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EQUIVALENT MIXING CONDITIONS FOR RANDOM FIELDS?

By RicHarD C. BRADLEY

Indiana University and University of North Carolina

For strictly stationary random fields indexed by R or 79, certain
versions of the ‘“strong mixing” condition are equivalent to corresponding
versions of the ‘“p-mixing”’ condition.

1. Introduction. Dobrushin [(1968), page 205] and Zhurbenko [(1984)
and (1986), page 8] each gave an example to show that, for strictly stationary
random fields indexed by Z2, apparently natural versions of the ‘“¢-mixing’’
condition turn out to be extremely restrictive. Adapting the insights in their
examples, the author [Bradley (1989)] showed that, for such random fields,
such versions of ¢-mixing or even “‘absolute regularity’’ are in fact equivalent
to corresponding versions of ‘“‘m-dependence”’. By Rosenblatt [(1985), page 73,
Theorem 7], this does not apply to corresponding versions of the “strong
mixing’”’ or ‘“p-mixing” conditions. In this note it will be shown that, for
stationary random fields, certain versions of these latter two conditions are
equivalent to each other.

Suppose d > 2 is an integer. Suppose X = (X,, t € R?) is a (real) strictly
stationary random field on a probability space (Q, &, P). For any ¢ € R¢, let
llz]l denote its usual Euclidean norm. Let us give one formulation of the
ordinary notion of “mixing”’ for X: For any elements ¢,,...,t,, € R%, any
elements u,,...,u, € R% any Borel set A c R™ and any Borel set B c R”,
one has that

P((Xz(l), ceey Xt(m)) € A and (Xu(1)+v» cees Xu(n)+v) S B)
= P((Xiy > Xim) € A)P((Xuqyr- > Xo) € B)

as [lvll - «, v € R?. [Here of course ¢(i) and u(i) just mean ¢, and u;.]
Now for any two o-fields &7 and & c %, define the following measures of
dependence:

(1.1) a(A, %) =sup|P(ANB) —P(A)P(B)]|, Ae ¥, Be %,
(1.2) p(, B) ==sup|Corr(V,W)|, Ve bX),WeLH).
The following inequality is elementary:

(1.3) (o, B) < (1/4)p(, B).
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The “distance”” between any two disjoint nonempty subsets S and T c R¢
will be denoted dist(S,T) = inf, . 5 ,rlls — Z|l. For disjoint nonempty sets S
and T, we use the abbreviations

a(S,T) = a(a(Xt, teS),o(X,teT)),
p(S,T) =p(o(X,t€8),0(X,,teT)).

[The notation o(---) denotes the o-field generated by (---).] For any real
number r > 0, define the following dependence coefficients for the given
random field X:

(1.4) a(r) =supa(S,T),

(1.5) . p(r) =supp(S,T),

where in both (1.4) and (1.5) the supremum is taken over all pairs of disjoint
closed d-dimensional half-spaces S and T < R? such that dist(S,T) > r. [A
“closed half-space’” means of course a set of the form {t € R%: {t — s, u) > 0},
where s € R%, u € R4, u # (0,...,0)and { -, - ) denotes the dot product.] For
any real r > 0, define also

(1.6) a*(r)=supa(S,T), S cRY T cR? dist(S,T) >r,
(1.7 p*(r) =supp(S,T), S cRY, T cR? dist(S,T) =r;

that is, here there are no restrictions on the sets S and T except that they be
nonempty and satisfy dist(S,T) > r. Obviously, a(r) < a*(r) and p(r) <
p*(r). Conditions such as a(r) —» 0 (as r — »), p*(r) - 0, and so on, have
been used in the study of limit theory for random fields [see, e.g., Gorodetskii
(1984), Rosenblatt (1985), Ivanov and Leonenko (1989) or Goldie and Morrow
(1986) and the references therein].

Our main result is as follows.

THEOREM 1. Suppose d > 2. Suppose X = (X,, t € R?) is a strictly sta-
tionary random field which is mixing and r > 0 is a real number. Then the
following statements hold:

@) a(r) < p(r) < 27a(r).

(b) a(r) = § if and only if p(r) = 1.
(© a*(r) < p*(r) < 2mwa*(r).

(d) a*(r) = § if and only if p*(r) = 1.

ReEMARK 1. Of course the condition a(r) — 0 implies mixing. Hence by
Theorem 1 the conditions a(r) — 0 and p(r) — 0 are equivalent to each other
for strictly stationary random fields X = (X,, t € R%), d > 2. Similarly, for
such random fields the conditions a*(r) — 0 and p*(r) — 0 are equivalent to
each other. ’

REMARK 2. By essentially the same proof, obvious analogs of Theorem
1(a)-(d) hold for strictly stationary mixing random fields (X,, & € Z¢), d > 2,
that is, indexed by the d-dimensional integer lattice.
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REMARK 3. Again by the same proofs, analogs of parts (c) and (d) of
Theorem 1 still hold when d = 1, that is, for strictly stationary mixing random
processes (X,, ¢t € R) or (X, k£ € 7). This is of course not true in general for
parts (a) and (b).

REMARK 4. One can trivially reformulate some theorems involving p*(r).
For example, from Theorems 3 and 4 of Bradley (1992) and Remark 3 above,
one has the following central limit theorem.

THEOREM 2. If (X, k € 7) is a strictly stationary sequence of real centered
square-integrable random variables such that E(X; + -+ +X,)? > © and
a*(n) >0 as n > o, then (X; + - +X,)/IX; + --- +X,lla converges to
N(0, 1) in distribution as n — .

Here of course a*(r) is as defined by (1.6), with R? replaced by Z.

2. Proof of Theorem 1. We shall prove parts (c) and (d) first and then
just indicate the (trivial) changes that are needed to obtain (a) and (b).

Proor orF (c) AND (d). Denote p := p*(r). The case p = 0 is trivial, so we
assume p > 0. Because of (1.3), to prove both (c) and (d) it suffices to prove
that a*(r) > (27) 'arcsin p. Let & € (0, p) be arbitrary but fixed. To prove
both (c) and (d) it suffices to prove

(2.1) a*(r) = (2m) ‘arcsin(p — ¢).
There exist real simple random variables Y and Z with
(22) EY=EZ=0, EY?=EZ?=1, and q=EYZ>p —¢

such that Y is o(X,q),..., X,;))-measurable and Z is o(X,q,..., X, )-
measurable, where I'and J are positive integers and ¢,,...,¢;, u,...,u ; are
elements of R? such that dist({¢,,...,¢;},{uy,...,u }) = r. There exist Borel
simple functions f: R’ - R and g: RY » R such that Y = f(X,,,..., X,
and Z = g(X,y), ..., X,y (Let all of these things be fixed.)

Let H be a positive number such that

(2.3) H > r + max|lv — wl,
where the maximum is taken over all pairs of elements v, w in the set
{t,...,t;, uy,...,u ). Define the random variables Y, and Z,, & € Z, as
follows: '

Y, = f(Xt(1)4'-(kH,0 ..... 0)r° > Xt(I)+(kH,0 ..... 0)),

Zy, = 8(Xuqy+kH,0,...,00 - +» Xuy+®H,0,...,0))"

Note that Y, =Y and Z,=Z. By (2:3), o(Y,, k€ 2) co(X,, t €S) and
0(Z,, keZ) co(X, teT) for some pair of sets S,T € R? such that
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dist(S, T) > r. Hence
(2.4) a(o(Y,, k€ Z),0(Z,, k€Z))<a*(r).

LEmMMA 1. Suppose f is a finite o-field c o(X, t € RY). Then
lim a(Z,0(Y,,Z) =

J_’°° Jr <

ProoF. There are finitely many sets G € ¢ and finitely many sets @ C
[range of f] X [range of g]. For each such pair G, @, one has that

|P(G N {(Y;,Z,) € Q) - P(G)P((Y,2) €Q)| > 0 asj— e,

by the assumption that X is mixing. Lemma 1 follows. O

Define the strictly increasing sequence of positive integers J, ey, J3, ...
recursively as follows:

To begin, define J; = 1.

Now suppose that n > 2 is an integer and that Jy,...,d,_, have already
been defined. Note that o((Y}, Z,), j € {Jy, ..., J,_,}) is a finite o-field. Using
Lemma 1, let J, be a positive integer such that J,>dJ,_; and

25)  o(o((%.2;), 5 € (Ju s Jue1})s 0 Yy Ziewy)) < 1/

This completes the recursive definition of the sequence o, Jy, J3, ... .

LEMMA 2. As N — «, the random vector

2N
(N+1)7'7 Z Ynys Z z,,m)

converges in distribution to the centered normal law on R? with covariance

matrix

1], where q is as in (2.2).

Proor. This is a well-known type of result. The random vectors
Yyiny Zyny» n =1,2,3,..., have the same distribution [namely, that of

(Y, Z)], with mean vector [0 0] and covariance matrix [ 1]. Also, by (2.5),

2N-1

a(o'((Yja Zj)’ J = {JN’ JN+1’ ce Jn})’ O'(YJ(n+1)’ ZJ(n+1)))
n=N

2N-1 1

26 = X Grnl
1
N
— 0as N — o,
This last fact allows us to reduce Lemma 2 to the case of independent random
vectors, by an old, well-known argument. That argument was spelled out in
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the Appendix of Bradley (1991) in a particular form with our context in mind,
but it is essentially the argument given in, for example, Ibragimov and Linnik
[(1971), page 338, from line 4 to the bottom of the page]. One shows that the
characteristic function of (£2Y\ Y, L2Y v Z, ), differs from the (N + 1)th
power of that of (Y, Z) by uniformly at most 16 - [L.h.s. of (2.6)]. Thus from the
classic CLT for i.i.d. random vectors, Lemma 2 follows. O

Now we adapt a simple argument from Kolmogorov and Rozanov (1960). By
a standard calculation, the centered normal law on R? with covariance matrix

‘i assigns probability (1/4)[1 + (2/7)Xarcsin q)] to the first quadrant

(0,») X (0,»). For each N =1,2,3,... define the events Ay = {£2V\Y,,, >
0} and By = {X2¥yZ,,, > 0}. By Lemma 2,

lim [P(Ay 0 By) ~ P(Ay)P(By)] = (2m) (arcsin ).

Hence, by (2.4) and (2.2), one has that (2.1) holds. This completes the proof of
(¢c)and (d). O

SKETCH OF PROOF OF (a) AND (b). By using translations and rotations of the
coordinate system on R? one can easily derive (a) and (b) of Theorem 1 from
the following lemma.

LeEmMA 3. Suppose d > 2. Suppose X = (X,, t € R?) is a strictly stationary
random field which is mixing and r > 0 is a real number. Define the closed
half-planes

S* = {s = (81,-..584) ERd:stO},
T*={s:=(s1,...,84) ER% 5421}

Then a(S*,T*) > (27) ! arcsin p(S*, T*).

To prove Lemma 3, one simply carries out the proof of statements (c) and
(d) of Theorem 1, with appropriate modifications. In particular, in the defini-
tion of the random variables Y and Z, one takes the indices ¢,,...,¢; from S*
and the indices u,,...,u; from T*. Then (later on) one automatically has
oY, keZ)co(X,,t€8*)and 0(Z,, k € Z) co(X,, t € T*).
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