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Abstract
We consider stochastic approximation algorithms on a general Hilbert space,
and study four conditions on noise sequences for their analysis: Kushner and
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1 Introduction

Since stochastic approximation algorithms were first introduced by Robbins and
Monro in [13], they have been widely studied and applied in various areas, including
stochastic optimization and adaptive control. Results on the convergence of stochastic
approximation algorithms constitute a major part of the research in this field; see, for
example, [13], [7], [12], [5], [10], [6]. Various sufficient conditions for the convergence
of stochastic approximation algorithms have been proposed over the years, with a
view of obtaining increasingly weaker conditions. These include the well known con-
dition of Kushner and Clark [7], which has been extensively applied. Recently, in [2],
Chen gives a sufficient condition that is similar to that of Kushner and Clark, but
appears weaker.

It is of interest to question whether or not the sufficient conditions used in the
literature can be further relaxed. If a sufficient condition is also necessary for conver-
gence, we conclude that the condition cannot be further relaxed. In [5], Clark shows
that for a particular choice of the step size, a form of the law of large number on noise
sequences is both necessary and sufficient for convergence of stochastic approximation
algorithms. Chen et al. give a similar result in [3]. Recently, in [6], Kulkarni and
Horn present a condition that is necessary and sufficient for convergence of stochas-
tic approximation algorithms for general step size sequences. They show in [6] that
Clark’s result [5] can be derived from their result.

In this paper, we study four known conditions on noise sequences for convergence
of stochastic approximation algorithms. These are Kushner and Clark’s condition,
Chen’s condition, a decomposition condition, and Kulkarni and Horn’s condition. We
prove that under standard assumptions, all four conditions are equivalent, and are
both necessary and sufficient for convergence of stochastic approximation algorithms
(see Theorem 1). Our result establishes that the four conditions above cannot be
further weakened, and they are all equally weak in some sense. In our proof we use
the convergence theorem of [6].

We consider a general stochastic approximation algorithm for finding the zero of



a function f:’H — H on a general Hilbert space H:

Tpy1 = Tp — anf(l'n) + anep + anYn, (1)

where x,, € H is the estimate of the zero of the function f, a, is a positive scalar
referred to as the step size, e, € H represents noise originating from estimation or
noisy observation of the function value f(x,), and {v,} is a sequence converging to

zero. We assume that the step size satisfies

nh_)rgo a, =0 and ; a, = 00, (2)
which is a standard assumption in the literature. The four conditions we consider
are deterministic conditions on the noise sequence {¢,}. To use our results in the
stochastic setting, we simply apply the conditions to sample paths of {e,}.

The stochastic approximation algorithm in (1) is identical in form to those con-
sidered in the literature (e.g., [7], [12]), although the latter are usually considered in
a FEuclidean (finite dimensional) setting, rather than on a general Hilbert space H.
For the case where H is finite dimensional, we show that the conditions on {e,} hold
if and only if they hold for each coordinate of {e,} with respect to a given basis for
H (see Proposition 7).

In the remainder of the paper, we denote the inner product on H by (-, -) and the
corresponding induced norm by || - ||. We use R to denote the real line, and N the set

of natural numbers {1,2,...}.

2 Conditions on the Noise Sequence

We consider four conditions on the noise sequence {e,} that have been discussed in
the literature. Actually, we first provide extensions of three of the conditions that
will be used in our main result. These extensions are motivated by the form of the
fourth condition which was introduced in [6]. The conditions all depend explicitly

on the step size sequence {a,}, and express the notion that the cumulative effect of



the noise should be “small” relative to that of the step size. We present and discuss
the four conditions in turn, and study certain special properties of the conditions.
Some of these properties are used in the proof of our main result, while others are of

independent interest.

2.1 Kushner and Clark’s condition

In their well known book [7], Kushner and Clark propose an important sufficient con-
dition on the noise sequence for convergence of stochastic approximation algorithms.
The condition has been adopted in numerous applications for establishing the conver-
gence of stochastic approximation algorithms under specific probabilistic assumptions
on the noise; see, for example, [12], [8], [11], [9], [1]. We present an extension of the

original condition of Kushner and Clark in the following.

Definition 1 Fix a sequence of positive real numbers {a, }. We say a sequence {e,}
on H satisfies Kushner and Clark’s condition with height r, r > 0, (or simply the
KC(r) condition) if for every T > 0,

)<

m(n,T)émaX{k:an—l—---—l—ak§T}.

p

g a;€;

n—co \ n<p<m(nT) || o

lim sup ( sup

where

When r = 0, the KC(r) condition reduces to the regular condition of Kushner and
Clark as stated in the literature (see [12], [10, p. 11]):

p

g a;€;

i=n

lim sup =0 forall T >0.
=00 \ n<p<m(n,T)

For simplicity, we refer to the above KC(0) condition as the KC condition.



di,T) = 3
Figure 1: Pictorial description of some notation.

We introduce some notation that will be used in the sequel. We define a class of

operations on intervals [ C N and 7" > 0 by

K°(I,T) = min(I)—1,

K(I,T) £ m(K™YI,T)+1,T), j>1,j€N,

d(I,T) = min{j: K’(I,T) > max(I)}, (3)
(L, Ty = [KYLT)+ 1L, K (1,T)| N1, 1 <5 <d,T). (4)

Note that {t;(1,7):1 < j <d(I,T)} is a partition of I that divides the interval [
into d(I,T) subintervals, such that the following hold:

Y oa, < T, 1< <d(LT),

net; (1,T)
Z (p + Amax(t;(1,T))+1 > T, 1<5< d([,T).
net; (1,T)
Figure 1 illustrates the above notation. In the sequel, we may drop the arguments [
and T of the operators defined above if it involves no confusion.
We are now ready to present a lemma that will be useful later (e.g., in the proof

of the main result).



Lemma 1 Let {a,} be a positive sequence satisfying (2) and let T be a positive real
number. Then, for every § € R, 0 < § < 1, there exists N € N such that

> a, > [d(I,T)—1]6T

for any interval I on N with min(/) > N.

Proof: Fixd e R,0<d <1, and T > 0. Since a, — 0, there exists N € N such
that a, < (1 — )T for all n > N. For any interval [ with min(/) > N, the desired
inequality is trivial if 3 _;a, < T (since d(I,T) —1 = 0 in this case). Let us assume
that > ;a, > T, ie., d(I,T) > 1. From the definition of ¢; and Ki(I,T), we have

Z ap + amax(tj)—l—l > T7

net;

for 1 <j <d(I,T)— 1. Furthermore, since a, < (1 — )T for all n € 1,

Y a,>T—(1-86T =0T,

net;

Therefore, we obtain

Yo=Y Y

nel J=1 n€ty

> (d—1)dT,

which completes the proof. |

The above lemmaenables us to simplify the KC(r) condition. The KC(r) condition

)ng

requires checking that

p

g a;€;

i=n

lim sup
o0 \ n<p<m(n,T)



holds for all T' > 0. In the following proposition we show that it is enough to check
that the above holds for a countable number of T' > 0.

Proposition 1 Suppose the sequence {a,} satisfies (2). Then, {e,} satisfies the
KC(r) condition, r > 0, if and only if there exist positive sequences {1y} and {s;}

converging to 0 such that

p

g a;€;

i=n

lim sup ( sup ) < (r+ sp)Tk

n—0o n<p<m(n,Ty)
for all k € N.

Proof: Necessity is obvious, so we only prove sufficiency. For convenience, we define

p

g a;€;

i=n

M, (T) = sup

n<p<m(n,T)

, T > 0. (5)

It suffices to show that for all s > 0 and 7" > 0, we have

limsup M, (T) < (r + s)T.

n—0oo

Let s > 0 and T" > 0 be given. Fix € > 0. Since Ty — 0 and s; — 0, we can find
a k € N such that T, < min(T,€/2(r + s)) and s < s. Define a sequence of intervals

{I,,} and a sequence {¢,} on N by

I, = [n,m(n,T),
¢ = d(1,,Ty).

Let & < 1 be a given positive real number. By Lemma 1 and the definition of I,,,

there exists N7 € N such that for all n > Ny,

T2 ai>(c,— 1)

1€l



Therefore,

T
cn<5—Tk—|—1 for all n > N;.

Furthermore, since limsup,_, .. M, (Tk) < (r + sg)Tk, there exists N > N; such that
foralln > N,

M, (Ty) < (r+ )Tk + [%] €.

Applying the triangle inequality, we get that for all n > N,

cn—1
M, (T) < Z M1, 1041 (1)
7=0
(STké
n T+ =
< ¢ {(r—l—s) x + Z(T—I—(STk)]
T (STké
— 11 T,k
< <5Tk + ) [(T MR T 5Tk)]
r 4+ s)T €
_ T 5 ) ()T + 5
< (r4 )T b
1)
Therefore, we obtain
(r+s)T

limsup M,,(T) <

n—o0o 5

Since the above is true for all positive § < 1, we conclude that

limsup M,,(T) < (r 4+ s)T,

n—0oo

which completes the proof. |

For the case where r = 0 (i.e., the KC condition), we can further strengthen the

above proposition. Specifically, we show that it is enough to check

)~

p

g a;€;

i=n

lim sup
o0 \ n<p<m(n,T)

for some T > 0.



Proposition 2 Suppose the sequence {a,} satisfies (2). Then, {e,} satisfies the KC
condition if and only if

p

g a;€;

i=n

lim sup

nree (nSpSm(n,T)

>:0 for some T > 0.

Proof: Necessity is obvious. To prove sufficiency, suppose lim, ., M, (T) = 0 for
some T' > 0, where M, (T) is defined in (5). Let {T}} be any sequence converging to
0 such that T < T for all £ € N. From the definition of M, (-) we have that for all
keN,

M, (Ty) < M,(T) for all n € N.

Therefore, lim, oo M,(Tx) = 0 for all k. By Proposition 1, {e,} satisfies the KC

condition. |

We point out that the above proposition cannot be generalized to the r > 0 case.

That is, the condition

p

g a;€;

n—co \ n<p<m(n,T) || o

lim sup ( sup ) <rT (6)

for some T > 0 does not imply that {e,} satisfies the KC(r) condition. In the
following, we give a counterexample. Let a, = 1/n and e, = (—=1)"(1 + n). Clearly

{a,} satisfies (2). It is easy to check that in this case, for any 7" > 0,

p

g a;€;

i=n

1
= |an€n| =—+ 17
n

):1.

Therefore, given any fixed r > 0, equation (6) holds for T' > 1/r but not for T < 1/r.
Hence, {e,} does not satisfy the KC(r) condition.

sup
n<p<m(n,T)

and hence,
P

g a;€;

="

lim sup ( sup

n—co  \ n<p<m(n,T)




2.2 Chen’s condition

In [2], Chen proposes a condition on noise sequences similar to Kushner and Clark’s
for convergence of general stochastic approximation algorithms. We give a version of

the condition in the following definition.

Definition 2 Fix a sequence of positive real numbers {a, }. We say a sequence {e,}

on H satisfies Chen’s condition with height r, r > 0, (or simply the CH(r) condition)

)gr.

When r = 0, the CH(r) condition reduces to a version of the condition as stated

by Chen in [2]:
) o

The CH(r) condition, though similar to the KC(r) condition, seems weaker be-

)

be bounded by r for all T' > 0. We show in the following proposition that these two

if
P

g a;€;

T-0 n—co  \ n<p<m(nT) || 2o

1
lim sup T lim sup ( sup

p

g a;€;

i=n

’ 1 ’
m T 1m sup sup

T=0 1" nooo \n<p<m(n,T)
cause the latter requires that
P

g a;€;

i=n

1 I
T 1m sup sup

noo \ n<p<m(n,T)

conditions are in fact equivalent.

Proposition 3 Suppose the sequence {a,} satisfies (2). Then, {e,} satisfies the
KC(r) condition, r > 0, if and only if it satisfies the CH(r) condition.

Proof: As mentioned above, necessity is clear. To prove sufficiency, we appeal to
Proposition 1. Suppose {e,} satisfies the CH(r) condition. Let {sz} be any given
positive sequence converging to 0. By CH(r), for each k there exists Ty > 0 such that
for all T € (0,T}],

) < r+ sg.

p

g a;€;

i=n

1 I
T 1m sup sup

n—co  \ n<p<m(n,T)

10



Let Ty = min(Ty, Ty /k), k € N. By construction, we have Ty > 0, Ty — 0, and

p

g a;€;

i=n

lim sup ( sup ) < (r+ sp)Tk

n—oo \n<p<m(n,Ty)
for all £ € N. By Proposition 1, {e,} satisfies the KC(r) condition. ]

The above proof suggests that to check the CH(r) condition, it suffices to check

the “limsupy_,,” along some sequence T}, — 0, as stated in the following.

Proposition 4 Suppose the sequence {a,} satisfies (2). Then, {e,} satisfies the
CH(r) condition, r > 0, if and only if there exists a positive sequence {Ty}, Ty, — 0,

such that
) <.

Proof: The above condition is equivalent to the condition stated in Proposition 1,

p

g a;€;

i=n

: L.
lim sup n lim sup ( sup

k—o0 k n—oo n<p<m(n,Ty)

which is equivalent to KC(r) and, hence also CH(r), by Proposition 3. ]

2.3 Decomposition condition

We now consider a condition on the noise sequence that involves a special decompo-

sition.

Definition 3 Fix a sequence of positive real numbers {a, }. We say a sequence {e,}
on H satisfies the decomposition condition with height r, r > 0, (or simply the DC(r)
condition) if there exist sequences { f,,} and {g,} with e, = f, + ¢, for all n such that

n

Z ar fi. converges, and limsup ||g.|| < r.

k=1 n—0oo

A special case of the above condition (when r = 0) is suggested in [7, p. 29] (see
also [4], [2], [10, p. 11], [8] for applications of the above condition for the case r = 0).

This condition is related to the one presented in [5] and [3], where the particular step

11



size sequence a, = % was used. Note that for the case r = 0, the condition on g,

simplifies to g, — 0.
We point out that the decomposition in the DC(r) condition, if it exists, is not

unique. For example, it is easy to establish the following equivalence.

Proposition 5 The sequence {e,} satisfies the DC(r) condition if and only if there
exist sequences {f!'} and {¢.} with ¢, = f + ¢! for all n such that

n
im Y anfh = i "<
% 2 nfe = 0 and Bapuplonll < v

Proof: Sufficiency is trivial. To prove necessity, suppose {e,} satisfies the DC(r)
condition; that is, there exist { f,,} and {g, } such that e, = f,, +g,, > 71—, axfk exists,
and limsup,_, . ||gn|| < r. Define sequence {f/} and {g,} by

1 o0

fi = fi— _Zakfkv
a1 k=1

7 1 -

G = g1+ a_zakfkv
1 k=1

and, for all n > 2, f! = f, and ¢/, = g,,. It is easy to see that the sequences {f’} and
{4, } satisfy the required conditions. |

2.4 Kulkarni and Horn’s condition

Recently, in [6], Kulkarni and Horn establish a necessary and sufficient condition
for convergence of stochastic approximation algorithms. We state a version of the

condition in [6] in the following.

Definition 4 Fix a sequence of positive real numbers {a,}. We say a sequence
{en} on H satisfies Kulkarni and Horn’s condition with height v, r > 0, (or simply the

KH(r) condition) if for any o > r, # > 0, and any infinite sequence of non-overlapping

12



intervals {/;} on N there exists K" € N such that for all &k > K,

g An€n

nEIk

<ozZan—|—ﬁ.

nEIk

The negation of the above condition is what is described in [6] as a “persistently
disturbing” condition on the noise sequence. That is, {e,} is said to be persistently
disturbing of height r if there exist constants o > r, # > 0, and an infinite set of

non-overlapping intervals {/;} such that for all £,

g An€n

nEIk

ZaZan—l—ﬁ.

nEIk

The intuition behind the KH(r) condition (i.e., not persistently disturbing) is that the
cumulative effect of the noise Enel ane, over any finite interval I should not be too
large relative to the cumulative effect of the step size ) ., a, over the same interval.

Under appropriate assumptions on the function f, Kulkarni and Horn [6] show
that stochastic approximation algorithms converge if and only if the noise sequence
satisfies KH(r), where r is related to the minimum “height” of the function and the
jump of the function at its zero. We make use of their convergence theorem in the
proof of our main result in the next section.

We first give a lemma that slightly extends Kulkarni and Horn’s result in [6]. The

lemma will be used in the proof of our main result.

Lemma 2 Let {a,} be a sequence of positive real numbers. Suppose
€n = €5+ Vs lim 5, = 0.
n— 0o

Then, for r > 0, {e,} satisfies the KH(r) condition if and only if {e,} satisfies the
KH(r) condition.

Proof: We first prove sufficiency. Suppose {¢,} does not satisfy KH(r). Then, there

exist & > r, f > 0 and an infinite sequence of non-overlapping intervals {/;.} such

13



that for all &,

ZaZan—l—ﬁ.

nEIk

g Anty

nEIk

Since v, — 0, there exists N € N such that for all n > N, we have ||v,|| <a—r—4¢
with 0 < § < a—r. Let K be any natural number such that min(/x) > N and define
an infinite subsequence {I}} of {I;} by I] = Ixir—1. Then, for all £,

Yo anen||+ ) adlwll = (D anlen+ 1)

n€l] nel] nely

— E UnCp

nEIl'C

> ozZan—l—ﬁ.

nEIl'C

Hence,

Zanen > aZan—ZanH%H‘Fﬁ

ne[}; nEIl'C nEI;;

(a—(a—=r=238)) a+p

nEIl'C

= (r—l—5)2an—|—5.

n€lj

Y

Thus, {e,} does not satisfy the KH(r) condition.
To prove necessity, write e, = €, — v, and apply the proof of the sufficiency part

above with ~, replaced by —~,. |

Lemma 2 implies that we can add any sequence that converges to 0 to the noise
sequence {e,} without changing the KH(r) property of {e,}. This fact is useful in
applications where there is a natural decomposition of the noise sequence. Using a

similar argument as in the proof of Lemma 2, we can easily show that the same result

holds for KC(r), CH(r), and DC(r) as well.

14



2.5 The finite dimensional case

A special case of interest is where H is finite dimensional, since this is the case
typically studied for stochastic approximations. In this case, we show that to check
the conditions previously discussed, it is equivalent to check that they hold when

restricted to one dimension. This result is analogous to a result shown in [6] for

KH(r).

Proposition 6 Suppose H is finite dimensional. Then, {e,} satisfies the KC(r)
condition if and only if {(e,,v)} satisfies the KC(r) condition for eachv € H, ||v|| = 1.
The same result holds for CH(r), DC(r), and KH(r).

Proof: To prove necessity, let |[v|| = 1 and suppose that {e,} satisfies the KC(r)
condition. By Cauchy-Schwarz’s inequality,

p
= E a;e;, v
i=n
p

Zai<ei,v>

i=n

p

Zai<ei,v>

i=n

p

g a;€;

i=n

<

Therefore, for each T' > 0,

p

g a;€;

i=n

< lim sup sup < rT.
n—=oo  \ n<p<m(n,T)

To prove sufficiency, we use contraposition and an argument from [6]. Suppose

there exist 7" > 0 and § > 0 such that

lim sup ( sup

oo \ n<p<m(n,T)

p

g a;€;

i=n

>l +46

sup
n<p<m(n,T)

for infinitely many n. Let I be the infinite set of such n. Let

p

pn, = argsup g a;e;
n<p<m(nT) || 4
and
Pn Pn
w, = E ae; |/ E ae;

15



We have

Pn Pn
Zai <€i7wn> = <Zaiei7wn>‘
1=n t=n
Pn
= Z a;€;
i=n
> T +4

for all n € I. Choose € > 0 such that (1 —€)(rT +6) > rT + %. Let C, = {v :

||lv — w,|| < €}. Note that for each n € [ and each v € C,

Pn
i=n

p

Zai<ei,v>

i=n

sup
n<p<m(n,T)

Pn
> (1 — 6) Zaiei ‘
> (1 —=e)(rT +9)
0
> —.
> r1'+ 5

V4
T
=
3
2
o
8
3
~——
|
T
)=
3
82
o
\’@
8
3

(7)

Since {w, : n € I} is bounded, the Bolzano-Weierstrass Theorem ensures that there

exists N € [ such that w, € Cy for infinitely many n € I. Therefore, wy € C,, for

infinitely many n € I. From (7), we have that

sup
n<p<m(n,T)

i=n

for infinitely many n, which completes the proof.

A similar argument applies to CH(r), DC(r), and KH(r).

For the case where r = 0, we show that to check the four conditions, it suffices to

check them in each coordinate (with respect to a given basis), that is, it is enough to

check several one-dimensional conditions in each basis direction. In R¥, for example,

16



it suffices to check the conditions in each component of {e,}.

Proposition 7 Suppose H is finite dimensional. Let e, ... & be the coordinates of
e, with respect to a given basis for H. Then, {e,} satisfies the KC condition if and
only if {e*} satisfies the KC condition for each k = 1,..., K. The same result holds
for CH(0), DC(0), and KH(0).

Proof: Let {vi,...,vx} be the given basis for H, that is, e, = elv; + -+ + elvg.
To prove necessity, note that each ¢ is a linear combination of (e;, v), ..., (e;, vi).
Thus, the desired result follows easily from Proposition 6.

To prove sufficiency, note that by the triangle inequality,

p P K
S| = [S3 et
i=n i=n k=1
K P
-3 (e
k=1 i=n
K P
< 1Dl ol
k=1 | i1=n
Therefore, for each T' > 0,
P K P
lim sup a;6; < vi|| im sup aief =0,
e (nSpSm(n,T) ; ) ,; o] e (nSpSm(n,T) ;
which is the desired result.
A similar argument applies to CH(0), DC(0), and KH(0). ]

3 Equivalence and Convergence Theorem

The four conditions discussed in the last section all express the requirement that the
cumulative effect of the noise be small relative to that of the step size. Kushner

and Clark’s condition, Chen’s condition, and the decomposition condition have all

17



been used as sufficient conditions for convergence of stochastic approximation algo-
rithms. Of the four conditions, Kushner and Clark’s is the most widely known and
applied, and is often thought to be among the weakest sufficient conditions available.
Nonetheless, it has not been resolved whether or not the condition can be weakened
any further. Our main result in this section establishes that all four conditions in the
previous section are in fact equivalent, and that they are all necessary and sufficient
for convergence of stochastic approximation algorithms. In doing so, we confirm that
the well used condition of Kushner and Clark cannot be further weakened, generaliz-
ing the result of [14].

We consider a class of functions f: H — H that satisfy the following assumptions:

(A1) f is bounded on H; and

(A2) There exist * € ‘H and r > 0 such that for all § > 0, there exists hs > 0 such
that
o= o] 28 implies {(f(e),z —a%) > (r+ he)lle — o).

The above assumptions define a fairly general class of functions, quite standard in
stochastic approximation settings. The constant r > 0 in (A2) is related to the
minimum “height” of the function and the “height” of the jump of the function at
x*. The case where r = 0 includes functions that are continuous at x*.

We are now ready to present our main result.

Theorem 1 Consider the stochastic approximation algorithm

Tpy1 = Tp — anf(l'n) + anep + anYn, (8)

where {x,}, {e,}, and {y,} are sequences on H, f:H — H, {a.} is a sequence of
positive real numbers satisfying (2), and lim, o v, = 0. The following are equivalent:

1. For all f satisfying (A1-A2) and all x1 € H, lim, e x,, = ™.

2. For some f satisfying limeosupy, <. [|/(z™ + w)|]| < r and some z, € H,

M — *
lim,, oo T, = z*.

18



3. {e,} satisfies Kushner and Clark’s condition with height r.
4. {e,} satisfies Chen’s condition with height r.
5. {en} satisfies the decomposition condition with height r.

6. {e.} satisfies Kulkarni and Horn’s condition with height r.

Proof: We already have (3 <= 4) by Proposition 3, and (I = 2) is obvious
because the set of functions satisfying (A1-A2) and lim.o sup) . [|f(2" +u)|] < r
is nonempty (see the second remark after the proof). Therefore, it remains to prove
the following implications: (1 <= 6), (4 = 6), (2 = 5), (b = 3).

(1 < 6):

Kulkarni and Horn established this result in [6] for the case where there is no extra
term v,. The present result follows directly from the theorem in [6] by applying

Lemma 2.

(4 = 6):

Suppose {e, } satisfies the CH(r) condition. Fix a > r, # > 0, and an infinite sequence
of non-overlapping intervals {/;}. Choose € > 0 such that ¢ < o —r. Let M, (T') be
defined as in (5). By the CH(r) condition, that is,

1
lim sup = lim sup M, (T') < r,

T—0 n—00

there exists T' < % such that
) €
limsup M,,(T) < <r + —> T.
n—s00 2

Therefore, there exists N € N such that for all n > N

M, (T) < (r+¢eT. (9)
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By Lemma 1, there exists K > min{k: min(/;) > N} such that for all £ > K,

S an > (1, T) 1] (T il 6) T, (10)

(8%
nEIk

Then, for all I; with £ > K, we have the following two possibilities:

(D) 2ner, @n < Tt
By (9) we have

E An€n

S Mmin(Ik)(T)

nEIk
< (r+eT
< B
< « Z a, + 0.
nEIk
(ii) Enelk an, > T
By (9), we have
Zanen < Muine ) (T) < (r+ )T < 8, 1 <5 < d, (11)

net;

where d and t; are as defined in (3) and (4). From (10), (11), and an application of

the triangle inequality, we obtain

d—1
g aney|| < g g an€yl|| + E (n €y
nely J=1 ||n€ty n€ty

d—1
< Z Mmin(tj)(T) + 6
=1

< [@=1)r+OT+5

< ozZan—l—ﬁ.

nEIk
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By (i) and (ii), we have

g An€n

nEIk

<ozZan—|—ﬁ

nEIk

for all £ > K. Therefore, {e,} satisfies the KH(r) condition.

(2 = 5):
We prove this part by explicitly constructing the required decomposition. Suppose
x, — 2~ for some x; € H and some [ satisfying lim._osup, <. [[f(z" + u)|| < 7.

Following [6], we define sequences

>

X — X
en — flz,) = M7

f(n).

f?’L

>

9n

Clearly, we have f, + g, = €,,. Furthermore,

n

lim Zanfn = lim (x, — 1) = 2™ — 2y
n—00

n—00
k=1
and
limsup ||g, || = limsup || f(z,,)]| < r.
(5 = 3):

Fix € > 0 and T' > 0, and suppose {e,} satisfies the DC(r) condition; that is, there
exist sequences {f,} and {g,} on H with e, = f, 4 g, for all n such that > 7_ axfi
converges and limsup,_,.. ||g.|| < r. Then, there exists N € N such that for all
m>n2>N,

e @
Tl < =
and
lgnll < 7 +
n T —.
g 9T
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Therefore, for all n > N,

p p p
sup a;€; S sup Clifi + sup a;qg;
n<p<m(n,T) ; n<p<m(n,T) Zz:; n<p<m(n,T) Zz:;
p
€ €
< —+ sup a; <r + —>
2 n<p<m(nT) ; 2T
€ €
< Sar ( —>
S 3 + r—+ 5T
= rl'+e
Therefore, {e,} satisfies the KC(r) condition. |
Remarks

e In the above theorem, we view all the sequences as deterministic sequences. To
apply the theorem to the case of stochastic sequences, we simply interpret the
theorem in a sample path fashion. For example, we can state the theorem in the
stochastic setting for almost sure convergence of {z,} by having the conditions

on {e,} hold almost surely.

o The set of functions satisfying (A1-A2) and lim.o sup <. [[f(z" + w)|| < 7 is

nonempty. An example of such a function is

(r + tanh(||e —2*||))(z —2)/|[z —2*[| if z # 2~
fz) = ,

0 if . = 2™
e For the special case r = 0, the proof of the equivalence of KC(0), CH(0), KH(0),
and DC(0), and their necessity and sufficiency for convergence of {x,}, can be
considerably simplified. Indeed, that DC(0) implies KC(0), CH(0), and KH(0)
is easy to establish, and the necessity of DC(0) for convergence is as shown in
(2 = 5) above. Therefore, from the sufficiency of KC(0), CH(0), or KH(0)
for convergence, we conclude that all four conditions are equivalent, and are

necessary and sufficient for convergence.
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e Note that the function f does not appear in any of the four noise conditions.
Hence, their equivalence holds without assumptions (A1) or (A2). These as-
sumptions are relevant only in establishing the sufficiency of the four conditions

for convergence.

e Although assumption (Al) is somewhat restrictive, for the r = 0 case we can
eliminate (Al) as follows. In [6], (Al) is needed only to prove sufficiency of
KH(0) for convergence. Sufficiency without (A1) has been proved for KC(0)
and CH(0) (e.g., [2], [7]). Therefore, by the equivalence of these conditions,
we have sufficiency without (Al). For necessity, (Al) is not needed in our
proof. Hence, for r = 0, the result of Theorem 1 holds without (Al). However,
we should point out that without (A1), other additional assumptions may be
needed. For example, sufficiency results for KC(0) (e.g., [7]) typically require
the assumption that the sequence {z,} is bounded. Alternatively, projections
are often incorporated into the algorithm, or growth rate conditions are imposed
on f (e 2, [1)

For the r > 0 case, the only convergence result we know of is that of [6]. In
[6], (A1) is used to prove sufficiency of KH(r) for convergence. The proof in [6]
goes through if (A1) is replaced by boundedness of {x,}. We also believe that,
as in the r = 0 case, this assumption can be relaxed if an explicit projection

mechanism is incorporated, or if growth rate conditions are imposed on f.

e In the convergence theorem of Kushner and Clark in [7, p. 28], the condition
on the noise sequence involves the convergence in probability of a particular

sequence. Specifically, the condition is that for all ¢ > 0 and some T' > 0,

p

g a;€;

1=k

lim P {sup  sup
n—00 k>n k<p<m(k,T)

> e} =0, (12)

where P is the given probability measure. Since almost sure convergence implies

convergence in probability, we conclude that if the KC condition holds almost
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surely, then for all € > 0 and some T" > 0,

p

g a;€;

i=n

lim P { sup

nree n<p<m(n,T)

26}20,

which in turn implies (12). Therefore, the condition of Kushner and Clark in [7,
p- 28] is necessary for convergence under the same assumptions as in Theorem 1.
In fact, as pointed out in [7, p. 29], the condition in (12) is equivalent to the
KC condition holding almost surely.

4 Conclusion

We discussed four conditions on noise sequences that are used in the analysis of
stochastic approximation algorithms. We proved that they are all equivalent, and
are necessary and sufficient for convergence of stochastic approximation algorithms.
Our result establishes that the well known condition of Kushner and Clark is not
only sufficient but also necessary for convergence, and therefore cannot be further
weakened.

We should point out that to verify these conditions for stochastic noise, application
of appropriate devices from probability theory may be necessary. For Kushner and
Clark’s condition, martingale arguments and application of Doob’s type of inequal-
ities constitute a popular approach [12]. With respect to the condition of Kulkarni
and Horn, a simple application of Markov’s inequality and the Borel-Cantelli lemma
is effective for several cases, as pointed out in [6]. Although Kushner and Clark’s
condition has been well known for some time, the other three conditions we discussed
are not as well known. It remains to be seen if they are easier to apply than the

condition of Kushner and Clark.

Acknowledgment: We thank an anonymous reviewer for helpful comments.
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