M

)
+ XH

M−k...MXM−k...M

}
.

(49)

After transformation, this function can be represented as follows:

Λeq,M−k(xM−k, . . . xM) = C exp

{
− 1

2σ2
η
‖ZM−k − FM−kXM−k‖2

}
, (50)

where
ZM−k = FM−kKM−kXM−k...M

FM−k = chol
(

V−1
M−k...M − Ik+1

)
KM−k = (Ik+1 −VM−k...M)−1

(51)

The obtained likelihood functions can be used to calculate metrics and implement an
iterative demodulation procedure (MPA, Turbo detector, etc.):

µ
(t)
i = log Λeq,i

(
X(t)

i...i+k

)
= − 1

2σ2
η

∣∣∣zi − fiX
(t)
i...i+k

∣∣∣2 + ∣∣∣x(t)i

∣∣∣2, for i = 1, M− k− 1

µ
(t)
M−k = log Λeq,M−k

(
X(t)

M−k...M

)
= − 1

2σ2
η
‖ZM−k − FM−kX(t)

M−k...M‖
2
+ ‖X(t)

M−k...M‖
2 (52)

where X(t)
i...i+k is the t-th combination of the (k + 1)-dimensional vector Xi...i+k = [xi . . . xi+k]

T ,

X(t)
M−k...M is the t-th combination of the (k + 1)-dimensional vector XM−k...M = [xM−k . . . xM]T .

It is easy to notice (M− k + 1) metrics were calculated with this algorithm, each with
a volume 2(k+1)Mbit . This is significantly less than in the optimal combination algorithm
with 2MMbit combinations.

Thus, the considered method makes it possible to factorize the likelihood function
into factors with a less connectivity, i.e., with a smaller number of observed symbols
in individual FP components. This is equivalent to using a decimated channel matrix.
Therefore, the methods of the sparsification of the MIMO channel matrix described in the
previous sub-sections and the Markov approximation method described in this sub-section
solve the same problem of reducing the number of enumerated combinations with the
separate processing of the likelihood function components. Such an approach makes it
possible to use simple iterative methods.

The considered methods of channel matrix sparsification or FP factorization are ap-
proximate, and their accuracy depends on the connectivity coefficient k (or on the fill factor
of the rows of the sparse channel matrix m/M). However, the accuracy of the approxima-
tion also depends on the ordering of symbols during the sparsification procedure, since the
considered approaches mainly take into account the correlation of neighboring symbols.
Therefore, to improve the accuracy of the approximation, one can preliminarily introduce
some ordering of symbols χ = ΠX, where Π is the permutation matrix, which depends on
the correlation matrix of the original distribution. Obviously, to improve the accuracy of
the approximation, before sparsification, it is necessary to arrange the symbols, so that the
largest values of the correlation coefficients are concentrated near the main diagonal.

Figure 1 shows the curves of the Kullback distance D(p, q) between the original
posterior distribution and the one approximated by the number of non-zero symbols in the
rows of the sparsed channel matrix (connectivity coefficient) for the following algorithms:

• Algorithm with a block-diagonal matrix—“block”;
• Algorithm with a strip matrix and the calculation of the coefficients of the sparse

matrix by the method of stochastic optimization—“Opt.”;
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• Algorithm with approximation by a Markov process—“Markov’s”.
• These curves are shown for three options of symbols ordering:
• Without ordering—“without order”;
• Simple ordering—“simple order”. In this option, the symbol with the highest total

power of all mutual correlation coefficients is put in the first place, and the rest are
arranged in descending order of the magnitudes of their mutual correlation coefficients
with the first symbols;

• Serial ordering—“serial order”. In this option, the symbol with the highest total power
of (m − 1) cross-correlation coefficients is selected, and a set Ω(1) of (m − 1) symbols
having the maximum correlation with the first symbol is set. Next, from this set, the
second symbol is selected, with the largest total power of (m − 1) cross-correlation
coefficients, where (m − 2) symbols are already specified and are taken from the set
Ω(1) (except for the first and second selected symbols) and one symbol is selected from
the rest, not included in this set. Then, the third symbol is determined according to
the same principle, etc.
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Figure 1. The dependence of the Kullback distance on the number of non-zero symbols in the sparsed
channel matrix for different methods of multiple-input multiple-output (MIMO) channel matrix
sparsification and for different types of symbol ordering.

With the number of non-zero symbols in the string m = 1, all algorithms have the
same maximum Kullback distance. This case corresponds to a diagonal approximation,
and in terms of demodulation characteristics, it corresponds to a conventional MMSE
receiver. As m increases, as expected, the Kullback distance decreases. Moreover, for the
stripe approximation of the channel model and approximation by the Markov process,
the distance decreases to a greater extent than with the block approximation. Especially,
a strong decrease is observed when using symbol ordering. Sequential ordering is most
effective for m > 2.

Figure 2 shows a generalized block diagram of the MIMO detection algorithm using
the proposed Markov approximation approach. It is based on the MMSE receiver, which
calculates the MMSE estimates vector X̂MMSE and the correlation matrix VMMSE. These
parameters, after ordering, are used to calculate the parameters of the equivalent likelihood
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functions, which in turn are used to calculate the metrics, which are then used in a soft
iterative QAM detector. The output of this MIMO detector is soft bit estimates or a log-
likelihood ratio (LLR) for each bit.
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Next, we consider the application of Turbo processing in the detection of the signal
received after the observation model is parsed. As a result of the performed sparsification
procedure, the parameters describing the following likelihood functions can be obtained:

Λeq,i(xi, xi+1, . . . xi+k) = C exp
(
− 1

2σ2
η
|zi − fiXi...i+k|2 + |xi|2

)
, i = 1, M− k− 1

Λeq,M−k(xM−k, . . . xM) = C exp
{
− 1

2σ2
η
‖ZM−k − FM−kXM−k‖2

}
,

(53)

where parameters zi, fi, ZM−k, FM−k can be calculated using Equations (48) and (51).
Let each QAM symbol xi contains information about m bits, i.e., it depends on an

m-dimensional vector of binary symbols Bi. The total number of bits transmitted by the
vector X is mM. Therefore, we can introduce an (m × M)-dimensional vector of binary
symbols B. Let us introduce a notation for the set of indices Ψi of size m(k + 1), which joins
the numbers of the bits included in the vector Xi = [xi xi+1 . . . xi+k]

T , i = 1, M− K.
It is easy to see that the likelihood function Λeq,i contains information about the

transmitted bits with numbers n ∈ Ψi. Therefore, by processing this likelihood function,
the transmitted bits with numbers n ∈ Ψi can be estimated. It should be noted that the sets
Ψi intersect with each other, so one can get several estimates of the same bit. The task of
demodulation is to process all likelihood functions and evaluate each bit using all received
information. To solve this problem, it is possible use Turbo processing.

Before processing the i-th likelihood function, there is an a priori distribution of
binary symbols:

ppr,i(B) =
mM

∏
n=1

ppr,n,i(bn) =
mM

∏
n=1

1
2
(
1 + bnνn,i,pr

)
=

mM

∏
n=1

ebnλn,i,pr

eλn,i,pr + e−λn,i,pr
, (54)

where bn = ±1 is the transmitted information bit.
The parameters describing this distribution are determined by the following expressions

νn,i,pr = ppr,n,i(bn = 1)− ppr,n,i(bn = −1) = tanh
(
λn,i,pr

)
(55)

λn,i,pr =
1
2

log
ppr,n,i(bi = 1)

ppr,n,i(bi = −1)
= tanh−1(νn,i,pr

)
. (56)
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Notice that the parameter νn,i,pr is the a priori mathematical expectation of the n-th
bit before processing the i-th likelihood function, and the parameter λn,i,pr is proportional
to the logarithm of the ratio of the prior probabilities of the n-th bit before processing
the i-th likelihood function. At the first processing step, the combinations of all bits are
equiprobable, therefore, νn,1,pr = 0.

With this in mind, the posterior distribution is written as:

pps,i(B) = CΛeq,i(B)ppr(B) = C

(
Λeq,i

({
bn∈Ψi

})
∏

n∈Ψi

ppr(bn)

)
∏

n/∈Ψi

ppr(bn), (57)

where
{

bn∈Ψi

}
denotes a set of symbols bn, with numbers n ∈ Ψi.

For those bits that do not belong to the set, we can obtain:

λn,i,ps =
1
2

log
pps,i(bn = 1)

pps,i(bn = −1)
=

1
2

log
ppr,i(bn = 1)

ppr,i(bn = −1)
= λn,i,pr, i /∈ Ψn. (58)

Taking into account Equations (52), (54) and (57), after a series of transformations, we
can obtain:

λn,i,ps =


1
2 log

∑
t∈tn+

exp

(
µ
(t)
i + ∑

n∈Ψi
b(t)n λn,i,pr

)

∑
t∈tn−

exp

(
µ
(t)
i + ∑

n∈Ψi
b(t)n λn,i,pr

) for n ∈ Ψi

λn,i,pr for n /∈ Ψi

, i = 1, M− k, (59)

where tn+ is the set of numbers of combinations t in which the value of the n-th bit in the
binary bipolar representation is equal to +1 (or equal to 0 in the binary representation);
tn− is the set of numbers of combinations t in which the value of the n-th bit in the binary
bipolar representation is equal to −1 or is equal to 1 in the binary representation.

These parameters of the posterior distribution describe an independent distribution,
i.e., it is the same as the input prior distribution. Thus, these distributions can be used as a
priori distributions for the next (i + 1)-th step:

λn,i+1,pr = λn,i,ps. (60)

As a result, we obtain a sequential multi-step procedure for calculating the posterior
parameters of the distribution of the full vector of binary bits B.

Figure 3 shows a block diagram of one signal-processing cycle using a sequential
multi-step procedure for a model with a Markov approximation.
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The resulting multi-step signal-processing procedure at each step uses the optimal
algorithm for estimating the vector of the observed binary bits. However, when passing to
the next step, not the complete posterior distribution is transferred, but only the parameters
describing the independent posterior distribution. Therefore, in the multi-step procedure
itself, at each step, the approximation of the full posterior distribution by an independent
(factorized) one is used. Obviously, this leads to losses. In such cases, iterative Turbo
processing allows for the reduction of losses.

The considered algorithm allows closing the loop and implementing the iterative
procedure, using the posterior distribution obtained at the last step of the (l− 1)-th iteration
as the prior distribution at the first step of the i-th iteration, i.e.,

λ
(l)
n,1,pr = λ

(l−1)
n,M−k,ps, l = 1, 2, . . . , (61)

However, according to Equation (59), in the a posteriori parameters λ
(l−1)
n,M−k,ps, and

therefore, in the a priori parameters λ
(l)
n,1,pr, in part, there is already information obtained

during the processing of the i-th equivalent observation likelihood function at the previous
iteration expressed through its parameter:

δλ
(l−1)
n,i = λ

(l−1)
n,i,ps − λ

(l−1)
n,i,pr . (62)

Therefore, to avoid the duplication and incorrect accumulation of information, it is
necessary to exclude the result of processing the i-th equivalent likelihood function at the
(l − 1)-th iteration from the prior distribution at the i-th processing step and at the l-th
iteration. Consequently, we use the following parameters:

λ
(l)
n,i,pr = λ

(l)
n−1,i,ps − δλ

(l−1)
n,i . (63)

The result is an algorithm with the block diagram shown in Figure 4.

Sensors 2022, 22, 2041 16 of 21 
 

 

( ),1 1,eq nb n∈ ΨΛ ( ),2 2,eq nb n ∈ ΨΛ ( ), ,eq i n ib n∈ ΨΛ

1

( )
,1,pr
l
n
n

λ
∈Ψ 2

( )
,2,pr
l
n
n

λ
∈Ψ1

( )
,1,ps
l
n
n

λ
∈Ψ 2

( )
,2,ps
l
n
n

λ
∈Ψ

( )
, ,pr
i

l
n i
n

λ
∈Ψ

( )
, ,ps
i

l
n i
n

λ
∈Ψ

( ) ( 1)
,1,pr , ,ps

1, 1,

l l
n n M k

i mM i mM

λ λ −
−

= =

= ( )
,1,ps

1,

l
n

n mM

λ
=

( )
,2,ps

1,

l
n

n mM

λ
=

( )
, ,ps

1,

l
n M k
n mM

λ −
=

1

( 1)
,1
l
n
n

δλ −

∈Ψ 2

( 1)
,2
l
n

n
δλ −

∈Ψ

+

( 1)
,
M k

l
n M k

n
δλ

−

−
−

∈Ψ

+ +

+++

−−

− − −

−

 
Figure 4. Block diagram of a single-signal Turbo processing using a sequential multi-step proce-
dure for a Markov approximation model. 
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Figure 4. Block diagram of a single-signal Turbo processing using a sequential multi-step procedure
for a Markov approximation model.
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The complexity of the proposed algorithm is determined by the complexity of the
MMSE detector, which is proportional to M3, and the complexities of Turbo processing and
QAM demodulation, which are proportional to Nit M2m(k+1), where M is the number of
transmitting antennas, m is the number of bits in the QAM constellation, Nit is the number
of iterations in the Turbo algorithm, k is the connective parameters of the models. Variables
Nit and k are the parameters of the algorithm and can be changed during operation to
control the complexity and characteristics of the algorithm. For Nit = 1 and k = 0, the
complexity and characteristics of the algorithm are the same as those of the MMSE. Note
that the complexity of the ML algorithm is proportional to 2mM, which is significantly
above the proposed Turbo algorithm with the sparse transformation of the channel model.

Thus, the proposed approach to sparse the MIMO channel matrix using the Markov
approximation method allows simplified Turbo processing algorithms for signal demodu-
lation in MIMO systems.

4. Modeling and Verification

In order to verify the efficiency of the proposed channel matrix sparsification algorithm,
link-level simulations were carried out with various types of MIMO detectors. The frame
error rate (FER) is a generally accepted performance characteristic for the analysis of various
algorithms used in communication systems. It allows a comparison of energy efficiency
with different types of modulation, coding, and processing algorithms.

Figure 5 shows the dependences of the FER on the SNR per bit (Eb/No) for a MIMO
channel with a size of 8 × 8. The results were demonstrated with different approaches
for the sparsification of the channel matrix (for m = 2) and with different types of MIMO
detectors. The simulations were carried out using QPSK modulation and Turbo code with
a rate of 1/2. There are results for the following options:

1. “Opt.”—optimal soft MIMO demodulator for the exact model (1);
2. “MMSE”—MMSE demodulator for the exact model. It also corresponds to the variant

of the channel model approximation by a diagonal matrix (Section 3.1);
3. “Block”—a demodulator using an approximated block-diagonal MIMO channel

model (Section 3.2; Equations (21) and (25)) with a block size of 2 × 2, with an
optimal demodulator for each block;

4. “Band, Stoh., Opt”—a demodulator using a striped two-diagonal MIMO channel
model (Section 3.3; Equation (28)), in which the parameters of the striped channel ma-
trix are calculated by the stochastic optimization method and the optimal demodulator
for this model is used;

5. “Markov’s, Turbo det”—a Markov approximation of the channel model (Section 3.4)
with connectivity parameters and iterative detection using the method of equivalent
likelihood functions (Equations (47) and (50)) and the principle of Turbo processing
(two iterations);

6. “Band, Stoh., MPA det”—iterative MPA detector (three iterations) using a two-
diagonal striped MIMO channel model (Section 3.3), in which the channel strip
matrix parameters are calculated by the stochastic optimization method.

The results from option (4) above are presented in order to determine the potential
capabilities of different variants of the channel model approximation without taking into
account the complexity of the detector implementation, i.e., without the influence of
suboptimal post-processing.

The curves show that the use of the Markov approximation of the iterative algorithm
adopting the method of equivalent likelihood functions and the principle of Turbo process-
ing achieves the same performance as the approximation of the channel model by a strip
sparse matrix with the optimization of the coefficients by the method of stochastic optimiza-
tion and using the optimal soft demodulator. Thus, we can conclude that this approach
(Markov approximation) and this demodulation method (Turbo processing + equivalent
likelihood functions) achieve theoretically possible characteristics for a given value of the
connectivity parameter. In this case, the loss in comparison with the optimal detector and
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the exact channel model is ~0.8 dB. The difference in the energy efficiency between the
Markov approximation (or the approximation of the channel model by a strip matrix) and
the block-diagonal approximation of the channel model is about 0.5 dB, in favor of the
Markov one.
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Figure 5. Dependences of the frame error rate (FER) on the signal-to-noise ratio per bit for an 8 × 8
MIMO channel with different options for channel matrix sparsification and for different detectors
(QPSK modulation and Turbo code with a rate of 1/2).

The MPA demodulation method (variant 6) is similar in complexity in comparison to
variant 5 but demonstrates losses of about 0.25 dB.

Figure 6 shows similar curves for a coding rate of 3/4. It also demostrates dependen-
cies on different connectivity coefficients of the Markov model (k = 1, 2, 3).
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For a given coding rate, the difference between the block approximation and the
Markov model is about 1 dB in favor of the Markov model. An increase in the connectivity
coefficient of the Markov model increases the energy efficiency but, at the same time, leads
to a complication of the demodulation algorithm. For k = 3, which is equivalent to the
number of non-zero elements in the channel matrix m = 4 (half of the total number of
symbols), the loss of the proposed approach with respect to the optimal demodulation
algorithm is 1–1.5 dB.

Figure 7 shows the FER curves for a 16 × 16 MIMO channel, 16QAM modulation, and
Turbo coding with a rate of 3/4. The MIMO detection algorithm with Markov approxima-
tion (with a connectivity coefficient k of 1) and Turbo processing with different numbers
of iterations are demonstrated. It can be observed that the second iteration leads to an
improvement in the energy characteristics by only 0.15 dB. The third iteration does not lead
to an improvement in the performance. This is largely due to a fairly effective procedure of
symbols ordering.
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Figure 7. Dependences of the FER on the signal-to-noise ratio per bit for a 16 × 16 MIMO channel
for the algorithm with Markov approximation having a different number of iterations and with an
MMSE detector (16QAM modulation and Turbo code with a rate of 3/4).

Compared to the MMSE algorithm (diagonal approximation of the model) for a given
MIMO channel configuration, modulation, and coding parameters, the gain in the perfor-
mance is in the range of 8–14 dB.

5. Conclusions

In this paper, efficient methods to approximate the MIMO channel model by sparse
matrices or with an equivalent Markov process were introduced and thoroughly analyzed.
The proposed approach allows the use of iterative detection methods and leverages the
complexity of the implementation of the MIMO detector and its energy efficiency.

Based on the results of link-level simulations, it was demonstrated that the utilization
of the proposed approach makes it possible to achieve performance characteristics of
a MIMO communication system that are close to the theoretical maximum but with a
significantly less complexity. For example, the reduction in the complexity compared to the
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optimal ML receiver is ~60 times, whereas the SNR decrease does not exceed 0.5–1 dB in an
8 × 8 MIMO configuration, QPSK modulation, with two iterations and a connectivity of
the approximated Markov model k of 1.

The proposed methods are based on the MMSE solution and can be used as the SNR
deteriorates. If the MMSE algorithm provides required FER characteristics, further process-
ing can be excluded. However, if the quality of the MMSE detection is not satisfactory (low
SNR), then the first- or second-order Markov model is used. In most cases, it is sufficient to
use one iteration.
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